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Abstract

To date, page management in shared virtual memory (SVM) systems has been primarily the respon-
sibility of the run-time system. However, there are some problems that are difficult to resolve efficiently
at run time. Chief among these is false sharing. In this paper, a loop transformation theory is developed
for identifying and eliminating potential sources of multiple-writer false sharing and other sources of
page migration resulting from regular references in numerical applications. Loop nests of one and two
dimensions (before blocking) with single-level, DOALL-style parallelism are covered. The potential of
these transformations is demonstrated experimentally.

Key words: false sharing, page-level affinity scheduling, loop transformations, shared virtual mem-
ory.

1 Introduction

In large-scale multiprocessors, whether loosely or tightly coupled, there is typically some memory that is
cheaper to access than other memory. Programming large-scale multiprocessors directly is not easy. Writing
correct compilers, let alone good compilers, is not easy either. Typically, compiler technology lags years
behind architectural innovations.

To simplify the programming of and compiling for such systems, much research effort has been directed
toward the implementation of shared virtual memory (SVM) interfaces [Li86] which provide the programmer

with the illusion of a global address space. In such a system, the unit of data to which coherency is applied
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Figure 1: Ezecution times for two wversions of Loop
Nest 1.

is termed a page. In practice, this coherency unit may be an actual physical page, a cache line, or a multiple
or portion thereof.

The success of the SVM abstraction depends heavily on page caching and the ability to exploit page-level
locality. To date, proposed and implemented page-management strategies have relied heavily on the operating
system, and secondarily on the hardware, to effect page placement and movement decisions. However, it
is generally agreed upon that there are several problems that are difficult to handle if ignored until run
time. Chief among these problems is false sharing of pages, particularly multiple-writer false sharing, which
arises when two or more processors are writing distinct data on the same page in an unsynchronized fashion.
Assume that the system supports an invalidation-based coherence protocol whereby, before a processor can
write to a page, all other copies must be invalidated. Then multiple-writer false sharing causes the writes to
be serialized. In the best case, the number of page migrations that this causes is one less than the number of
processors sharing the page. Often, however, this number rises much higher due to the repetitive bouncing
of this page between processors. This latter phenomenon is known as ping-pong effects. This can result in
unacceptably high communication costs, traffic levels and memory access delays.

Intuitively, false sharing effects increase as the number of processors increases. Less intuitively, false
sharing effects can also increase as the time between successive writes by a single processor increases. For
example, in an invalidation-based protocol, the longer the time between successive writes, the greater the
likelihood that a page will be invalidated in between a successive pair of writes to that page, thereby increasing
ping-pong effects and preventing the exploitation of page-level locality. This effect can be seen in Figure 1
which presents execution times for two versions of Loop Nest 1 as a function of the time between successive

writes by a given processor:
e the original loop (ORIG),
e a version optimized to prevent multiple-writer false sharing (FS-OPT).

Both versions were executed on 16 processors of a 32-processor iPSC/2 under the KOAN SVM system [LP92],



which supports the aforementioned invalidation-based coherence protocol and employs a page size of 4 KB
(512 double-precision numbers). The problem size was Ny = Ny = 103. The performance difference between
the ORIG and FS-OPT versions demonstrates the performance degradation that can be caused by false
sharing. The effect of varying the number of processors can be seen in the performance results presented in
Section 8.

In this paper, a loop transformation theory is presented for identifying and eliminating potential sources
of multiple-writer false sharing at compile time. This theory provides the basis for the transformation used
in the above experiment. Loop nests of one and two dimensions (before blocking) with single-level, DOALL
style parallelism are discussed. We also target the identification and elimination of potential sources of
page-level sharing that arise from writes by multiple processors across DOALL loops.

The remainder of this paper is organized as follows. Section 2 provides an overview of page-level sharing.
Section 3 discusses the basic theory in terms of single loop containing a single static write reference to a
one-dimensional array that is a function of a single loop index. Sections 4 and 5 extend the theory to two-
dimensional loop nests. Section 6 extends the theory to multi-dimensional arrays. Section 7 briefly addresses
extensions for handling loops containing multiple static write references. Section 8 presents experimental

results. Section 9 discusses related research. Section 10 concludes this paper.

2 Page-level Sharing

Consider the following simple DOALL loop before (left) and after (right) blocking:

Loop Nest 2 Loop Nest 3
DOALL ITI = 0 TO [N/f] —1
DOALL I = 0 TO N-1 DO I = II*$ TO MIN((II+1)*3-1, N-1)
A[3*I] = h(I) A[3*I] = (D)
END DOALL ENDDO
END DOALL

Assume that a page can hold precisely m array elements.

Example 1 If the block size 8 in Loop Nest 3 is not a multiple of m/3, multiple processors will be writing
simultaneously to different elements of A on the same page, thus resulting in false sharing. Depicted below
is the mapping between pages and DOALL loop iterations that results when m = 4 and § = 5. Note that
5 # k(4/3) for any k € IP 1. Because the elements on page 3 are accessed during distinct DOALL loop

iterations, page 3 may be falsely shared?.

1In this paper, we use the following set notation: Z is the set of integers, IP is the set of positive integers, IN is the set of
non-negative integers, and @ is the set of rational numbers.

2For this and similar examples, a small page size was chosen to simplify illustrations. Were the page size larger, there would
be more such cases.



Blocks block 0 block 1
/\A_/_‘\/\A_/
Pages page 0 page 1 page 2 page 3 page 4 page 5 page 6
Array Elements HEEEEEEEEEEEE [T T T T TIT T[S e
A[0] A[3] A[6] A[9] A[12] A[15] A[18] A[21] A[24] A[27]
Iterations 1=0 1=1 1=2 1=3 =4 =5 1=6 1=7 1=8 1=9
\/ \/
11=0 I1=1

Example 2 For this same loop, false sharing also results when 8 is a multiple of m /3, if A[0] is not aligned
with the beginning of a page. Depicted below is the mapping between pages and DOALL loop iterations
that results when m = 4,3 = 3(4/3) = 4, but A[0] is positioned at the end of a page. Depending on the

assignment of blocks to processors, pages 3 and 6 may be falsely shared.

Blocks block 0 block 1
 ——
Pages { page 0 page 1 page 2 page 3 page 4 page 5 page 6
Array Elements [T T TTTT] [T TTTTTT]
A[0] A[3] A[6] Al9] A[12] A[15] A[18] A[21 A[24]
Iterations 1=0 1=1 1=2 1=3 =4 I=5 1=6 1=7 ITS
\/ \/
11=0 11=1 1=2

When false sharing occurs, no two processors are accessing the same datum, so no classical, loop-carried
dependence exists. Therefore, such sharing generally does not get considered in traditional dependence-
analysis based optimization frameworks.

In Examples 1 and 2 above, the need for page-migrations or remote accesses arose from multiple references
to the same page within a single execution of a DOALL loop. Suppose instead that a DOALL loop were
enclosed within a serial loop. Then such a need could also arise if there were overlap between the sets of
pages accessed during distinct executions of the DOALL loop (equivalently, distinct iterations of the enclosing
loop). In this paper, we target the prevention of this source of page-level sharing as well. We can also extend

our techniques to prevent migrations across distinct DOALL loops.

3 Detecting and Preventing False Sharing in One-Dimensional
Loop Iteration Spaces

Consider the following loop nest containing a reference R to A[c I+ A], where I is the index of the enclosing

loop, and ¢, A € Z are invariant with respect to the loop.

Loop Nest 4



k-blocks 2-block 0 2-block 1 2-block 2
e
Pages | pageO page 1 page 2 page 3 page 4 page 5
Array Elements | [ [ ] [ 1] [ 1] [ 1] [ 1] *
A[0] A[3] A[6] A[9] A[12] A[15] A[18]

Iterations

=0

Figure 2: Example of preventing false sharing within Loop Nest 5 when R is a reference to A[3*I]. o(4[0]) = 3,
m=4,k=2n=0,5=06(2) =8/3, and ¢ = $(0) = 0.

DOALL I = 0 to N-1
R: Afc*I+A] = h(I)
END DOALL

In this loop nest, as in all other loop nests in this paper, it is assumed that standard optimizations to remove
loop-carried dependences (e.g., as scalar expansion) and those to improve locality have already been applied
where possible and profitable.

Intuitively, multiple-writer false sharing can be prevented by partitioning pages into blocks of £ pages
each, known as k-blocks. Then we can partition the computation into chunks. Each chunk includes the
I-loop iterations that map to a given k-block. (An iteration maps to a k-block if the element of A written
during that iteration lies within that k-block.) Chunks are then assigned to processors indivisibly. The result
of this transformation is depicted as Loop Nest 53. With appropriate constraints on 3 and ¢, false sharing

is prevented.

Loop Nest 5

DOALL IT = 0 TO [(N+ ¢)/5]-1
DO I = MAX([II* S —¢], 0) TO MIN(C[(IT41)* 5 — ¢]-1, N-1)
R: Alc*I+A] = h(I)
END DO
END DOALL

Example 3 Assume that Loop Nest 5 contains the reference R to A[3*I]. Suppose that a page contains
precisely m=4 elements of A, and that A is laid out across pages so that element A[0] is the last element on
some page. Choosing § = 8/3 and ¢ = 0 partitions pages into 2-page blocks and then partitions iterations
accordingly, as shown in Figure 2.

For example, A[9] and A[12], which lie on page 3 are accessed during iterations I=3 and I=4, respec-

tively. Page 3 is mapped to k-block 1. All iterations that map to k-block 1 are executed during iteration

3In the remainder of this paper, it will assumed that 8 and ¢ may be rational and that ¢ < . The reason for this will
become apparent later in section.



II=1 of the DOALL loop. Thus, both of these write accesses will be performed by the processor, thereby

preventing false sharing of page 3.

In the remainder of this section, we present our false sharing prevention technique more rigorously. While
the presentation may seem unnecessarily formal for the relatively straightforward case of one-dimensional
loop nests, the results presented in this section form a foundation that is necessary for extending these ideas

to two-dimensional loop nests (Section 4).

3.1 Preliminaries

Let p(A[expr]) be the number of the page containing AlLezpr]. Arbitrarily let p(A[0]) = 0. Let o(A[expr]) be
the offset of Alexzpr] on a page, where 0 < o(A[expr]) < m. (Recall that m is the number of array elements
that reside on a page.) o(4[0]) can be determined directly from the starting address of A.

Lemma 1 Based on the above assumptions,

(a) o(Alexpr]) = (o(4[0]) + expr) mod m.
(b) p(alexpr)) = [ XL

Let sign(c) be 1 if ¢ > 0, -1 if ¢ < 0, and 0 otherwise. Let sign™(c) = maz(—sign(c),0).

Definition 1 Let R be a reference to Alc * I+ A, where ¢, A € Z and I is the index of a normalized enclosing
loop. A is perfectly aligned with respect to R if and only if
. 0 ifc>0
o(A[A]) = (—sign~(c)) mod m =
m—1 otherwise.

Intuitively, given Loop Nest 4, A is perfectly aligned with respect to R if and only if

age
e ¢ > 0 and array A is laid out across pages so that the element boFLJm'%ary

of A accessed in iteration I = 0 is located at the beginning of

a page, or .
A[M1] A[A] A[A+]]
age
bo%n%ary
e ¢ < 0 and array A is laid out across pages so that the element H

of A accessed in iteration I = 0 is located at the end of a page.

ALM] A[A] A[A+1]

3.2 Computing Blocking Factors
Suppose that Loop Nest 4 has been stripmined to exploit spatial locality:

Loop Nest 6



DOALL II = 0 TO [N/3] -1
DO I = [II*f] TO min([(II+ 1)« 3]-1, N-1)
R: Afc*I+A] = ---
END DO
END DOALL

Which values of 8 will prevent false sharing?
Let ¢ € I denote a value that variable I can take on during execution of the loop nest. Let i € I(II = i)

denote a value that variable I can take on when index IT of the enclosing loop has value .

Definition 2 An iteration : € I maps to a page p with respect to a reference R, if the element of A referenced

at R during iteration 1 s located on page p.

Lemma 2 When ¢ # 0, the iterations of the I-loop that map to a given page fall within an interval of size

Consider the reference R to Alc* I+ A] in Loop Nest 6. Note that ¢ must be non-zero. Otherwise,

parallelization of this loop would have been illegal.

Lemma 3 If 0 < |c| < m, then false sharing might exist. If |c| > m, then there is no page-level sharing of

any kind between processors.

The remainder of this section focuses on preventing the false sharing that arises when 0 < |¢| < m. However,
the theory presented here is sufficiently robust to encompass the case where |[c| > m as well, as this will

become useful when analyzing two-dimensional loop nests (Section 4).

Theorem 1 Assuming that A is perfectly aligned with respect to R, employing a block size of

{Bk)=kp™ [ ke, ™" =2} 0<[c|<m
(0: oc]q le| > m.

3 € BLK.SZ(c,m) =

during the execution of Loop Nest 6 will prevent page-level sharing between processors*.

Proof Consider the case when 0 < |c| < m, so # = 3(k). Assume that i, i’ € II, it < i, and that
i € I(II = it) and i’ € I(II = it'). When ¢ > 0, o(A[0])+c*i+A < o(A[0])+c*(it'*3)+A < o(A[0])+cxi'+A.
By the definition of perfect alignment, there exists ¢t € Z such that o(A[0]) + A =t * m. Therefore,

p(Alos i+ ) = |ZROLECEr |y gy < |QMODECSIA | pafc il 4+ ),

4The notation (Tmin : Tmasz] denotes the set {r | rmin < 7 < rmaz,7 € R}. (Fmn : Tmaz)s denotes the set (Tmin @ Tmaz] NS,

where S € {Z,IP,IN,Q}.



When ¢ < 0, o(A[0]) + A = t* m — 1, so p(A[c*x i+ A]) > p(&[c * i’ + A]). Therefore, no page is accessed
during more one DOALL loop iteration.

The case where |c| > m follows trivially from Lemma 3. o

Example 4 For example, let R = A[3* I], m = 4, and o(4[0]) = 0. We arbitrarily choose k = 2, so that the
block size is § = 5(2) = 8/3.

k-blocks 2-block 0 2-block 1 2-block 2
e

Pages page 0 page 1 page 2 page 3 page 4 page 5

ArrayElements | | [ [ [ [ T [ [ [[[[TTT]T[T]T[]ISeee

A[0] A[3] A[6]  A[9 A[12] A[15]  A[18] A[21]

Iterations I=0\|=1/|:2 Iwzs I=6v|=7
11=0 =1 11=2

Because k = 2, the I-loop iterations that are executed during any given iteration of the II-loop (the outer
loop after stripmining the original DOALL loop) are exactly those that map to some block of k pages, or
k-block. Because the block size is not an integer, the number of iterations that map to a k-block can vary
by one from block to block.

This prevents false sharing as follows. Consider elements A[12] and A[15], which both lie on page 3 and
are accessed during iterations I=4 and I=5, respectively. Both iterations I=4 and I=5 are executed during

the same DOALL loop iteration. Thus, false sharing of page 3 is prevented.

3.3 Compensating for Imperfect Alignment

Suppose that 4 is not perfectly aligned. Because iteration I = 0 maps to the middle of a block, employing
a block size of § = F(k) is generally insufficient to prevent false sharing. Therefore, when false sharing
exists, in addition to blocking by multiple of ™" the interval of iterations that is executed during the first
DOALL loop iteration must be shortened to compensate for the initial partial page. We show that this can
be achieved by transforming Loop Nest 4 as shown in Loop Nest 5, with the constraints on # and ¢ derived

in this section.

Definition 3 Two loop nests are equivalent if executing one loop nest yields the same result as executing

the other.
Lemma 4 Given any ¢ € [0: B)q, Loop Nest 5 is equivalent to Loop Nest 4 (the original loop).

Proof Loop Nest 5 is equivalent to Loop Nest 4 if there is a one-to-one correspondence between the values

that I takes on during execution of Loop Nest 5 and the set of integers {0,1...,N— 1}. Let R(¢, S, i) =



[ixB—¢:(ii+1)*5—¢ )z. Then the set of I-loop iterations executed during a given DOALL loop
iteration IT = u is

The set of I loop iterations executed over all i € IT is

[(W+6)/41-1
U ®epinbing) = [[§+8-6: [BE]ss-6), n0:mg
u=19/B)
= {01,..,N—1}.

Therefore, each I-loop iteration in the range { 0,1,...,N—1 } is executed at least once. Trivially, no I-loop
iteration is executed more than once within any given II-loop iteration. Moreover, given two distinct II-loop
iterations i and ', R(¢, 3, #) N R(¢,5,4') = 0. Therefore, no I-loop iteration is executed during more

than one II-loop iteration. Thus, a one-to-one correspondence is established. a

Definition 4 Let § € BLK_SZ(c,m). ¢ € [0 : §)q is an alignment factor for reference R if and only if
using that value of ¢ in Loop Nest 5 in combination with block size [ suffices to prevent page-level sharing

between processors with respect to R.

Lemma 5 If o(A[—c* ¢ + A]) = (—sign~(c)) mod m, then page-level sharing in Loop Nest 5 is prevented

with respect to R, and ¢ is an alignment factor for R.

Proof Let 4’ € II, ii < @', i = I(II = &) and i/ = I(II = #’). Using similar reasoning as in the
proof of Theorem 1, it can be shown that if o(A[—c * ¢ + A]) = (—sign~ (c)) mod m, then p(&[c * i + A]) #
p(A[c * i’ 4+ A]). Therefore, no page is accessed during more than one DOALL loop iteration. O

Theorem 2 Possible alignment factors for R include

{o(n)|nef0:kn} O0<]|c]<m

¢ € ALIGN_FACTOR(o(A[0]) 4+ A,c, k,m) =
[0:5)e le| > m,
sign(c) * (o(A[0]) + n*x m 4+ A + sign™(c))) mod (k * m)
<l '

where ¢(n) =

Proof For any n € IN, o(A[—c * ¢(n) + A]) = (—sign™(c)) mod m. Therefore, by Lemma 5, any ¢(n) €
ALIGN_FACTOR(m[0]+ A, ¢, £, m) is an alignment factor. The remainder of the proof follows from Lemma 3

and the definition of alignment factor. a

Corollary 1 If ¢(n) is an alignment factor, then ¥V t € Z, so is ¢(t x k + n).



Proof ¢(n) = é(t*k+ n). O

Observation 1 There are k distinct partionings of pages into k-blocks. The choice of n determines which

partitioning is effected by ¢ = ¢(n).

Therefore, without loss of generality, we restrict ourselves to values of n such that 0 < n < k.
Let o} (A[expr]) be the offset of A[expr] within the k-block containing it. Let p}(A[expr]) be the number
of that &-block.

Lemma 6 Suppose 3 = b(k) and ¢ = ¢(n).

(a) oF(Alo]) = o(Alo]) + n + m.

(b) of(Alexpr])
)

(o7 (A[0]) + exzpr) mod (k * m).
LO:(A[O])+exprJ )

kxm

‘2

(¢) pi(Alexpr]) =

Proof (a) Let i € II. When an alignment factor of ¢(n) is employed, pages are partitioned into k-blocks
such that, if ¢ > 0 (¢ < 0), Alc, (i * 3 — ¢(n)) + A] is the first (last) element in a k-block. Therefore,
of (Alc (1t B — ¢(n)) + A]) = (—sign™ (c)) mod (k * m), so o} (A[0]) = o(A[0]) + n * m.

(b),(c) Substituting & * m for m, the remainder of the proof follows directly from part (a) and Lemma 1.

Example 5 Assume again that Loop Nest 5 contains the reference R to A[3*I]. Suppose that A is laid out
as shown in Figure 2, so that 4 is not perfectly aligned. We arbitrarily choose ¥ = 2 and n = 0, so that
B = (k) =8/3 and ¢ = é(n) = 0. As can be seen in Figure 2, false sharing of page 3 is prevented. Note
that there are k = 2 possible pairings of pages into 2-blocks. By choosing n = 0, page 0 has become the first

page in some 2-block. Had we chosen n = 1, page 0 would have been the second page in some 2-block.

As will be seen in Section 8, using non-integer block sizes and alignment factors generally does not add
significant overhead. Moreover, much of the time, block sizes will actually end up being integers. If not,
however, block sizes can be restricted to integers although this might increase the minimum block size that
meets this requirement. Furthermore, whenever the block size is an integer, an integer alignment factor can

be found. See Appendix A for more detail.

4 Preventing False Sharing In Two-Dimensional Loop Iteration

Spaces

Assume that array subscripts have the form ¢4 * I 4+ ¢ * Iy + A, where I and Iy are indices of the outer

and inner loops, respectively, and c¢q,co, A € Z are invariant with respect to both loops.

10



Loop Nest 7

DO I, = 0 TO Ny-1
DO I, = 0 TO Nop-1
A[Cl * I1 +cg x ]:2 + ] = h(Il, ]:2)
END DO
END DO
In this section, we analyze the case where the inner loop is parallelized as shown below. In the next section,

we analyze the case where the outer loop is parallelized.

Loop Nest 8

DO I; = 0 TO Ny-1
DOALL II5 = 0 TO [Nz/b] -1
DO Iy = [IIQ*b] TO MIN([(IIQ—I—l)*b]—l, Ny — 1)
A[Cl * Il +cgx IQ—i-A] = h(Il, 12)
END DO
END DOALL
END DO

Preventing page-level sharing between processors is accomplished in two steps. First, we apply the techniques
from the previous section to prevent false sharing. This is equivalent to preventing the false sharing that
results during a single execution of the DOALL loop (i.e., a single iteration of the I4-loop). Then, we build

on this to prevent sharing across executions of the DOALL loop (i.e., across iterations of the I4-loop).

4.1 Step 1: Preventing Page-level Sharing within a Single Doall Loop Execution

Because the expression c¢q * I + A is constant within an iteration of the I{-loop, the distinctions between
this case and that presented in the previous section are that (1) the constant expression with respect to the
inner loop is now ¢4 * I1 + A, rather than A, and (2) the set of possible alignment factors depends on the

value of Iq.

Observation 2 Within a single DOALL loop execution, (equivalently, a single iteration of the I4-loop)

page-level sharing between processors may ezxist only when 0 < |co| < m.

Note that co must be non-zero or else parallelization of the inner loop would have been illegal. As in the

previous section, we again address only those cases where the coefficient of the inner loop index is non-zero.

Theorem 3 Within a single DOALL loop exzecution, we can prevent page-level sharing by employing a
blocking factor § € BLK_SZ(co, m) and an alignment factor quIl € ALIGN_FACTOR(o(A[0]) + ¢4 *xI1 +
A co,k,m).

The proof follows directly from Theorems 1 and 2. The resulting loop nest is presented below:

11



k-block 0 k-block 1 k-block 2

T T

page O page 1 page 2 page 3 page 4 page 5
HEEEEEEEEEEEEEEEEEEE
A[Q] A[3] A[6] A[9] A[12] A[15] A[18]
11=0: (12=0) (12=1)  (12=2) (12=3) (12=4) (12=5) (12=6)
LI T T T PP
Al4] A[7] A[1Q] A[13] A[16] A[19]
11=1: (12=0) (12=1) (12=2) (12=3) (12=4) (12=5)
HEEEEEEEEEEN
A[8] A[11l] @ A[14] A[17] A[20]
11=2: (12=0) (12=1) ' (12=2) (12=3) (12=4)

Figure 3: Example of preventing false sharing within Loop Nest 9 when R is a reference to A[4 * I4 + 3 * Io],
and o(A[0]) =3, m =4, k =2, and n = 0. This example also meets Condition 1.

Loop Nest 9

D0 I; = 0 TO N4-1
¢ = ¢11
DOALL II5 = 0 TO [(Ng + ¢)/8]-1
DO I = MAX([IIo* 8 —¢], 0) TO MIN([(IIo+ 1)* 53 —¢]|-1, No-1)
R : Alcy*I{+coxIg+2A] = h(Il,IQ)
END DO
END DOALL
END DO

Example 6 Assume that Loop Nest 9 contains the reference R to A[4%Iy+3%Ig]. Let m = 4 and
o(A[0]) = 1. We arbitrarily choose k¥ = 2 and n = 0, so that the blocking factor is #(2) = 8/3 and the
alignment factor is ¢(0) = ((34+ 4 * I1) mod 8)/3. The mapping between pages and DOALL loop iterations
that results when executing Loop Nest 9 under these conditions is displayed in Figure 3. Note that, although
we prevented page-level sharing within a single DOALL loop execution, we have not necessarily prevented
it across DOALL loop executions.

For example, A[9:12] lie on the same page. Because A[9] is accessed during the same DOALL loop
execution as A[12], they will be both be accessed by the same processor. However, A[9] and A[11] are
accessed during distinct DOALL loop executions. Therefore they may be accessed by different processors

resulting in page-level sharing. Preventing this latter type of sharing is the subject of Section 4.2.

12



iterations of
outer loop

Casel: i1*l 4+ +
i + 4+ [c2] *(N2-1) + m < =[c1]
i1l 44+

Case2: 1%l ++++
i1 + 4+ o+ [c2] *(N2-1) < el <c2| *(N2-1) + m
1l 4+ + 4+

Case3: i1*l A+
i ++++ 0 <el| <= |c2| *(N2-1)
i1l 4+ + 4+

( X X X X )

Cased: 1%l 4+ 4 4 +

i1 4+ cl=0 + array element
i1l o+ ’

( T T T Y ) C__ ) pae

Figure 4: Four cases for the footprint of the reference to A[cq * I1 + co * Io + Al

4.2 Step 2: Preventing Page-level Sharing across Doall Loop Executions

Consider the memory reference pattern that arises from the reference R during the execution of Loop Nest 9.
Within a single execution of this DOALL loop, footprint of R is a range of length ¢ % (Ng — 1)+ 1 and a
stride of co. This footprint moves across A at a rate of ¢4 locations per iteration of the Iq-loop.

When analyzing the page level sharing generated by A, four cases can arise. These are depicted in Figure 4.

Case 1: |co|* (Ng— 1)+ m < |cq].
Each page is accessed during at most one DOALL loop execution, so there is no page-level sharing across
DOALL loop executions. Consequently, if 5 and ¢ meet the requirements of Theorem 3, then all page-level

sharing is prevented.

Cases 2-4: 0 < |cq| <|cg|*(Ng —1)+ m.

The same page might be accessed during two or more executions of the DOALL loop. In this case, the
goal is to distribute pages amongst processors so that the processor that executes the iterations associated
with a given page during one execution of the DOALL loop executes the iterations associated with that page
during any other executions of the DOALL loop in which that page is accessed.

Before this approach can be presented, the notion of a consistent partitioning is needed.

Definition 5 The partitioning of pages into k-blocks is consistent if and only if the same partitioning is

used during every DOALL loop execution.

Example 7 The partitioning in Figure 3 is consistent.
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Theorem 4 Assume that a block size § € BLK_SZ(co,m) and an alignment factor of quIl €
ALIGN_FACTOR(o(A[0]) + ¢4 * I1 + A, co, k, m) are selected. Page-level sharing between processors can
be prevented altogether with respect to R if the following two conditions are both met:

Condition 1: the partitioning of pages into k-blocks is consistent across DOALL loop executions, and

Condition 2:  if a k-block is accessed by processor j during one DOALL loop execution and by processor

J' during another DOALL loop execution, then necessarily j = j'.

Proof Assume that Condition 1 is met. Then pages are partitioned into k-blocks that are treated as
indivisible “pages” of size k* m and this partitioning is the same across every execution of the DOALL loop.
During any given DOALL loop execution, only one processor can execute iterations that map to pages in
that block. Therefore, page-level sharing between processors can occur only if the k-block that is accessed by
one processor during one DOALL loop execution is accessed by a different processor during another DOALL

loop execution. This violates Condition 2. a

In the remainder of this section, we show how Conditions 1 and 2 can be met in Cases 2—4 from Figure 4.

4.2.1 Meeting Condition 1

When |co| > m, there is no page-level sharing within a single DOALL loop execution. However, in Cases
2-4, there may be page-level sharing across DOALL loop executions. Therefore, to meet Condition 1, it
is necessary to assign iterations in blocks of pages, even when there is no page-level sharing within one

execution of the DOALL loop (i.e., even when |co| > m).
Definition 6 ¢ is a consistent alignment factor if ¢ is an alignment factor and a consistent partition

is effected in Loop Nest 9 when ¢ is used in combination with a blocking factor of B = (k) k € P.

Theorem 5 Assume that 3 = 3(k), k € P. If n is invariant with respect to the I1-loop, then ¢; (n) is a

consistent alignment factor.

Proof The value of n determines the partitioning of pages into k-blocks. If n is invariant with respect to
the Iq-loop, then the same partitioning of pages into k-blocks is used during every iteration of the Iq-loop.
O

4.2.2 Meeting Condition 2

To meet Condition 2, we must ensure that every time a k-block is accessed, it is accessed by the same

processor. Within a DOALL loop execution this is ensured once a consistent partitioning is effected, because
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each k-block is treated as an indivisible unit, and during each iteration of the II5 loop iteration a single
k-block is accessed.

To ensure this across iterations of the outer loop, use a page-based owner computes rule to partition
iterations. First, we define a surjective mapping = from k-blocks to processors. Then, we ensure that, during
each I4-loop iteration, any IIo-loop iterations that access k-block p; are assigned to processor w(p;). The
mapping that we choose is

7(py) = py mod P,
where P is the number of processors.

Example 8 Consider the reference A[4* I4 4 3% I5] again, under the same conditions as in Example 6.
Figure 5 shows the assignment of k page blocks to processors that results when the above mapping is used.

Note that page-level sharing between processors is now prevented.
We now derive the transformation needed to effect this mapping.

Lemma 7 Suppose that k-block p}: is accessed during iteration iio € II5(I4 = 41) and that k-block p} maps
to processor Ppiq. Then the complete set of k-blocks accessed during iteration I1 = iy that map to processor
pid are

{pp+txP|iia+ sign(co)*t* P €1I5(I1 =141), tEZ }.

Proof The set of k-blocks that map to processor pid is { m(p} +t+ P) |t € Z }. During any given
iteration of the IIs-loop, a single k-block is accessed. Suppose that iig, iy + sign(co) xt * P € II5(Iq = 41),
t € Z. If k-block p} is accessed during iteration i¢s, then k-block p} +t * P is accessed during iteration
ila + sign(cy) *t * P. O

Lemma 8 The lowest numbered iteration iiy € II5(I4 = 141) that maps to processor pid is iiy =

(sign(cq) (pid — pP(Afcq * I + A])) mod P.

Proof Suppose that iteration II5 = 1y is the first iteration executed by processor pid. k-block
Pi(Alcy * I1 + A] + sign(cg) * i1y is accessed during iteration ii. Based on the chosen mapping function,
ity must be the smallest positive integer such that (p} (&[cq * I1 + A] + sign(cq) *4i2) mod P = pid. Solving

for the smallest it3 € IN completes the proof. a

The transformed loop nest is shown below:
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processor O processor 1 processor 2
\ I I \
k-block 0 k-block 1 k-block 2

T

R
A[0] A[3] A[6] A[9 A[12]  A[15] A[1§]
11=0: (12=0) (12=1) (12=2) (12=3) (12=4)  (12=5) (12=6)
LTI T PEf]
Al4] A[7] A[10]  A[13] A[16] A[19]
11=1: (12=0)  (12=1) (12=2)  (12=3) (12=4) (12=5)
LTI T
Al8]  A[11] A[14] A[17] A[20]
11=2: (12=0) (12=1) (12=2) (12=3) (12=4)

Figure 5: Example of meeting Conditions 1 and 2. R is a reference to A[4 *xI4 + 3 * I5] in Loop Nest 10.
o(A[0]) =3, m=4,k=2 and n =0.

Loop Nest 10

B = g
DO I{ = 0 TO Nq-1
¢ = ¢1,(0)
DOALL II5=0 TO P-1
pid = GetPid()
firstIter = (sign(cq(pid — pE(A[cl I{+ A])) mod P
DO IIyp= firstIter TO [(No+ ¢)/3] —1 by P
DO Iy = MAX([IIgx 3 — ¢], 0) TO MIN([(IIp+ 1)% B — ¢]-1, Ng-1)
R: A[Cl*Il—i—CQ*IQ—i—)\] = h(Il,IQ)
END DO
END DO
END DOALL
END DO

P is the number of processors allocated to the loop nest. The function GetPid () returns an identifier between
0 and P — 1 that represents the identifier of the processor to which a DOALL loop iteration is mapped. If
a DOALL loop with P iterations is executed, it is also assumed that each distinct DOALL loop iteration is
mapped to a distinct processor. Because there are at most [Nz/F] +1 k-blocks accessed during any DOALL

loop execution, at most [Ny/5] + 1 processors can be productively used.

Example 9 Figure 5 shows the mapping between k-blocks and processors that results when Loop Nest 10
is executed using the same reference and parameters as in Example 6. Note that a given k-block is always

mapped to the same processor. Therefore, both Conditions 1 and 2 are now met.

Lemma 9 Loop nest 10 is equivalent to Loop Nest 9.
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Proof Loop Nest 10 is equivalent to Loop Nest 9 if there is a one-to-one correspondence between the values
that II5 takes on during execution of Loop Nest 10 and the set of integers {0,1,...,[(No + ¢)/5] — 1}. Let

t € Z. During a given iteration of the Ii-loop in Loop Nest 10, processor pid executes II5-loop iterations
S(pid) = { firstIter(pid)+t* P }N[0: [(Ny + ¢)/5] — 1]z,

where firstIter(pid) = (sign(cy) (pid — pi(A[cq * I1 + A])) mod P. Note that U;-;io firstIter(pid) =
{0,1,..., P—1}. Therefore, the set of values that II5 takes on during execution of I4-loop, is

P-1
U Sid) ={0,1,..., [(ng + ¢)/8] - 1}.
pid=0
Trivially, no IIy-loop iteration is executed more than once within any given execution of the II-loop.
Moreover, no processor executed the same [tt115 loop iteration more than once and, given two processors

pid and pid’, S(pid) N S(pid’) = §. Thus, a one-to-one correspondence is established. |

Theorem 6 Loop Nest 10 meets Conditions 1 and 2.

The proof follows directly from Lemmas 7-9.

Note that the scheduling of DOALL loop iterations in Loop Nest 10 is static. Alternatively, a consis-
tent surjective mapping could be effected while allowing DOALL loop iterations to be dynamically sched-
uled [GW92)].

5 Parallelizing the Outer Loop

Suppose instead that we parallelize the outer loop. In this case, each execution of the Is-loop (equivalently,
each iteration of the original I1-loop) is now indivisible and hence must be executed in its entirety, with the
iterations executed in the existing order. Because the outer loop is parallelized, we only need to worry about
page migrations within a single DOALL loop execution (i.e., those that arise from false sharing).

Consider again the four cases for the footprint of A, as shown in Figure 4. For simplicity, assume that
array A is aligned with the beginning of a page boundary. The situation where this does not hold can be

compensated for using a similar approach to that presented in the previous section.

Case 1: |co|* (N — 1)+ m < |cq]
No page is accessed during more than one iteration of the DOALL loop (the Iq-loop), so there is no false

sharing.
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Case 2: |co|*x(Ng—1) < |cq| < |eg|*x(Np—1)+m

We first consider the general case, and then discuss a simpler technique for the special case where co = 0.
In general, during some pairs of consecutive iterations, the sets of accessed pages overlap (e.g., iterations
I41 =i and I4 = ¢ + 1 in Case 2 of Figure 4). During other pairs of consecutive iterations, there is no

overlap between the sets of pages accessed (e.g., iterations Iy =43 — 1 and Iy = 4; in Case 2 of Figure 4).

Observation 3 When the latter situation occurs, we have found a block boundary: iteration iy — 1 is the

end of one minimum-size block and iteration iy is the start of the next block.

The term minimum refers to the smallest set of iterations that must be scheduled as an indivisible unit to
avoid false sharing.

We now derive a technique for partitioning loop iterations into minimume-size blocks. Let

w = signt(cq)*cq +sign (co)*co* (Ny— 1)+ A
z = sign~(cq)*cq +signT(co)*kco* (Ng— 1)+ A .
Lemma 10 No pages are shared between iterations I1 = 13 — 1 and I1 = 11 if and only if

(cg*ig—cq+wymodm<w—z-—1.,

Proof Let A[sm(i;)] be the smallest element of A referenced during iteration Iy = 4;. Let A[lg(i;)] be the

largest element of A referenced during iteration #;. Then,

sm(iy) = cqxi1+sign (cq)*cqg+w

lg(iy) = cq*ip+sign (cq)*xcq+z .

No pages are shared between iterations ¢; — 1 and ¢; if and only if there is a multiple of the page size m
between the set of elements accessed during iteration i; — 1 and iteration ¢;. More formally, this constraint

can be expressed as

[sign+(c1) wlg(iy — 1)+ sign=(cq) * lg(z'l)-‘ § lsign“'(cl)* sm(iy) + sign=(cq) * sm(i; — J)J |

or equivalently, as (cq x4y —cqy +w)modm < w—z — 1. |

Let d = ged(eq,m), and t = m/d. Let (u,v) be any solution to the Diophantine equation ucq +vm = d.
(This equation, which is known as Bezout’s equation, can be solved while computing ged(cq, m) using the
w

Euclidean algorithm. Because d = ged(cy, m), a solution is guaranteed to exist.) Let @ = (j*u— |%] *

u) mod ?.
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Theorem 7 A block boundary occurs between iterations T4 = i1 — 1 and I1 = #1 tf and only if there exist

JE€0: %] = [4]lw and 1L € Z such that iy = BLK.START(j,1) =2+ 1t +1.

Proof For any i1 € Z, c1 i1 +w € {j*xd+ wmodd|j € IN,0 < j < t—1}. Therefore,
iy = BLK_.START(j,1). Based on Lemma 10, if 44 € I; and ¢ ends a minimum-size block, then
j*d+wmodd < w— z— 1 which implies that j < [%] — [£]. O

Based on this result, we can compute the corresponding end to this minimum-size block
BLK_END(j,1) = min( BLK_.START(j + 1,1), BLK_.START(j,1+ 1))

and prevent false sharing by scheduling the code as shown in Loop Nest 11. The bounds of the j-loop and
the 1-loop are computed to ensure that I4 takes on each value from the original range of the loop exactly

once.
Loop Nest 11 Loop Nest 12

DOALL j = JMIN TO JMAX

DOALL 1 = LMIN(j) TO LMAX(j) DOALL 1 = LMIN(O) TO LMAX(O)
/* I,-loop iterates over the next block */ /* I1-loop iterates over the next block */
DO I; = MAX(0,BLKSTART(j,1)) DO I; = MAX(0,BLKSTART(0,1))
TO MIN(BLK_END(j,1),Nq — 1) TO MIN(BLK_END(0,1),N{ — 1)
DO I5=0 TO Ny-1 DO Ip = 0 TO Noy-1
R: A[C1*11+C2*IQ+)\] R: A[Cl*Il—i—CQ*IQ—i—)\]
END DO END DO
END DO END DO
END DOALL END DOALL
END DOALL
where JMIN = O LMIN(j) = [(-1—=a)/t]
JMAX = min(t— 1, [2] — [2]) LMAX(j) = [(Nq—2)/t] -1 .

The problem with this approach is that block sizes are very irregular and the overhead in computing the
bounds can be high. Alternatively, because the reference pattern is periodic with respect to page boundaries
(it repeats every t iterations), we could consider only those boundaries that occur for some fixed value of
j, say j = 0. This would yield constant-size blocks of ¢ iterations each, except for any partial first and last
blocks. Moreover, the computation of the relevant block boundaries is simplified. The code that results is

shown as Loop Nest 12.

Example 10 Consider the reference Alcq * i1 + is]. Assume that the page size m = 4096. When ¢4 = 512,
BLK_START(0,1) = 7+ 8 % 1. In the steady state, each block is composed of 8 iterations. However, when
cq1 =513, BLK_.START(0,1) = 4095 + 4096 * 1. In this case, in the steady state, each block is composed of
4096 iterations, which may be prohibitively large.
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If the block size, t iterations, is prohibitively large, array padding can be used to reduce ¢. This option is
addressed in [Mon95].

In the special case where co = 0, R is invariant with respect to the inner loop. Therefore, the
simpler technique that was applied in Section 3 can be applied to the outer loop to prevent false shar-
ing as shown in Loop Nest 13, using any block size § € BLK_SZ(cq,m) and any alignment factor
¢ € ALIGN_FACTOR(o(A[0]) + A, cq, k, m).

Loop Nest 13

DOALL II{= 0 to [(Nl —|—¢)/5-|—1
DO Iq = MAX([IIl*ﬁ—(ﬂ, 0) TO MIN([(IIl—I—l)*ﬂ—(ﬂ, Nyp)-1
DO I5 = 0 to Nyp-1
R: A[Cl*Il—I—A] = h(Il,Iz)
END DO
END DO
END DOALL

Case 3: 0<|cq| <|cgx*|(liyg —1)
Finding a good compile-time technique for preventing false sharing as an optimization in this case is a topic

for future research.

Case 4: ¢y =0

Presumably this case does not occur. Otherwise, parallelization of the I5-loop would have been illegal.

6 Preventing Page-level Sharing of Multi-Dimensional Arrays

Loop Nest 14

DO I; = 0 TO Ny-1
DO Ip = 0 TO Nop-1
AL+ Ty + 9 +1p+ 2%, o, I hury 4§t
END DO
END DO

# Iy + 29417

Consider the case of a two-dimensional loop nest enclosing a d-dimensional array with linear subscripts,
such as that shown in Loop Nest 14. Assume that c?, cel Cc11—1’ cg, ce cg_l, AV .. A% ¢ Z and that
array A is stored in row-major order. Let the lower bound of dimension j be 0 and the upper bound

be DI — 1,0 < j < d. The linearized subscript expression of the reference to & is ¢y I1 + cols + A,

where cizz ( H, i+ ),0222_ ( H, it ),and)\zz ()\ H, it ),Where
d ! Dl = 1. Once the linearized version is obtained, the theory from the preceding sections can be directly
apphed. It is important to note that, although subscripts expression are linearized as part of analysis, the

array reference in the code itself need not be changed. It can remain as a multidimensional reference.
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Loop Nest 15

/* Key loop nest from Lawrence Livermore Kernel 18 */
DOALL II, = 0 TO [(N—2)/8] —1
DO I{ =2 TO 6
DO Ty = MAX([IIgx f]+2, 2) TO MIN([(ITo+ 1)« 4]+2, N)-1
RV, 2U[15,1¢] = ZU[I9,14] + S * (ZA[Io,T4] * (ZZ[15,1¢] - ZZ[Io+1,141))

- ZA[Ip-1,I4]1 * (ZZ[I9,I1]1 - ZZ[ Ip-1,I41)
- ZB[IQ,I]_] * (ZZ[IQ,Ii] - ZZ[IQ,I1—1])
+ ZB[I5,I¢+1] * (ZZ[I9,11) - ZZ[ I5,Iq+1)))

R%V. ZV[I5,11] = ZV[I9,14] + S % (ZA[I,,T4] * (ZR[I5,14] - ZR[Io+1,141)
- ZA[I9-1,I41 * (ZR[I9,I41 - ZR[ Ip-1,I41)
- ZB[I9,Iq+1] * (ZR[I9,I1]1 - ZR[ I9,I{-11)
+ ZB[I5,I1+1] * (ZR[I9,I¢]1 - ZR[ I5,I¢+11))
END DO
END DO
END DOALL

7 Optimizing Loop Nests with Multiple Write References:

In practice, programs often contain DOALL loops with more than one static write reference. This section
describes a technique for extending the aforementioned loop transformations to handle multiple write refer-
ences. As an example for demonstrating this technique, we will use Loop Nest 15, a key loop nest from a
two-dimensional explicit hydrodynamics code fragment known as Lawrence Livermore Kernel 18.

A reference group is a set of one or more write references with the same page offsets, the same array
dimensions (excluding the outermost dimension), the same size elements, and the same subscript expressions
(these need not be references to the same variable). A reference group has the property that the footprint
of each reference in the group moves through memory at the same speed and crosses page boundaries at the
same time. For example, in Loop Nest 15, ZU and ZV have the same size elements and the same subscript
expressions. If they also have the same innermost dimension and the same offset, then they belong to the
same reference group. Otherwise, they belong to distinct reference groups. In general, there are at most a few
reference groups within a given loop nest. This is especially true if arrays are aligned with page boundaries
when possible.

A reference group has the additional property that the set of block sizes and alignment factors that can
be used to prevent false sharing is the same for each reference in the group. Therefore, we can prevent page-
level sharing within a given reference group G, by applying our aforementioned techniques when applicable.
If there is only one reference group, then page-level sharing is prevented altogether.

Suppose that there is more than one reference group. Page-level sharing can be prevented simultaneously

for multiple reference groups by applying the following compound transformation:

e Step 1: Distribute the DOALL loop to encapsulate the references from each group in distinct DOALL
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Loop Nest 16

/* Preventing false sharing for both write /* Loop nest containing ZV after splitting
references from Loop Nest 15 */ main loop */
-
DOALL 115 = 0 T0 P-1 B = 8%V (k)
pid = GetPid() D0 IT5 = 0 TO [(N—2)/5]-1 BY P
DO I4 =2 TO 6
/* Loop nest containing ZU after splitting ¢ = ¢ZV<n)
main loop */ Ty
8 = 8%(k) : :
/* All elements of ZV written during
DO II, = 0 TO [(N—2)/8]-1 BY P e : .
DO I. =2 T0 6 iterations (I1, IoMIN : IoMAX) lie
1= 7u within some k-block that is
¢ = ¢I1 (n) mapped to processor pid */
IoMIN = MAX([(IIo+ Firstiter’Y(pid, 11))
/* All elements of ZU written during *3 — ¢]+2, 2)
iterations (I1, IoMIN : IoMAX) lie T MAX = MINC[(IIo+ Fz'rst]terzv(pid,ll)
within some k-block that is +1) % B — ¢]+2, M)-1
mapped to processor pid */ DO I, = IQMIN TO I,MAX
IoMIN = MAX([(IIg+ Firstlter?V(pid, 14)) RV, ZV[19,14] = ZVIy, 14 + ---
*fF — (;5-]'*'2, 2) END DO
I,MAX = MIN([(IIo+ Firstlter’?V(pid, 1;) END DO
+1) % 8 — ¢]+2, M)-1 END DO
DO Ip = I MIN TO IoMAX END DOALL
RZU, ZU[Iy,14] = ZU[I5,1¢] + ---
END DO
END DO
END DO
loops.

e Step 2: Independently select block sizes and alignment factors for each reference group (equivalently,

each loop nest).
e Step 3: Fuse the DOALL loops back together so that no additional synchronization is necessary.

Loop Nest 16 shows the result of applying this compound transformation to Loop Nest 15, under the
assumption that references to ZU and ZV belong to different reference groups.

The first two steps of this compound transformation are always legal. These two steps alone are sufficient
for preventing false sharing. However, unless the third step can also be applied, we are trading false sharing
for “true” sharing, namely the introduction of additional synchronization. The third step is only legal when
there are no fusion-preventing flow or anti dependences [BGM95]. For this work, we decided only to prevent
page-level sharing when we could do so without introducing additional synchronization overhead.

When the third step is not legal, another alternative exists: we can prevent page-level sharing completely
within some reference group. For the other reference groups, we can reduce the number of page migrations

that page-level sharing causes by combining this approach with our ping-pong reduction transformation
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described in [BGMY94]. This hybrid strategy has been shown to work well in practice [BGM94].

8 Experimental Results

FS-OPT has been implemented in the Fortran-S compiler [BKP93], which generates code that runs on the
iPSC/2 under the KOAN SVM [LP92]. The KOAN SVM system is embedded in the operating system of
the iPSC/2. Pages of size 4 KB are physically distributed across processors’ local memories. KOAN uses
a distributed-manager algorithm based on [Li86], with an invalidation-based protocol that ensures that the
shared memory is coherent at all times [CF78]. Under this protocol, pages can have one of three access
modes: read-only, write-exclusive and invalid. Multiple copies of a page are permitted only when all copies
are in read-only mode. When a processor needs to write to a page and either has a read-only copy or no copy
at all, the processor must send a message to the page’s manager requesting write-exclusive access. Once all
other copies of that page are invalidated, a write-exclusive copy is sent to the requesting processor, which
can then proceed with its write.

The Fortran-S compiler generates code using static scheduling. When P processors are allocated to this
code, there is an initial fork onto all P processors and a join at the end. The starts and ends of DOALL loops
are replaced by P-processor barrier operations as needed. Whenever a DOALL loop is executed, iteration
I = j of that DOALL loop is executed on processor j, where 0 < 7 < P, which provides some affinity across
DOALL loops.

The compiler generated two versions of each Fortran 77 benchmark studied: ORIG and FS-OPT. For
the ORIG version, each processor was assigned a consecutive chunk of 3 = N/P iterations, where N is
the problem size. For the FS-OPT version, each processor was assigned a consecutive chunk of § = §(k)
(equivalently, k “pages” of) iterations, where k that was chosen to yield the block size 5(k) that was closest to
N/P. For both versions, the innermost DOALL loop was parallelized. To maximize the grain of parallelism,

loop interchanging was then applied when legal.

8.1 DMXPY

Loop Nest 17 depicts the Fortran kernel DMXPY from LINPACKD [DBMS79] which performs matrix—vector

multiplication.

Loop Nest 17
/* DMXPY */

DO I; = 0 TO Ny
DO I, = 0 TO Ny
R: Y[I5] = Y[Io] + X[I4] * M[Io,I4]
END DO
END DO
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Figure 6: Ezecution times for original and optimized versions of DMXPY (Loop Nest 17) with the inner
loop parallelized and interchanged. Ny = 10.

Figure 6 depicts the performance of the ORIG and FS-OPT versions of these programs for four different
problem sizes.

In general, the optimized version significantly outperforms ORIG. The only exception is when the number
of processors is very small so that the degree of false sharing is too small to offset the load imbalance caused
by FS-OPT. However, this trend quickly reverses as the number of processors is increased and the degree
of false sharing with it. This effect can be seen in Figure 6(c)(d). Note that the curves that correspond to
the optimized version are smoother as well. This makes the performance of the optimized versions easier to
predict, which facilitates program tuning.

As can be seen in Figure 6(a), the overhead for applying FS-OPT is less than 10% of the sequential
execution time. At present, no attempt is made to optimize loop overhead. We expect to reduce this number
significantly further by applying standard optimizations and exploiting cases where operands and divisors

are powers of two to substitute expensive operations with shifts and masks.
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Figure 7: Ezecution times for unoptimized and optimized versions of TRIANGLE (Loop Nest 18) with inner
loop parallelized (no interchanging). N4 = 100.

8.2 TRIANGLE

Because there is processor affinity across executions of the I{-loop in DMXPY, the reference pattern is the
same on every execution of this loop, and the degree of false sharing is not very high. False sharing would
become more significant if the reference pattern changed across executions of the I1-loop. To study this

case, we created the artificial benchmark TRIANGLE shown as Loop Nest 18.

Loop Nest 18

/* TRIANGLE */

DO I =0 TO Ny
DO I, = I4+1 TD Ny
R: Y[I5] = Y[Io] + X[I4] * M[Ip,14]
END DO
END DO

The performance of TRIANGLE can be seen in Figure 7. Again, the FS-OPT version outperforms the
ORIG version. In this case, because of the triangulation, the ORIG version loses any reuse across DOALL

loop executions. One beneficial side effect of the FS-OPT optimization is that it can exploit affinity across
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Figure 8: Ezecution times for original and optimized versions of LLK18, with inner loops parallelized and
interchanged. All arrays are aligned with page boundaries, so there is only one reference group per loop nest.

loops.

8.3 LLK18

Figure 8 presents execution times for unoptimized and optimized versions of LLK18, a two-dimensional
explicit hydrodynamics code, known as Lawrence Livermore Kernel 18. This code contains three loop nests
similar to that depicted in Loop Nest 15. Although each loop nest contains multiple write references, the
references within each loop nest belong to the same reference group. This is because they have the same
dimensions and subscript expressions, and the Fortran-S compiler automatically aligns an array with the
beginning of a page when possible. Therefore, if false sharing is prevented with respect to one write reference
in each loop nest, it is automatically prevented with respect to both.

The performance of the ORIG and FS-OPT versions can be seen in Figure 8. As the number of processors
increases past a threshold, the performance of FS-OPT more or less flattens out. This trend is due largely
to the constraints that FS-OPT imposes on the scheduling policy. In general, with any program, increasing
parallelism past some threshold will cause performance to worsen. Finding this point, however, is non-trivial.

Because FS-OPT requires that pages are treated indivisibly (i.e., all writes to a given page must be performed
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Figure 9: Ezecution times for original and optimized versions of Loop Nest 15 from LLKI18, with inner
loops parallelized and interchanged. ZU and ZV are declared with different dimensions, so that Loop Nest 15
contains two reference groups.

by the same processor), the maximum amount of parallelism is bounded from above by the number of pages.
Therefore, FS-OPT has the side effect of bounding the amount of parallelism that can be exploited.

The best example of this effect can be seen in Figure 8(a), where performance more or less flattens out
after 8 processors, increasing only slightly beyond this point. The flattening out occurs because no more
processors will be used even if they are available. The slight but steady increase after this point occurs
for two reasons. First, in the current version of the compiler, no attempt has been made to prevent the
execution of empty loop iterations. Second, the program is forked across all available processors, regardless
of whether they are used. Both of these could be overcome at least partially in a more mature compiler, in
which case performance would be expected to level out even more. Had we been able to run experiments on

larger systems, we would expect to see this same trend in the other graphs in Figure 8 as well.

8.4 Key Loop Nest from LLK18 with Multiple Reference Groups

To test our extensions for handling loop nests containing multiple reference groups, we changed the bounds

of array ZV from Loop Nest 15 so that they no longer match ZU. The results are shown in Figure 9.

27



In general, for 2 to 32 processors, the optimized version greatly outperforms ORIG. One advantageous
side effect of the optimizations under study is that page-level locality is increased and the working set size is
decreased. Occasionally the effects are dramatic. For example, in Figure 9(c), ORIG performs very poorly
on two processors because of thrashing. Because of the smaller working set of the optimized version, it

performs much better.

9 Related Research

9.1 Previous Approaches to Reducing False Sharing

The potential performance degradation that can be caused by false sharing of array data has been studied by
several researchers. Based on this research, data layout optimizations [BFS89, EJ91, LP92, TLH92, AL93,
AALT94, Mon95] have been proposed.

In many cases, when coherency units are small, compiler-directed program transformations that increase
temporal and spatial locality without directly considering the size of the coherency unit alleviate much of
the problem. These include transformations such as loop interchanging that increase locality within an
individual loop nest [BEJW92, KM92, WLI1] as well as optimizations that increase locality across loop
nests, for example [HA90, AHD93]. Unfortunately, when the coherency unit becomes larger, such techniques
no longer suffice.

An alternate compile-time approach that we explored attacks ping-pong effects only [BGM94, Mon95].
This approach alleviates ping-pong effects by batching up write requests which encourages processors to
perform multiple writes to a page before relinquishing the page. This transformation is simpler to implement
and can be applied in more cases than the transformation described here, but yields a smaller performance
improvement and only when the amount of parallelism is moderate.

Run-time solutions for preventing ping-pong effects have also been proposed. One approach is to relax the
consistency model. For example, systems such as Treadmarks [KDCZ94] (by default) and KOAN [LP92] (as
an option) allow multiple copies of writable pages to exist and merge modifications only at synchronization
points. While these run-time techniques are more general than the compile-time techniques that we study
here, they entail a significant space cost to keep track of modifications as well as a time cost associated with
both the bookkeeping and the merging.

For this study, we targeted the prevention of false sharing to improve performance. Because of our
assumptions of a page-coherent system (supported in either hardware or by the run-time system), the
resulting program would execute correctly regardless of whether false sharing was prevented. Therefore,
we did not consider any transformations that would require the insertion of additional synchronization. In
contrast, on systems where no hardware or run-time support for coherence is provided, false sharing must

be prevented to ensure correctness. Breternitz et al. [BLSS93] study this problem. They insert additional
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synchronization as needed so that the compiler can maintain coherence. Consequently, their techniques are
more general than ours. However, on page-coherent systems, the overhead for the additional synchronization
may outweigh the performance gain from preventing false sharing.

False sharing prevention is only one optimization that a good SVM compiler should perform. Techniques
to reduce synchronization and hide memory access latencies are also needed [AALT94, AHD93, MHS94,
OKB, BGM95].

9.2 Relation to Research On Compiling Data Parallel Languages

Data parallel languages like HPF [KLSt94] typically support a block-cyclic data distribution for regularly
distributed data. When the programmer that selects a block-cyclic distribution, data is physically distributed
across processors in a block-cyclic fashion. The processor where data is physically located is the owner of that
data. When a data-parallel program is compiled, computation is typically partitioned according to an owner
computes rule: the processor that owns the data on the left side of statement performs the computation.

The problem of partitioning computation according to a general block-cyclic owner computes rule has
been studied by several groups of researchers [CGL1T93, ACIK93, KNS94, AFMP95]. The solution that
we propose transforms the problem of eliminating false sharing into a similar problem: we assign pages to
processors in a block-cyclic fashion and then partition computation accordingly. However, there are several
significant differences that arise primarily from our goal of targeting SVM systems and from supporting a
sequential language, rather than a data parallel one.

Recall that a key advantage of SVM is that it is easier to build compilers. One of our goals is to improve
the quality of SVM compilers with minimal complexity increase. Therefore, our programming model differs
from the traditional data-parallel model. The model that we compile for allows one type of parallel loop, a
DOALL loop. This has the advantage of simplifying compiler design overall, but introduces unique problems
such as those described in Section 5.

Additionally, because our input language assumes that data is laid out sequentially in memory and our
target architecture is an SVM system, we have chosen to preserve the original data layout, and simply
transform loops (when possible) to match the existing layout. This allows us to exploit the services that
the SVM provides in transparently translating from global to local address spaces and that of automatically
moving pages close to processors that are accessing them. Thus, we avoid the complexities associated with
implementing global to local address translation at the compiler level which can significantly complicate
the design of data parallel compilers [THK93]. Interestingly, our decision to leave the data layout intact
also gives us this same advantage over most other research on compiling (either data-parallel or sequential
language programs) for global address space architectures [AL93, AALT94, MHS94].

Leaving the data layout intact has the additional advantage that data is mapped directly to memory,

which is linear. Thus, we only have to deal with straightforward, one-dimensional distributions. Com-
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pilers for data-parallel languages such as HPF must support multi-dimensional distributions, as well as
complicated alignment specifications and processor mappings. This leads to the “reaching distribution”
problem [HHKT92]. In general, a compiler must know what distribution an array might have. This is
particularly problematic at procedure call boundaries or when redistribution statements are present, both
of which can lead to situations where variables are associated with different distributions at different points
of execution. In our case, the problem is significantly simpler because there is only one type of distribution,

the alignment is specified by one parameter, and there is only one mapping of blocks to processors.

10 Conclusions

The purpose of this paper has been to present a loop transformation theory that deals with the prevention
of multiple-writer page-level sharing. Most importantly, we have developed a set of constraints on blocking
factors, alignment factors and iteration scheduling techniques that, when met, prevent such sharing between
processors. This is accomplished by partitioning the iterations into blocks of “pages” and assigns these
blocks to processors as indivisible units, thus ensuring that no page is accessed by more than one processor.

In general run-time overhead is minimal. Computation can be done symbolically at compile time if
necessary. Triangular loops and loops with non-unit strides can be handled. Many commonly occurring
cases of loops containing multiple references can also be handled. We are currently working on techniques
to generalize these optimizations even further.

Our transformation has several beneficial side effects. First, applying our transformation may expose
opportunities to eliminate barrier synchronization between loops [BGM95]. Second, the transformation gen-
erally increases locality and reduces the working set of pages, thereby reducing thrashing as well. Although
the derivation of the block sizes and loop bounds is more complex than in conventional blocking, our ex-
perimental results have shown that run-time overhead is generally low and quickly offset as the number of
processors is increased to even a moderate number. Third, performance generally becomes more predictable,
which facilitates both manual and automatic program tuning.

Intuitively, the larger the page size is, the greater the degree of false sharing. Consequently, we expect
the performance results obtained under the KOAN SVM system to be realizable under other SVM systems
with comparable page sizes. Although we target systems with page-sized coherency units it might also be
possible to realize smaller performance gains on systems such as the Kendall Square Research KSR1 and

KSR2 which support smaller coherency units.
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Appendix A: Determining the Conditions Under Which Integer
Block Sizes and Alignment Factors Can Be Found

Consider the following loop nest containing a reference R to Alc * I 4+ A], where I is the index of the enclosing

loop, and ¢, A € Z are invariant with respect to the loop.

Loop Nest 19

DOALL T = 0 to N-1
R: Afc*I+A] = (D)
END DOALL
Using a non-integer block size § and alignment factor ¢ generally does not add significant overhead.
Moreover, for the reasons given below, the block size will often end up being an integer. If not, however, the
block size can be restricted to integer values at the cost of potentially increasing the minimum block size
that meets this requirement. Furthermore, whenever the block size is an integer, an integer alignment factor

can be found.

Theorem 8 If c|k+*m® , then
(a) block size = B(k) € Z, and (b) |¢(n)| € Z is an alignment factor.

Proof (a) Trivial.
(b) Let ¢ € I, 7i € II, and assume that R(¢, 3, 1) is defined as in Section 3.3. Then ¢(n) effects the following

mapping from I-loop iterations to II-loop iterations:
i—i & i €EI(II=1u) & 1 €R(S(n),B,d)N[0: N)z.

Because ¢(n) is an alignment factor, this mapping ensures that false sharing is prevented. When 8 € Z,
R(o(n), B,1) = R(|¢é(n)], B, ii). Therefore, |¢(n)| effects the same mapping as ¢(n), so [¢(n)] € Z is also

an alignment factor. a

Note that Lemma 5 presents a condition that is sufficient but not necessary for ¢ to qualify as an
alignment factor. Following directly from the above theorem are the sets of integer block sizes and alignment

factors shown below:

{BR)=kG | ke, clkxm} 0<|c][<m

B € iBLK.SZ(c,m) =
P le| > m

(1)

6 € ALIGN FACTOR(o(A0]) + A,k m) = 4 ¢t emIIn&l0zbn 3 0<]el<m )

0:8)z e = m.

5The notation & | y means “z divides y".
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Observation 4 The page size m is always a power of two. Often, the coeffcient ¢ will also be a power of two.
In this case, every B(k) is already an integer. Whenever, 3(k) is an integer, for every rational alignment
factor ¢(n), there will also exist an integer alignment factor |¢(n)| that will effect the same mapping from
I to II.

Example 11 Consider the reference A[2%#I+1]. Assume m = 4, o(A[0]) = 2. Note that, for any k € IP, 3
is an alignment factor. Arbitrarily choose ¥ = 2 and n = 0. Then § = §(2) = 4. The effects of applying
alignment factors ¢ = ¢(0) = 3/2 and ¢ = [¢(0)] = 1, respectively, are depicted in the diagram below.
Note that, because A[6] and A[14] are not accessed, the same mapping from I-loop iterations to II-loop

iterations (equivalently, from array elements to II-loop iterations) is obtained with either alignment factor.

k-blocks 2-block 0 2-block 1 2-block 2
2-block 0 2-block 1 2-block 2
Pages | pageO page 1 page 2 page 3 page 4 page5

ArrayElements [ [ | [ [ [ [ [T [T [T [T[T[T[T]]
A[1] A[3] A[5] A[7] A[9] A[11]A[13] A[15]A[17]A[19]A[2]]

Iterations =0 I=1 1=2: 1=3 1=4 I1=5 1=6 1=7 =8 [|=9 1=10

11=0 =1 =2
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