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Abstract. We consider the efficient implementation of mixed finite elements for solving sec-
ond order elliptic partial differential equations on geometrically general domains, concentrating on
the lowest-order Raviart-Thomas approximating spaces. We consider the standard mixed method
and its hybrid form, and the recently introduced expanded mixed method. The standard method
yields a saddle-point linear system, and while the hybrid method yields a positive definite linear
system, 1t has many more unknowns, one per element edge or face. The expanded mixed method
is similar in 1ts structure; however, we give a generalization of the method combined with a global
mapping technique that makes it suitable for general meshes. Moreover, two quadrature rules are
given which reduce the method to a cell-centered finite difference method on meshes of quadri-
laterals or triangles in 2 dimensions and hexahedra or tetrahedra in 3 dimensions. This approach
substantially reduces the complexity of the mixed finite element matrix, leaving a symmetric,
positive definite system for only as many unknowns as elements. On smooth meshes that are
either logically rectangular or triangular with six triangles per internal vertex, this finite difference
method is as accurate as the standard mixed method; on non-smooth meshes it can lose accuracy.
An enhancement of the method is defined that combines numerical quadrature with Lagrange
multiplier pressures on certain element edges or faces. The enhanced method regains the accuracy
of the solution on non-smooth meshes, with little additional cost if the mesh geometry is piece-wise
smooth, as in hierarchical meshes. Theoretical error estimates and numerical examples are given
comparing the accuracy and efficiency of the methods.

Key words. mixed finite element, finite difference, elliptic partial differential equation, ten-
sor coefficient, error estimates, logically rectangular grids, irregular meshes, unstructured meshes
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1. Introduction. We discuss several variations of the mixed finite element
method [31, 9] for solving a second order elliptic problem posed on a possibly
irregular domain Q C R%, d = 2 or 3. The problem is to find (u, p) such that

(1.1a) u=—-KVp in Q,
(1.1b) ap+V-u=f inQ,
(1.1c) p=gP on I'P,
(1.1d) u-v=g" on I'V,

where o > 0, f, ¢”, and ¢"V are smooth functions, K is a symmetric, positive
definite second order tensor with smooth components, v is the outward unit normal
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vector on 99, and 9 is decomposed into I'” and T'V. For simplicity, assume that
I'? is not empty or « is bounded away from zero, so that (1.1) has a unique solution.
In applications to flow in porous media, p is the pressure, u is the velocity field, K
is related to the permeability tensor, and « is related to the rock compressibility.

The mixed method is especially useful for problems where the velocity or strain
u = —KA'Vpis an important quantity, since, in general, mixed methods approximate
u to at least the order of accuracy of p. Furthermore, the approximate velocity
calculated by the mixed method satisfies the conservation principle (1.1b) locally,
not merely in a global sense as with standard Galerkin methods. This property is
important in applications where local conservation of mass is desired.

Convergence and super-convergence properties of the mixed method are fairly
well understood (see, e.g., [34, 31, 16, 27, 20, 36, 18, 19]), and many mixed fi-
nite element spaces satisfying the inf-sup or LBB condition [4, 5] are well known
(e.g., [34, 31, 28, 8, 6, 7, 11]). Any geometrically general polygonal or polyhedral
domain 2 can be partitioned into combinations of triangles and quadrilaterals in
two dimensions and tetrahedra, prisms, and hexahedral elements in three. Most
mixed spaces are defined only on standard, regular reference elements (an equilat-
eral triangle or a square in two dimensions and a regular tetrahedron, a cube, or a
regular equilateral prism in three dimensions); however, Thomas [34] described how
to relate reference elements to the desired element shapes (triangles, quadrilaterals,
tetrahedra, hexahedra, or prisms) through the use of affine or multi-linear maps and
the Piola transformation (which preserves the normal component of vectors across
boundaries).

Since the standard implementation of the mixed method yields a linear system
that represents a saddle-point problem (as in §3.1 below), much current research
involves how to efficiently solve such systems (see, e.g., [32, 22, 21, 33, 14, 29, 13,
2]). This is a particular problem when the domain is irregular.

The difficulty of the solution process can be eased by reformulating or further
approximating the mixed method so that it yields a positive definite linear system.
As Arnold and Brezzi [3] pointed out, this can be done directly by using the hybrid
form of the mixed method: it is entirely equivalent to the mixed method. The
introduction of additional Lagrange multiplier pressure unknowns allows one to
eliminate the velocity and the original pressure unknowns from the system (as in §3.2
below). A positive definite system results, but at the expense of greatly increasing
the number of unknowns. Our work is motivated by the desire to use the lowest
order Raviart-Thomas mixed space RTy [31, 28], since these are widely used in
practice and have the fewest number of unknowns. In this case, the hybrid form
reduces to a face-centered finite difference method for the Lagrange pressures, one
for each edge (if d = 2) or face (if d = 3).

In petroleum reservoir simulation, mixed finite element methods disguised as
cell-centered finite difference methods have been the standard approach for many
years [30]. The relationship between the mixed method and cell-centered finite
differences on rectangular grids was first established in [32] under the assumption
that K in (1.1) is a scalar or a diagonal matrix, and later in general in [2] for a variant
of the mixed method, the “expanded mixed method” [37, 25, 10, 2]. The primary
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restrictive assumption is that the mesh is rectangular. If one uses the RT, space
and applies appropriate quadrature rules, the velocity unknowns can be eliminated
and the method reduces to a positive definite, cell-centered finite difference method
for the pressure p with a stencil of 9 points if d = 2 and 19 points if d = 3 (but
only 5 or 7, respectively, if K is diagonal). This method achieves super-convergence
(also called supra-convergence) at certain discrete points for both the pressure and
velocity approximations [35, 26, 36, 2|, and the number of unknowns is reduced to
the number of cells or elements (which is much less than the number of edges or
faces).

In this paper, we extend these cell-centered finite difference techniques to non-
rectangular domains; that is, we will generalize the expanded mixed method, and
then approximate it so that it gives a cell-centered finite difference method on
irregular meshes, including logically rectangular and triangular meshes. We also
assess the accuracy of the mehod, and compare it to and improve it with the hybrid
formulation.

Thomas’ approach [34] was to partition {2 locally into elements with straight
edges and then to map each to a reference element by an affine or a multi-linear
mapping. As we will see, in order to maintain accuracy, we need to consider a
global approach. We assume that there is some reference or computational domain
Q) that has been partitioned into standard affine elements. (Affine elements are
the image by an affine map of a standard, regular reference element; this does not
include quadrilaterals or hexahedra.) Further, a single global map takes Q) to the
true domain 2. This then defines curved element domains on . (This mapping
idea is not new, of course; our work was partly motivated by [1], where a global
C? map is generated for mapping a rectangular computational domain to a simply
connected true domain.)

The mixed finite element spaces are defined in the standard way on the reference
partition and by Piola transformation on the curved elements. After mapping the
original problem on  to ), all further computations can be performed on the
reference, computational domain if desired. The mapped problem is of the same
form as (1.1) in which  is replaced by Q) and the data are modified in a simple
way (though K is transformed as a tensor); that is, (1.1) on the general domain 2
is reduced to a similar problem on the (presumably) simpler computational domain
). This is especially advantageous in time dependent problems such as appear in
flow in porous media in which K(z,t) = K;(z,t)K2(x) and K, is a scalar, since the
tensor K3 need be transformed only once at the beginning of the calculation.

If the computational domain has a rectangular grid, the induced grid is logically
rectangular, and the data structures of a computer code may reflect this, simplifying
its structure. Moreover, we will show that super-convergence is obtained by the
discrete solution, provided that the true mesh is reasonably smooth.

We also derive a quadrature rule for triangular elements which reduces the
expanded mixed method to a cell-centered finite difference method for the pressure.
In two dimensions, the finite difference stencil has ten points. We demonstrate by
computational example and mathematical proof that the method is easy to solve
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and is as accurate as the mixed method, provided again that the triangulation is
smooth.

If the true mesh is not smooth (in a sense to be defined), there can be an
undesirable loss of accuracy in the solution. This loss is caused by discontinuities in
the mapping function (and is inevitable for tetrahedral meshes). Nevertheless, our
ideas are useful for non-smooth meshes for two reasons. First, the method can be
used as a preconditioner for the mixed method without quadrature, and, second, the
loss of accuracy can be avoided by enhancing the method with Lagrange multiplier
pressures on element faces where the discontinuities appear.

The rest of this paper is outlined as follows. In the next section we give some
notation used throughout the paper. We review briefly the standard and hybrid
mixed methods and present our generalization of the expanded mixed method in §3,
emphasizing aspects of the solution process. In §4 we recall the construction of
mixed elements on general shaped domains; that is, certain properties of change of
variables and Piola transformation, as well as the construction of the mixed finite
element spaces on quadrilaterals and hexahedra. Furthermore, our generalization
of the usual mixed spaces on affine elements to curved elements is given in this
section. QOur application to general geometry domains is discussed in §5, and we
restrict attention to logically rectangular grids and triangular elements in §§6-7.
Convergence results are given in §8, and computational results that demonstrate
these results and the relative efficiencies of the various methods are presented in §9.
The enhanced finite difference method is given in §10, a remark about discontinuities
in the standard mixed method is made in §11, and finally some conclusions are given
in the last section.

2. Some general notation. Let LY(R) denote the standard Sobolev space
of g-integrable functions on a domain R C R?. We denote by (-, - )g the L%(R)
inner product or duality pairing, and the L?(R) norm is denoted by

léllo.re = (o).
Let (-,-)or be the L?(OR) inner product or duality pairing. Define

H(div;R) = {v € (L*(R))? : V-v € L*(R)},

with the norm
_ 1/2
IV & (divir) = {/R(IVI2 +|V-v[?) d:z:} .

Furthermore, let W/4( R) be the Sobolev space of j-times differentiable functions in
LY(R). Let simply H/(R) = W/2?(R), and H=/(R) = (H’(R))" be its dual space.
Let || - ||;.4,r denote the norm of W74(R), || - ||; g denote the norm of H’(R), and
| - |-; r denote the norm of its dual space H/(R). When R = ), we may omit it
in the definitions above.

Let {&n}n>0 be a regular family of finite element partitions of Q [12], where
h i1s the maximal element diameter, such that each element edge or face on the
domain boundary is contained entirely within either I'” or I'V. Suppressing h, let
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Npg denote the number of elements in &,, N, the number of edges or faces, and
NV and NP the number of edges or faces in T'V and I'?, respectively. Generally
speaking, NN < N..

Associate with &), the mixed finite element space V;, x W}, C H(div; Q) x L*(Q),
for example, the RT or RTN spaces [34, 31, 28], BDM spaces [8], BDFM spaces [7],
BDDF spaces [6], or CD spaces [11]. Let Aj denote the full space of Lagrange
multipliers associated with Vj, x Wj,; these functions are defined in a piecewise
discontinuous manner on the edges or faces of the elements e as V|, - v. Let Aé\f
denote the space of Lagrange multipliers restricted to I'V. Finally, let V}, denote
the piecewise discontinuous version of V},; that is, the space such that Vh|E =Vile
for all elements E € &, but with no constraint that the space be in H(div; ). Let
Nv, Ny, Nw, Na, and Ny~ denote the dimensions of Vi, Vi, Wy, Ap, and AY,

respectively, and let us choose some standard bases:
Vi =span{v;, j=1,... Ny},
Vi =span{v;, j=1,... ,Ny},
Wy, =span{w;, it =1,... ,Nw},
Ap =span{pug, k=1,... Ny},
AY =span{ug, k=1,... ,Ny~}.

We describe the approximation properties of these spaces by [y and [y such that

(2.1) min [lq - vilo < C|lall: 7', 1<i<ly,
veEV,

(2.2) min || — wllo < C|l|l k', 0<1<lw,
weW)

(2.3) min [V (q = v)llo < C[[V- qlih!, 0<1<Iw.
vEVh

For the RTN and BDFM spaces, Iy = [y, while for the BDM and BDDF spaces,

lw = ly — 1. The CD spaces are a generalization of these spaces on prisms.

For later reference, we recall the definition of the RT, space in its standard
nodal basis. For all elements,

Wy, :Span{wi, i=1,... ,Ng:wilg, =6, L=1,... ,NE}
and

Ay :span{/,Lk, k=1,... N¢:pgle, =0ke, £=1,... ,Ne}

(i.e., each is a set of piecewise discontinuous constant functions). Let v; denote one
of the unit vectors normal to edge or face ¢;. If d = 3 and E € &, is a tetrahedron,
let

Vi(E) = {V = (v', 0% 0%)

v g = a + bxy, £ =1,2,3, for some 4 constants a’ and b},
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and if E € &, is a rectangular parallelepiped, let

Vi(E) = {V = (o', 0%, 0%)

’U£|E =a’ +b'ay, £ =1,2,3, for some 6 constants a* and bf},
with a similar definition if d = 2. Then
(2.4) V= span{vj € H(div;Q), y=1,... ,N,:
Vilp € Vi(E) for all E € &, and v; - vyle, = 650, L =1,... ,Ne};

thus, v; is nonzero only on the two elements which share edge j, and the normal
component of the vectors match across e;. Finally V;, has no matching condition,
so Nyy = 2N, —Név - NeD. For RTy, Iy = lw = 1.

Let (-, -)r,m denote an application of the midpoint quadrature rule to the
L?(R) inner product on R with respect to &,. If the mesh is rectangular, let

(-, )r denote an application of the trapezoidal rule. For RT; on rectangular
grids, we will also need to refer to the trapezoidal-midpoint rule, defined for vectors

V= (1017’027’03) and q= (Q17Q27%) as
(v,q)r, oM = (Vv1,q1)R,TxMxM + (V2,¢2) R, MxTxM + (V3,¢3) R, MxMxT;

that is, for + = 1,2, 3, the ith integral on the right side uses the trapezoidal rule
in x; and the midpoint rule in the other coordinate directions. If v,q € V}, (RTy),
then TM uses exactly the nodal points, and the trapezoidal and TM rules are
equivalent. For any of our quadrature rules, let

1/2
llirq = (4. 9)Hq.
Again, we may omit R if it is Q.

3. The standard, hybrid, and expanded mixed methods. We first
review the standard and hybrid mixed methods, and then present our version of an
expanded method.

3.1 The standard mixed method. A mixed variational form of (1.1) is

(3.1.1a) (K~'a,v)—(p,V V)

=—(¢”,v-v)ro — (p,v-v)p~, v € H(div;Q),
(3.1.1b) (ap,w)+ (V- -u,w) = (f,w), w € L*(Q),
(3.1.1c) (w-v,p)r~ = (g%, p)rw, pe HVAHTY),

In the standard mixed method, we seek U € Vj,, P € W, and A € A} satisfying

(3.1.2a) (K~'U,v) - (P,V-v)

D,V-I/>FD - </\,V-I/>FN, v eV,

= (g
(3.1.2b) (aP,w)+ (V- -U,w) = (f,w), w € Wy,

(3.1.2¢) (U v, p)p~x = (gV, ), e AN,
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Here we have imposed the Neumann boundary condition weakly; however, it can
also be imposed strongly, in which case A is unnecessary.

Let Ny Ny Na
U= Z(Lvi, P=2Piwi, A= ZL‘/M;
1=1 1=1 1=1

and define matrices

(3.1.3) Aje= (K vj,ve), j,€=1,...,Ny,
(3.1.4) B”:(wl,V V]‘), iZl,... ,va, jZl,... ,Nv,
(3.1.5) C]k:<V] U,Mk>FN, JZl,...,Nv, kZl,...,NAN,
(3.1.6) Di¢ = (aw;, wy), i, 0=1, , Nw
Then (3.1.2) yields a system of the form

-A BT -C\ (U g
(3.1.7) B D 0 pl={ F |.

-cT 0 0 A —gV

which is indefinite. The Shur complement system for the pressure unknowns is
easily extracted as

(3.1.8)

(2o (2 DF(E) - (L) + (L) aem

which is positive definite, but in general full because of the presence of A~'. When
using an iterative method such as conjugate gradient iteration to solve this system,
applying the matrix inside the curly braces to a vector involves solving a second
system of equations involving the matrix A, which can be inefficient, even for RTj.

3.2 The hybrid form of the mixed method. The hybrid mixed method
is based on the variational form (3.1.1). We seek U € V},, P € W), and A € A,
satisfying

(321a) (K'U,v)= Y [(PV-v)g— (9", v -v)apnar»

Eegy,
_</\7V'V>8E\FD]7 v eV,
(3.2.1b)  (aPw)+ Y (V-Uw)p =(f,w), w € Wy,
FEeg,
(3.2.1c) Y (U v,mor = > (g, mopary, e Ay
Eeéy Eeé&y

Since (3.2.1¢) forces U - v to agree on both sides of any edge or face, in fact U € V},
and the standard and hybrid methods are equivalent [3].

Define matrices A, B, C, and D analogous to (3.1.3)-(3.1.6) above for Vj,, Ny,
Ay, and Ny replacing Vi, Ny, AY, and Nyn~, respectively. Then (3.2.1) yields a
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system of the form (3.1.8). Now, however, A is element-wise block diagonal, since
Vi, has no continuity constraints. Its inverse is easily found and a sparse matrix
results [3]. Furthermore, BA=!BT + D is diagonal, so we can also eliminate P to
obtain

(3.2.2) {CTAT'C - CTA'BT(BA™'BT + D)"'BA™'C}A
— =N CTA_lgD 4+ CTA—IBT(BA—IBT_I_D)—I [BA_lgD _I_f']

This is a sparse, positive definite system; however, since the Lagrange pressures live
on the element edges or faces, it is a face-centered finite difference method.

For RTj, there is one unknown per edge or face, which is anywhere from 1.5
to 3 times as many as the number of cells, depending on the spatial dimension and
whether simplicial or rectangular elements are used.

3.3 The expanded mixed method. A second, expanded mixed variational
form of (1.1) can be given as follows. Let G be some symmetric, positive definite
tensor function, to be defined later in terms of the local geometry, and expand the
system (1.1) by introducing the “adjusted gradient”

(3.3.1) il=—-GVp.
Then
(3.3.2) u=KG'a
and
(3.3.3a) (G™'a,v) = (GT'KG a1, v), v e (LX),
(3.3.3b) (G7'a,v)—(p,V - v)

= —(gP,v-v)po — (p,v-v)p~, v e H(div;Q),
(3.3.3¢) (ap,w) + (V- u,w) = (f,w), w € L*(Q),
(3.3.3) (w-v,p)rv = (g", w)rw, pe H'A(TN),

In the usual expanded formulation, GG is taken to be the identity.

In the recently introduced expanded mixed method [37, 25, 10, 2], we need an
additional finite element space V}, such that V;, C Vj, C (L%(Q))?. Let

Vi =span{V, :m=1,... Ny}

In our modification to the expanded mixed method, we seek U € Vj, U e f/h,
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P € Wy, and A € AY satisfying

(3.3.4a) (G7'U,¥) = (GT'KG™'U, %), V€V,
(3.3.4b) (G™'U,v) = (P,V-v)

= —(¢P,v - v)rp —(\, V- V)N, VEV,
(3.3.4¢) (aP,w)+ (V- -U,w) = (f,w), w € Wy,
(3.3.4d) (U-v,p)rn = (", p)rv, pe Ay

This method is not equivalent to the standard method, except in trivial cases.

If we define

(3.3.5)  Aime=(G'KG 'V, ¥y), m,{=1,..., Ny,
(3.3.6) AQ,jm:(G_lv‘j,{}m), J=1,..., Ny, m=1,... Ny,
and B, C, and D as in (3.1.4)—(3.1.6), then (3.3.4) yields a system of the form

A —AT 0 0 U

-4, 0 BT —C U gP
(3.3.7) 0 B D 0 »
A

o —-cT o o0

which is indefinite. The Shur complement system for the pressure unknowns is now
(3.1.8), wherein we replace

(3.3.8) A7l = (4,470 AT

This is a positive definite system, but in general it is full.

This situation occurred for the standard mixed method. As mentioned in
the introduction, in the special case of RTjy, rectangular elements, and a diagonal
(or scalar) K, applying the trapezoidal-midpoint (TM) quadrature rule to (3.1.3)
reduces A to a diagonal matrix [32]. The full matrix in (3.1.8) then becomes sparse
with nonzero entries on five bands, and the cost of applying an iterative procedure
to the solution of (3.1.8) is greatly reduced. In fact, the method reduces to the
standard cell-centered finite difference method, with only as many unknowns as
elements (up to some additional unknowns near I'"). Moreover, the accuracy of
the approximate solutions is not compromised [36].

Recently, these ideas were exploited for (3.3.4) to obtain similar results [2].
Trapezoidal quadrature was applied to the integrals (3.3.5)—(3.3.6) defining A; and
Aj, so that A, is diagonal when G is the identity. In the next four sections, we
remove the restriction to rectangular meshes. We begin by considering carefully the
finite element spaces on irregularly shaped elements.

4. The mixed finite element spaces for general elements. Many mixed
finite element spaces are known, and the ones we considered can be constructed on
a unit sized standard, regular reference element E: an equilateral triangle, regular
simplex, square, cube, or regular prism. An affine map then gives the definition
on any triangle, tetrahedra, rectangular parallelepiped, or prism. The construction
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of quadrilateral and hexahedral elements is more involved, and we review here the
basic theory of Thomas [34]. We also generalize the mixed spaces, defined on E, to
curved elements.

4.1. Transformations for functions on E. For any element E, let Fj :
R? — R? be a smooth (at least C') mapping such that FE(E) = FE, and let
Fg be globally invertible on E. Denote by DF(x) the Jacobian matrix of Fg
(DF;; = 0F;/0x;), and let

J(x) = |det(DF(x))|.
For any scalar function ¢(X) on E, let
(4.1.1) p(x) = F($)(x) = 4o Fi' (x).

LEMMA 4.1. The operator F s an isomorphism of LZ(E) onto L*(E) and of
H'(E) onto H'(E).
To construct a subspace of H(div;2), we need to preserve the normal compo-

nents of vector valued functions across the boundaries of the (Aelements. We use the
Piola transformation (see [34, 9]): For any function § € (L*(E))?, define
1

(4.12) atx) = 6@ = (0P a ) o £y ().

LEMMA 4.2. The operator G is an isomorphism of (LZ(E))d onto (L*(E))*
and of H(div; E) onto H(div; E). Moreover,
(a.Ve)r = (4. V@), ¢ €H'(E), qe (L*(E))",
(S‘Qqu)E:(@7©€I)E‘7 S‘QELZ(E)’ qEH(dw,E)

4.2. Transformations for functions on dE. For any function ji(%) defined
on O, let
(42,1 w(x) = F(B)(x) = fio F5(x).

LEMMA 4.3. The operator F is an isomorphism of LQ(aE) onto L*(OF) and
of Hl/Q(BE) onto H'Y?(OE). Moreover, the trace of any function € H'(E) on
OF s the image by F of the trace of ¢ = F~1(p) € H'(E); that 1s,

. F
Plop — #lor.

Thus F can be considered as the trace of F on OF. To define the trace of G
on OF, for any function g* on OF, define

(42.2) ) = G0 = (1) o i ),

where
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LEMMA 4.4. The operator G is an isomorphism of LQ(aE) onto L*(OFE) and
can be extended to an isomorphism of H_l/z(aEA) onto H='/2(OE). The normal

trace of any function q € H(div;E) is the image by G of the normal trace of
q=G"%q) € H(div; E), that 1s,
A o~ 8
q-v<——q-vr.
Moreover, for q € H(div; E), p € H'/*(0F),
(4.2.3) (b v)or = (1,4 7)5p-

REMARK. Equation (4.2.3) states that the normal trace of an H(div; E) func-
tion is preserved in H /2 (OF) after transformation by G.
4.3. Construction of the mixed spaces on Q. Let Vi(E) x Wi(E) be

~

any of our previously cited mixed spaces defined on the reference element E. If
En is a partition of © into elements of standard shape, Thomas [34] defined for
Raviart-Thomas elements (and by extension, for the other families of elements) for

each ¥ € &,

(4.3.1) Vi(E)={v e H(div;E) : v <2 ¥ € VW(E)},
(4.3.2) Wi(E) = {w € L*(E) : w <= & € Wi(E)},
and then

(4.3.3) Vi(Q) = {v € H(div;Q) : v|g € Vi(E), VE € &},
(4.3.4) Wi(Q) = {w € L*(Q) : w|p € Wi(E), VE € &,}.

REMARK. In the case of simplex or parallelogram elements, the map Fpg is
affine for any element E. When the elements are general quadrilaterals or hexahe-
dra, F'p is non-affine, and some difficulties arise in the analysis and some loss in
approximability occurs, either in rate or in the regularity needed [34].

We generalize the mixed spaces to curved elements in a straightforward way.
Let 2 be our computational reference domain and let

F:R'-RY F(Q) =9,

be a smooth (at least C'?) invertible map. Let él} be a regular family of partitions

of { into standard shaped elements. This gives a mesh on ), and its image by F
is a curved mesh &, on . Let V, x W}, be any of the usual mixed spaces defined
over &;. The mixed spaces on &, are defined by (4.3.1)-(4.3.4).

5. Application to general geometry. We use F' to map the problem (1.1)
and its mixed approximation on {2 to Q using the isomorphisms F and G, defined
in §4, for mapping scalar and vector functions, respectively.

Since for u,v € V3,

1 1 1
(5.1) K'luv=K"! <jDF ﬁ> : <jDF v) = <ﬁ DFTK—lDF>ﬁ -V,
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the standard mixed method can be transformed easily. We seek Ue Vh, Pe Wh,
and A € AY satisfying

1 R .
(5.2a) <7DFTK—1DFU,0> —(P,V-¥)

= (G2, D) — (N VD), Y EVh,
(5.2b) (JaP,d)+(V-U, ) = (Jf, @), & €Wy,
(5.2¢) (O -0, @) pn = (Jog™ s i) e e Ay

The tensor K ! has been modified in the standard method to

1
(5.3) K™t = jDFTK_lDF.

For the expanded method, we make a careful choice of G in (3.3.1) to simplify
the interaction of the basis functions in (3.3.6) on the computational domain €.

Define

1
(5.4) G(F(%)) = <jDFDFT> (%).
Note that G is symmetric and positive definite. It is easy to see that G is bounded

for any of the spaces under consideration. Then,

1z 1 .
(5.5) G7'v-v=JDF Y'DF™! GDFG) : <3DF0> =—v-V, v,veEV,.

We obtain the following problem on the reference domain: Find Ue TA/h, Ue ‘:/’”
P € Wy, and A € AY such that

(5.6a) (U,%), = (JDF'K(DF)'0,%),, vV,
(5.6b) (0,%)g — (P,V-9)g

=—(G", ¥ D)o — (AV- D), VE,
(56C) (J&p7w)§2 + (@ ' IAJ? Lb)f) = (va Lb)fp (GRS Wha
(5.6d) (U2, i)pw = (Jog™, i) e Ay

Note that Vj, x W}, x Aé\f are the usual mixed spaces on reference elements, and

Vi = .7'—_1(‘7;1). Also, there are no coefficients in the L2-vector inner-products on
the left side of the first two equations. The tensor K has been modified in the
expanded method to

(5.7) K = JDF'K(DF~H)T,

which is equivalent to (5.3).
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6. Cell-centered finite differences on logically rectangular grids. In
this section we consider the RT, spaces on curved but logically rectangular grids.
These are grids generated by taking a rectangular computational domain Q, im-
posing on it a rectangular grid, and mapping it to by the function F. It is not
known how to approximate the standard mixed method (5.2) on rectangles so that
a finite difference stencil results (i.e., the Shur complement system (3.1.8) is sparse),
unless K is a diagonal tensor. For geometrically irregular domains, the transformed
coefficient is necessarily a full tensor except in trivial cases. However, because of
our choice (5.4) of G, the expanded problem on the computational grid (5.6) is the
same as that analyzed in [2]. There, a finite difference stencil is derived for the
pressure, when trapezoidal quadrature rules are used for evaluating three of the
integrals. We exploit this result on general geometry.

Take f/h = Vi, so that Ay of (3.3.6) is square and invertible. The scheme
proposed in [2] approximating (5.6) on the computational domain is (5.6¢)—(5.6d)
combined with

(6.1a) (U.9)grm = (JDF'K(DF)T0, %) ., VEVa,
(6.1b) (fjv A)Q,TM - (Pv V. ‘A’)Q
:_<gD7‘7'79>fD _<;\7‘A"79>fN7 \76‘7}1.

By the definition of RTj, the trapezoidal or TM quadrature rule diagonalizes
Ay in (3.3.6) on the computational domain; that is, recalling that V; = span{v;}
where {V;} is the nodal basis (2.4),

(6.2) Ag jm = (¥, %m)g 1 = Chbjm, j,m=1,... N,

where €}, is a constant related to the mesh size. Since the two integrals in (6.1)
involving TM quadrature are diagonal, the method gives a 19 point stencil if d = 3
and a 9 point stencil if d = 2 for P in the Shur complement form of (3.3.7), i.e.,
(3.1.8) and (3.3.8). This is an approximation to the expanded mixed method.

The approximation of our problem (1.1) is now relatively simple. A prepro-
cessing step can be done to transform the coeflicients (by multiplication by either
J or J;, or by the tensor transformation (5.7)). Then (5.6a)—(5.6b), (6.1) is solved
as an entirely rectangular problem. Finally, (4.1.1)(4.1.2) (i.e., F and G) map the
results P and U back to P and U on the physical domain as approximations to p
and u.

7. Cell-centered finite differences on triangles. In this section we con-
sider d = 2 and a triangular mesh. Actually, on Q, take a grid &, of equilateral
triangles. As in the logically rectangular case, we need a quadrature rule for the
triangular RTy mixed method that diagonalizes (6.2). Again, we take Vi = Vi.

Let T represent the standard reference equilateral triangle with vertices at
(—1,0), (1,0), and (0,v/3). Here let ¥} be the basis function of Vh(T) associated
with edge k, denoted by éx, k = 1,2,3. We define our quadrature rule QT(;D) on T
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such that it is exact for polynomials of degree one, and QT(\?k -V¢) =0 for k # ¢

V3 V3

) Q=2 ¢<—1,0>+¢<1,0>+¢<o,¢§>+3¢(o,7)].

The required properties follow easily from the definition of RT, given in §2. (In-
cidentally, this rule is second order accurate if the 6 is replaced by 12 and the 3
in front of the last term is replaced by 9, but then orthogonality is lost.) There is
no corresponding rule on a non-equilateral triangle; it is necessary to consider the
mapping to the reference element.

The scheme is now (5.6¢)—(5.6d) combined with

(720) Y QuU %) = (JDF'K(DF)TU,¥),, Yev,
TEéh

(7.2b) Y QuU-9)—(P,V-¥)g =—(3", 9 - 2)pp = (A V- D)pn, VEV
TEéh

Since the two integrals in (7.2) approximated by quadrature are diagonal, the
method gives a 10 point stencil for P in the Shur complement form of (3.3.7),
as shown in Fig. 7.1.

Fig. 7.1. Finite difference stencil for P.

The approximation of our problem (1.1) can be solved as in the logically rect-
angular case (transform coefficients, solve the transformed problem, and map the
solution back to the physical domain). Since neither the physical mesh nor the
computational mesh is orthogonal, in practice it may be simpler to compute this
approximation to the expanded mixed method (3.3.3) directly on the physical mesh.
In this case, we transform K by

(7.3) K=G'KG,

and we approximate on each triangle T' € &, in the integral evaluation routine
(7.4a) (G, )7 = (8, 9)p ~ Op(@, §),

(7.4b) (G, v)r = (0,V); ~ Q
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In three space dimensions, regular tetrahedra do not fill space, so there is no
regular computational mesh. However, the approach described in this section can be
extended in a local sense, using a similar quadrature rule on a regular tetrahedron.
That is, take a tetrahedral mesh on €2, such that each element E € &, is the image by
Fg of a regular tetrahedron. Let T be the standard reference regular tetrahedron
with vertices at (—1,0,0), (1,0,0), (0,4/3,0) and (0,v/3/3,2/6/3). Proceeding

element-by-element, we diagonalize (6.2) by the first order approximation:

v2

(7.5) Qsl(¥) = 33

[¢(—1, 0,0) 4 (1,0,0) + £(0,/3,0)

w055+ (05 7)]

In this case, the stencil has at most seventeen nonzero entries. There is a problem
with the accuracy of this method, and we will return to it in §10.

8. Some convergence results. With the notable exception of the work of
Thomas [34], most of the known convergence estimates apply only to affine ele-
ments and special boundary elements. Recall that affine elements are the image by
an affine map of an equilateral triangle, square, cube, regular simplex, or regular
prism (i.e., the standard, regular reference elements), and that quadrilaterals and
hexahedra are not affine elements. One feature of these affine and special boundary
elements is that V -V}, = W},. In this section we present some of these convergence
results and extend them to curved elements, as defined at the end of §4.3.

Throughout this section, C' will denote a generic positive constant that is in-
dependent of the discretization parameter h, may depend on 2, and may depend
on F only through ||DF||o,cc and ||DF ! ||o, o0, unless other dependence is indicated
explicitly. To quantify the dependence of the convergence on the mapping F', as-
suming F' € (WE’OO(Q))dXd, we let Cp ¢ be a generic constant that may depend on
I Fllioo and |17~ .

To describe the super-convergence results for the pressure, denote the L?()-
projection operator onto Wy, by Py ; that is, for ¢ € L*(Q), we define Py by

(Y = Pwip,w) =0, we W,

Recall that the approximation properties of the mixed spaces are described by [y
and [y in (2.1)—(2.3). The following theorem (with a straightforward modification
for the lower order term and the boundary conditions) can be found in [34, 31, 16,
8,6, 7, 11].

THEOREM 8.1. For the standard mized method (3.1.2) or (3.2.1) on affine (and
special boundary) elements,

(8.1) lu = Ullo < Cllplle + ull) 7', 1<l<ly,
(8.2) lp = Pllo < ClIpll + [lullt) 2, 1<1<lw,
(8.3) IV-(a=U)flo <C(lp = Pllo+ V- ulli '), 0<1<1w.
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Moreover, of lyy = lv,
(84)  [Pwp—Pllo < CUlplli+ IV ulle + Jullpao) B, 112 by,
and, if lyy < ly,

(85) 1Pwp = Pllo < C{(lpll, + ljully, + [V - ufy,) ptrminttn:2)
+(Iplles + lallip412) B2}, 1<l <lw, 1< 1 <y,

where C depends on Q, ||allo.co, |K|o,00, and [|[K 70,00, and also on ||a|i 0 in
(8.4) or if lyw < ly, on ||K||1,00 tn (8.4) and (8.5), and on |||z, tn (8.5).

The next theorem (with a modification for the lower order term) can be found
in [2] (cf. [10]).

THEOREM 8.2. For the ezpanded mized method (3.3.4) with G = I on affine
(and special boundary) elements,

(8.6) lu = Ullo + [1a = Ullo < C(llpli+1 + u) hf, 1 <1< 1y,
(8.7) lp = Pllo < C|Iplli41 + [[ull) ', 1<1<lw,
(8.8) IV-(a=U)flo < Cllp = Pllo+ IV - ullih'),  0<1<1w.

Moreover, of lyy = ly,
(8.9  IPwp—Pllo < ClIpllers + IV - ulle + ullipr2) B, 1 <1< lw,
and, if lyy < ly,

(8.10) [|Pwp — Pllo < C{(Iplluy+1 + ulle, + IV - ulfy, ) Al minttw 2}
+ (Hlez-l-l + HuH12+1/2)hl2+1}7 1 S Zl § ZW, 1 S 12 § ZV;

where C depends on Q, ||ao.00, | Kll0.00, and |K 7 0,00, and also on ||a||1 00 in
(8.9) or if lyw < ly, on ||K|j1,00 in (8.9) and (8.10), and on ||a||2,0 n (8.10).

For the curved elements defined in Section 4, note that Lemma 4.2 and the fact
that (¢, V- -u)g = (J@,V/\u)E implies

(s.11) Vet = Voue ) = (9a) 0 F i)

thus, in general V -V}, # W}, unless the map F is piecewise affine.

THEOREM 8.3. For the standard mized method (3.1.2) or (3.2.1) on curved
elements, the estimates (8.1)—(8.5) hold, and for the expanded mized method (3.3.4)
with G = J"'DFDFT on curved elements, the estimates (8.6)~(8.10) hold, with the

replacement of

Iplls; Nulls, —and ||V -ulls,

by
Crslplls, Crs+alulls, and Crspa||V-us,



MIXED FINITE ELEMENT METHODS ON GENERAL GEOMETRY 17

respectively, for any s € R. Now C depends on

Q. alloss: lloces 17 0,000 I1DF 0,00,

IDF oo [Ellooer and [|K~" o000

and also on ||all1,00 and ||J||1,00 2 (8.4) and (8.9) or if lw < ly, on |K||1, 00,
| DF||1,00, and | DF 711,00 tn the last two estimates of each method, and on |||z 00
and ||J||2,00 in (8.5) and (8.10).

Proof. The results follow from Theorems 8.1 and 8.2 applied to the transformed
problems (5.2) and (5.6), using relations (4.1.1), (4.1.2), and (8.11). O

REMARK. Other known estimates in the H™° and L? norms for affine and
special boundary elements [16, 6, 7, 20, 2] can also be transformed for curved
elements by these techniques. As described in [27, 18, 19], if the grid is rectangular,
RTN spaces are used, and K is a scalar or diagonal matrix in the standard mixed
method, we have also super-convergence for the velocity error in a certain discrete
norm (for RTp, this is equivalent to the trapezoidal-midpoint rule applied to the
L?-norm). However, since the map introduces a non-diagonal transformation of K,
these results do not carry over directly to curved elements.

REMARK. If multi-linear, quadrilateral and hexahedral elements are used, F'is
not continuous; however, we have approximation results because they hold element
by element. If F' is locally bilinear, then (see [34])

|DFlloe < Ch™" and [ DF|lje0 <CH™>, j 21,

and the results are non-optimal. However, for the Raviart-Thomas elements in two
dimensions, Thomas [34] extracted the sharper estimates:

(328)  |Mu—ulo < C(lul, + k¥ -ul )W, 1<) <y,
(820) V- (Iu—w)l—s < CIV - ull ;1 + bV - ull; 1+,

0<s<lw, 1<j<lw.
These results lead to similar estimates (with 7wu replaced by U) for the standard
mixed method on quadrilateral and hexahedral elements. Moreover, similar results
can be obtained for the expanded mixed method (without quadrature).

To describe the results for logically rectangular grids, we need some relatively
standard cell-centered finite difference notation, given here in two dimensions for
simplicity. Denote the grid points on Q by

(£i+1/27:&j+1/2)7 ‘é:()v"wNiH .j:07"'7N?)7
and then define

T = %(;%i—f-l/Z—l_:%i—l/Q), izl,N;“
9i = 3(@j112 + Gj-1y2)s J=1,Ny.

These points are mapped to points in 2 defined by the corresponding symbol with-
out the caret. We write v = (v*,v¥) for v € R*, and for any function (%, ), let
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;/A)ij denote g/?(;f:l, ;) let ';/A)i_i_l/z’j denote L/A)(ii_i_l/Z, y;), etc., with a similar definition
for functions and points without carets.

For w e W N CO(Q) andveVn (CO(Q))d let
lwll}e = (w,w)n,  [[VI[Fm = (v, V)M,  and ||V} = (v, V)M;

these can also be defined on W}, or TN/h. On Wy, and V},, the first two are norms, and
the third is a semi-norm. For E = E;; € &, define

HV”iE = [(V ' V)zz—l/Q,j + (v V)zz—l—l/Z,j +(v- V)zz,j—l/Q + (v V)?,j+1/2] ||,
VIE =Y IvIE e,
E

where v is the unit normal vector to the edges of the elements; this is a norm on
V.

The following definition concerning mesh refinement is needed for the next two
results (cf. [2]).

DEFINITION 8.4. For { > 1, an asymptotic family of meshes is said to be
generated by a C* map if each mesh is an image by a fived map F of a mesh that

is composed of standard, reqular reference elements. Here F' must be in C* (Q) with
J > 0.
THEOREM 8.5. For the cell-centered finite difference method on a logically rect-

angular grid (5.6¢)-(5.6d), (6.1), if p € C*1(Q), u € (CYQ) N W2>(Q))", and
K e (C{()n WZ’OO(Q))dXd, then there exists a constant Cps, independent of h
but dependent on the solution, K, and F' as indicated, such that

lu = Uljs + [& = Ullm < Crah”,

lu = U, + [l - O, < Crah”,

IV - (u=U)llm < Crpsh?,

lp = Plim < Crsh?,

where r =2 if K in (5.7) is diagonal and TP =0 and r = 3/2 otherwise.
Proof. This theorem is the transformation of the results of [2; Theorems 5.6
and 5.8]. To prove (8.12), we write

lu— Uz =[]/~ DF(a - U)|[, < Clla - U3

‘ 2
M

Now

" —aflRe = ) _(@* - af);1 Ll

E

1 N

< 3 {510 = ey + 6 = o] + O 1B
E

IN

C (18 — anllinm + 10 = Qullemh® +51) < Cpah®,
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using a result from [2] for the last inequality. A similar bound for ||4Y — 4} ||m
completes the proof of (8.12). Estimate (8. 13) follows trivially from the bound of
|6 — Uljrm in 2 [] and the fact that v-v = J,'¥-# for v € V. To prove (8.14), w
observe that V- U = Py V - @t implies

IV- (6= 0)m < C|IV-all2h?,
and, since V-ou=J"'V.a
IV (u-U)llm < C|V- (&= U)m < Crak?®.

Finally, (8.15) follows from the estimate ||Py,p — PHO < Ch? proven in [2]. [

REMARK. The above results imply L? super-convergence for the computed
pressure, velocity, and its divergence at the midpoints of the elements. The normal
component of the velocity at the midpoints of the edges or faces is also super-
convergent. Moreover, full second order super-convergence of the velocities is ob-
tained in the strict interior of the domain [2; Theorem 5.10].

THEOREM 8.6. For the triangular cell-centered finite difference method (5.6¢)—
(5.6d), (7.2), if the computational grid is generated by a C* map, then

lu—Uljo + [|d - Uljp < Cpsh,
lp = Pllo < Crpah,
[V (u—=U)lo < Crsh.

Proof. This result is new, and we need some notation for its proof. Assume the
grid consists of equilateral triangles; the general case follows for curved elements as

previously. Let
Eq [ / P de — Qr( )]

Teé,
denote the quadrature error. It is well known [15] that

9%y
6@187@]

(8.16) |Eq(¥)] < dx h*.

TeEy 1,3

If q € (H*(Q))? and v € V}, then v is piecewise linear and

Jdq Ov 2
] <
(8.17) |Eq(q - v)| ZZ/(a»gax ‘+‘axl oz, >dh
TEEn i, J 7

< Cllall2 [v]ls 2* < Cllall2 [[v]lo &

by an inverse inequality [12].
We denote by Qv : (L?(Q))Y — V} the discrete (L?)%-projection operator
defined by
Z Qr((Qva—q)-v)=0, vEeV,.

TEE)
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Clearly [15],

(8.18) 1Qva —dllo < Cllall A

Let 7 : (H'(Q))¢ — V}, be the projection [31, 16] defined by

Z (rq—q)-v,pu)or =0, p€ Ay
Ecé,

By the divergence theorem, (V- (rq — q),w) = 0 for w € W}, and approximation
theory gives that

(8.19) Ira —allo < Cllall1
(8.20) IV (ra—a)lle <C|V-ql1 b

Let Py : L? — AL denote the L? projection defined by
(Pap — @ purw =0, p €A},
Easily, the L?-projection errors are

(8.21) IPae = ¢llo,rs < Cllelgyrn) b,
(8.22) 1Pwe> —bllo < Clli|ly b

For simplicity assume « is constant; the variable coefficient case follows as a
slight perturbation of the proof in the standard way. Subtracting the weak form
of the problem, (3.3.3) with G = I, from the discrete method, (5.6¢)—(5.6d), (7.2)

with F' as the identity mapping, and inserting our projections operators gives

(8.23a) Y Qr((U-Qyu)-¥)

TeEy
= (K—(fj —),v)+ Eg(u-v), v eV,
(8.23h) > Qr((U—=Qyi)-v)— (P —Pwp,V-v)
TeE,
:_</\_,PAP7V'V>FN+EQ({1'V)7 VEVh,
(8.23c) (a(P — Pwp),w)+ (V- (U —7mu),w) =0, w e Wy,
(8.23d) (U—=mu) v, u)py =0, e AY.

Take v = U— Quii, v=U—7u, w = P — Pyp, and g = A — Pap. A
combination of the resulting equations yields

(a(P — pwp), P — pvvp) + (K—(U — Qvﬁ), U - Qvﬁ)
= Eg(i- (U — 7)) — Eg(u- (U — Qvit)) + (K(it — Qvit), U — Qvid)
+ Y Qr((U - Qvi)- (ru— Qyu)).

TeE,
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Since {ZTegh Qr(v - v)}'/? is equivalent to the L?-norm for v € Vj,, standard
estimates, (8.17), and (8.18) allow us to conclude that

(8.24) IVa(P = Pwp)llo + |0 — Qvillo
< c{[l[allz + llull2] 2 + [|7u = Qvullo} + €] U — 7uljy
for any € > 0. If we take v =U — Qyu in (8.23a), then

Y Qr((U=Qyu)- (U= Qyu)) = (K(U-a),U-Qyu)+ Eg(u- (U - Qvu)),

TEeEy

and so
(8.25) |U = Qvullo < C{Jlufl2 i+ [T — iillo}.

If we take w = V- (U — 7u) in (8.23¢) and manipulate the expression as above,
then

(8.26) IV (U —mu)ljo < Cl[Va(P = Pwp)lo-
Finally, let v € V}, be chosen such that for some ),

V.v=P—Pwp—Pw(a),
1¥llo + [Ivllo < ClP = Pwpllo,

v-v=0 onI¥.
Such a v exists [31, 16]; for example, solve

atp —V-KVip=P—Pwp in Q,

=0 on I'P,
KVi-v=0 on T'V,
and then define v. = —w KV which preserves the normal flux and divergence of

— KV by the properties of 7, and bounds the norms by approximation and elliptic
regularity theory. This v in (8.23b) gives

(8.27) 1P = Pwpllo < C{lldll2 2+ 110 — Qviflo + | Va(P = Pwp)llo}-

The theorem follows from the approximation properties of the projections and
(8.24)—(8.27). [

REMARK. Experimentally we find that for smooth problems p is O(h?) super-
convergent at the centroids of the triangles. Moreover, on three-lines meshes, the
normal fluxes are also O(h?) super-convergent [17].

9. Computational results. We present some numerical results that illus-
trate the theory by solving elliptic problems in two and three dimensions. The
results come from two different computer codes, one implemented to solve the prob-
lem on a logically rectangular grid, and the other implemented to use more general
meshes.
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9.1. Logically rectangular. The logically rectangular code was developed
initially as a rectangular code following the ideas of [2] to treat tensors. A prepro-
cessor was added to modify the coefficients of the problem as described in §§5-6
above, and a postprocessor was added to transform the reference solution (]5, IAJ) to
the solution (P, U) on the physical domain.

In our examples, the true domain €2 is defined as the image of the unit square
by a given smooth map F. A uniform, rectangular grid on Q) and the map define
our curved grid on £2. The derivatives of the map, needed for the computations,
are evaluated numerically, using only the coordinates of the grid points. We test
diagonal and full permeability tensors. Note that the problem on the computational
domain always has a full tensor (see (5.7)), unless the permeability K is isotropic
and the map is orthogonal. In the following examples the permeability is

- . (10 0 o (:E—|—2)2—|—y2 sin(zy)
IX—IXD—< 0 1> or K—IXF—< Sin(a:y) 1 ,

and the true solution is
p(z,y) = 2’y + y* + sin(z) cos(y),

with f defined accordingly by (1.1), and (1.1¢) or (1.1d) replaced by the proper
boundary condition (both Dirichlet and Neumann conditions were tested). The

map 1is
e\ _p(t)= T+ %cos(?)g) .
y v 7+ %Sin(&%)

The problem is shown in Figure 9.1.

=

I
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Fig. 9.1. The logically rectangular test example. The computed pressure and
velocity are shown for the case using K with Dirichlet boundary conditions
on both the computational and true domains.

Convergence rates for the test cases are given in Table 9.1. The rates were
established by running the test case for 6 levels of grid refinement. We assume the
error has the form C'h* and compute C and « by a least squares fit to the data. As
can be seen, the pressures and velocities are super-convergent to the true solution
in the discrete norms. This verifies (8.15) and (8.12) with r = 3/2.
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Table 9.1. Discrete norm convergence rates for the logically rectangular

test example: ||P — p|lm < Cp b and ||U — u|lm < Cy b=

Tensor | Boundary Condition ) ayp Cu Oy
Kp Dirichlet 0.417 2.260 0.588 1.659
Kp Neumann 7.380 2.138 0.466 1.633
Kp Dirichlet 0.435 2.205 0.611 1.710
Kr Neumann 10.09 2.130 0.648 1.754

9.2. General meshes. The second code, called the Rice Unstructured Flow
(RUF) Code [23], is written in C++ for flexibility and implements a variety of
mixed method formulations on a wide variety of two and three dimensional meshes
composed of triangular, quadrilateral, tetrahedral, and hexahedral elements. This
code operates element-by-element, and thus we approximate the map F' locally by
affine or bi/tri-linear mappings, as mentioned in §7.

We created a large suite of test problems that we used to examine the behavior
of the numerical methods described above. In each case the boundary conditions
and the forcing term were constructed to match the prescribed solution. We re-
port in detail on a typical case and then summarize the results from the full test
suite.

A typical case. Among the domains considered was that shown in Figure 9.2.
This figure illustrates the initial decomposition of the domain into elements.

Fig. 9.2. The mesh for a typical example.

In the convergence study, the domain was described by cubic splines, which
were used to generate progressively finer meshes directly. The resulting family of
meshes satisfies the definition of smoothness given in Definition 8.4.

In Tables 9.2-9.3 we give detailed results for a test problem using Dirichlet
boundary conditions,

. ~ (1 05
(9.2.1) Ix_<0.5 ; >
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and with the analytic solution

(9.2.2) p(z,y) =1—2.1cosy + 3.1 cos2y + 4 cos 3y

+ cosz(5+6.2cosy — 7.1 cos 2y + 8 cos 3y)

+ cos2x(9 — 10cosy + 1.1 cos 2y + 12 cos 3y).
We report errors in the pressure and velocity approximations for both the mixed
method implemented directly and the cell-centered finite difference approximation

described in §85-7. As can be seen, the mixed and cell-centered methods are equally
accurate, and converge at the expected rate.

Table 9.2. The pressure error |P — p||m for a typical example.

h Mixed Cell-centered
0.1 0.09366 0.09648
0.05 0.02577 0.02422
0.025 0.00668 0.00608
Rate h? h?

Table 9.3. The velocity error ||U — u||m for a typical example.

h Mixed Cell-centered
0.1 5.70698 5.92678
0.05 2.93120 2.97586
0.025 1.47783 1.48691
Rate h h

Summary of the test suite. We conducted approximately 200 experiments
with RUF, varying the domain, the shape of the elements, the type of mesh refine-
ment used, the test equation, and the tensor K. We summarize results for smooth
meshes that contain no tetrahedra, since non-smooth meshes and tetrahedral ele-
ments degrade the convergence rates; we discuss these exceptional cases in the next
section.

In all smooth cases, the error in the pressure converged approximately like
O(h?) for the mixed method (or the equivalent hybrid form) and the cell-centered
finite difference method. Similarly the error in the flux converged at least as well
as O(h) (grids of quadralaterals or hexahedra perform better, as noted above).

For most methods and test cases, the condition number of the linear system was
O(h™?), as estimated by the number of conjugate gradient iterations used. Using a
conjugate gradient solver with no preconditioning, the mixed method implemented
as a saddle point problem took much longer than the cell-centered finite difference
method (approximately 50 times longer on 2000 elements). On typical smooth
mesh problems, the cell-centered finite difference method took approximately half
as much CPU time as the face-centered, hybrid method.
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On rectangles one finds that the velocities are super-convergent at special points
and can be post-processed to yield second order accurate vector approximations ev-
erywhere. A new post processing scheme developed by the third author recovers ex-
tra accuracy for the velocities on triangular meshes as well [24]. The post-processing
method can be applied to any of the mixed method variants. The convergence rate
for the post processed flux is generally between k!> and h?, depending in part on the
smoothness of the mesh refinement process. This and other related post-processing
schemes are analyzed in [17], where it is shown that they recover second order accu-
rate velocity fields on three-lines meshes. Moreover, although the resulting velocity
fields do not conserve mass exactly, a special postprocessor choice makes the mass
conservation errors extra small.

10. Non-smooth meshes and tensors and the enhanced finite dif-
ference method. In this section we discuss mesh smoothness and refinement pro-
cesses and their impact on the accuracy of the cell-centered finite difference method.
In Definition 8.4 we stated the requirements for a family of meshes to be smooth.
A mesh refinement process is called hierarchical if an initial coarse mesh is refined
using a smooth refinement process inside each of the original coarse elements. That
is, the meshes form a smooth family within each coarse element, but not necessar-
ily as a whole. (This type of mesh is a special example of a multi-block mesh.)
In practice, most applications can use meshes and refinement schemes that can be
classified as either smooth or hierarchical.

We observed numerically that the accuracy of our cell-centered finite differ-
ence approach breaks down on non-smooth meshes, or equivalently when K is not
smooth. This is due to the fact that if F' (or K) is not smooth, then the matrix K
(see (5.7)) is not smooth. In this case, the convergence theory of §8 breaks down.
We demonstrate this by two simple but typical examples. First consider the two
triangle mesh shown in Figure 10.1. Using Dirichlet boundary conditions and taking
the true solution p(z,y) = y, the usual mixed method reproduces p at the centroids
of the triangles and u exactly, as it must for O(h) order accuracy. The cell-centered
finite difference method, in contrast, fails to compute either function correctly; for

instance it yields P = 0.35714 instead of 0.33333.

0.1)

(-1,0 (1,0

('110)
Fig. 10.1. A non-smooth mesh.
Figure 10.2 shows the error P — p for a second example on a much finer mesh

constructed from applying uniform refinement to an original coarse mesh of two
dissimilar triangles. Darker shades indicate larger errors. Within each of the original
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Fig. 10.2. Error in P — p on a hierarchically refined mesh
using cell-centered finite differences.

triangles, the mesh is smooth; the jump in DF across the central line produces the
error pattern shown, somewhat like an artificial source term.

Since the normal component of & = —KVjp is continuous across interfaces, u
must be discontinuous across the interface where DF' changes discontinuously; how-
ever, in the cell:centered finite difference method presented here, i is approximated

by a function U € V, that is constrained to have continuous normal components
across interfaces. We now relax this continuity requirement across element edges
or faces for which DF is not smooth by enlarging Vj, and we call the resulting
method the enhanced cell-centered finite difference method. It is enhanced in that
we add face centered, Lagrange multiplier pressures on such element edges or faces,
to maintain ease of solution. That is, we also enlarge V}, so that V, = ‘N/h and A, in
(3.3.6) remains square and invertible. For the problem of Figure 10.1, as we refine
the mesh, we add Lagrange multipliers only on the line segment between the two
coarse triangles. It gives the exact solution in the case of linear p.

In order to precisely formulate the basic idea of the enhanced method, consider
a domain € consisting of just two regions ; and €, separated by an interface T'Y,
such as that shown in Figure 10.3. A weak form of (1.1), analogous to (3.3.3),
can be defined by integrating over each 2; and summing. The result is (3.3.3a),
(3.3.3d), and

(10.1a) (G7'a,v) =Y (p.V V)

=1
=—(¢”,v-v)rp — (p,V-V)p~
- <p7V : V1>FI - <p7V : V2>FI7 vV € H(d1V7 Ql) U H(le,\QZ)7
2

(10.1b) (ap,w)+ Y (V-u,w), = (f,w), w e L*(L),

=1
(101C) <ll ’ V17IU’>FI + <u " V2, M>FI = 07 IS H1/2(PI)7

D

where v - v; means the normal component as defined from ;. Note that (10.1c)
insures continuity of flux across I'.

We construct a finite element partition of 2, where DF' is smooth in £2; and
Q2 but not necessarily smooth along I'/. Let £F denote a finite element partition
of Ok, k = 1,2, and let & = & U EZ. Assume that & and £ match at the edge
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Q |I'' Q,

Fig. 10.3. Domain decomposition.

I'l) so that &, is a valid partition of the whole domain 2. Let V¥ C H(div; Qk)
Wh C LZ(Qk) denote the RTy spaces on &F k = 1,2. Let V¥ = VI U V2 C Vj,
Vh = Vh U Vh D V¥, and Wy, = W} U W2 Let Al € L%(T'7) denote the restriction
to I'? of the space Aj,. Then the enhanced method seeks U € V}*, U e Vh , Pe Wy,
and A € AY U Al satisfying

(10.2a) (G7'U,¥) = (GT'KGU, %), v eV,
2

(10.2b) (G710, v) =) (P, V- v)q,
=1

=—(¢7,v-v)rp —(\, V- V)pn~
_</\7V'V1>FI_</\7V'V2>F17 VEVh*a
2

(102C) (OzP7 w) + Z(V ' U? w)Qz = (f7 'w)7 w e Wh7
=1

(10.2d) (U-v,p)rv = (", w)rw, pe Ay

(10.2¢) (Ui, ppr + (U -va,p)pr =0 p € A,

We further take f/h* =V}’ and approximate the appropriate integrals by quadrature
to obtain the enhanced cell-centered finite difference method. The linear system
can be easily reduced to a symmetric, positive definite system for the pressures P
and A alone.

We illustrate the enhanced finite difference method on a typical example posed
on the domain shown in Fig. 10.4, where the initial decomposition of the domain into
coarse elements is also shown. The domain is neither simply connected nor convex;
moreover, we chose to use both rectangles and triangles. The domain was refined
uniformly to generate progressively finer meshes. Refinement means replacing each
triangle or rectangle with 4 smaller but geometrically similar ones. The finest mesh
had 2432 elements. Uniform refinement generates hierarchical meshes: each new
mesh contains all the edges of the previous one. However, the geometry mapping is
clearly not smooth across edges of the original coarse mesh.

In Tables 10.1 and 10.2, we give results for a test problem using Dirichlet
boundary conditions, K defined by (9.2.1), and true solution (9.2.2). This non-
smooth, hierarchical example shows that indeed the cell-centered finite difference
method loses accuracy (about one half power of h in this example, but in other
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Fig. 10.4. A non-smooth mesh example.

examples even more) in both pressure and flux as compared to the standard mixed
method; however, there is no loss in accuracy for the enhanced finite difference
method. Moreover, if instead of this hierarchical refinement procedure, we use a
smooth procedure, then the cell-centered finite difference method achieves the same
convergence orders as the other methods. Thus, it is the non-smooth mesh alone
that causes degradation of convergence.

Table 10.1. The pressure error ||P — p||m for a hierarchical example.

h Mixed Cell-centered Enhanced
0.16 0.39 0.48 0.59
0.08 0.11 0.12 0.11
0.04 0.029 0.043 0.026
0.02 0.0076 0.019 0.0062
Rate h? B4 h?

Table 10.2. The velocity error ||[U — u||m for a hierarchical example.

h Mixed Cell-centered Enhanced
0.16 6.0 9.3 6.4
0.08 3.1 5.9 3.5
0.04 1.5 3.7 1.6
0.02 0.77 2.5 0.80
Rate h K06 h

We also considered the enhanced method and non-smooth meshes in the test
suite of 200 problems run with RUF. The error in the pressure converged approx-
imately like O(h?) for all methods, including the enhanced method, except in the
case of the cell-centered finite difference method on non-smooth meshes. Similarly
the error in the flux converged at least as well as O(h) for all methods, again except
for the cell-centered method on non-smooth meshes. Thus, indeed, the enhanced
method corrects the cell-centered method in the presence of non-smooth meshes.
Moreover, on hierarchical meshes that have coarse blocks with smooth, logically
rectangular meshes, the enhanced method achieved the usual super-convergence.
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Recall that we used a conjugate gradient solver with no preconditioning. Gen-
erally, the enhanced method was somewhat slower than the hybrid method on coarse
meshes, since it solves for both pressures and Lagrange multipliers. But by around
four levels of mesh refinement the two methods took the same amount of time to
solve, since the enhanced method does not need Lagrange multipliers on every edge.
The enhanced method outperforms the hybrid method when additional refinement
is used.

In the hybrid method, Lagrange multiplier pressures are introduced on the
boundary of every element in &,. In many cases, Lagrange multipliers are only
needed on the boundaries of a few elements, as above. A similar situation arises
when applying the domain decomposition techniques described in [22], where La-
grange multipliers are introduced only on the element faces between sub-domains.
In the enhanced method, the multipliers are needed to preserve accuracy of the
numerical solution; however, as a side effect, they can be used to introduce paral-
lelism into the solution process. The resulting linear system for the pressures can
be further reduced to an equation for Lagrange pressures alone. In [22, 21, 14, 13],
various methods for solving such a system on parallel computers are developed and
analyzed.

We close this section by returning to tetrahedral meshes. Since regular tetra-
hedra do not fill space (whereas equilateral triangles do tile the plane), tetrahedral
meshes unavoidably produce discontinuous K everywhere, no matter how much one
attempts to smooth the tetrahedral mesh. Therefore, the cell-centered approach
described in §7 cannot accurately approximate the true solution on tetrahedral
meshes. Experimentally we observe that the enhanced method gives O(h?) accu-
racy for the pressure and O(h) accuracy for the flux; however, since there are now
Lagrange multiplier pressures on every face, this is not necessarily an improvement
of the hybrid form of the standard mixed method.

11. An observation on the standard mixed method. Recall from the
last section that when K is discontinuous and V}, = V}, has continuous normal com-
ponents, we are unable to properly approximate u, since it is then discontinuous.
Numerically, it has been observed that the standard mixed method performs well
even when K is discontinuous. Evidently, in this case u is automatically approxi-
mated in some discontinuous space. This is indeed true, as we now show.

We rewrite the standard method (3.1.2) in the following form. Find U € V},,
UecV,,PcW,and \ € AY satisfying (3.1.2b)—(3.1.2¢) and

(11.1a) (U,v)—(P,V-v)
:—<gD,V-I/>FD —</\,V-U>FN, v eV,
(11.1b) (K~'U, %) =(0,¥) v eV

Since Vi, C Vi, these two equations combine to form (3.1.2a).

Suppose that Vj, = V} is fully discontinuous, and take the orthogonal decom-
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position V, = Vi, & V& with respect to the L? inner product, and expand
(11.2) U=0°+0¢ U°eV,and U¢ec VL

Then U can be replaced by U€ in (11.1a) by orthogonality. Moreover, (11.1b)
becomes the pair of equations

(11.3a) (K7'U,%°) = (U°,%°) ¥ e W,
(11.3b) (KU, ¥4 = (U4 9Y) v e VL
That is, the combination of (11.1a) and (11.3a), together with (11.1c), (3.1.2b)-

(3.1.2¢) forms the usual mixed method, solvable without reference to U. Then
(11.3a) gives the continuous part of U, and (11.3b) gives the discontinuous part.

12. Some conclusions. The cell-centered finite difference method has been
defined rigorously as a quadrature approximation of the expanded mixed method
for general meshes of quadrilaterals, triangles, hexahedra, and tetrahedra. We saw
both theoretically and computationally that the method is accurate and efficient on
smooth meshes that are either logically rectangular or triangular with six triangles
per interior vertex (it appears to be about twice as fast as competing methods).
On hierarchical meshes, the method loses accuracy, but the enhanced variant of the
method does not. This enhanced method is more efficient than the hybrid form
of the mixed method in hierarchical settings where the coarse elements are suffi-
ciently refined so that the enhanced method uses many fewer Lagrange multiplier
unknowns than the hybrid method. Meshes of tetrahedral elements, however, are
never smooth, so the cell-centered finite difference method always loses accuracy
and the hybrid method or the enhanced method with Lagrange multipliers on every
face should be used.
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