Page-level Affinity Scheduling for
Eliminating False Sharing

Francois Bodin
FElana Granston
Thierry Montaut

CRPC-TR95532
May 1995

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Page-level Affinity Scheduling for Eliminating False Sharing

Francois Bodin* Elana D. Granstont Thierry Montaut”
IRISA Rice University IRISA
Campus de Beaulieu Center for Research on Parallel Computation Campus de Beaulieu
35042 Rennes, Cedex 6100 South Main Street 35042 Rennes, Cedex
France Houston, Texas 77005, USA France
bodin@irisa.fr granston@cs.rice.edu montaut@irisa.fr

To appear in the 5th Workshop on Compilers for Parallel Computers, Malaga, Spain, June 28-30, 1995

Abstract

To date, page management in distributed shared memory (DSM) systems has been primarily the
responsibility of the run time system. However, there are some problems that are difficult to resolve
efficiently at run time. Chief among these is false sharing. In this paper, we present a general technique
for applying page-level affinity scheduling to eliminate false sharing resulting from regular references in
numerical applications with loop-level parallelism. This a generalization of our previous work which
was applied to one and two dimensional loops. We demonstrate the potential of these transformations
experimentally.

1 Introduction

In large-scale multiprocessors, whether loosely or tightly coupled, there is typically some memory that is
cheaper to access than other memory. Programming large scale multiprocessors directly (using message-
passing primitives, for example) is not easy. Writing good compilers for these machines is not easy either.
Typically compiler technology lags years behind architectural innovations.

Distributed shared memory (DSM) interfaces can potentially simplify the task of generating correct
parallel code, by providing the compiler with the illusion of a global address space. This interface can be
implemented in software or in hardware. DSM systems often maintain coherence automatically, using a unit

of coherency that has the granularity of a page or cache line.

*Supported by the Esprit Agency DG XIII under Grant No. APPARC 6634 BRA III and Intel SSD under Grant No. 1 92
C 250 00 31318 01 2.

tSupported by a Postdoctoral Research Associateship in Computational Science and Engineering under National Science
Foundation Grant No. CDA-9310307, and by the Center for Research on Parallel Computation under Grant No. CCR-9120008.

The success of the DSM abstraction depends heavily on page caching and the ability to exploit page-level
locality. To date, proposed and implemented page-management strategies have relied heavily on the operating
system, and secondarily on the hardware, to effect page placement and movement decisions. However, it is
generally agreed upon that there are several problems that are difficult to handle if ignored until run time.
Chief among these problems is false sharing, particularly multiple-writer false sharing, which arises when
two or more processors are writing distinct data within the same coherency unit. The experimental results
presented in Section 6 demonstrate the performance degradation that can be caused by false sharing.

False sharing is particularly problematic in software DSMs where coherency is maintained at the gran-
ularity of a page. Because software DSMs are typically implemented on top of or embedded into systems
which were tuned for uniprocessor environments, page sizes are typically 4K or larger [LP92, KDCZ94].

In this paper, we present a technique for eliminating false sharing by applying page-level affinity schedul-
ing. This technique is a generalization of our earlier work [Gra93, BGM94] which handled certain cases of
one and two dimensional loops. The remainder of this paper is organized as follows. Section 2 presents an
example of our technique. Section 3 presents the basic algorithm. Section 4 briefly addresses extensions for
handling cases where multiple references which dictate conflicting iteration partitions. Section 5 addresses
the the insertion and minimization of synchronization between loops. Section 6 presents experimental results.

Section 7 discusses related research. Section 8 concludes this paper.

2 Applying Page-level Affinity Scheduling: An Example

Consider the following loop nest. Assume that the right hand side of the assignment statement does not

cause any flow or anti dependences.

Loop Nest 1

D0 I; = 0 TO Nq-1
DO Ip = 0 TO Np-1
R: A[4*I1+3*I9+3] = h(I1,I9)
END DO
END DO

In this loop nest, the same page might be written during two or more distinct iterations. We can
eliminate multiple writer false sharing resulting from R in two steps. First, we assign pages to processors in
a block-cyclic fashion. Then, we effect a page-based owner-computes rule.

Assume that there are P processors Py, ...Pp_1, that a page can hold exactly four elements of 4, and that
array A is page-aligned. Suppose that we partition pages into blocks of 2 consecutive pages and arbitrarily

number the pages so that A[0] lies on page K = 0. In this case, assigning pages to processors in a block-cyclic

processor PO processor P1 processor P2

page O page 1 page 2 page 3 page 4 page 5
EEEEEEEEEEEEEEEEEEEn
A[3] A[6] A[9] A[12] A[15] A[18] A[21]
11=0: (12=0) (12=1) (12=2) (12=3) (12=4) (12=5) (12=6)
LI T T PP
A[7] A[10] A[13] A[16] A[19] A[22]
11=1: (12=0) (12=1) (12=2) (12=3) (12=4) (12=5)
LTI T
A[11] A[14] @ A[17] A[20] A[23]
11=2: (12=0) (12=1) @ (12=2) (12=3) (12=49)

Figure 1: Example of applying page-level affinity scheduling to Loop Nest 1.

fashion causes processor pid to be assigned the set of pages

p(pid) = { K | [K/2| mod (P) = pid } .

Then we partition the iterations to ensure that processor pid is assigned all iterations where the element
of referenced at R lies on a page in the set p(pid). Figure 1 displays the resulting mapping between pages
and processors as well as the iteration partitioning that is effected. False sharing is prevented by ensuring
that no two processors write elements of A that lie on the same page. For example, consider array elements
A[12:15] which all lie on page K = 3 are accessed during iterations (I1,I5) = (0,3), (1,2), (2,1), and (0,4),
respectively. Because page 3 lies in p(P;), we partition iterations so that all four of these iterations are
assigned to processor Pj.

The constraints that must be met to effect page-based owner computes rule can be expressed by the

following series of inequalities:

0 < I, < N1
0 < Iy < Ny—1
4K < 4*I1+3%I34+3 < 4xXK+1)-1
2% (nxP+pid) < K < 2#(n*P+pid+1)—1
0 < n < [sizeifP(A)-‘ 1

We can solve successively for Iy, I, K, and n to yield:

4*K—4*xI1—3 . 4xK—4*Iq
max | 0, < Ip £ min(Ny—-1,|—F——
3 3
Iomin Iomax
44K —3%N
max (O, [%-D < Iy < min(Nq—1,K)
—_—
Iimazx
Iimin
. . 4xN 3xNy —4
max(0,2*n*xP+2xpid) < K < mln(?*n*P—{—Q*pzd—{—l,[* 1+4* 2 J)
Kmin
Kmazx
0 < n < min sizeof(A) .y 4+Nqy +3xNy —4 —8x*pid
—~ = = 8 %P 8xP

From these inequalities, we can directly generate the SPMD node code that effects our partitioning:

Loop Nest 2
pid = getmypid()

DO n= nmin TO nmaz
DO K= Kmin TO Kmaz
DO Iy = Iimin TO Limaz
DO Iy = l[omin TO Izmaz
R: A[4*I1+3%I5+3] = h(I1,I9)
END DO
END DO
END DO
END DO

In the transformed loop nest, each processor pid only executes iterations where data is written to pages it
owns. The n loop iterates over blocks owned by pid that are accessed during a given iteration of the original
I4 loop. The K loop iterates over pages within a given block. All writes to a given page are performed by a
single processor within a single iteration of the K loop. Thus multiple-writer false sharing is eliminated.

By using the same mapping of pages to processors when applying this transformation to other loop nests
with references to array A, we achieve page-level affinity scheduling.

Note that the original loop nest (Loop Nest 1) has an output data dependence that is carried by the outer
loop. Our affinity-scheduling technique preserves this dependence in the transformed loop nest, by ensuring
that all writes of elements of array A to any given page are performed by the same processor in their original

order.

3 Algorithm Overview

Consider the following generic loop nest. Assume that fi,..., fp are affine functions of the loop index

variables.

Loop Nest 3

DO I4 = Lq TO Uy
DO Iy = Lo TO Uy

DO Ig Ly TO Uy

DO Iy = Ly TO Uy

R : A[f}(Il,...,IM), jé(Il,...,IM),..., fD(I1,~--,IM)] = h(Il,...,IM)
END DO

END DO
END DO

END DO

Page-level affinity scheduling is implemented by generating affine inequalities that represent the constraints
on the original loop iteration variables and for two new loop iteration variables n and K. In this section, we
first show how to generate the system of inequalities. Then we discuss the issues of solving the system of
inequalities using the Fourier-Motzkin algorithm. We then consider the order for performing the pair-wise

elimination.

3.1 Setting Up the Constraints

First, we generate the constraints that represent the range for each loop index variable Iy, 0 < J < Iy:
Lj<Ij<U;5.

Suppose that a page contains precisely m elements of A. Let o(4) be the offset of A4[0] on some page. If o(4)
is page-aligned, then o(4)=0. Let A[f(I1,Is,...,Iy)] be the linearized version of R. Then, A[m *xK — o(4)] is
the first element on page K, and A[m * (K 4+ 1) — 0(4) — 1] is the last. We add in the constraint that specifies

the elements of A that lie on page K:
m*K—o(8) < f(I1,I9,...,Iy) <mx*x(K+1)—o(8)—1.

Pages are assigned to processors in blocks of b pages in a block-cyclic fashion. Assuming that the blocks
assigned to each processor are numbered from 0, the n’th block assigned to processor pid contains pages

K= b+ (n*P+ pid) through K= b (n*P + pid + 1) — 1. This yields the constraint

bx(n+P+pid) <K< bx(n+«P+pid+1)—1.

sizeof(A) + o(4)

b*xm

Finally, we must generate constraint on n. There are [-‘ blocks of pages. Assuming that

there are P processors, each processor is assigned at most [szzeg{k(m) :—PO(A)-‘ blocks. Therefore,

0<n< [sizeof(A)—i—o(A)-‘ 1

bxmxP

This gives us the following inequality system:

bxmxP

Ly < I1 <Uy
< <.
Ly < In < Uy
b* (nxP+ pid) < K <bx(n*«P+pid+1)—1
0 < n < [szzeof(A + o(4)-‘ 1

m*xK—o(8) < f(I1,Ig,...,Iy) <m*(K+1)—o(h)-1

3.2 Solving Systems of Integer Inequalities

We currently solve the system of inequalities using Fourier-Motzkin elimination [Sch86]. In general, given
a matrix A and a vector b, standard Fourier-Motzkin finds a rational solution to Az < b, if one exists.

Standard Fourier-Motzkin consists of rewriting the system of inequalities as follows!:

I1—|—aim’§ﬁi i=1,...,0
(S) —Ii—}—aix’gﬁi i=U+1,...,10"
a;z' < B i=1"4+1,..,1

where ' = (Ig,...,Iy) and ay, ..., a; are rows of the matrix A.

From the first two lines of (S) we get

mar;:+1sj§111(ajm' — ﬁ]) S Il S minlgisp (ﬁz — aix')

1Individual inequalities may have been multiplied by positive scalars.

and a new system (S’) by eliminating Iy from (S5):

(ai—}—aj)m’gﬁi—l—ﬁj i=1,..,0, j=0U+1,..01"

(S")
a;z’ < B i=0"+1,..,1

By repeating this procedure we can successively eliminate the first M-1 components of vector z, resulting in
a trivial system with one unknown.

Relying on Fourier Motzkin elimination has several potential drawbacks. First, the complexity of Fourier-
Motzkin elimination itself is exponential in the worst case, and too expensive to be generally relied upon
in a commercial compiler. Second, loop iteration spaces are not necessarily convex integer subspaces while
Fourier-Motzkin elimination assumes convex rational subspaces?. The consequence of this is that the result-
ing code may contain empty iterations, namely for one or more iterations of an outer loop, an inner loop has
zero trips.

Ancourt and Irigoin [AI91] and Le Fur [Fur95] have focused on addressing the first concern by developing
techniques for eliminating redundant constraints, key source of inefficiency in the basic algorithm. Our
approach is to precompute solutions for commonly occurring cases. An example of precomputation is given
in Figure 23. For the exceptional cases where we must apply Fourier-Motzkin at compile time, however, we
can exploit their optimizations for eliminating redundant constraints.

The second concern, the “empty iteration” problem, appears to be more of a problem in theory than in
practice. Empty iterations arise primarily from iterating over pages which do not contain any accessed data.
In particular, the n and K loops iterate over the smallest consecutive set of pages that contain the elements
of A to be accessed within enclosing loops. If any of these pages are empty, there will be an empty iteration.
Empty iterations do not cause incorrect results. They simply add loop overhead. Because pages are so
large, the number of empty pages is likely to be very small. Moreover, the extra loop overhead per empty
iteration is also very small, especially after applying standard optimizations to the loop bound expressions.
For completeness sake, however, we note that there are several techniques for eliminating them should they
become problematic [Pug91, Mon95].

An alternative to Fourier-Motzkin has been proposed by Feautrier [Fea89]. He handles systems of linear
inequalities using the simplex method [Sch86]. He proposes a parametrized simplex algorithm (PIP) which
can be used to compute the loop bounds. The advantage of the simplex method is that it does not introduce
redundant constraints in the system. However the algorithm has to be applied for each loop bound and a

simplification of the loop bounds must be performed before the results can be used [JC93].

2The lack of convexity arises from the integer division.
3sign(t)=11if t > 0, —1 if t < 0, and 0 otherwise. ¥ = max(¢,0). t~ = max(—t,0).

DO I4=0 TO Ny —1
DO I5=0 TO Ny —1

R : A[Cl*I1+CQ*I2—|—)\] =
END DO
END DO
0< Iy <N;-—-1
0< I <Ny-—1
m*xK—o(B)< c1*I1+ecaxIog+ A <mx*x(K+1)—o(h)—
b*(n+P+pid) < K <b*(n*P+pzd+1)
sizeof(A (8)
0= o S[b*m*P -‘
1. Iy elimination yields
U< Ip <Np-—1
m*K—o(A) —c; xI1 — A+ sign™ (¢ea)(m — 1) m*K— o(A) —c; *I4 — A+ signt(ca)(m — 1)
C2 < I < C2
2. I4 elimination yields
0< Iy <WNy—1
[m*K—o(A)—A—}—sign (c1)(m —1) —61-‘ < lm*K—0(A)—A+5ign+(cl)(m—1)—62J
(&1 — C1

where '
e1 = signt(ciea)ea(Np — 1)
ez = sign~(ciea)ea(Ng — 1)

3. K elimination yields

bx(nxP+pid) < K <bx(n+P+pid+1)—1
[sign_(cl)(—cl * (Nq — 1721— e3) + 5ign+(cl)(—e4)-‘ < K < lsign_(cl)(—e4) + sign‘;(cl)(cl *(Nqg — 1) — eg)J

where
e3 = —o(h)— A+ sign(c1)(m — 1) — signT (ciea)e2(Ny — 1)
ea = —o(A)— A+ signt(c1)(m — 1) — sign™(c1c2)c2(Ny — 1)

4. nis kept unchanged.

Figure 2: Precomputed loop bounds for two-dimensional loop nests without flow dependences or anti depen-
dences. ¢1,¢9 # 0.

3.3 Determining the Elimination Order

The next step is to determine the order of elimination. We would like to solve the inequalities in the order
that will maximize data locality subject to dependence constraints. We assume that standard loop level
transformations for increasing parallelism, temporal locality and spatial locality [BEJW92, KM92, WL91]
have already been applied. Therefore, we assume the loops Iy, ..., Iy must remain in the same order with
respect to each other.

The simplest case arises when the loop nest contains no flow or anti-dependence. Recall from Section 2,
that our transformation automatically preserves output dependences where the source and sink are the
same, because it preserves the order of writes to any given page. In this case, we can apply Fourier-Motzkin
elimination in the order I4,Io,...,Iy,K,n as in our earlier example. In general, synchronization is needed
around the outermost loop. In some cases, however, our transformation exposes opportunities to eliminate
this synchronization (Section 5).

When the loop nest does contain flow or anti-dependences, the above elimination order may not be
legal. This problem is similar to that which arises when compiling languages such as HPF [KLSt94, BCZ92,
AFMP95, FSHK*91]. Suppose that innermost loop that carries a flow or input dependence is the Iy loop.
Then we can apply page level affinity scheduling by replicating loops Iy,...,Iy (i.e., each processor executes

all iterations of these loops) and partitioning loops Iy + 1,...,Iy. This results in the following set of

constraints on variables I3+ 1,..., Iy:
Ljy1 < I341 SUgpe

< <

Ly < In < Uy

b+ (n*P+ pid) < K <bkx(n*P+pid+1)—1

0< n < sizeof(4) + o(h) 1

= = b m xP
m*xK—o(8) < f(I1,Ig,...,Iy) <m*x(K+1)—o(h)—1

We then eliminate variables in the order Iy,...,I3,4,K,n. In general, synchronization must be inserted
around the n loop. Exceptions are discussed in Section 5.

We note that false sharing elimination may conflict with the parallelization process. In particular, par-
allelism is maximized by moving parallel loops outermost. The consequence of this is that iterations of
innermost loops which are sequentialized due to flow or anti-dependences must then be treated indivisibly,
unless we are willing to insert synchronization into innermost loops. Treating iterations of innermost loops
indivisibly precludes the application of our page-based owner computes rule. Inserting synchronization into
innermost loops effectively involves trading false sharing for “true sharing” and would likely outweigh the

performance benefits of applying our scheduling strategy. Hence this option was not considered. Alternate

approaches to eliminating false sharing from loops with innermost sequential loops, for example by modifying

data layout, is addressed in Montaut [Mon95].

4 Optimizing Loop Nests with Multiple Write References

In practice, programs often contain loop nests with more than one static write reference. This section
describes techniques for applying page-level affinity scheduling to loops with multiple write references. Before
the techniques can be described, the notions of array group and reference group are needed.

An array group is a set of arrays which have the same page alignment, the same array dimensions
(excluding the outermost dimension) and the same size elements. For example, in Loop Nest 4, ZU and ZV
have the same size elements. If they also have the same innermost dimension and same offset, then they
belong to the same array group. Otherwise, they belong to distinct array groups.

A reference group includes static write references with two characteristics. First, the arrays being refer-
enced must belong to the same array group. Second, the subscript expressions of the arrays being referenced
at these points must be the same. For example, in Loop Nest 4, the write references to ZU and ZV have the
same subscript expression. If both arrays belong to the same array group, then both of these write references
belong to the same reference group. Otherwise, they belong to distinct reference groups. In general, there
are at most a few reference groups within a given loop nest. This is especially true if arrays are aligned with
page boundaries.

A reference group has the desirable property that the footprint of each reference in the group moves
through memory at the same speed and crosses page boundaries at the same time. Consequently, all ref-
erences in within a single reference group have the same sharing pattern. If we can partition iterations to
eliminate multiple-writer false sharing for one reference in a group GG, we have eliminated it for all references
within G. If there is only one reference group, then multiple-writer false sharing is eliminated altogether.

Suppose that there is more than one reference group. If loop distribution is legal, we can distribute the
loops so that each new loop nest only contains write references from a single reference group. Then we can
handle each loop nest independently. By default, a synchronization instruction is required between the two
loop nests. Exceptions are discussed in Section 5.

When loop distribution is not feasible, we can eliminate page-level sharing within some reference group.
For the remainder, we can reduce the number of page migrations that page-level sharing causes by reducing
ping-pong effects (i.e., the repetitive bouncing of a falsely shared page between processors) using a loop
transformation that we developed specifically for this purpose [BGM94]. Depending on the coherency pro-
tocol, most of the page migrations attributed to false sharing may actually be caused by ping-pong effects.

Consequently, we have found that this hybrid strategy works well in practice [BGM94].

10

Loop Nest 4

/* Key loop nest from Lawrence Livermore Kernel 18 */
DO I4 =2 TO 6
DO I, = 2 TO N-1

R%Y: ZU[19,11] = ZU[I9,14] + S % (ZA[Io,T4] * (ZZ[I5,1¢] - ZZ[Ig+1,141))
- ZA[IQ—l,Il] * (ZZ[IQ,Il] - 77ZL :[2—1,:[1])
- ZB[I5,I1] * (ZZ[I9,I4] - ZZ[I5,I1-1]1)
+ ZB[I4,11+1] * (ZZ[15,14) - ZZ[I5,I1;+1)))
R%V: ZV[I5,11] = ZV[Io,14] + S % (ZA[I,,T4] * (ZR[I9,1{] - ZR[Io+1,141)

- ZA[I9-1,I41 * (ZR[I9,I41 - ZR[Ip-1,I41)
- ZB[I9,Iq+1] * (ZR[I9,I1]1 - ZR[Ip,I{-11)
+ ZB[I5,I1+1]1 * (ZR[I9,I1]1 - ZR[I5,I¢+11))
END DO
END DO

5 Synchronizing Between Loop Nests

In the following section, we discuss the insertion and optimization of barrier synchronization, the only
synchronization primitive considered in this paper. In general, whenever a a pair of loop nests have a flow,
anti or output dependence between them (i.e., the source of the dependence is in one loop nest and the sink
is in the other), a barrier must be inserted between the loop nests to enforce the dependence. This type of
dependence is known as a cross-loop dependence. For efficiency, however, we wish to minimize the number of
barriers that we insert. To do this, we rely on the technique presented in O’Boyle et al. [OKB]. We describe
this technique briefly here.

By using the same mapping between pages and processors across loops, our transformation to eliminate
false sharing achieves page-level affinity scheduling. This is equivalent to standard data distribution, such as
the one in HPF, with the major difference that only one data distribution at the page level is available. In
many cases, this scheduling strategy has the side effect of ensuring that both the source and sink of cross-loop
dependence will be executed by the same processor. In these cases, a barrier is not needed to enforce the
dependence. There are three such cases. We describe them in the next three subsections. Then we present

a brief example.

5.1 Case 1: Flow Dependence Exceptions

Consider the two loop nests below with a flow dependence from R; to Rs. Assume that fi, fo and fs are

affine functions of loop index variables.

11

Loop Nest 5

I
TO Uy

DO Iy =L
DO Iy = L} TO UJ
Ri: ALfi(I4,1I9)] = ---
END DO

END DO

N~

DO J; = L] TO UJ

DO Jy = LY TO U3
Ro: BLf2(J1,J9)] =
Ra:

Alf3(J1,39)]
END DO
END DO

A barrier must be inserted between the two loop nests to enforce this flow dependence unless all three of the
following conditions are met:

o fo=fs

e Arrays A and B belong to the same array group.

o Page-level affinity scheduling is applied to both loop nests based on R and R, respectively.

5.2 Case 2: Anti Dependence Exceptions

Consider the two loop nests below with a anti dependence from Rs to Rs.

Loop Nest 6

Do 1y = L} To U}
I

DO I, = LI TO U3
Ri: BLfi1(I1,I9)] =
Ryt

Alfa(Iq,I9)]
END DO
END DO

DO J; = L] TO UY

DO Jp = L3 TO U3

Ra: Alfa(Jq,I90]1 = -
END DO
END DO

A barrier must be inserted between the two loop nests to enforce this anti dependence unless all three of the
following conditions are met:

o fi=/fa.

e Arrays A and B belong to the same array group.

e Page-level affinity scheduling is applied to both loop nests based on R and R3, respectively.

12

PO P1 PO P1 PO P1

DOD|011§ _l -ZII.—OT?) . page x pagex + 1 pagex +2 pagex + 3 pagex +4 pagex +5 1

R, ENDA[D|O 2,11] = Alan]enlen|en]aa]|ecaealua |ws|ea|ea|va|ws]es|ca]as]

END DO
3

[page X pagex + 1 pagex + 2 pagex + 3 pagex + 4 pagex +5]

Ohs 1o, Alay|en|en]en]ea|ea|ealea|ca|eaea]walws|es|eaws]
R, ENDB|[3|02+1' I1+1] =A[12+1,11+1] [peey pagey +1 pagey +2 pagey +3 pagey +4 pagey+5 |

END DO Blay|en|en]en]ea]ea|ealea |ca|ea|ea|us]ws]eca|eca|us]

Figure 3: Example with two processors. Page-level affinity scheduling eliminates false sharing and ensures
that the source and sink of the flow dependence are both executed on the same processor. Consequently,
synchronization between the loops is not needed. (b =1, m = 3)

5.3 Case 3: Output Dependence Exceptions

Consider the two loop nests below with an output dependence from R; to Ra.

Loop Nest 7
Do 14 = L} To U}
D0 I, = L TO U]
Ri: ALfr(I1,I90]1 = ---
END DO
END DO

DO Jy = Lj TO U]

DO Jg = L3 TO U3
Roz: Alfa(J1,I901 = -
END DO
END DO

No synchronization is needed to enforce this output dependence if page-level affinity scheduling is applied to

both, based on R; and R, respectively.

5.4 Example

Consider the loop nest in Figure 3 (left). There is a cross-loop flow dependence (8) between references Ry
and R2. Suppose that we partition the iterations of each loop nest in a traditional manner, for example,
by assigning consecutive chunks of N/P iterations to each processor, where N is the problem size and P
is the number of processors. Then a barrier is needed between the two loops. Suppose instead that we
apply page-level affinity scheduling to each loop nest based on the write references R and R, respectively.
The result is depicted in Figure 3 (right). Because this dependence falls under Case 1, the barrier is no
longer needed. Both the source and sink of the dependence are now executed on the same processor, so the

dependence is enforced without synchronization.

13

6 Experimental Results

Page-level affinity scheduling (PLAS), except for the precomputation, has been implemented in the Fortran-
S compiler [BKP93]. The Fortran-S compiler generates SPMD-style code that runs on the iPSC/2 under
the KOAN software DSM [LP92]. The KOAN DSM system is embedded in the operating system of the
iPSC/2. Pages of size 4 KB are physically distributed across processors’ local memories. KOAN uses a
distributed-manager algorithm based on [Li86], with an invalidation protocol that ensures that the shared
memory is coherent at all times [CF78]. Under this protocol, pages can have one of three access modes:
read-only, write-exclusive and invalid. Multiple copies of a page are permitted only when all copies are in
read-only mode. When a processor needs to write to a page and either has a read-only copy or no copy at
all, the processor must send a message to the page’s manager requesting write-exclusive access. Once all
other copies of that page are invalidated, a write-exclusive copy is sent to the requesting processor, which
can then proceed with its write.

Several Fortran-77 benchmarks were studied. First, each benchmark was manually optimized to exploit
both parallelism and locality, using stripmining and interchanging where appropriate. Then the benchmarks
were then input into the Fortran-S compiler.

Two versions of each benchmark were generated: ORIG and PLAS. In the ORIG version, the outermost
parallel loop was partitioned across processors so that each processor was assigned a consecutive chunk of
N/P iterations, where N was the total number of iterations in the loop. The first chunk of N/P iterations was
assigned to Processor Py, the second chunk to Processor Pj, and so forth. Using the same mapping of chunks
to processors for all parallel loops naturally afforded some processor affinity for some of the benchmarks.
Barrier synchronization was inserted around parallel loops.

For the PLAS version, each processor was assigned chunk of b “pages” worth of iterations, where b that
was chosen to yield the partitioning that would be closest to N/P to minimize the differences between the

two versions. Barriers were inserted when necessary.

6.1 DMXPY

Loop Nest 8 depicts the Fortran kernel DMXPY from LINPACKD [DBMS79] which performs matrix—vector
multiplication. For this experiment, we assumed that N4 was small. Therefore, to maximize parallelism
and locality, we stripmined the I loop and then interchanged with the I4 loop. The result is shown in
Loop Nest 9. For both ORIG and PLAS versions, the Fortran-S compiler then distributed iterations of the

innermost loop across processors.

14

ORIG
Execu- 1 _W
tion 05— N

pPrLas

0.1 T T
1 2 4 8 16 32

Number of Processors

(a) Problem Size: N2=5000

27 \/\
Execu- 1 — \\ ORI
tion N
Time 0.5 \\
AN
(sec) 0.2 — Sl pLas
0.1 T T 1

1 2 4 8 16 32

Number of Processors

(¢c) Problem Size: Ny=15000

2 —
Execu- 1 — \/\ ORIG
tion 05 \\
Time AN -
~
(sec) 02] h PLAS
% I I B
1 2 4 8 16 32
Number of Processors
(b) Problem Size: N2=10000
2] \
\
EZZ?' 1 \\\ ORIG
0.5 AN
Time ~_
(SGC) 02 | PLAS
0l =777

1 2 4 8 16 32

Number of Processors

(d) Problem Size: No=20000

Figure 4: Ezecution times for original and optimized versions of DMXPY (Loop Nest 8). N4 = 10.

Loop Nest 8 Loop Nest 9

/* DMXPY (original) */

DO I4 = 0 TO Ny
DO Ip = 0 TO Ny
R: Y[I5] = Y[Ip] + X[I4] # M[Ip,14]
END DO
END DO

/* DMXPY (optimized for locality and parallelism) */

niter = ceil(Ny/P)
DO I5 =0 TO P
D0 I; = 0 TO Ny
DO Iy = niter*I5 TO MIN(niterx(I5+1)-1, Np)

R: Y[Io] = Y[Io] + X[Iq] * M[I5,I4]

END DO
END DO
END DO

Figure 4 depicts the performance of the ORIG and PLAS versions of these programs for four different

problem sizes. As can be seen in Figure 4(a), the overhead for applying PLAS was less than 10% of the

sequential execution time. In this version, no attempt was made to reduce loop overhead. We expect

that optimizations could reduce this overhead significantly. Nonetheless, in general, the optimized version

significantly outperformed ORIG. The only exception occurred when the number of processors was very

small, in which case the degree of false sharing was too small to offset the load imbalance caused by PLAS.

This effect can be seen in Figure 4(c)(d). Note that the curves corresponding to the optimized version are

smoother as well. This makes the performance of the optimized versions easier to predict, which facilitates

program tuning.

6.2 TRIANGLE

In DMXPY, the write reference pattern is the same during each each iteration of the I loop. is the same on
every execution of this loop. Thus, the degree of false sharing is not very high. False sharing would have been
more significant if the reference pattern were changed across executions of the I loop. To test the benefits
of our techniques under higher degrees of false sharing we created an artificial benchmark TRIANGLE (Loop
Nest 10) with exactly this property. The outer loop was executed serially. Iterations of the inner loop were

distributed across processors.

Loop Nest 10
/* TRIANGLE */

DO I =0 TO Ny
DO I, = I4+1 TO Ny
R: Y[I] = Y[Ip] + X[I4] * M[Ip,14]
END DO
END DO

The performance of TRIANGLE can be seen in Figure 5. Again, the PLAS version outperformed the
ORIG version. Because the lower bound of the inner loop depended on the outer loop index, the ORIG
version lost affinity across iterations of the outer loop. version lost reuse across executions of the inner loop.
One positive side effect of the PLAS optimization is that it created reuse opportunities across executions of

the inner loop.

6.3 LLK18

Figure 6 presents execution times for unoptimized and optimized versions of LLK18, a two-dimensional
explicit hydrodynamics code, known as Lawrence Livermore Kernel 18. This code contained three loop nests
similar to that depicted in Loop Nest 4. Although each loop nest contained multiple write references, but
the references within each loop nest belonged to the same reference group. This is because the corresponding
arrays had the same dimensions and subscript expressions, and the Fortran-S compiler automatically page-
aligned arrays, when possible. Therefore, if false sharing was eliminated with respect to one write reference
in each loop nest, it was automatically eliminated with respect to both. To maximize parallelism and locality,
we applied the same optimizations as we did to DMXPY. The Fortran-S compiler then distributed iterations
of the innermost loop across processors.

The performance of the ORIG and PLAS versions can be seen in Figure 6. Note that, as the number of

processors was increased past a threshold, the performance of PLAS more or less flattened out. This is true

16

20 — ORIG 20 — —// ORIG
Execu- 10 — Execu- 10 —
tion 5 — tion
Time Time AN
(sec) 2] [O 5 T N
1 T T 1 L I I

1 2 4 8 16 32

Number of Processors

(a) Problem Size: N2=5000

1 2 4 8 16 32
Number of Processors

(b) Problem Size: N2=10000

20 — \/ ORIG 20 — / ORIG
Execu- 10 — Execu- 10 —
tion tion \
Time A Time \\
(Sec) 2 — _ — q{PLAS (Sec) 2] _ — 4 PLAS
L I L I I

1 2 4 8 16 32
Number of Processors

1 2 4 8 16 32
Number of Processors

(¢) Problem Size: N5=15000 (d) Problem Size: No=20000

Figure 5: Ezecution times for unoptimized and optimized versions of TRIANGLE (Loop Nest 10). N4 = 100.

for all four graphs in Figure 5 as well. This trend is due largely to the constraints that PLAS imposed on
the scheduling policy. In general, with any program, increasing parallelism past some threshold will cause
performance to worsen. Finding this point, however, is non-trivial. Because PLAS required that pages were
treated as indivisible units (i.e., all writes to a given page had to be performed by the same processor), the
maximum amount of parallelism was bounded from above by the number of pages. Therefore, PLAS has
the side effect of bounding the amount of parallelism that could be exploited.

The best example of this effect can be seen in Figure 6(a), where performance more or less flattened
out after 8 processors, increasing only slightly beyond this point. The flattening out occurred because at
most 8 processors were used, even if more were available. The slight but steady increase after this point
occurred for two reasons. First, in the current version of the compiler, no attempt was made to prevent
the execution of empty loop iterations. Second, the program was forked across all available processors,
regardless of whether they were used. Both of these could have been overcome at least partially in a more
mature compiler, in which case performance would have been expected to level out even more. Had we been

able to run experiments on larger systems, we would have expected to see this same trend in the other graphs

in Figure 6 as well.

17

100 100
50 — 50 — ORIG
Execu- 90 — ORIG Execu- 90 —f /
tion 10] tion 10 7
Time B Time R
(sec) T~ (sec) 1— T~
05_ = ~ - — — 4 PLAS 05_ PLAS
T T 1 T T 1

1 2 4 8 16 32

Number of Processors

(a) Problem Size: N=1000

1 2 4 8 16 32

Number of Processors

(b) Problem Size: N=5000

Execu- 90 — Execu- 90 —
tion 10— ~_ tion 10 —
Time B S Time : TNl
(sec) 1 N T~ o As (sec) 1— N PLAS
0.5 — 0.5 —
T T T T

1 2 4 8 16 32

Number of Processors

1 2 4 8 16 32

Number of Processors

(c) Problem Size: N=10000 (d) Problem Size: N=15000

Figure 6: Ezecution times for original and optimized versions of LLK18. All arrays were page-aligned so there
was only one reference group per loop nest.

6.4 Key Loop Nest from LLK18 with Multiple Reference Groups

To test our extensions for handling loop nests containing multiple reference groups, we changed the bounds of
array ZV from Loop Nest 4 so that they no longer match those of ZU. To maximize parallelism and locality, we
again applied the same optimizations as we did to DMXPY. Again, the Fortran-S compiler then distributed
iterations of the innermost loop across processors. The results are shown in Figure 7.

In general, for 2 to 32 processors, the optimized version greatly outperformed ORIG. One advantageous
side effect of PLAS is that page-level locality was increased and the working set size was decreased. Occasion-
ally the effects are dramatic. For example, in Figure 7(c), ORIG performed very poorly on two processors

because of thrashing. Because of the smaller working set of the optimized version, it performed much better.

7 Related Research

The potential performance degradation that can be caused by false sharing of array data has been studied
by several researchers. Based on this research, data layout optimizations padding [BFS89, LP92, TLH92,
AL93, AALT94, Mon95] have been proposed. Others have studied data layout optimizations to reduce false

18

/ oma

0
7

(o) (15 0d3 T
8 | | | | PLAS 8 | | | | PLAS
1 2 4 8 16 32 1 2 4 8 16 32
Number of Processors Number of Processors
(a) Problem Size: N=1000 (b) Problem Size: N=5000
500] 500 =
Execu—%gg] Execu—%gﬁ]
tion %@ - oRtG tion %@ — ORIG
Time i BN Time] /
(sec) ﬁ% E ~~] . (sec) §% E] "
: T T 1 : T T 1
1 2 4 8 16 32 1 2 4 8 16 32
Number of Processors Number of Processors
(¢c) Problem Size: N=10000 (d) Problem Size: N=15000

Figure 7: Ezecution times for original and optimized versions of Loop Nest 4 from LLKI18.ZU and ZV were
declared with different dimensions, so that Loop Nest J would contain references from two distinct reference
groups.

sharing in languages with structures and pointers [EJ91].

In many cases, when coherency units are small, compiler-directed program transformations that increase
temporal and spatial locality without directly considering the size of the coherency unit alleviate much of
the problem. These include transformations such as loop interchanging that increase locality within an
individual loop nest [BEJW92, KM92, WL91] as well as transformations that increase locality across loops,
for example [HA90, AHD93]. Unfortunately, these transformations achieve affinity at the data-level only.
When the coherency unit becomes larger, such techniques no longer suffice.

An alternate compile-time approach that we explored attacks ping-pong effects only [BGM94]. This
approach alleviates ping-pong effects by batching up write requests which encourages processors to perform
multiple writes to a page before relinquishing the page. This transformation is simpler to implement and
can be applied in more cases than the transformation described here, but yields a smaller performance
improvement and only when the amount of parallelism is moderate.

Other researchers, for example [CGLT93, ACIK93, KNS94, AFMP95], have looked at using a block-cyclic
owner computes rule to compile data-parallel languages such as HPF [KLST94]. Some of these techniques

are also based on generating and solving sets of inequalities. However, none of them have considered the

19

approach of precomputing solutions to reduce compile-time overhead.

Run-time solutions for eliminating ping-pong effects have also been proposed. One approach is to relax
the consistency model. For example, systems such as Treadmarks [KDCZ94] (by default) and KOAN [LP92]
(as an option) allow multiple copies of writable pages to exist and merge modifications only at synchronization
points. While these run-time techniques are more general than the compile-time techniques that we study
here, they entail a significant space cost to keep track of modifications as well as a time cost associated with
both the bookkeeping and the merging. Most of this cost disappears if only single writer false sharing is
present. Because we believe that this is a nice solution for single writer false sharing, we have limited our
focus to multiple writer false sharing.

For this study, we targeted the elimination of false sharing to improve performance. Because of our
assumptions of a page-coherent system (supported in either hardware or by the run-time system), the
resulting program would execute correctly regardless of whether false sharing was eliminated. In contrast,
on systems where no hardware or run-time support for coherence is provided, false sharing must be eliminated
to ensure correctness. Breternitz et al. [BLSS93] study this problem. Consequently, their techniques are more

general but likely to be less efficient.

8 Conclusions

In this paper, we have presented a transformation for eliminating false sharing within loop nests by applying
a page-based owner-computes rule. By using the same page-to-processor mapping across loops, we can
achieve page-level affinity across loop nests as well. The constraints that must be met can be expressed as
a set of inequalities and solved via standard solution techniques. Computation can be done symbolically at
compile time if necessary. Consequently, we can precompute the solution in many commonly occurring cases
to reduce compile-time overhead.

Although our goal was to eliminate false sharing, there are two beneficial side effects to our technique.
First, locality is improved both within and across loops. Second, in some cases, our technique can reduce
the number of barriers that are needed, thereby further improving performance.

Although the derivation of loop bounds is more complex than in conventional blocking, our experimental
results have shown that run-time overhead is generally low and quickly offset as the number of processors is
increased to even a moderate number. An additional benefit to our technique is that performance generally
becomes more predictable, which facilitates both manual and automatic program tuning.

Because the performance degradation due to page migrations is proportional to page size, so is the
benefit of applying our techniques. Consequently, we expect the performance results obtained under the
KOAN DSM system to be realizable under other DSM systems with comparable page sizes. Although we

target systems with page-sized coherency units it might also be possible to realize smaller performance gains

20

on DSM systems such as the Kendall Square Research KSR1 and KSR2 which support smaller coherency

units.

References

[AALT94]

[ACIK93]

[AFMPY5]

[AHDY3]

[AI91]

[AL93]

[BCZ92]

[BEJW92]

[BFS89]

[BGMY94]

[BKP93]

[BLSS93]

Saman P. Ammarsinghe, Jennifer M. Anderson, Monica S. Lam, and Chau-Wen Tseng. Design
and Evaluation of Compiler Optimizations for Scalable Address Space Machines, 1994. To be
published.

Corinne Ancourt, Fabien Coelho, Francois Irigoin, and Ronan Keryell. A Linear Algebra Frame-
work for Static HPF Code Distribution. In Proceedings of the Fourth Workshop on Compilers
for Parallel Computers, Delft, The Netherlands, December 1993.

A. André, M. Le Fur, Y. Mahéo, and J.-L. Pazat. The Pandore Data Parallel Compiler and its
Portable Runtime. In HPCN Furope’95, Milan, Italy, May 1995. To appear in LNCS, Springer
Verlag.

Bill Appelbe, Charles Hardnett, and Sri Doddapaneni. Program Transformation for Locality
Using Affinity Regions. In the Sixth Annual Workshop on Languages and Compilers for Parallel
Computing, Portland, Oregon, August 1993. Published in Languages and Compilers for Parallel
Computing, Banerjee et al. (Eds.), LNCS 768, Springer—Verlag, 1994, pages 290-300.

C. Ancourt and F. Irigoin. Scanning Polyhedra with Do Loops. In Third ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 39-50, Williamsburg,
Virginia, April 1991.

Jennifer Anderson and Monica Lam. Global Optimizations for Parallelism and Locality on
Scalable Parallel Machines. In Proceedings of the SIGPLAN ’93 Conference on Programming
Languages Design and Implementation. ACM Press, June 1993.

S. Benkner, B. Chapman, and H. Zima. Vienna Fortran 90. In Scalable High Performance
Computing Conference, pages 51-59. IEEE Computer Society Press, April 1992.

Frangois Bodin, Christine Eisenbeis, William Jalby, and Daniel Windheiser. A Quantitative
Algorithm for Data Locality Optimization. In Code Generation-Concepts, Tools, Techniques.
Springer-Verlag, 1992.

William J. Bolosky, Robert P. Fitzgerald, and Michael L. Scott. Simple But Effective Techniques
for NUMA Memory Management. In Proceedings of the 12th ACM Symposium on Operating
Systems Principles, pages 19-31. ACM Press, December 1989.

Francois Bodin, Elana D. Granston, and Thierry Montaut. Evaluating Two Loop Transfor-
mations for Reducing Multiple-Writer False Sharing. In the Seventh Annual Workshop on
Languages and Compilers for Parallel Computing, Ithaca, New York, August 1994. Published
as LNCS 892, pages 423-439, Pingali et al. (Eds.), 1995. Springer-Verlag, Berlin, Heidelberg.

F. Bodin, L. Kervella, and T. Priol. Fortran-S: A Fortran Interface for Shared Virtual Memory
Architectures. In Supercomputing 93, pages 274-283. IEEE Computer Society Press, November
1993.

Mauricio Breternitz, Jr., Michael Lai, Vivek Sarkar, and Barbara Simons. Compiler Solutions
for the Stale-Data and False-Sharing Problems. Technical Report 03.466, IBM Santa Teresa
Laboratory, April 1993.

21

[CF78]

[CGL*93]

[DBMST79]
[EJ91]

[Fea89]

[FSHK*91]

[Fur9s]

[Gra93]

[HA90]

[7093]

[KDCZ94]

[KLS*94]
[KM92]

[KNS94]

[Li86]
[LP92]

[Mon95]

L.M. Censier and P. Feautrier. A New Solution to Coherence Problems in Multicache Systems.
IEEE Transactions on Computers, pages 1112-1118, December 1978.

Siddhartha Chatterjee, John R. Gilbert, Fred J. E. Long, Robert Schreiber, and Shun-Hua Teng.
Generating Local Address Communication Sets for Data-Parallel Programs. In Proceedings of
the Fourth ACM SIGPLAN Symposium on Principles and Practice Of Parallel Programming,
pages 149-158, San Diego, California, 1993.

J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK User’s Guide, 1979.

Susan J. Eggers and Tor E. Jeremiassen. Eliminating false sharing. In Proceedings of the
International Conference on Parallel Processing, pages 377-381. CRC Press, Inc., August 1991.

P. Feautrier. Semantical Analysis and Mathematical Programming, Application to Paralleliza-
tion and Vectorization. In M. Cosnard et al., editor, Parallel and Distributed Algorithms, pages
309-320. Elsevier Science Publishers, 1989.

G. Fox, K. Kennedy S. Hiranandi, C. Koebel, U. Kremer, C. Tseng, and M. Wu. Fortran D
Language Specification. Technical Report TR-90079, Department of Computer Science, Rice
University, March 1991.

Marc Le Fur. Scanning Parameterized Polyhedron using Fourier-Motzkin Elimination. In
HPCS’95, Montréal, Canada, July 1995. (to appear).

Elana D. Granston. Toward a Compile-Time Methodology for Reducing False Sharing and Com-
munication Traffic in Shared Virtual Memory Systems. In the Proceedings of the Sizth Annual
Workshop on Languages and Compilers for Parallel Computing, Portland, Oregon, August 1993.
Published as LNCS 768, pages 273-289, Banerjee et al. (Eds.), 1994. Springer-Verlag, Berlin,
Heidelberg.

David E. Hudak and Santosh G. Abraham. Compiler Techniques for Data Partitioning of
Sequentially Iterated Loops. In Proceedings of the International Conference on Supercomputing,

pages 187-200. ACM Press, June 1990.

T. Risset J.F. Collard, P. Feautrier. Construction of DO Loops from Systems of Affine Con-
straints. In LIP Research Report 93-15, May 1993.

P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Treadmarks: Distributed Shared Mem-
ory On Standard Workstations and and Operating Systems. In Winter Useniz Conference,
1994.

Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and Mary E.
Zosel. The High Performance Fortran handbook. MIT Press, Cambridge, Massachusetts, 1994.

Ken Kennedy and Katheryn S. McKinley. Optimizing for Parallelism and Data Locality. In
International Conference on Supercomputing, pages 323-334. ACM Press, July 1992.

Ken Kennedy, Nenad Nedeljkovic, and Ajay Sethi. Efficient Address Generation for Block-Cyclic
Distributions. Technical report, Center for Research on Parallel Computation, Rice University,
Technical Report No. CRPC-TR94487-S, Houston, Texas, December 1994.

Kai Li. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis, Yale University,
September 1986.

Z. Lahjoumri and T. Priol. KOAN: A Shared-Memory for the iPSC/2 Hypercube. In CON-
PAR/VAPPY2, LNCS 634. Springer-Verlag, September 1992.

Thierry Montaut. Méthodes pour Uélimination du fauz-partage et Uoptimisation de la localité
pour mémoire virtuelle partagée. PhD thesis, IRISA, Campus de Beaulieu, 1995. In preparation.

22

[OKB]

[Pug91]

[Sch86]
[TLH92]

[WL91]

M.F.P. O’'Boyle, L. Kervella, and F. Bodin. Synchronization Minimization in a SPMD Execution
Model. To appear in the Journal of Parallel and Distributed Computing.

William Pugh. The Omega Test: A Fast and Practical Integer Programming Algorithm for
Dependence Analysis. In Supercomputing, 1991.

Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience, 1986.

Josep Torrellas, Monica S. Lam, and John L. Hennessy. False Sharing and Spatial Locality in
Multiprocessor Caches, August 1992. Submitted to IEEFE Transactions on Computers.

Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm. In Proceedings of
the SIGPLAN 91 Conference on Programming Languages Design and Implementation, pages
30-44. ACM Press, June 1991.

23

