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Compiler Support for Analysis and Tuning Data Parallel Programs®

Vikram S. Adve Charles Koelbel John M. Mellor-Crummey

Data parallel languages such as Highélbesr%?r%tance Fortran (HPF) and Fortran D sim-
plify the task of parallel programming by enabling users to express parallel algorithms at
a high level. Compilers for these languages are responsible for realizing parallelism and
inserting all interprocessor communication. For this reason, these compilers have detailed
knowledge of the the relationship between its parallelism and communication in the pro-
gram. Here, we explore how this knowledge can be exploited to support the process of
tuning programs for high performance.

1 Introduction Data parallel languages such as High-Performance Fortran (HPF) [9, 15]
and Fortran D [11] support an abstract model of parallel programming. The principal advantage
of these abstract languages is that they insulate programmers from the intricacies of concurrent
programming and managing distributed data. Users write a single-threaded program augmented
with data layout directives, which a sophisticated compiler uses to derive a single-program-multiple-
data (SPMD) parallel program.

Since compilers for these data parallel languages are responsible for communication insertion
and management of parallelism, they have deep knowledge of both and the relationship between
them. This knowledge uniquely qualifies these compilers to provide assistance for performance
evaluation and tuning.

First, performance tuning of parallel programs is a tedious process and ideally should be per-
formed automatically to minimize the burden on users. Here, we present an overview of a perfor-
mance model based on measurements of a program’s dynamic behavior that a compiler can apply to
automatically tune pipelined computations. Since such a self-tuning compiler necessarily relies on
a a simplified model of program and system behavior that may be violated in practice, we describe
how the model can be tested for applicability.

Second, measurements of a program’s run-time behavior are important for understanding per-
formance problems as well as for compiler self-tuning. We describe some code transformations
that a compiler can apply that both increase the utility and reduce the data volume of dynamic
performance traces.

Finally, we argue that for users to participate effectively in tuning programs written in data
parallel languages, they must have an understanding of a compiler’s optimization and transforma-
tion capabilities. Since compilers play such a central role in realizing high performance with such
languages, it is imperative that users know how they can express data parallel algorithms in a
form that will be understood by the compiler. Without realistic expectations about the compiler’s
abilities, attempting to restructure data parallel programs to achieve high performance can be a
frustrating experience.

*This work was supported in part by ARPA contract DABT63-92-C-0038. and NSF Cooperative Agreement
Number CCR-9120008. The content of this paper does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred. Authors’ address: Center for Research on Parallel
Computation, Rice University, P.O. Box 1892, Houston, TX 77251. Email: {adve, chk, johnmc}@cs.rice.edu.



Throughout the paper, we illustrate our points using benchmark kernels that have been com-
piled using the Rice University Fortran 77D compiler. Although our insights into the compiler’s
role in performance analysis and tuning apply most directly to this compiler, the similarity of the
Fortran D and HPF language models leads us to believe that these results will be applicable to
HPF compilers as well.

In section 2 we discuss a self-tuning model for pipelined computations. Section 3 describes
compiler support to improve the utility and compactness of dynamic performance traces. Section 4
elaborates on the need for programmers to understand the capabilities of data parallel compilers
for performance tuning. Section 5 briefly places this work in the context of previous research with
related goals. Section 6 summarizes our conclusions and our plans for future work.

2 Self-Tuning Compiler The communication patterns of a program written in a high-
level data parallel language like HPF are inserted directly by the compiler, and the details of these
communication patterns are often not directly visible to the programmer. With the appropriate
static and dynamic performance information, the compiler itself could tune the performance of such
communication patterns. We believe it is important to identify such opportunities for compiler “self-
tuning” and minimize user involvement in tuning parts of a program where self-tuning strategies
can be applied effectively. In the following, we use the example of pipelined communication to
discuss how such self-tuning might be carried out in practice.

Pipelining is a strategy for realizing parallelism in computations that are only partially parallel.
Pipelining is useful, for example, for parallel execution of a nest of loops in a data parallel program
when each iteration of the innermost loop requires results from one or more previous iterations of
each of the loops in the nest. If the data is partitioned among the processors, pipelined parallelism
can be realized by having each processor compute values for a subset of its data and send par-
tial results to waiting processors before continuing further. The amount of computation for each
message sent is referred to as the granularity of the pipeline.

Tuning pipelined computations requires adjusting the granularity to balance the loss of par-
allelism in the initial and final phases of a pipeline when only a few processors are busy, against
the communication overhead in the middle interval which is fully parallel. The length of the initial
and final phases is directly proportional to the pipeline granularity, whereas the communication
overhead in the middle interval is inversely proportional to the pipeline granularity. By deriving an
expression for the optimal granularity in terms of system and program parameters, the compiler
could estimate or measure the various parameters to optimize the execution time of the pipeline.

Previous authors [21, 12, 18, 19, ?] have recognized this trade-off and presented models
for choosing the pipeline granularity. The most general model is that of King et al [?], who
describe a Petri net based model to predict the execution time of a one or two-dimensional pipelined
data-parallel computation, but the model is complex and not intended to be used directly in a
parallelizing compiler. The special case of a one-dimensional pipeline under simplifying assumptions
leads to a simple closed-form expression for the execution time, from which the optimal granularity
can be directly derived. We separately derived a similar model based on similar assumptions. In
particular, our model includes the influence of block sizes on communication time, and it accounts
for non-overlapping communication and computation at the leading edge of the pipeline but perfect
overlap in the rest of the pipeline, as motivated below.

In a perfect pipeline, every processor performs identical computation, and communication time
is identical between every pair of adjacent processors. Under these conditions, as long as the
processing time (i.e., computation time plus send and receive overhead) in each pipeline stage is
longer than the wire latency for values to propagate between processors, a processor will never
block for an incoming message after the first (see Figure 1). In practice, imbalance or variability in
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computation time, communication overhead, or communication latency can cause pipeline delays.
However, such delays are often data or timing dependent, so we choose to ignore their effects in our
model. Later in this section, we discuss a uniform approach for detecting and handling violations
of model assumptions.

Consider a one-dimensional pipeline (as in Figure 1) operating on an Ny x Ny matrix partitioned
block-wise in the first dimension among P processors. The pipeline granularity is measured in terms
of the bloc k size B, 1 < B < Nj, which is the number of columns to compute in a pipeline stage.
The total number of stages in the pipeline is N3/ B. The total number of bytes of data transmitted
per stage is mgB. Using our model, we determine the optimal value of B, denoted B, , for which
the total execution time of the pipeline is minimized. Under our assumptions that the pipeline
stages are perfectly balanced, a number of critical paths with identical execution times exist, one
of which is illustrated in the figure. The execution time of a critical path gives the total pipeline
execution time, and can be computed as follows (where processors are numbered 0...P — 1):

Tpipe = time until processor P — 2 starts computing +
time for processor P — 2 to finish N5/ B pipeline stages +

time for processor P — 1 to receive its last message and complete its last pipeline stage

We express these quantities in terms of the send and receive overhead per pipeline stage and
the computation time per pipeline stage, where each of these terms is a linear function of B.
Differentiating the resulting expression gives the value B, where T);,.(B) is minimized. The
details are omitted and are available elsewhere ?7.

To apply the model in practice, the constant and linear coefficients for computation time and
send and receive overhead must be predicted or measured. While the coefficients for communication
overhead can be separately measured for a given system, the coefficients for computation time may
be more difficult to predict accurately. Thus, the compiler might use an initial estimate to compute
an approximate block size but subsequently use runtime measurements to obtain accurate parameter
values and re-compile the program with an “optimal” block size.

We applied the pipeline model to tune the performance of pipelined phases in ERLEBACHER, a
13 procedure, 800 line benchmark program written by Thomas Eidson at the Institute for Computer
Applications in Science and Engineering (ICASE). ERLEBACHER performs 3D tridiagonal solves
using Alternating-Direction-Implicit (ADI) integration. The tridiagonal solve in each dimension
consists of a computation phase followed by a forward and a backward substitution phase. Each
of the substitution phases results in a computation wavefront across that dimension of the data.
Figure 2 shows the Fortran D source code as well as compiler output for the forward substitution
phase in the Z dimension. (Under the data distributions shown, the X and Y dimensional solves
compute exclusively with local values, except for a single global sum reduction in each phase.) The
compiler employs coarse-grain pipelining (with a default block size of B = 8) to parallelize both
the the forward and backward (not shown) substitution phases; each pipeline stage consists of 8
iterations of the i loop.

From a single execution of the program on 8 processors with an input matrix of 64 X 64 x 64,
we measured the model coefficients described in section ?7. ! Using these parameter values, the
model predicts the optimal block size to be B,,; = 88.0. Increasing the block-size to B=64 yielded
substantial improvement in performance. (We did not use the actual value of B,,; = 88 because
any value other than a multiple or submultiple of 64 would have required collapsing and linearizing

In practice, we would not have to measure the coefficients of communication overhead because these are fixed
system values for a given message size, as explained above. At present, we do not have measurements of these values
available.



the ¢ and j loops, which may not be implemented in a parallelizing compiler.) With B=64 on
On 8 processors, the measured execution time of each pipeline improves by an average of 34.9%
while that of the overall program improves by 15%. The specific improvement obtained in any
particular case will depend on the the accuracy of the initially predicted parameter values (which
determine the initially chosen block size), and on the relative fraction of the execution time devoted
to pipelined computation. The experiment above shows that pipeline self-tuning has the potential
to provide substantial improvements in performance without user intervention.

In an actual pipeline execution, some of the simplifying assumptions in the model may be
violated. For example, the execution time per pipeline stage may vary within and across processors
because of cache effects, conditionals and even floating-point operation timings. Since the model
assumptions are “known” to the compiler, the compiler could easily add instrumentation to test
these assumptions. For example, the compiler could measure the variability in the measured values
of pipeline computation time, in addition to the mean. The compiler could also test if the mean
values do not fit the assumed linear function by comparing the new mean value obtained after
recompiling with the mean value measured in the first execution. Thus, a fairly careful approach to
handling violations of assumptions made by a self-tuning performance model can be built in to the
compiler. The approach consists of carrying out the following steps for each self-tuning component
(i.e., for each self-tuning model):

1. Identify the significant model assumptions, and the qualitative impact on performance
when each of the assumptions is violated.

2. Include instrumentation to test the validity of each assumption; this may be in addition to
the instrumentation required to apply the model.

3. If an assumption is observed to fail during the self-tuning process, warn the user of the
failure and its potential impact on performance.

4. If requested and feasible, suggest “which way” the relevant tuning parameter (e.g., the
block size in the pipeline model) might be adjusted to overcome the shortfall.

5. Provide the necessary hooks to allow a sophisticated user to manually tune the relevant
portion of the program by trial-and-error (i.e., by repeated recompilation and execution).

A key aspect of the process of tuning pipeline performance discussed above is that the only
runtime parameter values that must be measured are simple summary statistics about per-stage
computation times and send and receive overheads. In section 3, we discuss how the compiler’s
knowledge of the pipeline structure can be exploited to increase the efficiency of pipeline instru-
mentation with little loss of information.

3 Compiling for observability While compile-time estimates of parameters such as pipeline
block size using only static information may lead to good performance, the impact of run-time ef-
fects as cache utilization can be difficult to predict and thus dynamic information can be critical for
effective performance tuning. For programs written in data parallel languages such as Fortran D,
however, the compiler’s knowledge of a program’s structure can be exploited to direct collection of
dynamic information. Here, we describe two ways to exploit compiler knowledge: first, to maxi-
mize what can be learned from a single execution, and second, to dramatically reduce the cost of
gathering dynamic information for performance tuning.

In section ??, we described a model for computing the optimal block size for a pipeline that
includes a number of linear terms dependent on the block size. Each term includes both a linear
coeflicient and a contant coeflicient. A single execution of the program using a particular block
size is insufficient to measure both of the coefficients for any term. However, there is no reason
why we are limited to only a single block size in a pipelined execution. The compiler could split
the iteration space of a pipelined loop nest into two halves and arrange to execute each half of
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the pipelined computation using a different block size. Separate measurements of the different
halves of the pipelined computation will provide two data points for each of the terms enabling
determination of both of each term’s coefficients from a single execution. The use of two different
block sizes would not disrupt the execution other than to introduce some additional waiting due
to differences in the appropriate processor skew for the different pipeline granularities. A similar
strategy might be useful for evaluating the performance implications of multiple alternative data
distributions with a single execution.

The most common strategy for collecting dynamic information about message-passing pro-
grams involves tracing each communication event. Such a tracing methodology is embodied in
packages such as the PICL communication primitives [7]. However, for understanding and tuning
the performance of programs written in data parallel languages, this level of detail often appears
unnecessary. For example, to tune a computational loop that exploits coarse-grain pipelining (such
as the pipelined forward solve in ERLEBACHER), we are interested in collecting dynamic information
to enable computation of the optimal block size based on the model we described in section ??. The
dynamic information needed for this purpose consists only of estimates for the various parameters
of the pipeline model, information that will enable us to test that none of the model assumptions are
being violated, and statistics that describe the overall performance characteristics of the pipelined
computation.

Examining these issues in a bit more detail, communication events in pipelined computations
can be grouped into two distinct classes: those in the leading edge of the pipeline (the first pipeline
stage on each processor), and those in the steady (the remaining stages on each processor). To
compute the coefficients for Tso,nq and T},pq for the pipeline model, we want to collect information
about pipeline stages in the steady state. We can collect statistics about the steady state of the
pipeline on each processor merely by excluding communication events the first trip through the
pipelined loop nest on each processor. This can be accomplished by having the compiler peel
the first iteration of the loop before inserting communication instrumentation in the remaining
iterations, which causes almost no perturbation to the execution of the program. Rather than
collecting full traces of all communication events in the steady state of a pipelined computation,
collecting summary statistics on each processor about overhead observed for each send and receive
in the pipeline stage is effective. For most pipelined computations, the length of each pipeline stage
is very regular and there all sends or receives will have similar characteristics. MIN and MEAN times
for communication operations provide the information needed to calculate aggressive or conservative
model parameters. The coeflicients of variation are useful for verifying the uniformity of activity
across the processors and pipeline stages.

We explored using this data collection strategy in the context of the pipelines in the Er-
LEBACHER and SOR benchmarks. In both cases we found that there was significant variation in
the initial receive times because processors are not synchronized when entering the pipeline, but
times for subsequent sends and receives were quite uniform, as demonstrated by a small COEFFI-
CIENT OF VARIATION for operation timings. Thus, in both these cases, it would be effective to
record summary statistics instead of the individual send and receive costs of the pipeline stages,
thus yielding substantial savings in dynamic trace volume for the pipelined phase.

Here, we have described two novel ways of exploiting compiler knowledge to help harness dy-
namic information for performance analysis and tuning. While our running example in this section
focuses on pipelined computations, the strategy of dynamic trace reduction through collection of
only summary statistics is equally applicable to loosely-synchronous computations, e.g. JACOBI
and RED-BrLAack SOR, as well. We are confident that other opportunities for applying compiler
knowledge will become apparent as we gain more experience in this area.



4 TUnderstanding compiler capabilities for performance tuning FEven in an abstract
data-parallel programming language such as Fortran D, it is clearly important for a programmer
to understand the performance characteristics of the underlying parallel architecture in order to
tune the performance of a parallel program effectively. In fact, when working with such a language,
it can be equally important for a user to be aware of the broad capabilities of the compiler. In
this section we use examples to illustrate the need for compiler-aware tuning and briefly discuss
how a user might be provided the requisite knowledge without requiring any understanding of
compilation techniques and without unduly corrupting the abstract programming model provided
by the language.

DGEFA is a LINPACK subroutine and a principal computational kernel in the LINPACKD bench-
mark developed by Dongarra et al [5]. It performs LU decomposition using Gaussian elimination
with partial pivoting. The algorithm, shown in Figure 3a, consists of selecting the largest element
as the pivot for a particular column £, computing the row reduction factors for step £ by dividing
the column elements by the pivot value, and then reducing every column on the right using these
factors. For linear algebra codes such as DGEFA, a cyclic or block-cyclic distribution helps maintain
load-balance. In compiling DGEFA, the Fortran D compiler inserts two broadcasts for each step, one
to broadcast the pivot element and location, and another to broadcast the row reduction factors.
The code generated by the compiler is shown in Figure 3b.

The principal source of performance loss in this program is that other processors have to wait
for the pivot processor to compute and broadcast the row-reduction factors for an elimination step.
As Hiranandani et al. [12] have shown, an effective hand optimization is to overlap the processing
and broadcast of factors for column &+ 1 with the row-reduction operations that use the factors for
column k. This can be achieved by computing and broadcasting the factors for column k41 as soon
as factors for column k are received, as shown by the hand-optimized code in Figure 4a. We traced
the communication operations in the two versions of the program using the Pablo instrumentation
library [20]. Table 5 shows the distribution of idle time by cause in the two versions of the program
for a 1024 x 1024 matrix on 32 processors. The measurements show that the fraction of total
execution time spent waiting for the broadcast values is reduced from 39% to 9%, while total
execution time is reduced by 24%. Thus, computing and broadcasting the column of factors for a
pivot can largely be overlapped with the elimination step in DGEFA.

Unfortunately, it is difficult for the compiler to deduce and implement this optimization from
the original Fortran D source of Figure 3a. The compiler would have to discern the potential gain
from moving the broadcast operation from iteration k + 1 to iteration k, detect that the pivot
computation of iteration & + 1 can indeed be performed before the third do loop of iteration k,
and rearrange the body of the & loop accordingly (including splitting off the first iteration and the
leftover work of the last iteration). Such aggressive transformations are outside the scope of the
Fortran D compiler and, to our knowledge, any other data parallel compiler as well. Thus, once the
source of the performance loss has been found and understood, the user must attempt to convey
the optimization to the compiler by modifying the Fortran D source.

To reduce the trial-and-error involved in rewriting the code to express this optimization, an
understanding of the capabilities of the compiler is extremely useful. For example, from the “nat-
ural” expression of this optimization in Fortran D, shown in Figure 4b, it would still require more
sophisticated analysis than presently available to determine that the pivot columns and pivot loca-
tion computed in loops 1 and 3 are required on the following iteration of the k£ loop by loops 2 and
4, and to place the broadcast receive and send operations appropriately (above Loop 2 and after
Loop 3 respectively). An alternative approach would be to avoid the sequential bottleneck of the
computation and broadcast of the pivot column by distributing the array in row-cyclic instead of
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column-cyclic fashion. Unlike the above optimized version, this now requires extra communication
in the form of a global reduction to compute the pivot value and location and a broadcast of the
pivot row.

Another example of an optimization that requires somewhat sophisticated code-reordering
transformations arises in non-pipelined stencil computations such as RED-BLACK SOR or JAcoOBI.
In a column-block distribution of RED-BLACK SOR for example, each processor must receive data
from its left and right neighbors for computing the new values of its own boundary column. How-
ever, the non-boundary iterations in the body of each loop do not require non-local values and also
do not have to wait for the boundary columns in the same loop to be computed (there are no loop-
carried dependences in each of the red and black loops). This optimization has been implemented
for the restricted case of FORALL statements in the Kali compiler [16] and previously suggested
in [10]. The reduction in waiting time for message receives in the case of RED-Brack SOR is small
but significant since it reduces overhead idle time by nearly half, as shown by the measurements
of the send and receive overhead given in Table 6. Exactly the same optimization is possible in
Jacobi, and also in shift operations that occur at the start of the distributed phase in Erlebacher.

In general, a sophisticated programmer will have some idea of what a hand-optimized version
of the program would look like. Providing an understanding of the compiler’s capabilities can help
ensure, first, that the programmer’s expectations about compiler-generated code reflect reality, and
second, when certain transformations are beyond the capabilities of the compiler, will guide the
programmer in “expressing” these optimizations in the Fortran D source code.?

The problem of describing a compiler’s capabilities to a user presents significant challenges,
and we only briefly address it here. An important consideration in developing such a description
will be to provide a concise and relatively general description of the transformations that are within
or beyond the scope of the compiler, without requiring an understanding of compilation techniques
and without sacrificing the key advantages of the data-parallel programming model provided by
the language. For example, two key transformations the current Fortran D compiler provides is
to combine individual array elements required by a particular loop nest in a single message (when
permissible by the data dependences in the program) and to reorder the the iteration space of a
loop nest to pipeline the computation as implemented in Erlebacher. Some transformations that
are beyond the scope of the compiler at present are to distribute a loop so that iterations that
require remote memory accesses can be executed separately from those that do not; to reorder the
code of one iteration relative to code within the preceding iteration; or to perform code transfor-
mations across procedure boundaries. (The latter two transformations are beyond the scope of any
data-parallel compiler we are aware of.) In the next subsection, we discuss the various compiler
enhancements suggested by the applications studied above.

5 Related Work Many previous performance tools for parallel systems support perfor-
mance monitoring of parallel programs with explicit parallelism, communication and synchroniza-
tion [17, 20, 8], while some more recent tools support performance debugging of data-parallel
programs at the language level [22, 14]. However, there is relatively little work that on integrating
performance analysis and compilation, partly because of the lack of availability of sophisticated
parallelizing compilers to the performance evaluation community. One such project is the Vienna
Fortran Compilation System, which integrates a static performance prediction tool called PPPT
into the compilation process [6]. In particular, PPPT uses sequential profiling to obtain iteration
counts and branch frequencies and combines this information with static analysis of a parallelized
program to predict a number of parallel performance metrics. These metrics can be used by the

?While the additional option of modifying the compiler generated code might be available, this defeats the very
purpose of high-level languages like HPF and Fortran D and we do not advocate this approach.
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programmer to tune program performance, or by the compiler to automatically select efficient data
distribution strategies. A key difference in the approach described here is that we also propose
to integrate compiler information into the process of performance analysis, in order to make dy-
namic performance instrumentation more eflicient and in order to tune portions of the program
automatically based on dynamically measured performance information.

Some previous performance tools have attempted to use program information to reduce the
volume of information measured at runtime. Sequential profiling tools such as QPT [1] use control-
flow analysis to reduce the volume of profiling or tracing data. Dynamic parallel instrumentation in
the W2 Search Model [13] reduces the instrumentation data volume by using sampled performance
information to selectively insert instrumentation in interesting parts of a program at runtime, in
order to answer specific performance queries. In contrast to these general-purpose approaches, we
can exploit compiler information about specific communication idioms (e.g., pipelining) to care-
fully choose the metrics that are most useful as well as to extract only the appropriate summary
information needed to obtain those metrics.

6 Conclusions For languages such as Fortran D and HPF to achieve widespread acceptance,
effective techniques for performance analysis and tuning of data parallel programs will be essential.
Compilers for these languages play a central role in translating abstract programs written in these
languages to explicitly parallel SPMD programs. In this paper, we have provided evidence to show
that much can be gained from involving the compiler in the performance tuning process.

Compilers for data parallel languages can be involved in the performance analysis and tuning
process at several levels. In the best case, compilers can tune the program without user interven-
tion. We described a preliminary investigation of the potential for automatically tuning pipelined
computations. Important aspects of this work are development of an accurate model, and present-
ing a strategy for collecting the parameters needed to use the model. Qur experiences show that
if self-tuning approaches such as the one we propose are to be accepted, then we must also collect
information that (1) provides feedback about the overall performance to verify effectiveness, and
(2) helps recognize when the model may fail to provide accurate guidance because of assumptions
that are not valid for a particular program.

Dynamic performance measurement is an important component of performance tuning, whether
by the compiler or the user. We used examples to show that we can significantly reduce the
cost of dynamic performance measurement by exploiting the deep knowledge about a program
available in data parallel compilers like the Rice Fortran 77D compiler. For example, we showed
how a compiler could arrange to use multiple blocking factors for different intervals of a pipelined
computation in the same execution to determine both two coefficients of linear cost models within
the pipeline self-tuning model. As a second example, we can use compiler knowledge of a program’s
structure as well as a built-in knowledge of what information is important for understanding and
tuning specific communication patterns to collect only representative summary statistics to describe
related communication events for each processor, thus potentially reducing dynamic trace sizes
by orders of magnitude. As an example of this principle, we can separate the steady-state of a
pipeline from the leading edge to obtain concise summary statistics of steady-state pipeline timings
that provide almost complete information about the performance impact of these events. Even
with varying communication behavior, such due to contention, summary statistics can provide
substantial information without requiring detailed traces. From these statistical summaries, we
can derive parameters for self-tuning models as well as validate the applicability of these models
by verifying model assumptions about the homogeneity of work, etc.

When the compiler cannot automatically restructure the code to obtain high performance, it
is important that a user be able to (1) understand the source of the problem and (2) improve the
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performance, overcoming compiler limitations by supplying additional information. Such additional
information could be in the form of directives, or rewriting critical parts of the application in
a style where the desired optimizations are more apparent to the compiler, As illustrated with
DGEFA, an understanding of the compiler’s code-transformation and optimization capabilities can
be just as important for performance tuning of data parallel applications as an understanding of
the underlying parallel system.

Finally, in our work so far we have considered strategies for automatically tuning program
phases in isolation, e.g. individual pipelined computations. However, individually tuning each
phase for optimal performance in isolation may not result in optimal performance for the program
as a whole, even for programs for which a single static data distribution is appropriate. For example,
if a program has two adjacent pipelined computations, tuning each to be of minimal length may
not provide best overall performance; rather tuning them together so that the skew in the final
phase of the first pipeline matches the skew induced by the initial phase of the second pipeline will
minimize total waiting. In future work, we hope to explore the effects of context on tuning as well.
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subroutine tridvpk(a, b, ¢, d, e, tot)
real a(64), b(64), c(64), d(64), e(64)
common /dvars/ ..., £(64,64,0:9)

off_0 = ...
'x%*% forward substitution ***

do j =1, 64
doi_=1, 64, 8

subroutine tridvpk(a,b,c,d,e,tot)
real a(64),b(64),c(64),d(64),e(64),tot(64,64)
common /dvars/ ..., £(64,64,64)
parameter (n_proc = 8) iup=i_ +7
decomposition d(64,64,64) i; (my_p_.gt. 0) then
align £ with d call crecv(114, £(i_, j, 0), 8 * 4)
distribute d(:,:,block) endif
do k = 1b_1, ub_2
doi=1i_, i_up
k_glo = k + off_0

! x%*% forward substitution ***
do 20 k=2,64-1

do 20 j=1,64 £(i,j,0)=(£(i,j,k)-a(k_glo)*£(i,j,k-1))*b(k_glo)
do 20 i=1,64 enddo
£(1,5,0=(£(1,j,0-a0O* (1,j,k-D)bk) 4o

20 continue if (my_p .1t. 7) then

call csend(114,f(i_,j,8),8%4,GRAY(my_p+1) ,my_pid)
end .
endif
(a) Fortran D code enddo

enddo

end
(b) Compiler-generated pipelined code
(block size B = 8)

Figure 2: Forward substitution phase in Erlebacher
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program DGEFA
double precision a(NMAX,NMAX)
parameter (n_proc = 16)

C decomposition d(1024, 1024)

C align a with d

C distribute d(:, cyclic)

do k = 1, NMAX-1
find pivot(k) = max of a(k,k)...a(NMAX, k)
let pl = row index of pivot

if ( pivot(k) .ne. 0.0d40 ) then
exchange a(k,k) and a(pl,k)

'x¥%*% row reduction factors of col k
do i = k+1, NMAX

a(i,k) = a(i,k) / a(k,k)

enddo

do j = k+1, NMAX

'***% reduction of col j with factors of col k
e

exchange a(k,j) and a(pl,j)
do i = k+1, NMAX
a(i,j) = a(i,j) + p(k,j) * a(i,k)
enddo
enddo
endif
enddo
end

(a) Fortran D code.

program DGEFA
double precision a(NMAX,NMAX/NPROC)

do k = 1, NMAX-1
pivot_proc = MOD(k-1,n_proc)
if (my_p .eq. pivot_proc) then
find pivot(k) = max of a(k,k)...a(NMAX,k)
let pl = row index of pivot
broadcast [pivot(k),pl]
else
receive [pivot(k),pl]
endif

if (pivot(k) .ne. 0.0d0) then

if (my_p .eq. pivot_proc) then
Compute reduction factors for col k
broadcast [a(k+1,k)...a(NMAX,k)]
else

receive [a(k+1,k)...a(NMAX,k)]

ndif

L1 = k/n_proc +1

if (my_p .1lt. pivot_proc) L1 = L1 + 1

do j = L1, NMAX/n_proc

Compute row reduction for col j with factors of col k

enddo
endif
enddo
end

(b) Compiler-generated code.

Figure 3: Gaussian elimination with serial processing of pivot column
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program DGEFA
double precision a(NMAX, NMAX/n_proc)

pivot_proc = 0

if (my_p .eq. pivot_proc) then program DGEFA
find pivot(1) = max of a(1,1)...a(NMAX,1) double precision a(NMAX, NMAX)
let pl = row index of pivot(1) C decomposition d(1024, 1024)
broadcast [pivot(1),pl] C align a with d
if (pivot(1) .ne. 0.0d0) then C distribute d(:, cyclic)
Compute row reduction for col 1 with factors of col 1
broadcast [pl, pivot(1l), a(2,1)...a(NMAX,1)] find pivot(1) = max of a(1,1)...a(NMAX,1)
endif let pl2 = row index of pivot
endif broadcast [pivot(1),pl2]
if (pivot(1) .ne. 0.0d0) then
do k = 2, NMAX - 1 t#** Loop 1:
pivot_proc = MOD(k,n_proc) Compute row reduction for col 1 with factors of col 1
last_pivot_proc = MOD(k-1,n_proc) endif
if (my_p .ne. last_pivot_proc) then
receive [pl, pivot(k-1), a(k,k-1)...a(NMAX,k-1)] do k = 2, NMAX - 1
endif pl = pl2
if (my_p .eq. pivot_proc) then t4*+ Loop 2:
Compute row reduction for col k with factors of col k- fompute row reduction for col k with factors of col k-1
find pivot(k) = max of a(k,k)...a(NMAX,k) find pivot(k) = max of a(k,k)...a(NMAX,k)
let pl2 = row index of pivot (k) let pl2 = row index of pivot(k)
Compute reduction factors for col k
broadcast [pl2, pivot(k), aCk+1,k)...a(NMAX,k)] t#** Loop 3:
endif Compute reduction factors for col k
if (pivot(k-1) .me. 0.0d0) then if (pivot(k-1) .ne. 0.0d0) then
L1 = k/n_proc + 1 do j = k+1, NMAX
if (my_p .lt. pivot_proc) L1 = L1 + 1 !#%x Loop 4:
Compute row reduction for col j with factors of col k-:
do j = L1, NMAX/n_proc enddo
Compute row reduction for col j with factors of col kepdif
enddo enddo
endif do row elimination for col NMAX with pivot(NMAX-1) ---
enddo end
Compute reduction for col NMAX with factors of col NMAX-1
end

(b) Expressing the optimization in Fortran D.
(a) Hand-optimization to overlap computation and
broadcasts of reduction factors with row reductions of
previous iteration.

Figure 4: Minimizing serialization in Gaussian elimination.

TOTAL | BUSY IDLE
(sec) Total | Send Recv
Unopt 25.821 | 60.99% | 39.01% | 0.92% | 32.87%
Opt 20.838 | 89.55% | 10.45% | 1.29% | 9.16%

Figure 5: Improvement with overlapping broadcasts in DcEra: 1024x1024,column cyclic data
partition, 32 processors.
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TOTAL | BUSY IDLE
(sec) Total | Send | Recv
Unopt 10.29 | 92.98% | 7.02% | 0.88% | 5.3%
Opt 10.09 | 96.33% | 3.67% | 0.85% | 1.49%

Figure 6: Improvement with loop distribution in red-black SOR: 4096x4096, block data partition
in the first array dimension, 32 processors.
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