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Abstract

Compilers for data-parallel languages such as Fortran D and
High-Performance Fortran use data alignment and distribu-
tion specifications as the basis for translating programs for
execution on MIMD distributed-memory machines. This pa-
per describes techniques for generating efficient code for pro-
grams that use block-cyclic distributions. These techniques
can be applied to programs with symbolic loop bounds, sym-
bolic array dimensions, and loops with non-unit strides. We
present algorithms for computing the data elements that
need to be communicated among processors both for loops
with unit and non-unit strides, a linear-time algorithm for
computing the memory access sequence for loops with non-
unit strides, and experimental results for a hand-compiled
test case using block-cyclic distributions.

1 Introduction

Data parallel languages such as High-Performance Fortran
(HPF) [11, 18] and Fortran D [15] have attracted consider-
able attention as promising languages for writing portable
parallel programs. These languages support an abstract
model of parallel programming in which users annotate a
single-threaded program with data alignment and distribu-
tion directives. Compilers for MIMD distributed-memory
machines use these directives to partition the program’s
computation as the basis for deriving a SPMD program to
be executed on each node of the parallel machine.

HPF and Fortran D support three principal types of data
distribution directives for partitioning arrays among the pro-
cessors in a parallel machine: block, cyclic, and block-cyclic.
A distribution directive is associated with a particular axis
of an array, indicating how the array will be partitioned
along that axis. A block distribution along an array axis
indicates that the array will be partitioned along that axis
into a set of equal length intervals, one for each processor
assigned to the array axis. Block distributions are the distri-
bution of choice for nearest neighbor stencil-based compu-
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tations. A cyclic distribution along an array axis indicates
that the data will be partitioned into unit intervals which
are assigned to processors in a round-robin fashion. Block
and cyclic distributions are just common cases of the more
general block-cyclic distribution which specifies the length
of the intervals into which an array axis will be partitioned.
A more precise definition of these distributions is given in
section 3. Cyclic and block-cyclic distributions are useful for
writing efficient and load-balanced dense matrix algorithms
on distributed-memory machines [3].

Previous research has focused on compilation strategies
for handling block and cyclic distributions efficiently [19, 17].
Block-cyclic distributions have only been studied in detail
recently. Chatterjee et. al. [4] present a general solution for
generating local addresses and communication sets for data-
parallel programs with block-cyclic distributions. Stichnoth
et. al. [22] look at the problem of generating communication
sets for block-cyclically distributed arrays. Gupta et. al. [7]
compute the communication and local index sets using wvir-
tual processor approach. In this paper, we present faster
and conceptually more intuitive algorithms for generating
communication sets, a linear-time algorithm for computing
the memory access sequence for loops with non-unit strides,
and a list of formulae useful for compiling programs with
block-cyclic distributions.

The structure of the paper is as follows. Section 2 briefly
reviews the organization of the Rice Fortran 77D compiler
which we use as a vehicle explaining our techniques. Section
3 introduces the terminology and notation used throughout
the rest of the paper. Sections 4 and 5 present algorithms
and analyses to compile Fortran D programs with block-
cyclic distributions. Sections 6 presents a hand-compiled
Gaussian elimination example and experimental results that
show the impact of using block-cyclic distributions with dif-
ferent block sizes. The paper concludes with a brief sum-
mary of our contributions.

2  Fortran D Compiler

To compile Fortran D for MIMD distributed-memory ma-
chines, the Rice Fortran 77D compiler uses data alignment
and distribution directives to partition the data and compu-
tation among the available processors, and then introduces
communication operations to transfer values as necessary.
By using aggressive compile-time analysis and optimization
to statically partition the computation and schedule commu-
nication, the Fortran 77D compiler can generate programs
that are far more efficient than other compilers that rely



REAL A(n), B(n)
DISTRIBUTE A(BLOCK_CYCLIC(3)), B(BLOCK_CYCLIC(S5))

do i =1, 45
A(i) = F(B@H))
enddo
@I LI PR TR DT PR [ PR [P T T [ [ P

(a) Elements of A owned by processor 0 = elements of B needed by processor 0
(b) Elements of B owned by processor 1
(c) Elements which processor 1 needs to send to processor 0 = (a) N (b)

Figure 1: Data ownership and communication for a block-cyclic data distribution.

on run-time resolution to explicitly calculate the ownership 7) Generate code The compiler uses the results of previ-

and communication for each reference at run time [3, 20, 23].
Below, we briefly review the sequence of steps performed by
the Rice Fortran 77D compiler; details of the compilation
process are described elsewhere [13, 14].

1) Analyze program The compiler performs scalar dataflow
analysis, symbolic analysis, and dependence testing to de-
termine the type and level of all data dependencies [16].

2) Partition data The compiler determines the decomposi-
tion of each array and uses alignment and distribution state-
ments to calculate the array section owned by each proces-
sor.

3) Partition computation The compiler uses the “owner
computes” rule to partition the computation among the pro-
cessors. FEach processor only computes values of data it
owns [3, 20, 23]. The left-hand side (lhs) of each assign-
ment statement in a loop nest is used to calculate the set
of loop iterations that cause a processor to assign to local
data. This iteration set represents the work that must be
performed by the processor.

4) Analyze communication The compiler uses the compu-
tation partition to calculate the non-local data accessed by
each processor for each right-hand side (rhs) reference to a
distributed array. References that cause non-local accesses
are marked since they require insertion of communication.

5) Optimize communication The compiler examines each
marked non-local reference and uses results of data decom-
position, symbolic and dependence analysis to determine
the legality of optimizations to reduce communication costs.
Regular section descriptors (RSDs) are built for the sec-
tions of data to be communicated. RSDs compactly repre-
sent rectangular array sections and their higher dimension
analogs [10].

6) Manage storage The compiler identifies the extent and
type of non-local data accesses represented by RSDs to cal-
culate the storage required for non-local data. For RSDs
representing array elements contiguous to the local array
section, the compiler reserves storage using overlaps created
by extending the local array bounds [6]. Otherwise, tem-
porary buffers or hash tables are used for storing non-local
data.

ous stages to generate a SPMD message-passing program
for nodes of a MIMD distributed-memory machine. To ac-
complish this, the compiler reduces array and loop bounds,
introduces guards to instantiate the data and computation
partitions, uses RSDs representing non-local data accesses
to generate calls to data-buffering routines and to insert calls
send and recvor collective communication routines as appro-
priate. The compiler inserts code to use run-time resolution
to determine work and communication partitions when com-
plex subscript expressions defy compile-time analysis.

3 Terminology

Here, we briefly review some terminology and notation that
is used throughout the remainder of the paper. We use P to
denote the number of processors, numbered 0 through P —1.
For the following canonical loop nest,

doi=1to @ by §
Ag(2)) = B(f(1)

enddo

we define the following sets; formal definitions of these sets
are presented elsewhere [14].

e image_setp(p) is the set of indices of array B that are
owned by processor p.

o iter_seta(p) is the set of loop iterations that cause ref-
erence A to access data owned by processor p.

e indez_setp(p) is the set of indices of array B refer-
enced by processor p on loop iterations contained in
iter_seta(p).

e send_p_setp(p) is the set of processors to whom p must
send local elements of array B.

e recv_p_setp(p) is the set of processors from whom p
must receive values of non-local elements of array B.

o rsd_setp is the set of indices of array B that are refer-
enced in the loop nest.



REAL A(n,n), B(n,n)
DISTRIBUTE A(:, BLOCK_CYCLIC(8))
DISTRIBUTE B(:, BLOCK_CYCLIC(8))

dok =1, n
do i =k+1, n

S1 A(i,k) = F(B(i,k))
enddo

do j =k+1, n
do i =k+1, n
S A(i,j) = G(A(i,), AGQ, k))
enddo
enddo
enddo

Figure 2: Code fragment with block-cyclic distributions.

As a convenient notation for describing sequences of in-
dices that arise with block-cyclic distributions, we use a
quadruplet [liu:b:c] inspired by the Fortran 90 triplet no-
tation. The components are, respectively, the lower bound,
upper bound, block width, and the cycle length which is
equal to the product b x P.

The elements of a 1D distributed array owned by a par-
ticular processor can be represented using a quadruplet. Fig-
ure 1(a) shows a 1D array A partitioned among two proces-
sors. Processor 0 owns elements [1:3], [7:9], [13:15], and so
on; this can be represented as [1:n:3:6] in quadruplet nota-
tion. The quadruplet notation also can represent block and
cyclic distributions by setting ¢ = n and b = [£] for a block
distribution and ¢ = P and b = 1 for a cyclic distribution.
For the sake of convenience we continue to represent con-
tiguous ranges as [l:u]. Sections of multi-dimensional arrays
can be represented using an instance of the [liu:b:c] or [L:iu]
sequence notation for each array dimension.

Clearly, the quadruplet notation is insufficient to repre-
sent the sequence of data accessed on a processor for loops
with non-unit stride since the memory access gap is non-
constant (details of how this case is handled are presented
in section 5). Despite the incomplete expressiveness of the
quadruplet notation, we use it for the sake of convenience
with the understanding that the compiler will handle cases
outside the scope of this simple notation by using appropri-
ate data-structures.

4 Program Analysis

In this section, we describe how to synthesize the analysis
results needed to compile data parallel programs in presence
of block-cyclic distributions. Before getting into the details
of the analysis phases, we illustrate the compilation steps
using a simple example.

The program fragment shown in Figure 2 is similar to
Gaussian Elimination with pivoting but without a loop-
carried dependence from S; to S;. Statement S; corre-
sponds to the computation of the pivot while statement
S corresponds to row elimination with column indexing.
Performing partition and communication analysis (refer to
[12] for details) yields the following sets for statement S:

image_seta(p) = [1:n][px8+1:mn:8: Px8§]
tter_seta(p) =[1:n]llb:n:8: Px8][k+1: n]
indez_seta(p) = [k+1 : n][1: n]
The image set indicates that the columns of B described
by the quadruplet [p*x8+1 : n : 8 P x 8] in rows
1 through n are owned by processor p. The iteration set

do kk = 1, n, 8
do k = kk, min(kk+7, n)
k$ = ...
if (my$p owns the kth column) then
do i =%k+1, n
A(i,k$) = F(B(i,k$))
enddo
broadcast A(k+1:n, k$)
else
recetve A(k+1:n, k$)
endif
1b$1
ub$1 ...
do j = 1b$1, ub$1
do i = k+1, n
A(i,j) = G(A(i,]), A(i,k$))
enddo
enddo
enddo
enddo

Figure 3: Hand-compiled block-cyclic example.

follows from the loop nesting order, resulting in an index
domain spanning [range of k][range of j][range of i]; the
formula for computing (b, the lower bound, is described in
Section 4.1. To simplify presentation, we have shown only
the index set for the reference A(i,k) since all we are really
interested in is (indez_seta \ image_seta), the set differ-
ence. This set difference indicates the columns not owned
by the processor. In this case, the difference is non-empty
and each processor needs to receive all the columns owned
by other processors. In other words, each processor needs
to broadcast its columns. Since there exists a dependence
from the statement S; to Sz, the processor which computes
the kth column needs to perform a broadcast after executing
the loop containing statement S;. Figure 3 shows a hand-
compiled version of the source fragment shown in Figure 2
that was translated using this strategy.

The block-cyclic distribution enables an optimization.
Since each processor owns a block of columns, it can com-
pute the pivot for one whole (or part) block of columns it
owns. Instead of sending a separate message for each col-
umn, a processor can send one message for each sub-block of
a block of columns. Since current distributed memory ma-
chines have high communication costs, reducing the number
of messages with this optimization has the potential to im-
prove performance over that attainable using a cyclic distri-
bution. Figure 4 shows hand-compiled version of the source
fragment shown in Figure 2 that was translated using this
blocking strategy to vectorize of broadcasts.

4.1 Loop Indices and Bounds Generation

Consider the program fragment shown in the top half of Fig-
ure 5. The bottom half of the figure shows its corresponding
SPMD node program using the functions Lower LoopBound,
Upper LoopBound, LocallLooplndex, GlobalLoopIndex and
Owmner. These formulae to compute these quantities are
given below. The functions are specific to the example in
the figure since they assume unit loop strides and the free
variables L, b, and P in the functions refer to the lower
bound of the X array, the block size for the block-cyclic dis-
tribution, and the number of processors, respectively. Note
that the lower bound of the array in the SPMD code is 1.



do kk = 1, n, 8
if (my$p owns columns kk to kk+7) then
do k = kk, min(kk+7, n)

k$ = ...
do i =k+1, n
A(i,k$) = F(B(i,k$))
enddo
buffer A(k+1:n, k$)
enddo
broadcast buffer
else
recetve buffer
endif
do k = kk, min(kk+7, n)
k$ = ...
1b$1 =
ub$1 = ...
do j = 1b$1, ub$1i
do i = k+1, n
A(i,j) = G(A(i,]), buffer(...))
enddo
enddo
enddo
enddo

Figure 4: Hand-compiled code with vectorized broadcasts.

Ouwner(X (1)) = L%J mod P

LocalLoopIndex(i) = Lb*PJ b+((:—L) mod b)+1
GlobalLoopIndez(i$,p) =

| =L (P#b) +p*b+((i5—1) mod b)+L
LowerLoopBound(Lj,p) =

L=1L;-L
if (p < [%+] mod P) then
return [ b S *b+1

else if (p > [%J mod P) then
return | l*l |*xb+1
else
return Lﬁj b+ ({1 mod b) +1
endif

UpperLoopBound(U;,p) =

U] — U] - L
if (p < 3] mod P) then

return L]

[5vF
else if (p > %] od P) then
return | 55| * b
else
return |35 | * b+ (w1 mod b) + 1
endif

If the number of processors and the loop bounds are
known at compile time, then the loop bounds formulae can
be evaluated at compile time. If these quantities are sym-
bolic variables, then the formulae would require run-time
evaluation. In experiments that measured the overhead of
performing similar calculations at run time in shared vir-
tual memory systems, the overhead of these calculations was
found to be insignificant [2].

We present the techniques to handle loops with non-unit
strides and more complex array subscripts in Section 5.

{* Original Program x*}
REAL X(L:U)
DISTRIBUTE X(BLOCK_CYCLIC(b))
do i = L;,U;
51 x(l) = T1<1)
do j = L;,U;
Sg X(J) = fz(:j)
enddo
enddo

{* SPMD Node Program *}
REAL X(1:[(U - L+ 1)/P])
1b$ = LowerLoopBound(L;)
ub$ UpperLoopBound(U;)
Li,U;
LocallLoopIndex(i)
p .eq. Owner(X(i))) X(i$) = Fi (1)
1b$,ub$
GlobalLoopIndex(j, p)
X(3) = (%)

Figure 5: Loop indices and bounds generation.

4.2 Partitioning Analysis

We now describe the analysis required to compute iteration
sets in the presence of symbolic loop bounds, array dimen-
sions and number of processors. These iteration sets are
used in two ways by the code generation phase: first, to re-
duce loop bounds so that each processor iterates only over
the portion of the iteration space that causes it to reference
data elements that it owns, and second to introduce guards
to handle cases in which iteration sets are not identical for
all processors.

4.2.1 Symbolic Iteration Sets

For each assignment statement in a loop nest, the compiler
must compute an iteration set, parameterized by processor
number, that represents the set of loop iterations that cause
the processor to access the data it owns. Our discussion
of iteration set construction will be based on the canonical
loop nest shown below, which is the same as the loop given
in Section 3.

Given:
REAL A(h TUL, eyl un), B(ll TUL, eyl un)
DECOMPOSITION D(l : ul, cooln tug)
ALIGN A(.. s B( .) WITH D(.. J)
DISTRIBUTE D(d1, .. BLOCK CYCLIC(b ) B n)
Loop nest:

DO i1 = lb1,’ub1
DO in = b, uby,

Sy A(..,g(i),...) = B(...
ENDDO

ENDDO
Note that in the loop given above the kth dimension of A,
the 1th dimension of B are aligned with the mt¢h dimension

of D (which is distributed block-cyclically). To determine
a processor’s iteration set for an assignment statement in a



loop nest, the compiler examines the subscripted array ref-
erence on the left-hand side of the assignment, the array’s
alignment with its associated decomposition, and the distri-
bution specification for the decomposition that reaches the
assignment statement. Computing the iteration set involves
reducing the index variable bounds for each distributed di-
mension of the decomposition corresponding to the lhs term.
This problem of reducing the bounds is independent for each
distributed dimension. For presentation purposes, we as-
sume that only one dimension, d,, is (block-cyclically) dis-
tributed. For arrays with more than one distributed dimen-
sion, the iteration set can be computed by intersecting the
solutions for each singly-distributed dimension sub-problem.

In the above loop nest, it is assumed that the subscript
function g(ix) has been simplified. In the cases where g(ix)
is a constant, an induction variable, or a linear function of
a single index variable, the iteration set can be computed
at compile-time. For more complex subscript expressions,
the compiler defers the computation of the iteration set to
run time. In the following formulae, the functions Glob-
alLowerLoopBound and GlobalUpperLoopBound return the
reduced lower and upper bounds for the loop in global in-
dices. These functions are similar to the LowerLoopBound
and UpperLoopBound functions given in Section 4.1.

o Constant: g(ix) = c

if (Owner(A(...,ck,...)) =p) then

iter_set(p) = (Iby : uby,... by : ubk,..., by : uby)
else

iter_set(p) =0
endif

¢ Induction Variable Only: g(ix) = i

lbry = GlobalLower LoopBound(lb)
ubgr = GlobalUpper LoopBound(uby)
iter_set(p) = (Iby : uby,...,
Wby cubky :b:bx P, lby - uby)

¢ Simple Linear Expression: g(ix) = ix + ¢

lbry = GlobalLower LoopBound(lbx — c)
ubg1 = GlobalUpper LoopBound(uby — c)
iter_set(p) = (Iby : uby,...,

Wbyt ubky :b:bx P, 1by : uby)

o Linear Expression: g(ix) = c1 * ix + co

To compute the iteration set, the subscript with lin-
ear expression is converted into an induction variable
only subscript by changing the loop parameters. For
example, if the original upper and lower loop bounds
and the step are lbg, uby and 1 respectively, then the
transformed upper and lower loop bounds and step are
Iby * c1 + co, ubk * c1 + co and c¢; respectively.

To compute the iteration set, the first iteration as-
signed to the processor needs to be determined. This
is equivalent to finding the smallest non-negative inte-
ger 7 such that

Owner(A(lby xc1 +co+c1xj)) =p

This equation gives a set of linear Diophantine equa-
tions. The solution to a similar set of equations is
given in Section 5.

4.3 Communication Analysis
4.3.1 Index Sets

Index sets are built for each distributed right-hand side ar-
ray reference and contain the section of data accessed by a
processor. They are used to determine the resulting com-
munication.

From the previous section, observe that the iter_set(p)
could either be @, (Iby : uby,..., by : wbk,...,lby : uby) or
(lb1 by, .. lbg s ubg b bx P by, ubn). The index
sets can be computed by substituting the value of iter_set(p)
in the rhs subscript function f(é;). Note that the index set is
independent of the distribution of the referenced rhs array.
If the iter_set(p) cannot be determined at the compile time,
the index set computation needs to be done at the run time.

4.3.2 Communication Classification

Communication classification is a crucial step in the com-
pilation process since it allows the compiler to insert calls
to fast collective communication primitives in the output
program and optimize the communication. Each non-local
reference is classified as resulting in Single Send/Receive,
Shift, Broadcast, Gather, All-to-All, Inspector/Executor or
Run-time Resolution type of communication. The details of
the algorithm can be found in [12].

4.4 Send and Receive Sets

In order to compute the send and receive sets (send_p_set
and recv_p_set, respectively), the compiler needs to find
out, in the most general case, the intersection of two block-
cyclically distributed arrays. However, as the example in
Figure 1 demonstrates, block-cyclic sets are not closed un-
der intersection.

Stichnoth et. al. [22] treat the block-cyclic sets as a union
of disjoint cyclic sets. Since the cyclic sets are closed under
intersection, the intersection of the two block-cyclic sets can
be determined by intersecting all possible pairs of the cyclic
sets. An advantage of using this technique is that the cost
of translation from global index space to local index needs
to be incurred only once for the lower and upper bound
and stride of each section. A more general approach, virtual
processor approach, is taken by Gupta et. al.[8, 7]. Using
this approach, a block-cyclic distribution can be viewed as a
cyclic (or block) distribution on a set of virtual processors,
which are block-wise (or cyclically) mapped to physical pro-
cessors. With the virtual processor approach, explicit local-
to-global and global-to-local translations are not needed for
every index element communicated among the processors.

Mostly, the compiler needs to intersect two block-cyclic
sets only once: to compute send_p_set and recv_p_set. An
efficient approach which avoids the overheads of comput-
ing mods, ceilings, etc. while computing the intersection,
is to treat each block-cyclic set as an array sorted in as-
cending order. The intersection can then be computed by
a simple linear-time algorithm similar to the merge sort al-
gorithm. For example, processor 1 needs to send [1:45:3:6]
N [6:45:5:10] elements to processor 0. In other words, the
compiler needs to find the intersection

{1,2,3,7,8,9,13,14,15,19,20,21,...,43, 44,45} N
{6,7,8,9,10,16,17,18,19, 20, ..., 36, 37,38, 39,40}

Of course, the intersection can be computed without look-
ing at all the array elements because the pattern repeats

after LCM(Block-size(A),Block-size(B))*P (= LCM(3,5)*2



Input : Arrays A and B as the lhs and the rhs array
respectively. The sender processor s, the destination
processor d and the block sizes bsize; and bsizes.
We assume the presence of a function ”next_elem”
that uses the current location and the block-size
to increment the index pointer to the next array
element owned by the processor.

Output : The set of elements of array B which need
to be sent from s to d.

Method :

s_index = first_elem(image_setB(s));

d_index = first_elem(index_set s(d));

while (s_index < LCM(bsizeq, bsizey) * P and

d_index < LCM(bsizeq, bsizeg) * P) do

if (s_index < d_index) then
next_elem(s_index, bsizeq );

else if (s_index > d_index) then
next_elem(d_index, bsizes);

else
buffer(s_index);
next_elem(s_index, bsizeq );
next_elem(d-index, bsizesy);

endif

endwhile

Using the elements belonging to the intersection (as

computed above) and the periodicity, buffer the rest

of the elements which need to be sent.

Figure 6: Algorithm for computing the intersection.

Processor O

Processor 1

Processor 2

Processor 3

3] 2 3 4

17 18 19 20
33 34 35[36
49 s50[5I] 52

65 67 68

[81] 82 83 84

5[6] 7 8
21|22 23 24
37 38 39 40
53 54 55[56
69 70[71] 72

85 87 88

9 10[11] 12
25[26] 27 28
E4z 43 44
57 58 59 60
73 74 75[76
89 90[91] 92

13 14 15[16]
29 30[31] 32
45([46] 47 48
61] 62 63 64
77 78 79 80

93 94 95[96]

= 30, in this case) elements. Hence the time required to
compute the intersection is O(LCM(Block-size(A), Block-
size(B))*P) which is better than the time complexity of the
method suggested in [22]. Note that both the sender and
receiver compute the intersection using the global indices.
To pack and unpack the message, both the processors need
to translate the global indices to local indices. However, by
substituting in the value in the formula for LocalLoopIndex
given in Section 4.1, we get
LocalLoopIndex(i+LCM(Block-size(A),Block-size(B))*P) =
LocalLoopIndex(i) + LOM(Block-size(A), Block-size(B)).
Therefore, we can use the repetitive pattern to perform ad-
dress translation for LCM(Block-size(A),Block-size(B))*P
index elements only.

In case the number of processors or the loop bounds are
unknown at compile time, the compiler needs to perform
the intersection at run time. Figure 6 gives the algorithm
for computing the array elements which need to be sent from
one processor to another. The algorithm for computing the
receive set is similar to that for the send set.

In practice, though, we do not expect to find arbitrary
block sizes (like 3 and 5 in the Figure 1). Since the block
sizes also affect the locality of the array accesses, and hence
the memory hierarchy optimizations, we expect the arrays
to have the same block sizes or block sizes which are powers
of 2. In these cases our algorithm would provide the most
benefits. In the case of perfectly aligned arrays, the inter-
section would still be a block-cyclic set with block size equal
to the smaller of the two original block sizes. The send_p_set
and recv_p_set sets can be computed trivially in this case.

5 Loops with Non-unit Stride

As mentioned earlier, in the presence of block-cyclic dis-
tributions, closed-form expressions for iter_set, send_p_set
and recv_p_set cannot be written. In this section we will
describe algorithms to construct these sets in the presence
of loops with non-unit strides and/or non-unit array sub-

Figure 7: Block-cyclic distribution with non-unit stride.

scripts. We have identified two cases of data access patterns
for which we provide fast solutions for computing the sets.
If the data access pattern does not fit either form then we
resort to the algorithms proposed by Chatterjee et. al.[4]. In
the case of non-unit stride and/or non-unit array subscript,
the data accessed in a processor’s local memory results in a
non-constant stride pattern. In the example below,

REAL A(5,96), B(5, 96)
PARAMETER (N$PROC = 4)
DECOMPOSITION D(5, 96)

ALIGN A with D

DISTRIBUTE D(:, BLOCK_CYCLIC(4))
DD 10 i =1, 5

10 continue

the second dimension of array A is distributed block-cyclically
among 4 processors, with a block size of 4. The layout of
array A in processor memories is depicted in Figure 7. As

illustrated by Chatterjee et. al., the layout of the array in

memory can be visualized as an array of courses and offsets.

The offset of an array element is its offset within the course.

As an example, A(3) resides in course 1, offset 2 in Processor

0’s memory. Figure 7 also illustrates the elements of array a

that are referenced in the loop nest. For instance, Processor

0 accesses elements A(1), A(36), A(51), ...and so on. The

access stride for a given array reference on a processor is dis-

tance in local memory between each access. For example,

the stride for array reference A(i, j) on processor 0 is (11, 3,

3, 3).

The key insight, as noted in [4], is that the offset of an el-
ement determines the offset of the next element on the same
processor. Since the offsets range between 0 and (block-size-
1), by pigeon hole principle, at least two of the first (block-
size+1) local memory locations on any particular processor
must have the same offset. Moreover, since the offset of the
next element depends only on the offset of the current array
element, we conclude that there exists a cycle of memory
access gaps.

Suppose we wish to find the first element (if any) of the
array section that resides on a processor. This is equivalent
to finding the smallest non-negative integer j such that

l(Li-i—s*j—L)mad(P*b)J

b

where L; = lower loop bound, I = array lower bound, s =
step size and b is the block size.
The above equation is equivalent to

bxp < (Li+sxj—L)mod(Pxb) < bx(p+1)—1
which is equivalent to finding an integer ¢ such that

bxp—Li+L < sxj—q«Pxb < bx(p+1)—L;+L—-1



dol=1,n

ipnt = ipntp
ipntp = ipntp+il
do k = ipnt+2, ipntp, 2
i=1i+1
X(i) = X(k) - V(k)*X(k-1) - V(k+1)*X(k+1)
enddo

enddo

Figure 8: Livermore kernel 2 (ICCG excerpt).

The above inequality can be written as a set of b linear
Diophantine equations in the variables j and g,

{s*j—qxPxb = Absp—L;+L < X < bx(p+1)—L;+L—1}

The equations can be solved independently (solutions exist
for an individual equation if and only if A is divisible by
GCD(s, bxP)). The general solution of a linear Diophantine
equation can be found using the extended Euclid algorithm.

The extended Euclid algorithm gives not only the first
such memory location, but a list of all the locations (array
elements). We could then sort this list based on the ar-
ray elements accessed by a processor and thereby compute
the memory access gap sequence. Using this idea, Chat-
terjee et. al.give algorithms for computing the memory ac-
cess gap sequence for loops with arbitrary array alignments
and step size. The running time of the algorithm using this
approach is O(log min(s, P * b) + blog b) which reduces to
O(min(blog b+ log s, blog b + log P)).

In the following section, we present linear time algo-
rithms for two cases. In the first case, the access stride, s,
is less than the block size. In practice, this is the most com-
monly occurring case. As an example, consider the stripped
down version of the loop (Figure 8) which appears in the
Kernel 2 (Incomplete Cholesky-Conjugate Gradient) of the
Livermore benchmark suite.

For the purpose of illustration, the access pattern cor-
responding to this case is depicted in Figure 9, where the
access stride is 3. The Fortran D loop corresponding to such
an access pattern is shown below :

REAL A(80)
PARAMETER (N$PROC = 5)
DECOMPOSITION D(80)
ALIGN A with D
DISTRIBUTE D(BLOCK_CYCLIC(4))
DO 10 i = 1, 80, 3

A(L) = ..
10 continue

The second case, though not as common as the first one,
has the access stride s with the constraint : (s mod (b *
P)) < b. This would occur, for example, when s is equal to
the array column size and b P divides the column size. This
occurs in linear algebra codes when one wants to access the
consecutive row elements (instead of the column elements)
of a linearized array. The access pattern, for case II, is
depicted in Figure 10. The access stride is 23 and the total
number of memory locations is 500.

Note that the second case subsumes the first one (be-
cause (s mod (bxP)) < bimplies s < b). However, we are
able to exploit the constraint that s < b to achieve a simpler

Processor 0 | Processor 1 | Processor 2 | Processor 3 | Processor 4

2 3[4 5 6 8| 9[10] 11 12|13 14 15[16] 17 18[19] 20
21[22] 23 24| 25| 26 27[28| 29 30[3L] 32| 3334 35 36|37] 38 39[40]
41 42[43] 44| 45[ 46] 47 48[ 49] 50 51[52| 53 54[55] 56| 57 58] 59 60
[61] 62 63 64| 65 66[67] 68| 69[70] 71 72[73] 74 75[76| 77 78[79] 80

Figure 9: Example for case I (step = 3).

algorithm and we present it first. The algorithm for case 11
works almost identically to case I by treating s mod (bx P)
as the step size (which is less than b). However, in this case,
the algorithm also keeps track of the number of skipped rows
to compute the memory gaps correctly.

The important property satisfied by both s < b (Case I)
and s mod b*P < b (Casell)is that if processor p executes
the ith iteration then the (i—|—1)th iteration would be executed
either by processor p itself or by processor (p 4+ 1) mod P.
This fact is used to achieve the linear-time algorithm by
computing the offsets (and the memory access gaps) without
actually solving the Diophantine equations.

5.1 Algorithms to Calculate the Memory Access Sequence

We now present algorithms to compute the local-memory ac-
cess sequence for loops with non-unit stride. It is assumed
that the data distribution is aligned perfectly with the de-
composition. Otherwise, if the data distribution is aligned to
the decomposition using an affine alignment, then we would
need two applications of the following algorithms to get the
mMemory access sequence.

Figure 11 gives the algorithm for Case I. Given an offset
for an index element on processor p and a step size s, first,
the number of iterations executed within the same course
(= numLocalHops) is computed. Next, we step through the
course using the stride s and store the memory access gap
(which is simply s for these index elements) in AM table.
Using the location of the last index element accessed in the
course (= lastLoc), we can compute the number of elements
needed to be stepped through before reaching processor p
again (Which is e = (P—l)*b + (b—lastLoc)). e mod s then
gives the number of array elements left after the last itera-
tion on the (p—1) mod P processor. Therefore, nextOffset =
s — e mod s—1 is the offset (within the next course) of the
next index element accessed by p. Note that since s < b,
the next element would lie in the next course and, therefore,
local-memory access gap = b - lastLoc + nextOffset + 1.
The algorithm iterates till it finds a cycle of memory access
gaps.

As mentioned before, for case 11, the algorithm works al-
most identically to that of case I by treating s mod (bx* P)
as the step size and keeping track of the number of skipped
rows to compute the memory gaps correctly. We illustrate
the algorithm for case Il (given in Figure 12) using our ex-
ample (Figure 10). In Figure 10, s mod (bxP), the horizon-
tal displacement of the current index element from the index
element accessed in the previous iteration, is 3 (for example,
on Processor 0, element 24 has offset 3 w.r.t. the beginning
of the course, while element 1 has offset 0. Therefore, the
horizontal displacement from 1 to 24, G = 3). numLocal-
Hops gives the number of consecutive iterations which access
data on the same processor. In case consecutive iterations
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Figure 10: Example for case II (step = 23).

Input: Offset of a valid iteration for processor 0 (offseto),
Block size (b), step (s), processor number (p), number
of processors (P).

Output: The AM table. The algorithm can also be used
to record the starting memory location and the length

of the table.
Method:

AM][i] = NOT_DEFINED, i=0,...,b-1;
offset = s - (p*b - (offsety + LMMJ*S))
while (true) do
if (AM{offset] # NOT_DEFINED) break;
numLocalHops = I_b_(OffsisetH)J;
for (i=1; i < numLocalHops; i++) do
AMoffset] = s;
offset = offset + s;
endfor
lastLoc = offset + 1;
nextOffset = s - [(P-1)b + (b-lastLoc)] mod s - 1;
AMoffset] = b - offset + nextOffset;
offset = nextOffset;
endwhile

)

Figure 11: Algorithm for case I (s < b).

access data on the same processor (like the first and the sec-
ond iterations which access elements 1 and 24, respectively),
R gives the number of rows which are skipped between the
two index elements. In our example, R = L%J =1 and
since block size, b, = 4 and G = 3, depending on the offset
of the current index element, numLocalHops would be 0 or
1. Lastly, note that the index element accessed on Processor
0 after 24 is 162. T, the total number of rows skipped be-
tween any two such iterations, is computed using G, R and
the number of elements which need to be stepped through
(in other words, the total horizontal displacement required)
after the last index element on the current processor. In
Figure 10, for index element 24, T = (L%J +1)*1 =6,
which is the number of courses skipped on Processor 0 be-
tween index elements 24 and 162. Using these values, we
can compute the local-memory access gaps.

Given the loop lower bound L; and the array lower bound
L, for case I :

(Li — L) mod s,

s, ?

if (Li — L) mod s
f (Li — L) mod s

offsetg =

£ 0
=0

For case II, we need slightly more work :

Let G = s mod (bx* P), the processor which owns L; be
L(L,—L) mod (b*P)J

p = , the offset of L; within its course
beo = (Li—Lﬁ mod b. Therefore, the number of elements
left in the row, e = b — (o+1)+ (P —p—1)* b and the
number of elements left after the last iteration (in the sense
that the next iteration would be executed by Processor 0)
in the sequence (refer to Figure 10),1 = e mod G. Now,
offseto = G — 1 — 1.

An interesting fact which could be used to further speed
up the algorithms is that the length of the memory access
gap sequence cycle divides the block size. Others tricks like
treating multiplications and divisions as shifts in case of step
size or block size being powers of 2 can also be used to im-
prove the running time of the algorithms.



Input: Offset of a valid iteration for processor 0 (offsetq),
Block size (b), step (s), processor number (p), number
of processors (P).

Output: The AM table. The algorithm can also be used
to record the starting memory location and the length

of the table.
Method:

AM][i] = NOT_DEFINED, i=0,...,b-1;
G = Horizontal Displacement = s mod (b * P);
R = Rows Skipped = |75 ];
T = Total Rows Skipped
offset = G - (p*b - (offseto + Lp*b_(ogisetomj*(}));
while (true) do
if (AM{offset] # NOT_DEFINED) break;
numLocalHops = LH%J;
for (i=1; i < numLocalHops; i++) do
AM]offset] = bxR + G;
offset = offset + G;
endfor
lastLoc = offset + 1;
ElementsLeft = b x P - lastLoc;
T = (LElemegtsLeftJ + 1) % R,
GlobalElemsLeft = ElementsLeft mod G;
nextOffset = G - GlobalElemsLeft - 1;
AMoffset] = b * T + (b-(offset+1)) + (nextOffset+1);
offset = nextOffset;
endwhile

Figure 12: Algorithm for case II (s mod b*P < b).

Complexity: Each element of the array AM is filled at
most once by the algorithm. As soon as an already filled ar-
ray element is encountered, the algorithm stops. Therefore,
the while loop (together with the inner for loop) iterates at
most b times and hence it is an O(b) algorithm. Therefore,
as compared to the method suggested in [4], not only is our
approach conceptually more intuitive, the algorithms given
above are an O(b).

5.2 Send and Recv Sets

Once we have computed the memory access sequence for an
array access, the computation of the send and receive sets
is comparatively easier. Consider the following example :

REAL A(n)
DISTRIBUTE A(BLOCK_CYCLIC(4))
doi=1,N,5

A(i) = F(A(@-1), A1), A(i+1))
enddo

If P=4, then we would get the same memory access sequence
as shown in Figure 7. Only those iterations which assign to
the array elements A(i) s.t. its offset is 0 or 3 (= the block-
size - 1) need to receive some data (corresponding to A(i-1)
and A(i+1), respectively).

In general, in case of communication required because
of shifts, we can find both the processors that need to send
the data and the location of the array element within the
owner processor [4] . Note that, in case of shifts, a processor
communicates with at most two processors.

Suppose that element A(i) is located on processor p with
offset 0. We want to find the processor and local memory
location of A(i-d). Let d = q(P*b)4r and AP = [(r—0)/b],
where b is the block size. Then the owner processor of A(i-
d) is (p — AP+P) mod P. Since 0 < 0 < b, AP can assume
only two values.

The location of A(i-d) (say M’) can be computed from
the location of A(i) (say M) as follows. We define AL such
that M' = M + AL(0).

AL(0) = ((o — r)modb)—o0—bg—mn,
. b if (pxb—r+4o0) <0,
K - 0 otherwise.

Since the memory access sequence algorithm can com-
pute offsets also, we can determine the iterations that need
communication as well as the elements that need to be sent
without any extra work.

In the case of block-cyclic distributions with different
block sizes, the send and receive sets can be computed by
computing the local index sets, local iteration sets, etc. For
more complicated patterns, for example in case of stride
changes, there does not exist any simple lookup technique for
generating the communication sets because the pattern of
destination processors can have period longer than the block
size b. In such cases, we resort to the inspector-executor
model [21, 9] for irregular loops.

6 Example and Experimental Results

To explore the effects of block-cyclic data distributions, we
experimented with the DGEFA subroutine from Linpack.
DGEFA is a key subroutine which performs Gaussian elim-
ination with partial pivoting. Since the subroutine contains
a triangular loop, a cyclic or block-cyclic distribution is de-
sirable for maintaining good load balance.

Figure 13 shows the original program as well as the hand-
compiled Fortran D program that uses a column block-cyclic
distribution of width & which distributes blocks of columns
in a round-robin fashion across the processors.

Table 1 shows timings for DGEFA benchmark on an Intel
iPSC/860 for various block sizes, numbers of processors and
problem sizes. The results in the table show that non-unit
block sizes provide the best performance in some cases, re-
ducing execution time by 10% or more. Figure 14 shows an
alternate view of these results, plotting measured speedups
for different problem and block sizes. Improvements mea-
sured here for block-cyclic distributions are related to the
following observations. If an array is distributed cyclically
then for each column, (P —1) processors have to wait for the
processor which owns that column to find the maximum ele-
ment and broadcast it to others. On the other hand, with a
block-cyclic distribution, processors own a block of adjacent
columns and once a processor begins computing a sequence
of pivots it can execute b iterations without waiting for a
message. This results in some overlap of communication
and computation which reduces the message latency seen
by other processors.

From these experiments we conclude that block-cyclic
distributions are potentially useful for DGEFA. Clearly, ex-
perience with a wider range of codes will be necessary to
draw stronger conclusions about the overall effectiveness of
block-cyclic distributions.



{* Original Fortran D Program *} {* Hand Compiled Output for 4 Processors *}

SUBROUTINE DGEFA(n,a,ipvt) SUBROUTINE DGEFA(n,a,ipvt)
INTEGER n,ipvt(n),j.k,1 INTEGER n,ipvt(n),j,k,1
DOUBLE PRECISION a(n,n), al, t DOUBLE PRECISION a(n,n/4), al, t, dp$bufi(n)
DISTRIBUTE a(:,BLOCKCYCLIC(b)) do k =1, n-1
do k = 1, n-1 owner$proc = MOD((k-1), (bxn$p))/b
{* Find max element in a(k:n k) } k$ = ((k - 1)/(b+n$p))b + MOD(MOD((k-1), b*n$p), b) + 1
S1 1=k {* Find max element in a(k:n k$) x}
Sz al = dabs(a(k, k)) if (my$p .EQ. owner$proc) then
doi=k+ 1, n 1=k
if (dabs(a(i, k)) .GT. al) then al = dabs(a(k, k$))
Sa al = dabs(a(i, k)) doi=k+ 1, n
Sa 1 =1 if (dabs(a(i, k$)) .GT. al) then
endif al = dabs(a(i, k$))
enddo 1=1
ipvt(k) =1 endif
if (al .NE. 0) then enddo
if (1 .NE. k) then broadcast 1, al
t = a(l,k) else
a(l,k) = a(k,k) recv 1, al
a(k,k) = t endif
endif ipvt(k) = 1
{* Compute multipliers in a(k+1:nk) *} if (al .NE. 0) then
t = -1.0d0/a(k,k) if (my$p .EQ. owner$proc) then
do i = k+1, n if (1 .NE. k) then
a(i, k) = a(di, k) * t t = a(l,k$)
enddo a(1,k$) = a(k,k$)
{* Reduce remaining submatrix *} a(k,k$) =t
do j =k+1, n endif
t = a(l,j) {* Compute multipliers in a(k+1:n,k$) *}
if (1 .NE. k) then t = -1.0d0/a(k,k$)
a(l,j) = a(k,j) do i =k+1, n
ak,j) =t a(i, k%) = a(i, k3$) * t
endif enddo
do i = k+1, n endif
Ss a(i, j) = a(di, j) + t * a(i, k) {* Reduce remaining submatrix *}
enddo if (my$p .EQ. owner$proc) then
enddo buffer a(k+1:n, k$) into dp$bufl
endif broadcast dp$bufl(1:n-k)
enddo else
ipvt(n) = n recv dp$bufi(1:n-k)
end endif
1b$1 = LowerLoopBound(k+1)
do j = 1b$1, n/4
t = a(l,j)
if (1 .NE. k) then
a(l,j) = a(k,j)
a(k,j) =t
endif

do i =k+1, n
a(i, j) = a(i, j) + t * dp$bufi(i-k)
enddo
enddo
endif
enddo
ipvt(n) = n
end

Figure 13: DGEFA: Gaussian elimination with partial pivoting.




] Block Size (time in secsg
Program | Problem Size | Proc 1 | 2 | 2 | 64 | 128
1 sequential time = 2.200
2 0.974 | 0.990 0.985 | 0.982 | 0.992 1.003 | 1.084 1.198
256 x 256 4 0.629 | 0.619 0.613 | 0.621 0.644 | 0.692 | 0.683 | 0.783
8 0.537 | 0.505 0.485 | 0.481 0.490 | 0.598 | 0.825 1.348
16 0.627 | 0.593 | 0.577 | 0.580 | 0.627 | 0.687 | 0.892 1.389
32 0.756 | 0.717 | 0.702 | 0.725 | 0.728 | 0.808 | 0.997 | 1.495
1 sequential time = 17.53
2 7.328 | 7.364 | 7.366 | 7.396 | 7.471 | 7.634 | 7.962 | 8.616
Gauss 512 x 512 4 4.043 | 4.022 | 4.035 | 4.094 | 4.208 | 4.440 | 4.857 | 5.459
8 2,462 | 2.419 2.418 | 2.460 | 2.555 | 2.739 | 3.133 | 5.512
16 2.106 | 2.010 1.966 1.957 | 2.058 | 2.444 | 3.328 | 5.627
32 2.505 | 2.413 | 2.371 2.389 | 2.540 | 2.839 | 3.625 5.820
1 estimated sequential time = 140
2 65.69 | 65.71 65.75 | 66.10 | 66.23 | 66.97 | 68.59 71.53
1K X 1K 4 34.07 | 34.09 | 34.20 | 34.62 | 34.99 | 36.09 | 38.20 | 41.96
8 18.14 | 18.14 18.26 18.55 19.16 | 20.34 | 22.44 | 24.99
16 10.46 10.47 | 10.54 | 10.78 11.26 12.14 | 14.31 25.32
32 8.791 8.695 | 8.854 | 9.547 | 11.32 15.19 25.79

Table 1: Intel iPSC/860 execution times for Gaussian elimination with BLOCK-cYCLIC distribution.
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Figure 14: Gaussian elimination speedup results for different problem and block sizes.

7 Conclusions

A usable yet efficient machine-independent parallel program-
ming model is needed to make large-scale parallel machines
useful for scientific programmers. We believe that data-
placement languages, such as Fortran D and HPF, can pro-
vide such a portable data-parallel programming model. The
key to achieving good performance with data parallel lan-
guages is applying advanced compiler analysis and optimiza-
tion to automatically exploit parallelism and manage com-
munication. This paper describes techniques that will en-
able compilers for data parallel languages to handle block-
cyclic distributions, extending the class of problems for which
good performance can be achieved.

We described the analysis required to compile data par-
allel programs with block-cyclic distributions in the pres-
ence of symbolic loop bounds and array sizes, non-unit loop
strides and variable number of processors. We also gave al-
gorithms for computing the data elements that need to be
communicated both for the loops with unit and non-unit
strides, and presented a linear-time algorithm for comput-
ing non-constant local memory access pattern for loops with
non-unit stride.

In our experimental results evaluating the effectiveness of
block-cyclic distributions for DGEFA, using non-unit block

sizes provided some improvements in performance in partic-
ular cases. However, larger improvements in performance
could be realized if the number of messages could be re-
duced. In section 4, we described how message vectorization
could be used with a block-cyclic distribution to reduce the
number of messages. The DEFA code shown in Figure 13
contains a loop-carried dependence from Sy to S2/Ss that
complicates application of message vectorization. To em-
ploy message vectorization in this case, the compiler would
need to restructure the computation. Since the pivot for a
particular column does not depend on the columns occur-
ring after it, the compiler could minimize the computation
that needs to be done before broadcasting the pivots for a
block of columns by deferring executing of statement Ss for
columns outside the current block until after the broadcast.
To increase the computation and communication overlap,
the processor also could initially compute and broadcast the
pivot for only the first column in a block and then compute
and broadcast the pivots for the rest of the columns in the
block in a second message. By broadcasting the first pivot
as soon as possible, other processors can perform elimina-
tion steps while the other processor computes the pivots for
the rest of the columns. This optimization would maximize
the communication and computation overlap. A similar op-
timization was discussed by Adve, et. al. [1] in the context



of cyclic distributions.

To evaluate the potential benefits of block-cyclic distri-
butions for data parallel codes, it is clear that further work
is necessary. The techniques we have presented here provide
a foundation for that work.
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