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Abstract

This work deals with the consistency of finite difference approximations. We investigate
the relation between the consistency of a numerical scheme and the consistency of its adjoint.
We exhibit examples of numerical schemes which are consistent with a (direct) equation and
whose adjoint is not consistent with the adjoint equation. This undesirable feature appears
in the application of the adjoint state technique which requires an adjointness relation to be
satisfied. Therefore, the numerical scheme for the adjoint equation is determined by the choice
of the numerical scheme on the direct equation. We conclude that in general consistency is

not conserved by adjointness.
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1 Introduction

The equivalence theorem (cf [1, 2]) is the fundamental tool to derive convergent finite difference
approximations of linear partial differential equations. It states that if a scheme is consistent then
stability is equivalent to convergence. Consequently a lot of work has been devoted to stability
problems (cf [1, 3, 4]). Indeed the problem of deriving a consistent scheme is generally easily treated
by using Taylor’s formula. However the problem of consistency can become acute if the choice of

the scheme is restricted or even imposed. Such is the case when the adjoint state technique is used.

*Department of Computational and Applied Mathematics, Rice University, P.O Box 1892, Houston, Texas 77251-
1892, (sei@rice.edu)
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This technique (cf [5, 6, 7]) essentially used in optimization and optimal control gives the gradient
of a non linear functional as the solution of a so called adjoint equation. This equation is intrinsic
to the functional considered and is defined by satisfying an adjointness relation.

The numerical method used to compute the gradient must also satisfy this adjointness condition.
That is why once a numerical scheme has been chosen on the “direct” equation (adjoint of the
adjoint), the numerical scheme for the adjoint equation is implicitly determined.

A natural question to ask is whether the numerical approximation for the adjoint equation con-
verges if the numerical approximation for the direct equation does. In other words, is convergence
conserved by adjointness 7 With the equivalence theorem in mind this question can be rephrased
as “Are stability and consistency conserved by adjointness 7”.

To answer that question negatively we will exhibit a few simple examples where consistency of the
numerical scheme on the direct equation does not imply consistency for the adjoint scheme of the
adjoint equation.

The paper is organized as follows. In section 2 we recall briefly the principle of the adjoint state
method. In section 3 we apply this technique to the particular problem of traveltime tomography
inversion. In section 4 we give a few examples of non consistent approximation for the adjoint

equation and we present our conclusions in section 5.

2 Adjoint state technique

The adjoint state technique is commonly used in optimization and optimal control to compute
gradients of non linear functionals. This technique consists in computing an auxiliary field (the
adjoint state) by solving a so called adjoint equation. This adjoint state enters directly in the
computation of the gradient of the functional. For example let’s consider the following least

squares problem :

Find the Minimizer m* of the functional

T(m) = I|F(m)— DI

where F' is a non linear operator from a certain Hilbert “model” space M into a Hilbert “data”
space D:
rm — D
m +— F(m)=d
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To find the minimizer m* with local optimization techniques, we need to compute the gradient of

the functional J. The derivative of J at m in the direction ém is given by:
(2.1) J'(m).ém = ( F'(m).6m,F(m)— D )p

where (.,.)p is the scalar product in D. The derivative F’(m) of the functional F' at m is a linear
operator from M to D. If we assume that F’(m) is a one to one mapping then it admits an inverse

L = (F'(m))~! defined as follows:

L:D — M
o6d — Lbéd=6bém

Now let’s introduce a new field w solution of the adjoint equation:
L'w=F(m)—D
Then equation (2.1) can be written as follows:

Jim)bm = (F/(m).ém, F(m) - D)p
(F/(m).m, £ )p

(LF/(m).8m, w )

(8m,w )

where (.,.)aq is the scalar product in M. Therefore since the gradient G of J is defined as the
element of M such that

J'(m).6m = (6m,G )m

we have G = w.

3 Tomography inversion

We consider as a practical case the inverse tomography problem in seismology. Given travel
times data in a domain © we want to determine the slowness field m (reciprocal of the velocity)
minimizing the misfit between computed traveltimes and traveltimes data. We want to minimize

the following functional:

J(m) = %/ﬂ (T(a:,z;m) — Td(m,z))zd;r dz
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where 7(x, z; m) solves the eikonal equation (cf [10, 11]):

24+712 = m? (x,2) € Q
(3.1)
T = ¢ (z,2z) on Ty

We assume that the non linear operator F' associates to each slowness m a unique travel time 7

solution of (3.1). The derivative of J at m in the direction ém is :
J'(m).6m = / F'(m).6m (T(I, z;m) — Td) dr dz
Q

Let us set F'(m).6m = é7. The traveltime perturbation é7 is caused by the perturbation ém in

the slowness field. Given ém, é7 is the solution of the following linear equation (cf. Appendix A):

E.V(ST

m

ém (x,2) € Q
(3.2)
6or = 0 (x,z) on Ty
Thus the derivative operator F’(m), defined by F'(m).6m = é7 solution of (3.2), is the solution
operator of (3.2). Let £ be the inverse operator of F'(m) (we assume it exists), then £ 67 = ém.

Therefore, £ is defined by equation (3.2). We define the adjoint state w as the solution of the

adjoint equation

(3.3) L'w = T1(m)— rd
that 1s :
-V <w2> = 1(m)—r1¢ (x,2) € Q
m
(3.4)
w = 0 (z,z)onT1 =T =Ty

Then we can write

J'(m).6m = /67’ (T(m)—Td) dz dz:/érﬁ*w dx dz
0 9!

Using the adjointness relation

(3.5) /ﬂér(ﬁ*w) do dz = /ﬂ(ﬁér)wdm dz

we have

J'(m).6m = /6m.w dz dz
9!

Therefore w is the L? gradient.
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4 Numerical Methods

The crucial point of the method is the adjoint relation (3.5), which for differential operators reduces
to integration by parts. When we compute the adjoint state, relation (3.5) must also be satisfied
by the discrete operators. To solve the adjoint equation (3.3), we approximate the operator £* by
a discrete operator L}. The discrete equivalent of the adjointness condition (3.5) is satisfied if this
operator is the adjoint of an operator L; which must be an approximation of L.

We will show that some simple schemes do not have this property and therefore that consistency
is not conserved by the operation of taking the adjoint.

We illustrate this property on the example introduced in section 2. We want to compute the
solution 67 = u of equation (3.2). To simplify the problem, we assume that 7,(x, z;m) # 0 in the
domain, that is, there are no turning rays. So we can divide through by 7, and therefore u is the

solution of :

u; +a(z, z)uy, = f (z,2) €Q
(4.1)
u = 0 (z,2) on Ty
. Te m . . 9 .
with a(z,z) = — and f = . The adjoint equation of (4.1) for the L* scalar product is :
Tz Tz
—w, —(a(z,z)w)y; = ¢ (x,2) € Q

(4.2)
w = 0 (x,z)onT1 =T =Ty

These two equations satisfy the following adjointness relation:

/ﬂ(uz + o). do dz = /(—wz — (aw)e).u dz dz

Q

We can transform (4.1) and (4.2) into initial value problems (the z variable being considered as
time) by a judicious choice of f and g. With f(z,z) = —a(z,2)¢'(x) equation (4.1) transforms,

for the function u = u + ¢, into the initial value problem:

Uy +a(z,z)iy, = 0 (z,2) €Q
(4.3)
u = ¢ (z,2) on Ty
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and with g(z,z) = (a(z, 2)¢¥(x)), equation (4.2) transforms, for the function w = w + ¢, into the

initial value problem:

—w, — (a(z,z)w)y = 0 (z,2) € Q
(4.4)

&
l

Y (z,z)onT1 =T =Ty

Both equation (4.3) and (4.4) are hyperbolic equations. For the particular choice of a(z,z) = x/z
we can solve equation (4.3) and (4.4) analytically. So we can compare the numerical solution with
the exact solution. In the sequel we fix a(z, z) = #/z. We start with the simplest first order upwind

scheme.

4.1 Upwind Schemes
4.1.1 First Order Scheme

We consider the following domain © =]ag, #1[x]z0, z1[, the boundary ' being the line z = z;. We

discretize (4.3) with a first order approximation in z and an upwind derivative in x as follows (cf

(8] pp 112):
J J +y\n Jj—1 —\n j+1 J
T—I—(a i — (@)

(l
o

(4.5)

where a* = maz(%,0), a= = min(Z,0). So (a*)? = 0 for j < jo and (a=)? =0 for j < jo, where
z z

Jo corresponds to z = 0.

Equation (4.3) being hyperbolic we expect conditional stability. This scheme is stable if Az and

Az are chosen such that :
max |a|Az

4. — <1

(1.6 Clolds

as is easily seen by a plane wave (or Von Neumann) analysis (cf [3]). The truncation error of this

scheme is O(Az + Az) for any point of the (z,z) grid. The adjoint scheme of (4.5) derived in

appendix B | is given by:

wiT —wf (@ )iaufn = @fef (e)fef —(a)juef,
Az Az Az
(4.7)
w =wj =0 n=2.N wN:d)] j=1.J
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This scheme is stable under condition (4.6). Let’s examine the truncation in z = 0. We have at

that point (of index jg), (a¥)? = (a™)? = 0. Therefore we can write:

Jo Jo
_(a+)?o+1w?u+1 B (a+)?uw?0 _ (a_)?uw?t) B (a_)?u—lw?u—l
Azx Az

) — (@) W
:—(a )’”Hw]“HAm(a Viom1%jo-1 = —2.(aw).(0,2) + O(Az)

The adjoint scheme is not consistent with the adjoint equation. We illustrate this phenomenon in
the case where Q =] — 1, 1[x]1,3[ and ¢(z) = 2.

The exact solution of equation (4.4) derived in appendix C is given by
1 1
w(z, z) = ;¢(~’L‘;)

We plot below the exact and the numerical solution. The inconsistency of the numerical scheme in
0 is obvious. We can notice that convergence is assured everywhere but at the point # = 0. This is
in agreement with the equivalence theorem (cf [1, 2]) which implies that if a scheme is stable and
is not convergent then it cannot be consistent.

The inconsistency of the adjoint scheme seems to be a direct consequence of the upwind character

z=3.0 z=2.3
o 7 O——< // —
_ \ /] N\ /
0-21 \ / —-0.5 \ /
\ / N /
—0.4 \ / \\ y
= \ / = —1 ~ /
—0.6 \ / 1 ~___
b ’ 1.5 K
y —1. \
—0.8 \\ P
~ -
- -
-1 -2
-1 —-0.5 o 0.5 1 -1 —-0.5 o 0.5 1
x x
z=1.6 z=1.0
o——— - -——— o-—-———--—————— = — — — —
N 4 N /
\ / \
\ / -1 \ //
—1 \ / \
\ / -2 /
= N iz = \ /
~ P N
~ -3 0
-2 \ 11
] —4 |
h
-3 -5 :
-1 —0.5 o 0.5 1 -1 —0.5 o 0.5 1
x x

Figure 4.1: The exact solution (solid line) and the numerical solution (dashed line) of the adjoint
equation for different depth. The depth z = 3 is the initial data curve. The scheme is not consistent

mz =0.

of the direct scheme of equation (4.5). The adjoint scheme approximates the following continuous
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equation:

—w, — (at(z,2)w); — (a™(z,2)w); =0

But since at and a~ are defined using the functions Max and Min which are not differentiable in

0, we have inconsistency. This analysis is supported by using another upwind scheme.

4.1.2 Second Order Scheme

We choose to use a second order one sided approximation in space. Since the z-derivative is not a

problem we keep a first order approximation in z. So, we consider the following scheme:

ut oy
o (@)D} + (a)fD2u} = 0
(4.8)

1 _
uj_qﬁj

where D27 (resp D2}) is the left (resp. right) second order approximation given by:
ul_g — 4.u?_1 + 3u§1

D2z u? = -2
@ Y 2Azx

Dotyn — _u?+2 — ll.u;»q_1 + SU?
€ 2Azx

This scheme is consistent with equation (3.4) and the truncation error is O(Az + Az?) at every

point (,z) of the grid. The adjoint scheme is given by:

n—1 n
W — Ww; n_ n - )2,
G T Dot () - D2 () ug) = 0
(4.9)
w?:w?:O n=2.N 'wj\f:d)j

since the adjoint of D27 is —D2} and the adjoint of D2} is —D2;. In z = 0 we have again

(a™)? = (a7)} =0, and so:

Tw

D2f ((a*)fwi) + D27 ((a7);

=

(a*)]yowfys — 4 ()] pwiyy +3.(a)ful  (a7)] iy —4(a7)]_yuwfy +3.(a*)]w]
2Azx 2Az

_ (a+)§?+2w?+2 - 4~(a+)?+1w?+1 _ (a™)F_qwi_y —4.(a” )] _qwj_y
- 2Azx 2Azx

= 2(aw)¢(0, 2) — 4(aw)z (0, 2) + O(Az) = —2(aw)s(0, ) + O(Az)
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Therefore this scheme is not consistent with equation (4.4) in @ = 0. Furthermore it is not

consistent at £ = +Az. For example at £ = Az, corresponding to j = jo + 1 we have (a_)?_1 =

(a‘)é’}D = 0 and by definition of a= we have (a_);? = (a_)?ﬁl — 0 therefore:

D2f ((a*)fwi) + D2z ((a7)jwf) =

_ (a+)§?+2w?+2 — 4.(a+);?+1w§l+1 + 3.(a+)§?w? B (a_)?_zw?_z — 4.(a_)?_1w?_1 + 3.(a+)§?w§l
o 2Azx 2Ax

_ (at)? oy — (a™)P_jwl _ 4.(at)P w0l = 3. (a) w]
- 2Azx 2Ax

4.(a+)?+1w?+1 — 3.(a+)§?w§1
Az + O(Az)

= 2(aw)z(Az, z) —

as a result, the scheme is not consistent at = Az (and also # = —Az by symmetry).

The inconsistency of the adjoint scheme seems to be caused by the upwind character of the nu-

z=3.0 z=2.3
(o] 0.5
\ /
—0.2f \ /1 oF—\ —
\ / \ /
—-0.4 \ // —-0.5 \ //
AN
= \ y = N y
—0.6 \ / -1 N _ 7
N / S
AN
—-0.8 N / -1.5 !
AN - - /
-1 = = -2
-1 —-0.5 (0] 0.5 1 -1 —-0.5 (0] 0.5 1
X
z=1.6 z=1.0
1 1
oF———— ———
OfF——— S \ ;
\\ / -1 \ /
=-1 \ ya = \ /
N / -2 /
~ A\ .
-2 | _3 \J‘I\/
|
|
-3 -4
-1 —0.5 (o] 0.5 1 -1 —-0.5 (o] 0.5 1
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Figure 4.2: The exact solution (solid line) and the numerical solution (dashed line) of the adjoint
equation for different depth. The depth z = 3 is the initial data curve. The scheme is not consistent

mz =0.

merical method chosen. But as we shall see in the next section, problems even occur with centered

schemes. We illustrate this point on the Lax-Wendroff scheme (cf [8] pp 101).
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4.2 Centered Scheme

The Lax-Wendroff scheme is a centered, dissipative approximation of (4.3) second order in z and z.
To get a second order approximation in & we simply use a centered finite difference approximation.
To get a second order approximation in z we use the modified equation approach (cf [9, 3]). We

have

Uzz = _(aux)z = —QzUgy — QUgz
_ _ 2
= —aug+ a(aux)x = —UyUz + A" Ugy + QG Ug
We use this expression to derive a second order accurate scheme in the interior of the domain as

follows:

(4.10)  Dfup - Az

5 ((a?fou? +aj Dya} Dyuj — Dja?D;u;) +ajDiuf = 0

where we have used :

n+1 n n n
u’ — " u” — u"
Dtur = 4 0 Doyn = Lt~ %i-1
F B z2j
Az 2Ax
n n n
A= Y 29
e =

Az
On the boundary we use a first order upwind scheme
uy —uj_y

Dfuj+(a")j——Fx

=0
R )
Uy — Uy
Az

This scheme is at any point (z,z) second order z and second order in z. Its adjoint is given by

Dul + (a7 )} =0

taking the adjoint of each operator in (4.10). Using the following relations:

u? — un_l
Dy = —(D7 Dyu? = L
(DF)" = ~(D7) cup=
(Ag)" = (Ag) (Dg)" = —(D;)
the adjoint scheme in the interior of the domain is given by:
- n Az n n 0 n o_n n o n n [ n n
(4.11) — D7 w} — - (Ax((a]» )2'wj ) — D3(a} Dgaw}) + Dy(DF af w} )) + Dg(afw}) =0

On the boundary we use the adjoint of the first order upwind scheme :

—D-u" — (a*)juj — (a®)f_yufj_, -0
= Az

PSSP Ul 37l Uil 1

Az

10
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This scheme, unlike the first or second order upwind scheme, is consistent with (3.4). But it is not

second order as one would expect. The approximation of the z derivative is given by :

- AZ n n o n o _n n 0 n n
—D; wi — - (A ((a] )ij ) = Dg(d} Dy} w}) + Dg(DF af w}))

which should be a second order approximation of —w,. By Taylor’s expansion we have :
Az
—W,; = _DZ_ w;l - Twzz + O(AZ2)
Therefore,

Q = Ax((a)*wy) — D(aj Dyafw}) + DZ(DF afw})

should be an approximation of w,,. This quantity satisfies :
Q= (azw)m — (aazw)y + (@, w)y + O(Arz)
But using equation (4.4) we have
Wy = —(aW)g: = —(aw),y = —(a;w + aw,)y = —(a,w)y + (a(aw)y )y

We can see at once that @) is not an approximation of w,, since for instance the term with a, has the
wrong sign. Therefore since this term is the correction term multiplied by Az the adjoint scheme

is consistent with the adjoint equation. However it cannot be second order as the scheme (4.10).

11
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5 Conclusions

We have shown in this paper that the consistency of a numerical scheme with a continuous equation
does not imply the consistency of the adjoint scheme with the adjoint equation. This property
should be expected since L consistent with L means that the truncation error goes to zero with
the mesh size. That is if Pj is the projection from V ot V4, L € L(V,V) and Ly € L(V4, Vi) we

have

||PhL - LhPh“L:(V‘yV) — 0 when h — 0

The consistency of the adjoint scheme L} means therefore that
||F)]—LL>.< - LZPhHL(V,V) — 0 when h— 0

So except when L and Ly are self-adjoint (cf [12]) the consistency of Lj does not imply the consis-
tency of L} . Furthermore when both the chosen scheme and its adjoint are consistent, they do not
have necessarily have the same order of accuracy. Therefore the adjoint state technique needs to
be applied carefully at the discrete level. In particular the numerical method chosen to compute

the adjoint state should have a consistent adjoint.

A Derivation of the perturbed equation

We consider a slowness perturbation ém. The travel time 7(m-+§ém) associated to the perturbation
satisfies :
Vr(m+6ém)? = (m+6m)? in Q
Tr(m+ém) = ¢ on I'y

We want to find the equation satisfied by 67 = 7 (m).6m. Since

(Vr(m+ém))? = (V(r(m)+ Tl(m).ém + o(6m?)))?
= (V7(m))2 4 2.V7(m).V7 (m).6m + o(6m?))

we can write
2.V 7r(m).7 (m).6m + o(6m?)) = (Vr(m+6m))? — (Vr(m))? = 2m.6m + o(6m?)

12
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Dropping the term of order greater or equal to two (because we are looking for the first derivative)

and dividing by m we find that é7 is the solution of :

E.V(ST(:L‘,Z) = ém(x,2) (z,2) € Q
m

(A1)

§r(z,z) = 0 (z,2) €Ty

B Adjoint Upwind Scheme

We are looking for the adjoint equation of equation (4.5) for the discrete L? scalar product. We
use the notation (.,.), for that scalar product. Let us note P* the adjoint operator of P, defined
by the discrete equation (4.5). We have
(Prw, u)h = (Pu, 'w)h
uttl

= n % uj +yn -1 T Uy o Ui —uf
:ZZ“ I I e A A v R

Let us treat the first integral

J-1N-1 n+l _ n
I, = w? J I AzAz
Az
j=2 n=1
J-1 N-1 N-1
= L wlu?th — g wihu? | AzAz
- Az ity J i
j=2 n=1 n=1
J-1 N N-1
_ n—1_n _ n,n
= s E w; g wiuj AzAz
j=2 n==2 n=1

J-1N-1 n—1 n J-1
o R N-1, N . 1
= — T ulAzAz — + E wi us Az since u; =
Az J J J J
j=2 n=1 ji=2

13
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The second integral can be written as

J-1N-1 o
L o= - wpatyp ST Apa
j=2 n=1
Nolog 12t J-1
T T LA Yo (ahfwfu_y =Y (at ) wful | AwAz
n=t i=2 j=1
N-b oy =2 J-1
- Az Z(a+)?+1'W?+1'U? - Z(a’L)J wiu] | ArAz
n=t j=1 j=2
JoIN-1 n n +3\n N-1
a : w —(a »’LU
= _Z Z ( )]+1 lex ( )J ”AlAz—|— Z )?w?u?_lAz since (a+)r21 -0
ji=2 n=1 —_
Let us treat the last integral
J-1N-1 "
I = wi' (a” )HMAIAZ
j=2 n=1
N-1 1 J—1 J_1
- Az Z(a )j Wi 41 — Z(Cﬁ)?w?u? AzAz
n=1 ji=2 j=2
N-1 1 J J-1
= E Z(a_)J—lw] 1Y — Z(a_)J w]nu? AzxAz
n=t j=3 j=2
J-1N-1, _\n . N1
a ’lL a TS
= Z Z ( )] 1 JAlm ( )] T"AzxAz — Z(a Vwlug Az since (a”)j_,; =0
j=2 n=1 i
Finally we can write
J-1N-1 B .
ZZ v (@)} wfss = (aF)Fwf + (a7)f_qwi_y — (a7)juf ul AxAz
Al‘ Al j
j=2 n=1
J—-1N-1 n+1 n " .
Y +3n Uiy U]' pWip1 — U
- v — (@) +(a); AzAz
j=2 n=1 ( Az
N-1 1 N1
+ (a™ )t wlul Az — ZU;N 1, NAJ:— Z(a+)JlL’JUJ Az
n=t j=1 n=1
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Choosing w such that :
P=uw}=0 n=2.N-1

WMt =0 j=2.J-1
we find that the adjoint scheme of (4.5) is given by (4.7). Using the right handside of equation (4.5)
and equation (4.7) we can write

(B.1) Z

N-1J-1

»Res}l Ax Az = ZZw? T”

7

n=1 j=2 -

A:E Az

IIMI

C Exact solution of equations (4.3) and (4.4)

In the specific case where a(x, z) = ©/z equations (4.3) and (4.4) are solvable analytically. We use
the method of characteristics (cf [13]). We indicate the solution of the adjoint equation (4.4), the

method for equation (4.3) being similar. First we rewrite (4.4)
x
—w, — (—w); =0
w (z w)

as follows:
z
—W, — — Wy = —W
z z

The characteristics of equation (4.4) are the curves z(¢), z(t), w(t) solution of the ODE system:

dz

il -1 = z(t) =2z —t
dx z Zo

—_— = —— z(t) = —2(1
7 . = z(t) = (t)
dw w 21

Since for t = 0 we have 2(0) = o and 2(0) = 21, we have wg = w(zg,21) = Y(20) = 1/;(1‘Z—1)

2
Therefore w(z, z) = Z—11/;(xz—1)
2 z

15
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