A Comparison of
ADIFOR-Generated versus
Hand-Generated Derivatives for a
Complicated Statistical Function

Alan Carle
Mike Fagan

CRPC-TR95526
April 1995

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

This work was supported in part by the National
Aerospace Agency under Cooperative Agreement No.
NCCW-0027 and by the National Science Foundation,
through the Center for Research on Parallel Computation,
under Cooperative Agreement No. CCR-9120008.

A Comparison of ADIFOR-Generated versus
Hand-Generated Derivatives for a Complicated

Statistical Function!

Alan Carle

carle@cs.rice.edu

Mike Fagan
mfagan@cs.rice.edu

Rice University MS 41
Center for Research on Parallel Computation
6100 S. Main Street
Houston, TX 77251-1892

CRPC Technical Report CRPC-TR95526

Key words. Automatic differentiation, ADIFOR, derivative, ADIntrinsics, LLDRLF.

Abstract. This report compares results computed by automatic differentiation (via ADIFOR) and by hand-coded deriva-
tives for a numerically complicated statistical code. This report analyzes the types of discrepancies that were found and describes
steps taken to mediate each of them.

1 Introduction

This report describes the application of the ADIFOR 2.0 automatic differentiation system([1, 2] to produce
code to compute derivatives for a complicated statistical function: the log-likelihood for log-F' distribution
(LLDRLF)[3]. The ADIFOR system generated code to compute first and second derivative functions from
the statistical function code. The authors of the statistical function code also “hand-coded” a version of the
derivatives.

The likelihood function calculation is exceptionally difficult to calculate numerically due to an exception-
ally wide input domain[3, 4]. Consequently, the strategy for computing this function is complicated. One
of five different methods (Extreme Value Method, Bratio Method, Asymptotic Method, Continued Fraction
Method, Series Method) is used to compute the function approximation within regions of the input domain.
Thus, numerical accuracy is maintained over the entire space of input values. The hand-coded deriva-
tives follow the same basic strategy — one of five different methods (Extreme Value Method, Asymptotic
Method, Continued Fraction Method, Series Method, Direct Differentiation Method) is used to compute
the derivative approximation. Although four of the function approximation methods (all but the Bratio
Method) correspond directly to four of the derivative approximation methods (all but the Direct Differ-
entiation Method), the authors of LLDRLF partitioned the input domain for the function and derivative
computations differently. Table 1 shows the correspondence between function approximation method and
derivative approximation method for 11172 test cases provided by the authors of LLDRLF. The table shows,
for instance, that the 3033 cases where the Bratio Method was chosen to compute the function value were
distributed over all five of the derivative computing methods, with the majority of cases being handled by
the Direct Differentiation Method. In contrast, ADIFOR never modifies the control flow of the original
function code; the ADIFOR-generated derivatives are based entirely upon the original partitioning of the
input domain and the original approximation methods.

1This work was supported by the National Aerospace Agency under Cooperative Agreement No. NCCW-0027 and by the
National Science Foundation, through the Center for Research on Parallel Computation, under Cooperative Agreement No.
CCR-9120008.

Derivative Method

Asymptotic | Continued | Direct | Extreme | Series
Fraction Diff. Value
Asymptotic 153 0 153 0 0
Bratio 435 551 1567 375 105
Function | Continued Fraction 0 805 805 0 0
Method Extreme Value 0 0 2541 3100 0
Series 0 0 201 230 61

Table 1 Correspondence of Function and Derivative Methods on 11172 Test Cases

It should be noted, that in most applications of ADIFOR, hand-coded derivatives are not available for use
in accuracy studies. The use of finite-difference approximations is usually worthwhile as a means of checking
the results of automatic differentiation.? In the case of LLDRLF, we were able to find finite-difference
stepsizes that gave derivative approximations that agreed well with the hand-coded derivatives.

The ADIFOR-generated derivative code and the hand-coded derivative code were both run on the 11172
test cases. Table 2 shows the results of the initial comparison using double and quad precision for all
arithmetic operations. Test cases listed under 0 digits accuracy include cases in which IEEE exceptional
values, such as NAN or INF, were generated.

Digits Accuracy 0 1 213|456 | 7|89 10 11 | 12..15
1st Derivs (Double Precision) 661000]0]0]0|0]| 0|15 75 |253] 10813
2nd Derivs (Double Precision) | 236 | 15 | 23 [26 | 25 | 8 | 17 | 11 | 10 | 33 | 116 | 325 | 10327
st Derivs (Quad Precision) 100700701070 01018 6 | 127 | 11021
2nd Derivs (Quad Precision) 236 | 5 | 4 | 4 | 4|25 |2 |5 |23 33 | 161 | 10688

Table 2 Accuracy Comparison (Initial)

The ADIFOR-generated code monitors the values passed to intrinsic functions to determine if derivatives
are being computed at exceptional points. For example, any time the derivative of a square root is required,
ADIFOR also generates code to check to see if the argument to the derivative of the square root is 0.0. If so,
then the run-time system prints an error message. For the 11172 test cases, the exception handler reported
that SQRT and ABS were being differentiated at the 0.0 value for a small number of the test cases. In each
of these test cases, the final derivative result had fewer than 6 digits of agreement with the hand-coded
derivatives.

2 Analysis of Discrepancies

There are two classes of discrepancies that occur in the computation of derivatives by automatic differenti-
ation:

Expression An expression discrepancy results from the way in which a value is computed. For example,
y = /x/x has derivatives everywhere (since it can also be written as y =), but attempting to
differentiate the expression y = 1/z+/z via the chain rule will result in an expression that is undefined
at 0. In the ADIFOR derivatives for LLDRLF, the SQRT function generates an expression discrepancy.

Numerical A numerical discrepancy results when the derivative code overflows or underflows, even though
the original function code did not.

?In the vast majority of cases, however, when finite differences and ADIFOR-generated derivatives disagree, the ADIFOR-
generated derivative are correct.

As we examined the discrepancies in the ADIFOR-generated code for LLDRLF, we investigated methods
and techniques that could be used to reduce the effects of the discrepancies. We constrained our choice of
techniques, for paradigmatic reasons, to include only those that could be applied at the level of the original
source code. Rewriting of the generated code violates the purpose of automatic differentiation. Hence, any
alteration of the generated code must be a change that can be made at the original source level.

2.1 Expression Discrepancies

We began by examining the cause of the SQRT and ABS exception handler reports. We found that the SQRT
reports correspond to the expression discrepancy shown in Figure 1. When lambda has the value 0.0, £ is
assigned the value 0.0, which leads to an exception at the line with label 30.

20 CALL rlogl(-lambda/a,templ)
CALL rlogi(lambda/b,temp2)
f = a*templ + b*temp2
t = exp(-f)
IF (t.EQ.0.0DO) RETURN

30 z0 = sqrt(f)

Figure 1 An Expression Discrepancy

We were able to ascertain that the variable lambda receives the value 0.0 or a value extremely close to 0.0
whenever the input w to LLDRLF is 0.0. The LLDRLF function (mathematically speaking) has continuous
1st and 2nd derivatives, hence, we can treat the anomaly when w is 0.0 as a remowvable discontinuity. To do
so, we chose to perturb the value of w by 107!2 whenever a w value of 0.0 was encountered.

Digits Accuracy 0 112(3| 456|789 10 11 | 12..15
1st Derivs (Double Precision) 8 [0|J0O]O0O[O | 0| 0] 4 |12]35]|103]|289 | 10721
2nd Derivs (Double Precision) | 228 | 3 | 7 | 7| 19 | 27 | 41 | 23 | 16 | 33 | 116 | 351 | 10301

1st Derivs (Quad Precision) 8 {000 0|0 | 0| 4 |12]28]| 34 | 158 | 10928
2nd Derivs (Quad Precision) 22810100 0|0 | 1| 1|9 |37]| 54 |191] 10651

Table 3 Accuracy Comparison (After w Perturbation)

Table 3 shows the comparison of results generated by the hand-coded derivative and the ADIFOR-
generated code on the same 11172 test cases, as above, but with the value of w perturbed as just described

for the ADIFOR-generated code.

if (v .eq. 0.0) w = w + 1.0e-12

Figure 2 The Expression Discrepancy Patch

The code shown in Figure 2 presents a one line patch that has the desired effect of setting w to 10712
without modifying the value of g_w. Simply assigning the value 0.0 to w would have had the effect of setting
gw to 0.0, as well, and causing all of the ADIFOR-generated derivatives to have the value 0.0. Perturbing
the value of w also served to remove the ABS exception handler reports.

2.2 Numerical Discrepancies

The computation of IEEE NAN and INF values indicated the presence of possible numerical discrepancies
in the ADIFOR-generated code for LLDRLF. To determine where the INF and NAN values were first being
computed, we reapplied ADIFOR to LLDRLF with the AD_TRACE RESULTS flag set to true to force the values
of intermediate derivative values to be monitored. Whenever an ADIFOR-generated statement assigned a

CALL bratio(b,a,x,y,ltail,lcum,ierr)
qtail = 1tail .LE. lcum
IF (min(ltail,lcum).GT.zero) THEN
iwhich = 2
IF (qtail) THEN
ltail = log(ltail)
CALL ctc(ltail,lcum)
ELSE
lcum = log(lcum)
CALL ctc(lcum,ltail)
END IF

RETURN

END IF

Figure 3 Source of Numerical Discrepancy

if (min(ltail, lcum) .gt. zero) then
iwhich = 2
if (qtail) then

h_g_ltail = (1.0d0/1tail) * h_g_ltail +
+ (-1.0d0/(1tail * 1tail)) * g_ltail * h_ltail
else
h_g_lcum = (1.0d0/lcum) * h_g_lcum +
+ (-1.0d0/(1lcum * lcum)) * g_lcum * h_lcum
endif
return
endif

Figure 4 Derivative Code for Numerical Discrepancy

value of NAN or INF, the line number and file name for that statement was logged to an output file. Executing
the tracing version of the ADIFOR-generated LLDRLF code indicated that all of the NAN and INF values
were being generated while computing first and second derivatives of the intermediate variables 1tail and
lcum as shown in Figure 3 using the code shown in Figure 4.

As an example of how the NAN and INF values were generated, consider one test case in which h_g bratio
computed 107310 as the value of 1tail. When computing the value of h_g 1tail, in either double or quad
precision, with an 1tail of 10731° 1.0/1tail evaluates to INF, —1.0/(1tail * 1tail) evaluates to —INF,
and h_g 1tail evaluates to NAN.

By reassociating the computations for h_g 1tail and h_g_lcum, as shown in Figure 5, NAN and INF values
can be avoided for each of the test cases. Table 4 compares the results of the ADIFOR-generated code
after both perturbing w and reassociating the calculation of h_g 1tail and h_g lcum. Notice that in both
double and quad precision, there still remains a single test case in which the ADIFOR-generated code fails
to provide any digits of accuracy in the computed derivative.

We explored one other technique for avoiding the generation of NAN and INF values. Asshown in Figure 3,
LLDRLF applies the Bratio Method, and then checks the values of 1tail and lcum to see if they are both
greater than 0.0. If one of the values is not greater than 0.0, the Asymptotic Method is applied. In double
precision, the NAN and INF values are generated when 1tail or lcum have a value that is smaller than about
107159, Simply changing the acceptance test for the Bratio Method as shown in Figure 6 in the LLDRLF
code, gives very satisfactory derivative results as shown in Table 5. In essence, we have achieved a minor
repartioning of the input domain with a very local source code modification.

if (min(1ltail, lcum) .gt. zero) then
iwhich = 2
if (qtail) then

h_g_ltail = h_g_ltail/ltail -
+ (g_1ltail/ltail) * (h_ltail/ltail)
else
h_g_lcum = h_g_lcum/lcum -
+ (g_lcum/lcum) * (h_lcum/lcum)
endif
return
endif

Figure 5 Reassociated Derivative Code for Numerical Discrepancy

Digits Accuracy o123 4|5 |6 | 7|89/ 10| 11 |12.15
1st Derivs (Double Precision) | 0 1 0 0 0 4 4 | 12| 35| 103 | 10551
2nd Derivs (Double Precision) | 1 |3 | 6 | 12 | 14 | 27 | 43 | 23 | 23 | 16 | 45 | 139 | 9758

o

1st Derivs (Quad Precision) O(0O|O| 1] 0] 0|0 4 |12]|28]34]| 159 | 10934
2nd Derivs (Quad Precision) 1101000] 0| 1] 2|10]46 |57 216 | 10839

Table 4 Accuracy Comparison (After w Perturbation and Reassociation)

3 Summary

We note that naive usage of ADIFOR resulted in first derivatives that were accurate to 6 figures in 99.9% of
the tested cases, and second derivatives that were accurate in 97.0% of the cases, in double precision. In quad
precision, first derivatives were accurate to 6 figures in 99.9% of the tested cases, and second derivatives were
accurate in 97.7% of the cases. After making two one-line changes to the LLDRLF source code we achieved
double precision first derivatives and quad precision first and second derivatives accurate to 6 figures in 100%
of the tested cases, and double precision second derivatives that were accurate in 99.4% of the cases. In
all of the cases where the ADIFOR-generated second derivatives had fewer than 6 figures of accuracy, the
ADIFOR-generated code provided at least 1 digit of accuracy, and averaged 3.9 digits of accuracy.

It is encouraging that the presence of all of the discrepancies between the hand-coded derivatives and the
ADIFOR-generated derivatives could be determined by looking at the output of the ADIFOR-generated code
— SQRT and ABS exception handler messages were generated for the expression discrepancies, and IEEE NAN
and INF values were returned for the numerical discrepancies. In addition, by invoking ADIFOR with the
“AD_TRACE_RESULTS” option enabled, it was easy to detect where each of the numerical discrepancies
occurred in the code.

CALL bratio(b,a,x,y,ltail,lcum,ierr)
qtail = 1tail .LE. lcum
IF (min(ltail,lcum).GT.1.0d-150) THEN

END IF

Figure 6 Repartitioned Derivative Code for Numerical Discrepancy

Digits Accuracy 011(121]3] 4 5 6 7 8 9 10 11 | 12..15
1st Derivs (Double Precision) |0 | 0| 0| 0| 0 0 0 4 |12 | 34 | 106 | 280 | 10736
2nd Derivs (Double Precision) | 0 |3 | 7 | 7|19 |27 | 41 | 23 | 16 | 44 | 132 | 362 | 10491

1st Derivs (Quad Precision) O(0|O|O| O] O] 0| 4 |12]28| 34 | 158 | 10936
2nd Derivs (Quad Precision) O(0|O|lOJ O] O] 1 | 1|9 |45 56 | 215 | 10845

Table 5 Accuracy Comparison (After w Perturbation and Repartitioning)

Based on the results of this study, users of ADIFOR are advised to take a close look at any messages
generated by ADIFOR’s exception handler. The cause of IEEE exceptions which appear when the ADIFOR-
generated code is executed, but which did not appear in the original function evaluation, should also be
examined carefully.

This study also appears to indicate that ADIFOR should probably be more careful about how it generates
derivative code for log. Unfortunately, to maximize the accuracy of derivative computations, ADIFOR would
need to generate several different versions of the derivative code and then select the best version to execute
based on the value of the argument to log and the values of the derivatives of the argument with respect to
the independent variables.

4 Acknowledgements

We thank Barry Brown and Kathy Russell at the University of Texas, M.D. Anderson Cancer Center,
for providing us with LLDRLF, the hand-generated derivative code for LLDRLF, and the program that
compared the results from the hand-generated and ADIFOR-generated derivative code.

References

[1] C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR: Generating derivative codes
from Fortran programs. Scientific Programming, 1(1):11-31, 1992. Also available as ADIFOR Working
Note #1, Technical Report MCS-P263-0991, Mathematics and Computer Science Division, Argonne
National Laboratory, and CRPC-TR91185, Center for Research on Parallel Computation, Rice University.

[2] C. Bischof, A. Carle, P. Khademi, and A. Mauer. The ADIFOR 2.0 system for the automatic differen-
tiation of Fortran 77 programs, 1994. Technical Report MCS-P381-1194, Mathematics and Computer
Science Division, Argonne National Laboratory, and CRPC-TR94491, Center for Research on Parallel
Computation, Rice University.

[3] Barry W. Brown, F. Martin Spears, Lawrence B. Levy, James Lovato, and Kathy Russell. LLDRLF, Log-
likelihood and some derivatives for Log-F models. Submitted to Transactions on Mathematical Software,

Feb 1994. Available by ftp at odin.mda.uth.tmc.edu, pub/accflf.

[4] Armido R. Didonato and Alfred H. Morris, Jr. Algorithm 708: Significant digit computation of the
incomplete beta function ratios. ACM Transactions on Mathematical Software, 18(3):360-373, Sept
1992.

