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Chapter 1

Introduction

1.1 Overview

Value numbering is an optimization used to eliminate redundant computations from a routine. This document
provides an implementation of the global value numbering algorithm described by Alpern, Wegman, and
Zadeck [3]. Tt operates on the static single assignment (SSA) form of the routine [7]. In contrast to hash-
based approaches, this technique partitions values into congruence classes. Two values are congruent if they
are

1. Computed by the same opcode, and
2. Each of the corresponding operands are congruent.

Since the definition of congruence is recursive, there will be routines where the solution is not unique. A
trivial solution would be to set each value in the routine to be congruent only to itself. However, the solution
we seek is the mazimal fized point — the solution that contains the most congruent values.

We partition the values in the routine into congruence classes using a variation of the algorithm by
Hopcroft for minimizing a finite-state machine [1]. After the partitioning is complete, we renumber the
registers in the routine based on their class number. After the registers have been renumbered, there are
three possibilities for removing redundant computations:

Dominator-Based Removal The technique suggested by Alpern, Wegman, and Zadeck is to
remove computations that are dominated by another member of the congruence class [3].
This algorithm can be performed efficiently by bucket sorting based on the preorder index
in the dominator tree and comparing adjacent pairs of members.

AVAIL-Based Removal The classical approach is to remove computations that are in the set
of available expressions (AVAIL) at the point where they appear in the routine [2]. AVAIL
is the set of expressions available along all paths from the start of the routine.

Partial Redundancy Elimination PRE is an optimization introduced by Morel and Ren-
voise [8]. Partially redundant computations are redundant along some, but not necessarily
all, execution paths. In general, PRE moves code upward in the routine if at least one
execution path profits from the move and no path suffers from it.

Notice that the options are presented in increasing order of effectiveness. It can be proved that each one is
never worse than its predecessor.

e A computation that is dominated by another member of the congruence class must be in the AVAIL set
because the dominating node is contained in all paths from the start of the routine. However, there are
other ways for a computation to appear in the AVAIL set. If a computation appears in both branches
of an if-then-else statement, then it will be in the AVAIL set at the join point even though neither of
the branches dominates the join.



e A computation removed by the AVAIL method must be redundant along all execution paths; therefore,
it will be removed by PRE. However, PRE can also move computations if at least one path profits and
no path suffers.

1.2 Usage

gval can be invoked from the command line as follows:
gval [-dhcparxst] [filename]

gval reads ILOC input from filename or from stdin if no filename is specified and prints its output to
stdout. The following options are available:

-d Increase the debug level. The default level is zero meaning no debugging output. The following
levels are supported:

1. Indicate when the major phases of the program begin

2. Indicate when the minor phases of the program begin

3. Warn the user when there is a use of an uninitialized register
4. Show the routine in SSA form

5. Display the initial and final partitions

All debugging output is to stderr.
-h Print a histogram of the classes.
-c¢ Remove comments from the ILOC file.
-p Prepare the output for partial redundancy elimination.
-a Remove operations based on AVAIL.
-r Remove operations based on dominators.
-x Handle commutative operations.
-s Eliminate redundant stores.

-t Print timing information for the major phases.

1.3 Performance

We ran gval using AVAIL-based and dominator-based removal on five routines from three programs in the
SPEC benchmark. For each routine, we recorded the amount of time gval took in each of its major phases.
We ran all of the experiments on an IBM RS/6000 Model 540, running at 30MHz, with a 64KB data cache.
Figure 1.1 shows the number of basic blocks, registers and operations in each routine, as well as the time
(in seconds) required by each phase. In all cases, partitioning was the most time comsuming phase of the
program. Notice that the Total line is a bit deceiving because it includes time for both dominator and
AVAIL-based removal.



Program fpppp tomcatv doduc
Routine fpppp | twldrv | tomcatv | repvid | iniset
Blocks 2 333 91 127 446
Registers 9214 5902 946 831 2283
Operations 22351 16205 2690 1884 6731
Converting to SSA 0.40 0.71 0.06 0.04 0.23
Partitioning 1.24 9.78 0.08 0.05 0.28
Renumbering 0.04 0.04 0.01 0.00 0.02
Dominator-Based Removal | 0.04 0.06 0.02 0.00 0.02
AVAIL-Based Removal 0.08 0.14 0.01 0.02 0.08
Converting from SSA 0.03 0.09 0.01 0.01 0.03
| Total | 183 | 1082 | 019 | 012 | 066 ]

Figure 1.1: Performance Data for gval.

1.4 Overall Structure

This is a simple boilerplate that specifies how the major components of the C program will fit together. We
need include files for the shared library code and for the routines to handle SSA form.

"gval.c" 3 =
#include <Shared.h>
#include "SSA.h"

{Type Declarations 11a, ... )
(Macros 5b, ... )

(Global Variables 5a, ... )
(Prototypes 85a, ... )
(Functions 58¢c, ... )

(The main routine 4)

&



Option | Variable
-d debug
-h hist
-c keep_comments (defined in the shared library)
-p prepare_for_partial
-a do_avail
-r do_dominators
-X do_commute
-s elim_stores
-t time print (defined in the shared library)

Figure 1.2: Global Variables to Support Command Line Options

1.5 The Main Routine

The main routine shows the major steps of the program. The steps involved in reading in the ILOC file,
converting to and from SSA form, and printing the optimized program will be explained in this section. The
steps that are directly involved in global value numbering will be given detailed explanations in the remaining
chapters of the document. The printing of the timing information is controlled by the time_print flag which
will be turned on during parsing of the command line if the user specified the -t option. The variable time
keeps track of the time spend along the way. The Time Dump routine prints the timing information.

(The main routine 4) =
Void main(Unsigned_Int argc, Char *argv[])

{
Timer time = Time_Start();
(Parse the command line 5d)
(Read the ILOC file and convert to SSA form 7a)
Time_Dump(time, "Converting to SSA required %1.2f seconds\n");
(Partition all the values in the routine into congruence classes 13c)
Time_Dump(time, "Partitioning required %1.2f seconds\n");
(Optionally perform dominator-based removal 57a)
Time_Dump(time, "Dominator-based removal required %1.2f seconds\n");
(Renumber the ¢-nodes and registers based on the congruence classes 48)
Time_Dump(time, "Renumbering required %1.2f seconds\n");
(Convert the routine out of SSA form 7c)
Time_Dump(time, "Converting out of SSA required %1.2f seconds\n");
(Optionally perform AVAIL-based removal 62)
Time_Dump(time, "AVAIL-based removal required %1.2f seconds\n");
(Print only those operations that have been marked critical 7d)
Time_Dump(time, "Printing required %1.2f seconds\n");
free(time);
exit (0);

}

<&

Macro referenced in scrap 3.



We’ll need some global variables to handle the command-line options. Figure 1.2 shows the variable that
corresponds to each option.

(Global Variables 5a) =
Unsigned_Int debug = 0;
static Boolean hist = FALSE;
static Boolean prepare_for_partial = FALSE;
static Boolean do_avail = FALSE;
static Boolean do_dominators = FALSE;
static Boolean do_commute = FALSE;
static Boolean elim_stores = FALSE;
<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.

The debug variable has five significant values.

(Macros 5b) =
#define MAJOR_PHASES
#define MINOR_PHASES
#define UNINITIALIZED_REG
#define SHOW_SSA
#define PARTITION
O

Macro defined by scraps 5b, 6b, 12, 29c, 43d.
Macro referenced in scrap 3.

A W=

The global variable file name will store the name of the input file. If the user specifies no input file,
file name will be left NULL, which tells Block_Init to use stdin.

(Global Variables 5¢) =
static Char *file_name = NULL;
<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.

We parse the command line by looping over the entries in argv. The variable i is the current index into
argv, and c_ptr is a pointer into argv[i]. We assume that any input beginning with the character -’ is a
list of flags, and all others are file names. If more than one file name is entered, we assume the user entered

something wrong. In this case, we print out the usage message and halt.

(Parse the command line 5d) =

{
Unsigned_Int i;
for (i = 1; i < argc; i++)
{
Char *c_ptr = argv[i];
if (*c_ptr++ == ’-7)
(Parse a list of flags 6a)
else if (!file_name)
file_name = argv[il;
else
(Print the usage message and halt 6c)
¥
¥
<&

Macro referenced in scrap 4.



We parse a list of flags by looking at one character at a time. For each valid flag, there is a corresponding
global variable. If we hit a character which is not in the set of recognizable flags, we print out the usage
message and halt.

(Parse a list of flags 6a) =
while (*c_ptr)
switch (*c_ptr++)

{
case ’'d’: debug++; break;
case ’h’: hist = TRUE; break;
case ’c’: keep_comments = FALSE; break;
case ’p’: prepare_for_partial = TRUE; break;
case ’a’: do_avail = TRUE; break;
case 'r’: do_dominators = TRUE; break;
case ’x’: do_commute = TRUE; break;
case ’'s’: elim_stores = TRUE; break;
case 't’: time_print = TRUE; break;
default:

(Print the usage message and halt 6c)
}

&

Macro referenced in scrap 5d.

If we encounter an error parsing the command line, we will print the usage string and halt the program. We
use the ABORT macro, which is set up to dump core if we are running in debug mode and exit with an error
code otherwise.

(Macros 6b) =
#define USAGE_STRING "Usage: %s [-dhcparxst] [filename]\n"
<o

Macro defined by scraps 5b, 6b, 12, 29¢, 43d.
Macro referenced in scrap 3.

(Print the usage message and halt 6c) =

{
fprintf (stderr, USAGE_STRING, argv[0]);
ABORT;

¥

<&

Macro referenced in scraps 5d, 6a.

Once we have parsed the command line, we are ready to read in the ILOC file and convert it to SSA form.
This conversion renames all the items in the routine so that there is a unique definition point for each item
in the routine. During this phase, we also construct a table containing the definition points and a table of
uses for each definition. The ConvertToSSA routine must have an Arena in which to allocate these tables
and other data structures.

(Global Variables 6d) =
static Arena SSA_arena;
<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.



The Block Init routine provided by the shared library will read the ILOC file and build a control-flow graph
(CFG) [4]. The ConvertToSSA routine is provided in a companion to this document.

(Read the ILOC file and convert to SSA form 7a) =
Block_Init(file_name);
Time_Dump(time, "Parsing required %1.2f seconds\n");
SSA_arena = Arena_Create();
ConvertToSSA(SSA_arena);
if (debug >= SHOW_SSA) ShowSSA();
O

Macro referenced in scrap 4.

After we have renumbered the ¢-nodes and registers based on the congruence classes, we will convert the
routine out of SSA form. During this phase, we restore the original names to all the tags in the routine
and insert copies for ¢-nodes. The ConvertFromSSA routine will need to know the number of registers in
the renumbered version of the routine in case it needs to create new register names. Notice that we do not
use the register _count variable provided by the parser because the renumbering process invalidates this
number. We’ll keep track of the maximum register number using a variable called max_register. The actual
value of max_register will be computed when we renumber the registers based on congruence classes. Since
registers are numbered starting at zero, the num registers variable will be one more than max_register.

(Global Variables 7b) =
static Unsigned_Int max_register = 0;
static Unsigned_Int num_registers;

&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.

The ConvertFromSSA routine is used to restore the original names to the tags and insert copies for ¢-nodes.
During the process of inserting copies for ¢-nodes, some new register names may need to be invented. If so,
register numbers will be allocated starting at num registers, and the new value of num_registers will be
returned. Once we have converted the routine out of SSA form, we no longer need the data structures so we
destroy the arena that contains them. The new value of num registers will be used as the size of the bit
vectors used in data-flow analysis when we perform AVAIL-based removal of operations.

(Convert the routine out of SSA form 7c) =
num_registers = max_register + 1;
num_registers = ConvertFromSSA(SSA_arena, num_registers);
Arena_Destroy(SSA_arena) ;

&

Macro referenced in scrap 4.

The user can specify options that cause operations to be removed from the routine. During an early pass
over the CFG, we will set the critical flag for all operations to TRUE. Later, when we discover that an
operation can be removed, we will set its critical flage to FALSE. Setting the print_all operations flag
to FALSE causes the shared routine Block Put_All to only print operations whose critical flag is set.

(Print only those operations that have been marked critical 7d) =
print_all_operations = FALSE;
Block_Put_All(stdout);
<&

Macro referenced in scrap 4.



Chapter 2
Partitioning

We partition the values in the routine into congruence classes using a variation of the algorithm by Hopcroft
for minimizing a finite-state machine [1]. In this document, we use the term pariition to refer to a set of
congruence classes such that each value (SSA name) in the routine is in exactly one class. The partitioning
of values is accomplished by starting with an initial partition and iteratively refining the partition until it
stabilizes. In the initial partition, all values defined by the same opcode are in the same congruence class.
Of course, the set of values defined by some opcodes must be divided immediately. For example, the FRAME
opcode defines a set of distinct values that are passed to the routine in registers. Therefore, all the values
defined by the FRAME opcode are placed in different classes in the initial partition.

The partition is refined using a worklist algorithm. The variable called worklist will contain classes that
might cause other classes to split. When a class is removed from worklist, we visit the uses of all its members.
The touched set records the values defined by the uses that are visited at each iteration. Notice that we
only visit uses in the same position because we must treat all opcodes as if they were not commutative.
Commutative operations are handled by an extension to the partitioning algorithm described in Section 2.5.
Any class s (s stands for split) with a proper subset of its members in touched () C (s N touched) C s) must
be split into two classes. We create a new class n containing the touched members of s, and we remove the
members of n from s. Splitting class s may cause other classes in the partition to split, so we must update
worklist. There are two cases to consider:

Case 1 If s was already in worklist, this means that the partition was not stable with respect to
s, so we must leave s in worklist and also add n to worklist.

Case 2 If s was not in worklist, this means that the partition was stable with respect to s before
it was split. Thus, any class that would be split as a result of removing s from worklist
would be split the same way as a result of removing n from worklist. Since we are free to
choose between s and n, we will select the one that can be processed in a smaller amount
of time. Therefore, we add the smaller of s and n to worklist. As we shall see, this step is
fundamentally important in achieving our desired running time.

Once we have refined the partition with respect to class ¢, we will not examine ¢ again unless it is split.
Pseudo-code for the partitioning algorithm is shown in Figure 2.1.
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Initial Partition After One Iteration

Place all values computed by the same opcode in the same congruence classes

worklist «— the classes in the initial partition
while worklist #
Select and delete an arbitrary class ¢ from worklist
for each position p of a use of z € ¢
touched — ()
for each z € ¢
Add all uses of x in position p to touched
for each class s such that ) C (s N touched) C s
Create a new class n «— s N touched
s—s—n
if s € worklist
Add n to worklist
else
Add smaller of n and s to worklist

Figure 2.1: Partitioning Algorithm

A—X-Y
B—Y-X
C—A-B
D—B—-A

Figure 2.2: Partitioning Example

s

&)
O

To illustrate how the algorithm operates, consider the code fragment in Figure 2.2. Figure 2.3 shows the
initial partition if X is not congruent to Y (X 2 Y). Notice that all names defined by the subtraction opcode
are initially in the same class. Let the class containing X be the first removed from worklist. Touching the
uses of X in position 1 will result in A being removed from its class. Touching the uses of X in position 2
will result in B being removed from its class. The partition after one iteration is shown in Figure 2.3. Let
the class containing Y be the next one removed from worklist. Touching the uses of Y in position 1 will
result in C' being removed from its class. Touching the uses of Y in position 2 will not cause any classes to
be split because the touched set is the entire class. Since all values are now in different classes, no further
splitting can occur. However, since the algorithm has no way to determine this, it will not terminate until
worklist is empty. The final partition is also shown in Figure 2.3.

Final Partition

Figure 2.3: Partitioning Steps for Example Program
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Figure 2.4: Incorrect Partition When Positions Are Ignored

..

To understand the importance of touching only uses in the same position, consider again the code fragment
in Figure 2.2 and its initial partition in Figure 2.3. Touching all uses of X in any position will result in
A and B being removed from their class and put into a new class together. If the algorithm continues in
this fashion, no further splitting will occur. The final partition is shown in Figure 2.4. Notice that we have
erroneously proven that A = B and C = D.

2.1 Complexity

From the pseudo-code given in Figure 2.1, it is not clear what the running time of the algorithm will be. We
claim that the partition can be computed in O(E log N) time, where F is the number of edges and N is the
number of nodes in the routine’s SSA graph!. However, only a careful implementation of the data structures
will result in the desired time bound. To discover the operations our data structure must support and their
complexities, we will analyze the algorithm from the bottom up. The statement in line 15 can be performed
in constant time if we can determine the size of a class in constant time. Therefore, the if statement in lines
12-15 will require constant time. The splitting of a class in lines 10 and 11 can be performed in O(||r||) time
if we can remove an element from class s and insert it into class n in constant time?. The crucial part of
the implementation is to perform the for loop in lines 9-15 in O(||touched]||) time. This will be discussed in
detail in Section 2.4. The for loop in lines 7 and 8 can be performed in O(]|¢||). We assume that the number
of uses in any operation is bounded by a constant so the maximum position of a use is also bounded by a
constant. Therefore, we can ignore the for loop starting on line 5.

Now we are ready to analyze the running time of the entire algorithm. Consider the number of times a
class containing a particular element z can be removed from worklist. Each time such a class is chosen, it
must be smaller than half the size of the last class to contain z removed from worklist. This is because we
only add the smaller of n and s in line 15. Therefore, a class containing & can be removed from worklist at
most O(log N) times. Suppose the cost of each execution of the for loop in lines 9-15 is charged to each x
in ¢ according to the number of uses of 2 in position p. Then the cost for each z is O(]|USES(2)||log V),
where USES(z) is the set of uses of 2. Since E is the set of all uses of any x, the total cost of the algorithm
s O(Flog N). Figure 2.5 summarizes the time complexity required for the various operations that will be
performed on the partition.

2.2 Data Structures to Support Partitioning

To support the complexity requirements given in Figure 2.5, for each class we will maintain the number of
members and a circular, doubly-linked list of members. We will also maintain a lookup table that will have
a pointer to the list node and the class number of each element in the partition. This will enable us to locate
and remove an element from a class in constant time. Figure 2.6 shows how the data structure would look
assuming that the item with SSA name g is in class 5.

1The SSA graph has a node for each definition and edges flow from definitions to uses.
2We use the notation ||n|| to represent the size of set n.

10



Operation

Complexity

Determine the number of elements in a class
Determine which class contains a name
Remove a member of a class

Add a member to a class

Add a new class to the partition

Iterate through the members of class ¢

Figure 2.5: Operations Supported by the P

artition

Each node in the doubly-linked lists is represented by a Member Node structure. Each one will contain prev
and next pointers used by the list and the SSA name of the item. Other fields are used to implement
extensions to the partitioning algorithm. They will be explained in Sections 2.5 and 2.6.

(Type Declarations 11a) =

typedef struct member_node

{
struct member_node *prev;
struct member_node *next;
Unsigned_Int2 item;
(Other Member Node fields 43b)

} Member_Node;

<&

Macro defined by scraps 11ab, 13a, 22c, 29b, 43a, 57b, 63a.
Macro referenced in scrap 3.

The partition will be represented by an array indexed by class numbers
the members of the class and the number of members in the class.

(Type Declarations 11b) =
typedef struct

{
Member_Node *members;
Unsigned_Int2 num_members;
} Class;
<&

Macro defined by scraps 11ab, 13a, 22c, 29b, 43a, 57b, 63a.
Macro referenced in scrap 3.

. Each element will contain a list of

The array is called classes. The variable num_classes keeps track of how many classes are currently in the
partition. We use zero as a special value, so class numbers will start with one.

(Global Variables 11c) =
static Class *classes;
static Unsigned_Int num_classes = 1;
<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.

11
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l members
num
members

— node
> class nun

lookup

ot
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Figure 2.6: Data Structures for Representing the Partition

Now that we have the declared the type of a class, we can define a macro to iterate through the members
list. It takes two arguments:

1. A pointer to a Member Node structure (the iterator variable), and
2. A list of members of the class.

Each members list will be allocated with a “dummy” node to avoid having to check for NULL pointers at
the end of the list. The item field of this node will be set to zero. Therefore, we start iterating with
(members)->next and continue until we find a node containing a zero.

(Macros 12) =

ftdefine Class_ForAllMembers(node, members) \
for (node = (members)->next; \
node->item; \

node = node->next)
O

Macro defined by scraps 5b, 6b, 12, 29c, 43d.
Macro referenced in scrap 3.

12



In order to quickly locate a member of a class, we use a lookup table. The lookup table is an array indexed
by SSA names. Each element contains a pointer to the Member Node containing the item and the index of
the class containing the item. Other fields are used to implement extensions to the partitioning algorithm.
They will be explained in Sections 2.5 and 2.6.

(Type Declarations 13a) =
typedef struct

{
Member_Node *node;
Unsigned_Int2 class_num;
(Other Lookup fields 35a, ... )

} Lookup;

<&

Macro defined by scraps 11ab, 13a, 22c, 29b, 43a, 57b, 63a.
Macro referenced in scrap 3.

(Global Variables 13b) =
static Lookup *lookup;
<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.

Partitioning is a two step process.

1. Initialize the partition by placing all items defined by the same opcode into the same class.

2. Iteratively refine the partition until it stabilizes.

Along the way, we will print any debugging information requested by the user. Notice that we use two
arenas for partitioning. The partition_arena will be used to hold data structures that live throughout the
partitioning process. The temp_arena will be used to hold short lived data structures that will be freed using
Arena Mark and Arena Release.

(Partition all the values in the routine into congruence classes 13c) =
{
Arena partition_arena = Arena_Create();
Arena temp_arena = Arena_Create();

if (debug >= MAJOR_PHASES)
fprintf(stderr, "Partition all the values in the routine\n");

(Create the initial partition 14a)
(Optionally print the initial partition 74c)
(Refine the partition 27a)

(Optionally print the final partition 74d)
(Optionally print a histogram 72)

Arena_Destroy(partition_arena) ;
Arena_Destroy(temp_arena) ;

}
&

Macro referenced in scrap 4.
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2.3 Initializing the Partition
The process of initializing the partition has four steps:

1. Initialize the partition by allocating the classes and lookup arrays.

2. Create a class for each of the pseudo-definitions created for the tags during the conversion
to SSA form. We must assume that each tag has a different value at the start of the routine,
so each one is given its own congruence class.

3. Create a class for the ¢-nodes in each block. The semantics of a ¢-node in block b is to select
the argument that corresponds to the predecessor of b from which control is transferred to
b. Thus, ¢-nodes in different blocks can never be congruent. However, ¢-nodes in the same
block with congruent arguments should be considered congruent. Therefore, for each block
in the routine, we create a class for its ¢-nodes.

4. Create classes for the items defined by operations. We initially make the optimistic as-
sumption that all items defined by the same opcode are congruent. However, some types of
opcodes cause more than one class to be added to the initial partition.

(Create the initial partition 14a) =
if (debug >= MINOR_PHASES)
fprintf (stderr, " Create the initial partition\n");

(Initialize the partition 14b)

(Create a class for each of the pseudo-definitions 16a)
(Create a class for the ¢-nodes in each block 16b)
(Create classes for the items defined by operations 17c)

&

Macro referenced in scrap 13c.

The classes array is indexed by class numbers, so we must allocate enough entries for the maximum number
of classes. This number will be reached if every SSA name in the routine is in a separate class. Therefore,
the classes array will have defCount entries. The lookup array is indexed by SSA names,; so it will also
have defCount entries.

(Initialize the partition 14b) =
classes = Arena_GetMem(partition_arena, defCount*sizeof (Class));
lookup = Arena_GetMem(SSA_arena, (defCount + 1)*sizeof(Lookup));
(Fill in lookup[0] 14c)
<

Macro referenced in scrap 14a.

During the conversion to SSA form, we use the value zero to represent undefined arguments to ¢-nodes.
When we renumber the registers in the routine, we must maintain this convention. Therefore, we will force
zero to map to zero.

(Fill in lookup[0] 14c) =
lookup[0].class_num = 0;
lookup[0] .node = NULL;
&

Macro referenced in scrap 14b.
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We create a new class containing a single element by adding a list of length one to the classes array and
updating the appropriate Lookup array entry. Recall that there are other fields in the Lookup structure used
for extensions to the partitioning algorithm. They will be explained in Sections 2.5 and 2.6.

(Create a new class for node 15a) =
{
Unsigned_Int item = node->item;
Member_Node *members;

(Create a new members list 15b)
(Append node to the members list 15¢c)
classes[num_classes] .members = members;
classes[num_classes] .num_members = 1;
lookup[item] .class_num = num_classes++;
lookup[item] .node = node;
(Initialize other Lookup fields 35b, ... )

¥

<&

Macro referenced in scraps 16a, 20a, 23a, 25a, 26b, 46b.

Each members list is a circular, doubly-linked list. We allocate a dummy node for each list to avoid having
to check for NULL pointers later.

(Create a new members list 15b) =

{
Member_Node #*node = members = Arena_GetMem(partition_arena, sizeof (Member_Node));
node->prev = node;
node->next = node;
node->item = 0;
(Initialize other Member Node fields 43c)
¥
<&

Macro referenced in scraps 15a, 16b, 18b, 32b, 38b, 39b.

Since each list is circular, we can append to the list by putting the new node before the dummy node.

(Append node to the members list 15¢) =
node->next = members;
node->prev = members->prev;
members->prev = node;
node->prev->next = node;

&
Macro referenced in scraps 15a, 17a, 24b, 32¢, 39ac.
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During conversion into SSA form, we created pseudo-definitions for all the tags in the routine. They are
numbered from one to tag_count. We place each of them in a different congruence class by allocating a
Member Node, initializing it, and creating a new class for it. Recall that there are other fields in the structure
used for extensions to the partitioning algorithm. They will be explained in Sections 2.5 and 2.6.

(Create a class for each of the pseudo-definitions 16a) =

{
Unsigned_Int i;
for (i = 1; i <= tag_count; i++)
{
Member_Node *node = Arena_GetMem(partition_arena, sizeof (Member_Node));
node->item = ij;
(Initialize other Member Node fields 43c)
(Create a new class for node 15a)
¥
¥
O

Macro referenced in scrap 14a.

In the initial partition, all items defined by ¢-nodes in the same block are put into the same congruence
class. For each block, we create a list of the items defined by ¢-nodes. We then add this list to the partition.

(Create a class for the ¢-nodes in each block 16b) =

{
Block *block;
ForAllBlocks (block)
if (Block_HasPhiNodes (block))
{
Member_Node *members;
Unsigned_Int num_members = 0;
PhiNode *phi_node;
{Create a new members list 15b)
Block_ForAllPhiNodes(phi_node, block)
{
Unsigned_Int item = phi_node->newName;
(Add item to the members list 17a)
{Add this class to the partition 17b)
¥
¥
<&

Macro referenced in scrap 14a.
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To add an item to a list, we create a node for it and append the node to the list. We must also set the
fields of the lookup array. Recall that the Member Node and Lookup structures have other fields used for
extensions to the partitioning algorithm. These will be explained in Sections 2.5 and 2.6.

(Add item to the members list 17a) =
{

Member_Node #*node = Arena_GetMem(partition_arena, sizeof (Member_Node));

node->item = item;

(Initialize other Member Node fields 43c)
(Append node to the members list 15¢)
num_members++;

lookup[item] .class_num = num_classes;
lookup[item] .node = node;

(Initialize other Lookup fields 35b, ... )

}
&

Macro referenced in scraps 16b, 19b, 20a.

Once the members list has been built, we can add the class to the partition.

(Add this class to the partition 17b) =
classes[num_classes] .members = members;
classes[num_classes++] .num_members = num_members;

&

Macro referenced in scrap 16b.

Creating classes for the items defined by operations is a two step process:

1. Find the names defined by each type of opcode in the routine. We iterate over the operations
in the routine and keep a Class containing the items defined by each opcode. The variable
op_classes records the set of names defined by each type of opcode.

2. Add one or more classes for each type of opcode found in the routine. Once we have a list
of items defined by each opcode, we can add the appropriate classes to the initial partition.
Some of the lists constitute a class while others must be further subdivided.

We use Arena Mark and Arena Release to reclaim the space allocated for op_classes.

(Create classes for the items defined by operations 17c) =

{
Class *op_classes;
Arena_Mark(temp_arena) ;
(Find the names defined by each opcode in the routine 18a)
{Add a class for each type of opcode found in the routine 20b)
Arena_Release(temp_arena);

}

<

Macro referenced in scrap 14a.
Now we are ready to iterate over all the operations in the routine and build the list of items defined by each

opcode. We’ll use an array indexed by the opcode to hold the lists. It is allocated using Arena _GetMemClear
so that all the members lists will be NULL and num_members will be zero.

17



Since we may delete operations later by marking them not critical, we must first mark all operations
critical. This is a convenient place to do it.

(Find the names defined by each opcode in the routine 18a) =
op_classes = Arena_GetMemClear(temp_arena, number_of_opcodes*sizeof (Class));

{
Block *block;
ForAl1Blocks (block)
{
Inst *inst;
Block_ForAllInsts(inst, block)
{
Operation **oper_ptr;
Inst_ForAllOperations (oper_ptr, inst)
{
Operation *oper = *oper_ptr;
Opcode_Names opcode = oper->opcode;
oper->critical = TRUE;
(If there is not already a class for opcode, create one 18b)
(Add all the items defined to op_classes[opcode] 19a)
}
¥
}
}
<

Macro referenced in scrap 17c.

We must create a list for op_classes[opcode] before we can begin inserting items into it.

(If there is not already a class for opcode, create one 18b) =
if (lop_classes[opcode] .members)

{
Member_Node *members;
(Create a new members list 15b)
op_classes[opcode] .members = members;
¥
<&

Macro referenced in scrap 18a.
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Notice the special handling of scalar loads and stores. This is an extension to the partitioning algorithm
that will be explained in Section 2.6.

(Add all the items defined to op_classes[opcode] 19a) =
{

Unsigned_Int details = opcode_specs[opcode].details;

if (elim_stores &%
details & LOAD && details & SCALAR)
(Add a scalar load operation to the initial partition 45a)
else if (elim_stores &%
details & STORE && details & SCALAR)
(Add a scalar store operation the the initial partition 45c)
else
(Handle an operation that is not under redundant-store elimination 19b)

}
&

Macro referenced in scrap 18a.

Even if the user has not requested redundant-store elimination, we still must treat stores specially to handle
aliasing. For operations that are not stores, we put all the defined registers and tags in op_classes[opcode].
We count how many items were added by this operation and update the num members field at the end.

(Handle an operation that is not under redundant-store elimination 19b) =
if (details & STORE)
(Add a store to the initial partition 20a)
else
{
Member_Node *members = op_classes[opcode] .members;
Unsigned_Int num_members = 0;
Unsigned_Int2 #item_ptr;

Operation_ForAllDefs(item_ptr, oper)

{
Unsigned_Int item = *item_ptr;
(Add item to the members list 17a)
}
Operation_ForAllDefTags(item_ptr, oper)
{
Unsigned_Int item = *item_ptr;
(Add item to the members list 17a)
}
op_classes[opcode] .num_members += num_members;
}
O

Macro referenced in scrap 19a.
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In ILOC, stores have a list of defined tags. The first tag in this list is the tag that is definitely being stored
by the operation. All others are possible aliases of the first tag. Therefore, the first tag is handled normally
by the partitioning algorithm, but the aliases must be placed into separate congruence classes.

(Add a store to the initial partition 20a) =

{
Member_Node *members = op_classes[opcode].members;
Unsigned_Int num_members = 0;
Unsigned_Int2 #item_ptr;
Boolean first = TRUE;
Operation_ForAllDefTags(item_ptr, oper)
{
Unsigned_Int item = *item_ptr;
if (first)
1{
first = FALSE;
(Add item to the members list 17a)
¥
else
{
Member_Node #*node = Arena_GetMem(partition_arena, sizeof (Member_Node));
node->item = item;
(Initialize other Member Node fields 43c)
(Create a new class for node 15a)
¥
}
op_classes[opcode].num_members += num_members;
}
<O

Macro referenced in scrap 19b.

Once we have found the names defined by each opcode and stored this information in the op_classes array,
we are ready to add a class to the partition for each type of opcode. Notice that only those operations that
define values (i.e., op_classes[opcode] .num members # 0) are given a partition.

(Add a class for each type of opcode found in the routine 20b) =

{
Opcode_Names opcode;
for (opcode = 0; opcode < number_of_opcodes; opcode++)
if (op_classes[opcode].num_members)
{
Member_Node *members = op_classes[opcode] .members;
Unsigned_Int num_members = op_classes [opcode] .num_members;
(Add the set of items defined by opcode to the partition 21a)
}
}
<&

Macro referenced in scrap 17c.
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Some opcodes require special handling which may further subdivide the set.

(Add the set of items defined by opcode to the partition 21a) =
switch (opcode)

{
(Add the set of items defined by load immediate, add immediate, or shift immediate 21b)
(Add the set of items defined by loads and stores from memory 22a)
(Add the set of items defined by FRAME and JSR 22b)
default:
(Add all the members to the same congruence class 26c)
break;
}
&

Macro referenced in scrap 20b.

Load immediate, add immediate, and shift immediate operations have a single constant argument found in
position 0 of their arguments array. The class must be subdivided according to the value. The scrap that
handles this situation will be used more than once for arguments in different positions. Therefore, we use
the arg_pos variable to parametrize the scrap so it can find the position of the argument.

(Add the set of items defined by load immediate, add immediate, or shift immediate 21b) =
case iLDI: case fLDI: case dLDI: case cLDI: case qLDI:
case iADDI: case iSUBI:
case iSLI: case iSRI: case 1SLI: case 1SRI:

{

Unsigned_Int arg_pos = 0;

(Handle an opcode with one constant argument 23a)
}
break;

&

Macro referenced in scrap 21a.
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Loads and stores from memory come in two flavors. The “or” addressing mode defines the address as the
sum of a base register and a constant offset. A constant alignment value is also specified, so these operations
contain two constant arguments. The “rr” addressing mode defines the address as the sum of a base register
and an index register. A constant alignment value is specified, so these operations contain one constant
argument located in position 1 of the arguments list. The class must be subdivided according to the value.
The scrap that handles this situation will be used more than once for arguments in different positions.
Therefore, we use the arg_pos variable to parametrize the scrap so it can find the position of the argument.

(Add the set of items defined by loads and stores from memory 22a) =
case bCONor: case iCONor: case fCONor: case dCONor: case cCONor: case qCONor:
case bSLDor: case iSLDor: case fSLDor: case dSLDor: case cSLDor: case gSLDor:
case bSSTor: case iSS8Tor: case fSSTor: case dSSTor: case cSSTor: case qSSTor:
case bLDor: case iLDor: case fLDor: case dLDor: case cLDor: case qlLDor:
case bSTor: case iSTor: case fSTor: case dSTor: case cSTor: case qSTor:
(Handle an opcode with two constant arguments 25a)
break;

case bSLDrr: case iSLDrr: case fSLDrr: case dSLDrr: case cSLDrr: case qSLDrr:
case bSSTrr: case iSSTrr: case fSSTrr: case dSSTrr: case cSSTrr: case qSSTrr:
case bLDrr: case iLDrr: case fLDrr: case dLDrr: case cLDrr: case qLDrr:
case bSTrr: case iSTrr: case fSTrr: case dSTrr: case cSTrr: case qSTrr:

{

Unsigned_Int arg_pos = 1;

(Handle an opcode with one constant argument 23a)
}
break;

&

Macro referenced in scrap 21a.

The FRAME and JSR opcodes define a set of distinct values. Therefore, each item defined by one of these
opcodes must be placed into a separate congruence class.

(Add the set of items defined by FRAME and JSR 22b) =
case FRAME:
case JSRr: case iJSRr: case fJSRr: case dJSRr: case cJSRr: case qJSRr:
case JSR1: case iJSR1: case fJSR1l: case dJSR1l: case cJSR1l: case qJSRI1:
(Place each item into a separate congruence class 26b)
break;

&

Macro referenced in scrap 21a.

Operations with one or more constant arguments require that their congruence classes be subdivided accord-
ing to the values of these arguments. We use a linked list to keep track of which constants are referenced in
operations. If we expect alot of constants to appear in the same operation type, we might switch to a more
sophisticated data structure.

(Type Declarations 22c) =
typedef struct const_node

{
Expr value; /* The constant value represented */
Expr value?2; /* A possible second value */
Unsigned_Int class_num; /* The class number for items that use value */
struct const_node *next; /* A pointer to the next element in the list */
} Const_Node;
<&

Macro defined by scraps 11ab, 13a, 22c, 29b, 43a, 57b, 63a.
Macro referenced in scrap 3.
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This scrap is used to add operations with one constant argument (e.g., LDI, SSTrr) to the partiton. We must
further subdivide the set by the constant values being used. The arg pos variable tells us which element of
the defining operation’s arguments array to look at. We use a different constant 1list each time because
the same value can be used in more than one type (e.g., integer and double). We use Arena Mark and
Arena Release to reclaim the memory allocated for constant list.

(Handle an opcode with one constant argument 23a) =

{
Const_Node *constant_list = NULL;
Arena_Mark(temp_arena) ;
while (num_members)
{
Member_Node *node = members->next;
Expr value = DefiningOper(node->item)->arguments[arg_pos];
Boolean found = FALSE;
(Delete node from its current list 23b)
num_members-—;
(Search constant 1ist for value 24a)
if (!'found)
{
(Add value to constant list 24c)
(Create a new class for node 15a)
¥
¥
Arena_Release(temp_arena);
¥
<&

Macro referenced in scraps 21b, 22a.

To delete an element e from a doubly-linked list, we change the prev pointer of e’s next element, and we
change the next pointer of e’s prev element.

(Delete node from its current list 23b) =
node->next->prev = node->prev;
node->prev->next = node->next;

&

Macro referenced in scraps 23a, 25a, 26b, 32c, 39ac.
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Since we are handling operations with a single constant argument, we only consider the value field of the
Const Node structure. We ignore the value2 field. If value is found in the list, we will add the node to the
class number indicated.

(Search constant_1ist for value 24a) =

{
Const_Node *const_node = constant_list;
while (const_node)
{
if (const_node->value == value)
{
Unsigned_Int class_num = const_node->class_num;
(Add node to classes[classnum] 24b)
found = TRUE;
break;
}
const_node = const_node->next;
}
¥
<&

Macro referenced in scrap 23a.

When adding a member to a class, we must also update the Lookup entry.

{Add node to classes[classnum] 24b) =

{
Member_Node *members = classes[class_num].members;
(Append node to the members list 15¢c)
classes[class_num] .num_members++;
lookup[node->item].class_num = class_num;

¥

<&

Macro referenced in scraps 24a, 25b.

If value is not found in constant 1list we will add it. The item will be given num_classes as its class
number.

(Add value to constant list 24c) =

{
Const_Node *const_node = Arena_GetMem(temp_arena, sizeof (Const_Node));
const_node->next = constant_list;
const_node->value = value;
const_node->class_num = num_classes;
constant_list = const_node;
¥
<&

Macro referenced in scrap 23a.
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This scrap is used to add operations with two constant arguments (e.g., CONor, SSTor) to the partiton.
We must further subdivide the set by the constant values being used. All operations with two constant
arguments store them in positions one and two of their arguments array. We use a different constant 1ist
each time because the same values can be used in more than one type (e.g. integer and double). We use
Arena Mark and Arena Release to reclaim the memory allocated for constant_1list.

(Handle an opcode with two constant arguments 25a) =
{
Const_Node *constant_list = NULL;

Arena_Mark(temp_arena) ;

while (num_members)

{
Member_Node *node = members->next;
Unsigned_Int item = node->item;
Expr valuel = DefiningOper(item)->arguments[1];
Expr value2 = DefiningOper(item)->arguments[2];
Boolean found = FALSE;

(Delete node from its current list 23b)
num_members--;

(Search constant 1ist for valuel and value?2 25b)
if (!'found)
{
(Add (valuel, value2) to constant 1ist 26a)
(Create a new class for node 15a)

Arena_Release(temp_arena);

}
&

Macro referenced in scrap 22a.

(Search constant 1ist for valuel and value?2 25b) =

{
Const_Node *const_node = constant_list;
while (const_node)
{
if (const_node->value == valuel && const_node->value?2 == value2)
{
Unsigned_Int class_num = const_node->class_num;
{Add node to classes[classnum] 24b)
found = TRUE;
break;
}
const_node = const_node->next;
}
}
<&

Macro referenced in scrap 25a.
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(Add (valuel, value2) to constant list 26a) =

Const_Node *const_node = Arena_GetMem(temp_arena, sizeof (Const_Node));

{
const_node->next = constant_list;
const_node->value = valuel;
const_node->value?2 = value?2;
const_node->class_num = num_classes;
constant_list = const_node;

¥

<&

Macro referenced in scrap 25a.

Certain ILOC opcodes define more than one value (e.g., FRAME, JSR). When an operation of this type appears
in the routine, we must assume that all the defined items are different. Therefore, they are all placed into a
separate congruence class. This is accomplished by removing them from the members list one at a time and

creating a new congruence class for each one.

(Place each item into a separate congruence class 26b) =

while (num_members)

{
Member_Node *node = members->next;
(Delete node from its current list 23b)
num_members—-—;
(Create a new class for node 15a)

¥

O

Macro referenced in scrap 22b.

For the majority of operations in the routine, we will put all the defined items into the same congruence
class. To accomplish this, we must put the class number in the lookup entry for each of the members.

(Add all the members to the same congruence class 26c) =

{
Member_Node *node;
classes[num_classes] .members = members;
classes[num_classes] .num_members = num_members;
Class_ForAllMembers (node, members)

1ookup[node—>item].class_num = num_classes;

num_classes++;

}

<

Macro referenced in scrap 21a.
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2.4 Refining the Partition

We use a worklist algorithm to iteratively refine the partition. Since worklist is indexed by class numbers,
we create a set with universe size equal to the maximum number of classes. This number will be reached
if every SSA name in the routine is in a separate class. Therefore, worklist will have a universe size of
defCount. Initially, worklist contains the classes in the initial partition. At each step in the process, a
class is removed from worklist, and all uses of members of the class are touched. Any class with a proper
subset of its members touched must be split. Finally, we must prepare the partition for redundant-store
elimination. This will be explained in Section 2.6.

(Refine the partition 27a) =
{

SparseSet worklist = SparseSet_Create(partition_arena, defCount);

if (debug >= MINOR_PHASES)
fprintf (stderr, " Refine the partition\n");

(Insert all the initial classes into worklist 27b)

(Initialize the data structures for refining the partition 28b)

while (SparseSet_Size(worklist))

{
Unsigned_Int class_num = SparseSet_ChooseMember(worklist);
Member_Node *members = classes[class_num].members;
Unsigned_Int num_members = classes [class_num] .num_members;

SparseSet_Delete(worklist, class_num);
(Touch all uses of elements in members 29a)
¥
(Prepare the partition for redundant-store elimination 47b)
¥
<&

Macro referenced in scrap 13c.

(Insert all the initial classes into worklist 27b) =

{
Unsigned_Int i;
for (i = 1; i < num_classes; i++)
SparseSet_Insert (worklist, i);
¥
<&

Macro referenced in scrap 27a.

Recall that in our initial presentation of the partitioning algorithm (Figure 2.1) we used a set called touched.
This set contained all uses of members of a class in some position. We then searched for classes with a proper
subset of their members in touched and split them®. An implementation of the algorithm must employ an
efficient technique for determining which classes to split and which members to remove at each iteration.
In Section 2.2, we claimed that this step could be performed in O(||touched||) time. To accomplish this, we
do not represent the touched set itself. Instead, we keep the intersection of fouched and each class in the
partition. This information is kept in an array of Class structures called intersections. Each element of
intersections will contain the intersection of touched with the corresponding element of classes. We also
use a SparseSet called classes_to_split to keep track of which classes have a non-empty intersections
entry. When an item is touched during the process of refining the partition, it is moved out of its class and
into the intersections array. Recall that we are only interested in classes with a proper subset of their
members touched. Therefore, if all members of a class are touched, they will be returned to their original
class and the class will be deleted from classes_to_split.

3In other words, we split all classes s such that § C (s N touched) C s.
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Figure 2.7 depicts an example partition with SSA name z isin class 5. If 2 is touched, it will be removed
from the members list of classes[5] and appended to the members list of intersections[5]. If z¢ is the
first item placed in intersections[5], then 5 will be inserted into the classes_to_split set. Once all the
uses in position p have been touched, we can determine which classes must be split by iterating through
each class s in the classes_to_split set. We have already removed the necessary members from classes[s]
and placed them in intersections[s]. Thus, we can simply create a new class containing the members of
intersections[s] and iterate through the members list, updating the class num field of the lookup array.
The entire process requires O(||touched||) time.

classes intersections

¥ M
l members l Ir}llelzrr[rllbers
num
members members
— node
lookup 5 > class num
Lo

Figure 2.7: Data Structures for Refining the Partition

(Global Variables 28a) =
static Class *intersections;
static SparseSet classes_to_split;
<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.

Since the array and set are indexed by class numbers, they are allocated with defCount entries. We will also
initialize the data structures for handling commutative operations. This will be explained in Section 2.5.

(Initialize the data structures for refining the partition 28b) =
intersections = Arena_GetMem(partition_arena, defCount#*sizeof(Class));
classes_to_split = SparseSet_Create(partition_arena, defCount);
(Initialize the data structures for commutative operations 37a)

&

Macro referenced in scrap 27a.

28



Now we are ready to look at the heart of the partitioning algorithm. The first step is to bucket sort the
uses of members of the class by their position. For each position, we touch the uses in that position by
moving them out of the original class and into the corresponding element of intersections. Any class with
a proper subset of its members in intersections will have its class number in classes_to_split. These
classes must be split. Commutative operations are handled differently. This will be explained in Section 2.5.

Since the buckets array and the lists that it contains are only used for one iteration of the algorithm, we
allocate them in temp_arena, and we use Arena Mark and Arena Release to free the memory they occupy.

(Touch all uses of elements in members 29a) =
{(Reset the data structures for commutative operations 37b)
Arena_Mark(temp_arena);

{
Unsigned_Int max_pos = 0;
Use_Bucket **buckets;
Unsigned_Int pos;
(Bucket sort the uses by position 30a)
for (pos = 0; pos <= max_pos; pos++)
{
(Touch all uses in position pos 31b)
(Split the members of classes_to_split 33c)
}
}

(Split classes representing commutative operations 40b)
Arena_Release(temp_arena);

<&

Macro referenced in scrap 27a.

When we bucket sort the uses of all members of a class by the position of the use, we will keep a list of
uses for each position. Each element contains a pointer to a use of the item (The uses are built during SSA
construction) and a pointer to the next element in the list.

{Type Declarations 29b) =
typedef struct use_bucket
{
UselNode *use;
struct use_bucket *next;
} Use_Bucket;
<&

Macro defined by scraps 11ab, 13a, 22c, 29b, 43a, 57b, 63a.
Macro referenced in scrap 3.

This macro will iterate through all the uses in a particular position. It takes two arguments:

1. A pointer to a Use_Bucket structure (the iterator variable), and

2. A list of uses in a particular position.

(Macros 29¢) =
ftdefine Position_ForAllUses(bucket, list) \
for (bucket = (list);
bucket;
bucket = bucket->next)

~

&

Macro defined by scraps 5b, 6b, 12, 29c, 43d.
Macro referenced in scrap 3.
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The use positions are recorded in the use lists during the conversion to SSA form. We look at the use list for
each member of the class to determine the maximum position of a use, then we allocate the buckets array
accordingly. Next, we iterate through all the uses and add them to the corresponding use bucket. Notice
the special handling of the redundant-store information. This will be explained in Section 2.6.

(Bucket sort the uses by position 30a) =
(Find the maximum position of a use of an item in members 30b)
buckets = Arena_GetMemClear(temp_arena, (max_pos + 1)*sizeof (Use_Bucket *));

{
Member_Node *node;
Class_ForAllMembers (node, members)
{
Unsigned_Int item = node->item;
(Bucket sort the uses of item 31a)
(Bucket sort the redundant-store information of node 47a)
¥
¥
<&

Macro referenced in scrap 29a.

(Find the maximum position of a use of an item in members 30b) =

{
Member_Node *node;
Class_ForAllMembers (node, members)
{
Unsigned_Int item = node->item;
(Check the uses of item 30c)
(Check the uses of all the redundant-store information 46c)
¥
¥
<&

Macro referenced in scrap 30a.

(Check the uses of item 30c) =

{
UselNode *use;
Item_ForAllUses(use, item)
{
Unsigned_Int pos = UsePos(use);
if (pos > max_pos) max_pos = pos;
¥
¥
<&

Macro referenced in scraps 30b, 46c¢.
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For each use of an item, we add a new list element to the buckets element corresponding to the use position.

(Bucket sort the uses of item 31a) =

{
UselNode *use;
Item_ForAllUses(use, item)
{
Unsigned_Int pos = UsePos(use);
Use_Bucket *bucket = Arena_GetMem(temp_arena, sizeof (Use_Bucket));
bucket->use = use;
bucket->next = buckets[pos];
buckets[pos] = bucket;
¥
¥
<&

Macro referenced in scraps 30a, 47a.

Once we have sorted the uses of all members, we iterate through the use positions and touch all the uses
of members of the class in position pos. Any classes with a proper subset of their members touched must
be split. Those members that were touched must be in a different class from those not touched. The
intersections array keeps track of the items in each class that must moved to a new class. Notice the
special handling of commutative opcodes. This will be explained in Section 2.5.

(Touch all uses in position pos 31b) =
SparseSet_Clear(classes_to_split);
{
Use_Bucket *bucket;
Position_ForAllUses (bucket, buckets[pos])
{

UselNode *use = bucket->use;

if (UseIsPhiNode (use))

{
Unsigned_Int item = UsePhiNode (use)->newName;
(Touch the defined item 32a)

¥

else

{

Operation *oper = UseOper (use);

if (do_commute &% opcode_specs[oper->opcode].details & COMMUTE)
(Touch the items defined by a commutative operation 37c)
else

(Touch the items defined by a non-commutative operation 33b)

}
<&

Macro referenced in scrap 29a.
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Update the intersections array by moving item from its class into the intersections array. Redundant-
store elimination is an extension to the partitioning algorithm. It will be explained in Section 2.6.

(Touch the defined item 32a) =

{
Unsigned_Int class_num = lookup[item] .class_num;
Member_Node *node = lookup[item].node;
if (!(This item is handled by redundant-store elimination 44b))
{
(Make sure intersections[classnum] is initialized 32b)
(Move node to intersections[classnum] 32c)
(See if intersections[classnum] contains the entire class 33a)
¥
¥
<&

Macro referenced in scraps 31b, 33b.

If this is the first time a member of class num is touched, we must initialize intersections[class num].
This is done by creating an empty members list and adding class num to the classes_to_split set.

(Make sure intersections[classnun] is initialized 32b) =
if (!SparseSet_Member(classes_to_split, class_num))

{
Member_Node *members;
(Create a new members list 15b)
intersections[class_num] .members = members;
intersections[class_num] .num_members = 0;
SparseSet_Insert(classes_to_split, class_num);
¥
<&

Macro referenced in scrap 32a.

Because we are using circular, doubly-linked lists, we can delete a node from its current list and append it to
a new list in constant time. We also keep a count of the number of members of intersections[classnum].

(Move node to intersections[classnum] 32c) =

{
Member_Node *members = intersections[class_num].members;
(Delete node from its current list 23b)
(Append node to the members list 15c)
intersections[class_num] .num_members++;

¥

<&

Macro referenced in scrap 32a.

If the size of intersections[classnum] reaches the size of the original class, then this class is wholly
contained in the touched set; therefore, it will not be split.
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Notice that we simply copy the pointer to the start of the intersections list into the classes array. We
know that all the members of the class have been moved into the intersections list, but there is still the
dummy node in the classes list. This memory will not be recovered until the arena is destroyed. Perhaps
if we were willing to sacrifice some execution time, we could avoid losing this memory.

(See if intersections[classnum] contains the entire class 33a) =
if (intersections[class_num].num_members == classes[class_num].num_members)
{
SparseSet_Delete(classes_to_split , class_num) ;
classes[class_num] .members = intersections[class_num].members;

}
&

Macro referenced in scrap 32a.

When we touch a non-commutative operation, we move all the defined items to the intersections array.

(Touch the items defined by a non-commutative operation 33b) =

{
Unsigned_Int2 *def_item;
Operation_ForAllDefs(def_item, oper)
{
Unsigned_Int item = *def_item;
(Touch the defined item 32a)
¥
Operation_ForAllDefTags(def_item, oper)
{
Unsigned_Int item = *def_item;
(Touch the defined item 32a)
¥
¥
<&

Macro referenced in scrap 31b.

Once we have touched all the uses in a position, the classes_to_split set contains all the classes with
non-empty intersections entries. The members of intersections[class num] will become a new class.

(Split the members of classes to_split 33c) =

{
Unsigned_Int class_num;
SparseSet_ForAll(class_num, classes_to_split)
{
Unsigned_Int num_members = intersections [class_num] .num_members;
Member_Node *members = intersections[class_num].members;
(Remove members from classes[classnum] 34a)
}
}
<&

Macro referenced in scrap 29a.
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Since the items were removed from their original class as they were touched, all we need to do is add the
new class to the partition and decrease the size of the original class by the number of members removed. We
must also add one of the classes to the worklist.

(Remove members from classes[classnum] 34a) =
(Add the new class to the partition 34b)
classes[class_num] .num_members -= num_members;
{Add the appropriate class to worklist 34c)
num_classes++;

&

Macro referenced in scraps 33c, 41ab.

When we add a new class, we must update the lookup table entry for all the members.

(Add the new class to the partition 34b) =
classes[num_classes] .members = members;
classes[num_classes] .num_members = num_members;

{
Member_Node *node;
Class_ForAllMembers (node, members)
{
Unsigned_Int item = node->item;
lookup[item] .class_num = num_classes;
(Initialize other Lookup fields 35b, ... )
¥
¥
&

Macro referenced in scrap 34a.

If class num is already in the worklist, we must add the new class. Otherwise, we add only the smaller of
the two classes.

(Add the appropriate class to worklist 34c) =
if (SparseSet_Member(worklist, class_num) ||
classes[class_num] .num_members > num_members)
SparseSet_Insert(worklist, num_classes);
else
SparseSet_Insert(worklist, class_num);

<&

Macro referenced in scrap 34a.

2.5 Handling Commutative Operations

Commutative operations must be handled with an extension to the partitioning algorithm. The idea is to
ignore the position when touching a use of a member of a congruence class. Now, instead of splitting classes
based on which members were touched or not touched, we split classes based on which members were touched
0, 1, or 2 times. Consider the example code fragment in Figure 2.8, and assume that X 2 Y. The initial
partition is shown in Figure 2.8. Let the class containing X be the first removed from the worklist. Touching
the uses of X will result in A and B being touched once and C being touched twice. Therefore, A and B
will be placed in a class together, and C will be in a class by itself. Let the class containing Y be the next
one removed from the worklist. Touching the uses of Y will result in A and B being touched once and D
being touched twice. Therefore, no further splitting of classes is required. The final partition is shown in
Figure 2.8.
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Figure 2.8: Commutativity Example

Figure 2.9: Partition for Second Commutativity Example

Now assume that X = Y. The initial partition is shown in Figure 2.9. Let the class containing X and Y be
the first removed from the worklist. Touching the uses of X and Y will result in A, B, C, and D all being
touched twice. Therefore, no further splitting of classes is required, and the initial partition is also the final
partition.

Recall that we left space for some extra fields in the Lookup structure when it was originally declared.
For commutative operations, we need a field to count the number of times a defined item has been touched.

(Other Lookup fields 35a) =
Unsigned_Int2 num_touches;
<&

Macro defined by scraps 35a, 43e.
Macro referenced in scrap 13a.

Initially, the num_touches field will be zero.

(Initialize other Lookup fields 35b)
lookup[item] .num_touches

&

Macro defined by scraps 35b, 44a.
Macro referenced in scraps 15a, 17a, 34b.

0;
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Recall that when we touched an item for non-commutative operations, we moved the item out of its current
class and into the intersections array. The touched once and touched twice arrays are used like the
intersections array. The first time an item is touched, it is moved from its original class into touched once.
The second time it is touched, it is moved from touched_once to touched twice. We use two sets called
touched once_classes and touched twice_classes to keep track of which classes have a non-empty entry
in touched_once or touched twice, respectively. These are analogous to the classes_to_split set used for
non-commutative operations.

(Global Variables 36) =
static Class *touched_once;
static Class *touched_twice;
static SparseSet touched_once_classes;
static SparseSet touched_twice_classes;
<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.

Figure 2.10 depicts the partition if the variable A in Figure 2.8 is in class number 5. The first time A
is touched, it will be removed from the members list of classes[5] and appended to the members list
of touched once[5]. The second time A is touched, it will be removed from the touched_once[5] and
appended to touched _twice[5]. Each time the item is touched, the num_touches field of the lookup array
will be incremented.

classes touched_once touched_twice

l Y l Y l M
num num
num members members members
members members members
— node
lookup 5 > classnum
0 —> num_touches
A

Figure 2.10: Data Structures for Handling Commutative Operations
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Since these arrays and sets are indexed by class numbers, they are allocated with defCount entries. They
are only allocated if the user has requested that we handle commutative operations.

(Initialize the data structures for commutative operations 37a) =
if (do_commute)

{
touched_once_classes = SparseSet_Create(partition_arena, defCount);
touched_twice_classes = SparseSet_Create(partition_arena, defCount);
touched_once = Arena_GetMem(partition_arena, defCount*sizeof(Class));
touched_twice = Arena_GetMem(partition_arena, defCount*sizeof(Class));

}

<&

Macro referenced in scrap 28b.

Recall that the classes_to_split set is reset before touching the elements of a particular position. We
must reset the touched once_classes and touched twice_classes sets before touching the items in any
position.

(Reset the data structures for commutative operations 37b) =
if (do_commute)

{
SparseSet_Clear(touched_once_classes);
SparseSet_Clear(touched_twice_classes);
¥
O

Macro referenced in scrap 29a.

When we touch a use in a commutative operation, we must move all the defined registers and tags * out of
their current class and into the touched_once array and then into the touched twice array.

(Touch the items defined by a commutative operation 37c) =

{
Unsigned_Int2 #item_ptr;
Operation_ForAllDefs(item_ptr, oper)
{
Unsigned_Int item = *item_ptr;
(Move item out of its class and into touched xxx 38a)
¥
Operation_ForAllDefTags(item_ptr, oper)
{
Unsigned_Int item = *item_ptr;
(Move item out of its class and into touched xxx 38a)
¥
¥
<&

Macro referenced in scrap 31b.

4 Currently, there are no commutative operations that define tags, but it is better to be safe than sorry

37



Update the number of times item has been touched during this pass of partitioning. Redundant-store
elimination is another extension to the partitioning algorithm. It will be explained in Section 2.6. Notice
that we don’t check that all the items of the class are in the touched_once set. This is because they could
be touched again and moved to touched_twice. We’'ll check the size just before we actually try to split the
class.

{Move item out of its class and into touched xxx 38a) =

{
Unsigned_Int class_num = lookup[item].class_num;
Unsigned_Int num_touches = lookup[item] .num_touches;
Member_Node *node = lookup[item].node;
if (!(This item is handled by redundant-store elimination 44b))
{
if ('num_touches)
{
{Make sure touched oncel[classnum] is initialized 38b)
{Move node to touched once[classnun] 39a)
¥
else if (num_touches == 1)
{
(Make sure touched twice[classnum] is initialized 39b)
(Move node to touched twice[class num] 39c)
(See if touched twice[class num] contains the entire class 40a)
¥
else
{
fprintf (stderr,
"Internal error: Can’t touch an item more than twice: %d\n",
item);
ABORT;
¥
¥
¥
<&

Macro referenced in scrap 37c.

If this is the first time a member of class_num is touched, we must initialize touched once[class num].
This is done by creating an empty members list and adding class num to the touched once_classes set.

(Make sure touched oncel[classmnum] is initialized 38b) =
if (!SparseSet_Member (touched_once_classes, class_num))

{
Member_Node *members;
{(Create a new members list 15b)
touched_oncel[class_num] .members = members;
touched_oncel[class_num] .num_members = 0;
SparseSet_Insert (touched_once_classes, class_num);
¥
<&

Macro referenced in scrap 38a.
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Because we are using circular, doubly-linked lists, we can delete a node from its current list and append it to
a new list in constant time. We also keep a count of the number of members of touched_once[class num]
and the number of times item has been touched.

(Move node to touched once[classnum] 39a) =

{
Member_Node *members = touched_once[class_num].members;
(Delete node from its current list 23b)
(Append node to the members list 15¢)
touched_once[class_num] .num_members++;
lookup[item] .num_touches++;

¥

<o

Macro referenced in scrap 38a.

If this is the first time a member of ¢lass_num is moved into the touched_twice array, we must initialize
touched twice[class num]. This is done by creating an empty members list and adding class_num to the
touched twice _classes set.

(Make sure touched twice[class num] is initialized 39b) =
if (!SparseSet_Member (touched_twice_classes, class_num))

{
Member_Node *members;
{(Create a new members list 15b)
touched_twicel[class_num] .members = members;
touched_twicel[class_num] .num_members = 0;
SparseSet_Insert (touched_twice_classes, class_num);
¥
<&

Macro referenced in scrap 38a.

We move a node into the touched_twice array the same way we moved it into the touched_once array.

(Move node to touched twice[classnum] 39c) =

{
Member_Node *members = touched_twice[class_num] .members;
(Delete node from its current list 23b)
touched_oncel[class_num].num_members—-;
(Append node to the members list 15¢)
touched_twicel[class_num] .num_members++;
lookup[item] .num_touches++;

¥

O

Macro referenced in scrap 38a.
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If the size of touched twice[class num] reaches the size of the original class, then this class is wholly
contained, and will not be split. Notice that we simply copy the pointer to the start of the touched twice list
into the classes array. We know that all the members of the class have been moved into the touched twice
list, but there is still the dummy node in the classes list. This memory will not be recovered until the
arena is destroyed. Perhaps if we were willing to sacrifice some execution time, we could avoid losing this
memory.

(See if touched twice[classnum] contains the entire class 40a) =
if (touched_twice[class_num].num_members == classes[class_num].num_members)
{
Member_Node *node;
Member_Node *members = touched_twice[class_num] .members;

Class_ForAllMembers (node, members)
lookup[node->item] .num_touches = 0;

SparseSet_Delete (touched_twice_classes, class_num);
classes[class_num] .members = members;

¥

<&

Macro referenced in scrap 38a.

Once all use positions have been processed, we are ready to split the classes that represent commutative
operations. The sets touched once _classes and hit_twice_classes are precisely those classes that must
be split.

(Split classes representing commutative operations 40b) =
if (do_commute)

{
(Process the elements in touched once_classes 4la)
(Process the elements in touched twice classes 41b)
¥
O

Macro referenced in scrap 29a.
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Here is where we check for the touched_once set to be all of the class. Recall that we didn’t check this earlier
because some of the members could have later been moved to the touched_twice set. If the touched_once
set is not the entire class, then its members are processed the same way the members of classes_to_split
were.

(Process the elements in touched once_classes 4la) =

{
Unsigned_Int class_num;
SparseSet_ForAll(class_num, touched_once_classes)
{
if (touched_once[class_num].num_members == classes[class_num].num_members)
{
Member_Node *node;
Member_Node *members = touched_once[class_num].members;
Class_ForAllMembers (node, members)
lookup[node->item] .num_touches = 0;
classes[class_num] .members = members;
}
else
{
Unsigned_Int num_members = touched_once[class_num] .num_members;
Member_Node *members = touched_once[class_num].members;
(Remove members from classes[classnum] 34a)
}
}
¥
<&

Macro referenced in scrap 40b.

The elements of touched twice _classes are processed just like the members of classes to_split were.

(Process the elements in touched twice_classes 41b) =

{
Unsigned_Int class_num;
SparseSet_ForAll(class_num, touched_twice_classes)
{
Unsigned_Int num_members = touched_twicel[class_num] .num_members;
Member_Node *members = touched_twicel[class_num].members;
(Remove members from classes[classnum] 34a)
}
}
<&

Macro referenced in scrap 40b.

2.6 Eliminating Redundant Stores

Redundant-store operations write the same value to a memory location that was previously written there.
Therefore, they do not alter the contents of memory, and they can be eliminated from the routine. Redundant
stores should not be confused with dead stores which write a value to memory that is never subsequently
read. Handling redundant scalar stores requires an extension to the partitioning algorithm. Consider the
program fragment in Figure 2.11. The FRAME operation defines the initial values for the memory tags = and
y. During the conversion to SSA form, all tags were given subscripts to give each one a unique definition
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point. The store operations have two tags associated with them®. The first tag is the before value of the
memory location, and the second is the after value of the memory location. In our example, the store from
rg 1s redundant while the store from r; is not. We would like to check for congruence between the before
and after tag values to determine if a store is redundant. Unfortunately, the tag x( is defined by the FRAME
operation, and the tag z; is defined by a store operation. Therefore, they will be in different classes in the
initial partition. The initial partition is shown in Figure 2.12. Clearly, £y can never be congruent to z; using
the unmodified partitioning algorithm.

FRAME [l‘o yo]

o < LOAD Zo

rl — 1
STORE To [l‘o] [Il]
STORE 1 [yo] [yl]

Figure 2.11: Example Program for Redundant-Store Elimination

Ol0,
9l0,

Figure 2.12: Initial Partition for Redundant-Store Elimination Example

We must treat scalar load and store operations as a copy from a register to memory or vice versa. Since
copying a value does not change it, we must ensure that the source and destination of a copy will remain in
the same congruence class throughout the partitioning process. To accomplish this, we keep a list of copies
for each item in the partition. During the process of refining the partition, the copy list for an item moves
from class to class with the original item. In our example routine, rg is a copy of zg, and z; is a copy of rg.
Also, yg is a copy of r;. Given this scheme, the initial partition is also the final partition (See Figure 2.13).
Notice that zg = 21, but yo % y1. Thus, we can eliminate the first store but not the second.

rg — Top — X1

r —Whn

Figure 2.13: Partition to Enable Redundant-Store Elimination

5 Actually, these are lists of tags. The first tag is the one that appears in the source, and the others are possible aliases. In
this example, the lists have length one.
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The copy list for an item will be kept in the item’s Member Node structure. Each element contains the SSA
name of the copy and a pointer to the next element in the list.

(Type Declarations 43a) =
typedef struct copy_node

{
struct copy_node *next;
Unsigned_Int2 item;

} Copy_Node;

<&

Macro defined by scraps 11ab, 13a, 22c, 29b, 43a, 57b, 63a.
Macro referenced in scrap 3.

Recall that we left space for some extra fields in the Member Node structure when it was originally declared.
For redundant-store elimination, we keep the copy list for an item there.

(Other Member Node fields 43b) =
struct copy_node *copies;

&

Macro referenced in scrap 11a.

Initially, the copy list for an item is empty.

(Initialize other Member Node fields 43c) =
node->copies = NULL;
&

Macro referenced in scraps 15b, 16a, 17a, 20a.

We’ll need a macro to iterate through the copies of a node. It takes two arguments:

1. A pointer to a Copy_Node structure (the iterator variable), and
2. A pointer to a Member Node structure.

(Macros 43d) =
#define Node_ForAllCopies(copy, node) \
for (copy = (node)->copies;
copy; \
copy = copy->next)

~

&

Macro defined by scraps 5b, 6b, 12, 29c, 43d.
Macro referenced in scrap 3.

While refining the partition, we do not touch any items that are in the copy list of some other item. Therefore,
we will add a field in the Lookup structure to indicate if the item is a copy of some other item.

(Other Lookup fields 43e) =
Boolean is_copy;

&

Macro defined by scraps 35a, 43e.
Macro referenced in scrap 13a.
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Figure 2.14 depicts the partition if zy from Figure 2.11 is class number five. The items ry and z; are in the
copy list for 5. The node field of the lookup entries for rg and z; point to the Member Node structure for
Q.

classes intersections

5 [ 4— —1 5
I a l Tum
nhn members nembers
members members
[ node
lookup 5 5 5 —>class num
T T T - is_copy

Figure 2.14: Data Structures for Redundant-Store Elimination

All items defined by operations other than scalar loads and stores are not copies.

(Initialize other Lookup fields 44a) =
lookup[item].is_copy = FALSE;
&

Macro defined by scraps 35b, 44a.
Macro referenced in scraps 15a, 17a, 34b.

An item defined by a scalar load or store operation will have its is_copy field set to TRUE.

(This itemis handled by redundant-store elimination 44b) =

lookup[itemn].is_copy
<&

Macro referenced in scraps 32a, 38a.

44



When we initialize the partition, scalar loads and stores require special handling. For a load operation, the
defined register is a copy of the first referenced tag. Any other tags are possible aliases.

(Add a scalar load operation to the initial partition 45a) =

{
Unsigned_Int reg = oper->arguments[oper->defined - 1];
Unsigned_Int tag = oper->arguments[oper->defined];
(Add reg to the copy list for tag 45b)

}

<&

Macro referenced in scrap 19a.

To add an item to the copy list, we allocate a Copy Node structure to contain the item and insert it at the
beginning of the copy list for the node. Notice that the lookup table entry points to the node for the original
item, not the copy.

(Add reg to the copy list for tag 45b) =
{
Member_Node #node = lookup[tag].node;
Copy_Node *copy_node = Arena_GetMem(partition_arena, sizeof (Copy_Node));

copy_node->item = reg;
copy_node->next = node->copies;
node->copies = copy_node;
lookup[reg] .num_touches = 0;
lookup[reg].is_copy = TRUE;
lookup[regl] .node = node;

}

<&

Macro referenced in scrap 45a.

For a store operation, the first defined tag is a copy of the last referenced register. Any other tags are possible
aliases, and they are put into separate classes.

(Add a scalar store operation the the initial partition 45¢) =

{
Unsigned_Int tag = *Operation_Second_List_Start (oper);
Unsigned_Int reg = oper->arguments[oper->defined - 1];
(Add tag to the copy list for reg 46a)
(Put the aliases in separate classes 46b)

}

<&

Macro referenced in scrap 19a.
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To add an item to the copy list, we allocate a Copy Node structure to contain the item and insert it at the
beginning of the copy list for the node. Notice that the lookup table entry points to the node for the original
item, not the copy.

(Add tag to the copy list for reg 46a) =
{
Member_Node #node = lookup[reg].node;
Copy_Node *copy_node = Arena_GetMem(partition_arena, sizeof (Copy_Node));

copy_node->item = tag;
copy_node->next = node->copies;
node->copies = copy_node;
lookup[tag] .num_touches = 0;
lookup[tag].is_copy = TRUE;
lookup[tag] .node = node;

}

<&

Macro referenced in scrap 45c.

The first tag in the defined tag list is the tag that is definitely being stored by this operation. All others are
possible aliases of the first tag.

(Put the aliases in separate classes 46b) =

{
Boolean first = TRUE;
Unsigned_Int2 *tag_ptr;
Operation_ForAllDefTags(tag_ptr, oper)
if (first)
first = FALSE;
else
{
Member_Node #*node = Arena_GetMem(partition_arena, sizeof (Member_Node));
node->item = *tag_ptr;
node->copies = NULL;
(Create a new class for node 15a)
¥
¥
<&

Macro referenced in scrap 45c.

When refining the partition, we bucket sort the uses of all members of a congruence class. The first step is
to determine the maximum position of a use of any member. Since copies are also members of the class, we
must also consider their uses.

(Check the uses of all the redundant-store information 46c) =

{
Copy_Node *copy_node;
Node_ForAllCopies(copy_node, node)
{
Unsigned_Int item = copy_node->item;
(Check the uses of item 30c)
}
}
<&

Macro referenced in scrap 30b.
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During the actual bucket sorting, we must add the uses of copies to the appropriate bucket.

(Bucket sort the redundant-store information of node 47a) =

{
Copy_Node *copy_node;
Node_ForAllCopies(copy_node, node)
{
Unsigned_Int item = copy_node->item;
(Bucket sort the uses of item 31a)
¥
¥
<&

Macro referenced in scrap 30a.

Once the partition has stabilized, we must find all the items that have copies, and write down the correct
class_num in the lookup table for all the copies. During the partitioning phase, we just let the copies go
along for the ride without updating the class_num field of their lookup table entry.

(Prepare the partition for redundant-store elimination 47b) =

{
Unsigned_Int class_num;
for (class_num = 1; class_num < num_classes; class_num++)
{
Member_Node *node;
Copy_Node *copy_node;
Class_ForAllMembers(node, classes[class_num].members)
Node_ForAllCopies(copy_node, node)
{
1ookup[copy_node—>item].class_num = class_num;
classes[class_num] .num_members++;
¥
}
¥
<

Macro referenced in scrap 27a.

During the renumbering process, we can determine that a store is redundant and eliminate it. Recall that
each store is given a before and after tag value. These are stored in the first position of the referenced and
defined tag lists respectively. If the before and after tag values are congruent, this store is redundant. We
eliminate it and continue with the next operation in the instruction.

(If oper is a redundant store, eliminate it and continue 47c) =
if (elim_stores &%
opcode_specs [oper->opcode] .details & STORE &&
opcode_specs[oper->opcode] .details & SCALAR)

{
Unsigned_Int ref_tag = oper->arguments[oper->defined];
Unsigned_Int def_tag = *0Operation_Second_List_Start(oper);
if (lookupl[ref_tag].class_num == lookup[def_tag].class_num)
{
oper->critical = FALSE;
num_removed++;
continue;
}
}
<

Macro referenced in scrap 52b.
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Chapter 3

Renumbering

Once the partition has stabilized, we are ready to move into the next phase of global value numbering. We
renumber the ¢-nodes and registers in the routine based on the congruence classes in the final partition.
Since we have the class number of every SSA name stored in the lookup array, we can do this in a single
pass over the routine. However, if the user wants to prepare the output for partial redundancy elimination,
the register numbers must obey certain conventions. These will be discussed in the next section. Since the
class numbers are more or less arbitrary, we will create a mapping from class numbers to register numbers
that obey partial’s naming rules. We will create this mapping by overwriting the class num field of each
entry in the lookup array. This will allow us to perform renumbering as a separate step that is independent
of this option.

(Renumber the ¢-nodes and registers based on the congruence classes 48) =
if (debug >= MAJOR_PHASES)
fprintf (stderr, "Renumber the phi-nodes and registers\n");

if (prepare_for_partial)
(Create a mapping of register numbers to obey partial’s register naming rules 49a)
(Renumber the ¢-nodes and operations in the routine 51b)

&

Macro referenced in scrap 4.
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3.1 Preparing for Partial Redundancy Elimination

Our implementation of partial redundancy elimination requires the registers to be numbered so that the
register number of an expression register will be higher than the register numbers of its operands [6, 5].
To accomplish this, we walk the CFG in reverse postorder to guarantee that the operands of an expression
are visited before the expression. During this walk, we rename congruence classes representing registers in
the order of appearance of some member. We’ll use an array called regmap to hold the mapping of class
numbers to register names in the new numbering scheme. The in_reg map set keeps track of which elements
of reg map have valid entries. Notice that we don’t renumber the tags in the routine because their original
names will be restored when we convert out of SSA form.

(Create a mapping of register numbers to obey partial’s register naming rules 49a) =
{
Arena partial_arena = Arena_Create();
Unsigned_Int2 #reg_map = Arena_GetMem(partial_arena, num_classes*sizeof (Unsigned_Int2));
VectorSet in_reg_map = VectorSet_Create(partial_arena, num_classes);
Unsigned_Int num_registers;
Block *block;

if (debug >= MINOR_PHASES)
fprintf (stderr, " Create a mapping of register names for partial\n");

(Add class zero to regmap 49b)
ForAllBlocks_rPostorder(block)
{
(Create a new register number for any ¢-nodes that define registers 50a)
(Create a new register number for any operations that define registers 50b)
}
{Overwrite the class num field of the lookup array 51a)
Arena_Destroy(partial_arena);
}
<&

Macro referenced in scrap 48.

When we created the partition, we allocated class zero to contain the SSA name zero. This name signifies
an undefined value. We preserve this convention by forcing zero to always map to itself.

(Add class zero to regmap 49b) =
VectorSet_Insert(in_reg_map, 0);
reg_map[0] = 0;
num_registers = 1;

&

Macro referenced in scrap 49a.
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When renumbering the ¢-nodes, we only consider the ones that define registers. Any ¢-node whose congru-
ence class has not been assigned a new register number will be given one.

(Create a new register number for any ¢-nodes that define registers 50a) =

{
PhiNode *phi_node;
Block_ForAllPhiNodes (phi_node, block)
if (PhiNode_IsRegister(phi_node))
{
Unsigned_Int class_num = lookup[phi_node—>newName].class_num;
if (!VectorSet_Member(in_reg_map, class_num))
{
reg_map[class_num] = num_registers++;
VectorSet_Insert(in_reg_map, class_num);
¥
¥
¥
<&

Macro referenced in scrap 49a.

We iterate through all the operations in the block and assign a new register number to any defined register
whose congruence class does not have an entry in reg map.

(Create a new register number for any operations that define registers 50b) =

{
Inst *inst;
Block_ForAllInsts(inst, block)
{
Operation **oper_ptr;
Inst_ForAllQOperations (oper_ptr, inst)
{
Operation *oper = *oper_ptr;
Unsigned_Int2 #*reg;
Operation_ForAllDefs(reg, oper)
{
Unsigned_Int class_num = lookup[*reg].class_num;
if (!VectorSet_Member(in_reg_map, class_num))
{
reg_map[class_num] = num_registers++;
VectorSet_Insert(in_reg_map, class_num);
¥
¥
¥
¥
¥
<&

Macro referenced in scrap 49a.
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Once we have built reg map, we must store these values in the lookup array. Overwriting the array allows
us to renumber the routine without knowing that this mapping is being used.

(Overwrite the class num field of the lookup array 51a) =

{
Unsigned_Int i;
for (i = 0; i < defCount; i++)
if (IsRegister(i))
lookup[i].class_num = reg_map[lookup[i].class_num];
¥
<&

Macro referenced in scrap 49a.

3.2 Renumbering the ¢-nodes and Registers

Once the partitioning is completed and the register mapping (if requested) is set up, we are ready to
renumber the ¢-nodes and registers in the routine according to their congruence class. We accomplish this
by overwriting every register name in the routine by the class num value in the lookup array. Notice that
we don’t renumber the tags in the routine; their original names will be restored during the conversion out
of SSA form.

(Renumber the ¢-nodes and operations in the routine 51b) =
{
Unsigned_Int num_removed = 0;
Block *block;

if (debug >= MINOR_PHASES)
fprintf (stderr, " Renumber the phi-nodes and operations\n'");

ForAl1lBlocks (block)
{
(Renumber the ¢-nodes that define registers 52a)
(Renumber the operations that define registers 52b)
}
if (debug &% elim_stores)
fprintf (stderr, " %d redundant store operations removed.\n",
num_removed) ;

}
&

Macro referenced in scrap 48.
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We iterate through the ¢-nodes and renumber the ones that define registers according to their congruence
class. In Section 1.5, we declared the variable max_register because that value will be needed for the
conversion out of SSA form. The correct value of this variable will be determined during the renumbering
process. If any of the ¢-nodes or operations define a register number larger than max register, we update
its value. Notice that we don’t renumber the ¢-nodes that define tags.

(Renumber the ¢-nodes that define registers 52a) =

{
PhiNode *phi_node;
Block_ForAllPhiNodes (phi_node, block)
if (PhiNode_IsRegister(phi_node))
1{
PhiNodeArg *arg;
Unsigned_Int new_name = lookup[phi_node—>newName].class_num;
PhiNode_ForAllArgs(arg, phi_node)
arg->item = lookupl[arg->item].class_num;
phi_node->newName = new_name;
if (new_name > max_register) max_register = new_name;
¥
}
<

Macro referenced in scrap 51b.

We iterate through the operations in the block. Before we renumber the registers, we try to eliminate the
operation. The operation can be eliminated if it is a redundant scalar store and the user has requested this
optimization (See Section 2.6).

(Renumber the operations that define registers 52b) =

{
Inst *inst;
Block_ForAllInsts(inst, block)
{
Operation **oper_ptr;
Inst_ForAllOperations (oper_ptr, inst)
{
Operation *oper = *oper_ptr;
(If oper is a redundant store, eliminate it and continue 47c)
(Renumber the registers according to their congruence class 53)
¥
}
}
<

Macro referenced in scrap 51b.
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We renumber the used and defined registers of the operation by overwriting them. If any of the defined
registers are given a number larger than max_register, we update its value. Notice that we don’t renumber
the tags.

(Renumber the registers according to their congruence class 53) =

{
Unsigned_Int2 #item;
Operation_ForAllUses(item, oper)
*item = lookup[#item].class_num;
Operation_ForAllDefs(item, oper)
{
Unsigned_Int new_name = 1ookup[*item].c1ass_num;
*item = new_name;
if (new_name > max_register) max_register = new_name;
}
¥
<

Macro referenced in scrap 52b.

93



Chapter 4

Removing Operations

Chapters 2 and 3 explain how to partition the values in the routine into congruence classes and how to
renumber the registers and ¢-nodes so that congruent values are given the same number. However, these
two steps alone will not improve the running time of the routine; we must also remove the redundant
computations. There are three possibilities for achieving this goal:

Dominator-Based Removal The technique suggested by Alpern, Wegman, and Zadeck is to
remove computations that are dominated by another member of the congruence class [3].
Figure 4.1 shows an example routine that we can improve with this method. Since the com-
putation of z in block B; dominates the computation in block By, the second computation
can be removed.

AVAIL-Based Removal The classical approach is to remove computations that are in the set
of available expressions (AVAIL) at the point where they appear in the routine [2]. This
approach uses data-flow analysis to determine the set of expressions available along all
paths from the start of the routine. Notice that the calculation of z in Figure 4.1 will be
removed because it is in the AVAIL set. In fact, any computation that would be removed by
dominator-based removal would also be removed by AVAIL-based removal. However, there
are improvements that can be made by the AVAIL-based technique that are not possible
using dominators. Consider the routine in Figure 4.2. Since z is calculated in both Bj
and Bs, it is in the AVAIL set at B4. Thus, the calculation of z in B4 can be removed.
However, since neither Bs or By dominate B4, dominator-based removal could not improve
this routine.

Partial Redundancy Elimination PRE is an optimization introduced by Morel and Ren-
voise [8]. Partially redundant computations are redundant along some, but not necessarily
all, execution paths. Notice that the computation of z in Figure 4.2 is redundant along all
paths to block By, so it will be removed by PRE. On the other hand, the routine in Fig-
ure 4.3 cannot be improved using AVAIL-based removal because z is not available along the
path through block B;. The calculation of z is computed twice along the path through Bs
but only once along the path through B;. Therefore, it is considered partially redundant.
PRE can move the computation of z from block B4 to block By. This will shorten the path
through Bs and leave the length of the path through Bs unchanged.

4.1 Dominator-Based Removal

To perform dominator-based removal, we consider each congruence class and look for pairs of members where
one dominates the other. To make the algorithm efficient, we bucket sort the members of the class based
on the preorder index in the dominator tree of the block where they are computed. A naive bucket sorting
algorithm would keep a list of items defined for each block. Assume that items = and y are congruent and
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Figure 4.1: Program Improved by Dominator-Based Removal
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Figure 4.2: Program Improved by AVAIL-Based Removal

both are computed in block B. The bucket sorting algorithm would place them in a list indexed by the
preorder index of B. See figure 4.4.

However, we can improve upon the naive algorithm. If more than one member is computed in the same
block, only the one computed earliest in the block must be considered, because it dominates all the others.
Thus, instead of an array of lists, we can keep an array of SSA names. When an item is inserted into an
entry that already contains an item, we can select the one that is computed earlier in the block. This item
will be written into the array entry and the operation computing the other will be removed immediately.

Bg‘ ‘ Bg‘Z<—l‘+y‘ BQ‘Z<—I—|—y‘ BB‘zW—x—i—y‘

Before After

Figure 4.3: Program Improved by Partial Redundancy Elimination
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Blocks

Figure 4.4: Naive Bucket Sorting Algorithm

Blocks

Figure 4.5: Better Bucket Sorting Algorithm

Assume that items z and y are congruent and both are computed in block B, and that z is computed earlier
than y. The bucket sorting algorithm would replace y with z in the entry indexed by the preorder index of
B. See Figure 4.5.

Once we have found the item computed earliest in each block, we can compare adjacent elements in the
list and decide if one dominates the other. This decision is based on an ancestor test in the dominator tree.
The entire process can be done in time proportional to the size of the class.
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We only consider classes with more than one member, because a class with a single member can not cause
any operations to be removed.

(Optionally perform dominator-based removal 57a) =
if (do_dominators)
{
Arena dom_arena = Arena_Create();
Unsigned_Int num_removed = 0;
Unsigned_Int i;

if (debug >= MAJOR_PHASES)
fprintf(stderr, "Perform dominator-based removal\n");

(Initialize the dominator data structures 58b, ... )
for (i = 1; i < num_classes; i++)
if (classes[i].num_members > 1)

{
(Bucket sort the members of classes[i] 59b)
{Compare items defined in different blocks 61a)
¥

Arena_Destroy(dom_arena) ;

if (debug)
fprintf (stderr, " %d phi-nodes or operations removed based on dominators.\n",
num_removed) ;

}
&

Macro referenced in scrap 4.

During dominator-based removal, we’ll need to perform an ancestor test on the dominator tree. To do this
in constant time, we must know the preorder index and the number of descendants of each block in the
dominator tree. Since this information isn’t recorded for us while the dominator tree is being built, we walk
the dominator tree and record this information in an array called dominator_info. It is indexed by the
preorder_index of each block in the DFS tree. Each entry contains the preorder index of the block in the
dominator tree and the size of the subtree of the dominator tree rooted at this block.

(Type Declarations 57b) =
typedef struct

{
Unsigned_Int2 dominator_index;
Unsigned_Int2 dominator_size;
} Dom_Info;
<&

Macro defined by scraps 11ab, 13a, 22c, 29b, 43a, 57b, 63a.
Macro referenced in scrap 3.

(Global Variables 57c) =
static Dom_Info *dominator_info;
<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.
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We’ll also need a preorder list of blocks in the dominator tree and an array of SSA names for bucket sorting
the members of a class by block.

(Global Variables 58a) =
static Unsigned_Int2 *dom_preorder_list;
static Unsigned_Int2 *buckets;

<&

Macro defined by scraps 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a.
Macro referenced in scrap 3.

Since these arrays are indexed by a block’s preorder index, and preorder indices start with one, each array
must have block_count + 1 elements.

(Initialize the dominator data structures 58b) =

{
Unsigned_Int array_size = block_count + 1;
dominator_info = Arena_GetMem(dom_arena, sizeof (Dom_Info)*array_size);
dom_preorder_list = Arena_GetMem(dom_arena, sizeof(Block *)#*array_size);
buckets = Arena_GetMemClear (dom_arena, sizeof(Unsigned_Int2)*array_size);
¥
<&

Macro defined by scraps 58bd.
Macro referenced in scrap 57a.

The walk_tree function walks the dominator tree in preorder and initializes the dominator _info and
dom_preorder list arrays. It returns the size of the subtree of the dominator tree rooted at block.

(Functions 58¢c) =
static Unsigned_Int walk_tree(Block *block, Unsigned_Int *index)

{
Unsigned_Int size = 1;
Unsigned_Int preorder_index = block->preorder_index;
Unsigned_Int dom_index = (*index)++;
Block_List_Node *child;
dom_preorder_list[dom_index] = preorder_index;
dominator_info[preorder_index] .dominator_index = dom_index;
Dominator_ForChildren(child, block->dom_node)
size += walk_tree(child->block, index);
return dominator_info[preorder_index].dominator_size = size;
¥
<

Macro defined by scraps 58c, 59a, 61b, 77b, 78a.
Macro referenced in scrap 3.

The initial call to walk_tree should be passed the start_block and a pointer to a variable that has been
initialized to one.

(Initialize the dominator data structures 58d) =

{

Unsigned_Int index = 1;

(Void) walk_tree(start_block, &index);
¥
<&

Macro defined by scraps 58bd.
Macro referenced in scrap 57a.

58



Once we have set up our arrays, we can decide if block b; dominates block b2 by performing an ancestor test
in the dominator tree. Let p; and ps be the preorder indices of b; and by respectively, and let ND be the
number of descendants of by. Then b; dominates by if and only if:

p1 < p2<p1+ ND

(Functions 59a) =
static Boolean dominates(Unsigned_Int bl, Unsigned_Int b2)

{
Unsigned_Int blockl = dom_preorder_list[bl];
Unsigned_Int block2 = dom_preorder_list[b2];
Unsigned_Int index1l = dominator_info[blockl].dominator_index;
Unsigned_Int sizel = dominator_info[blockl].dominator_size;
Unsigned_Int index2 = dominator_info[block2].dominator_index;
return indexl <= index2 && index2 < indexl + sizel;

}

<&

Macro defined by scraps 58¢c, 59a, 61b, 77b, 78a.
Macro referenced in scrap 3.

When bucket sorting, we must consider all members of the class and their copies. Refer to the discussion of
redundant-store elimination (Section 2.6) for an explanation of the copy lists.

(Bucket sort the members of classes[i] 59b) =

{
Member_Node *node;
Class_ForAllMembers (node, classes[i].members)
{
Unsigned_Int item = node->item;
Copy_Node *copy_node;
(Add item to buckets 60a)
Node_ForAllCopies(copy_node, node)
{
item = copy_node->item;
(Add item to buckets 60a)
¥
¥
¥
<&

Macro referenced in scrap 57a.
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We can only consider items that define registers, because we can only remove ¢-nodes or operations that
define registers. If buckets[index] is not zero, we have already found an item in this block, so we must
decide if item dominates it. Since our algorithm for building SSA numbers the definitions in a block in
increasing order of appearance, we can compare the SSA numbers of the two items. The earlier item will
have the smaller SSA number. If the existing item dominates this one, we remove the defining operation
for item. Otherwise, we remove the defining operation for buckets[index] and overwrite buckets[index]
with item.

(Add item to buckets 60a) =
if (IsRegister(item))

{
Block #block = DefiningBlock(item);
Unsigned_Int index = dominator_info[block->preorder_index].dominator_index;
if (buckets[index])
{
if (buckets[index] < item)
{
Unsigned_Int del_item = item;
(Remove the definition of del_item 60b)
}
else
{
Unsigned_Int del_item = buckets[index];
(Remove the definition of del_item 60b)
buckets[index] = item;
¥
num_removed++;
¥
else
buckets[index] = item;
¥
<&

Macro referenced in scrap 59b.

We remove a ¢-node by setting all of its arguments to zero. Recall that a zero argument to a ¢-node
represents an undefined value. Therefore, the ConvertFromSSA routine will not insert copies for this ¢-node.
We remove an operation by setting its critical field to FALSE.

(Remove the definition of del_item 60b) =
if (IsPhiNode(del_item))

{
PhiNodeArg *arg;
PhiNode_ForAllArgs(arg, DefiningPhiNode(del_item))
arg=>item = 0;
}
else
DefiningOper (del_item)->critical = FALSE;
<&

Macro referenced in scrap 60a.
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We use a “two-finger” algorithm for comparing items defined in different blocks. We consider adjacent pairs
of non-zero entries in the buckets array. The curr_block variable points to the first block of the pair in
consideration. The next block variable points to the second block. These two variables move through the
buckets array until each pair of adjacent blocks have been compared. After we have finished processing an
entry in buckets, we reset its value to zero in preparation for processing the next class.

(Compare items defined in different blocks 61a) =

{
Unsigned_Int curr_block = move_pointer(buckets, 1);
Unsigned_Int next_block = move_pointer(buckets, curr_block + 1);
while (next_block)
{
if (dominates(curr_block, next_block))
{
DefiningOper (buckets[next_block])->critical = FALSE;
num_removed++;
buckets[next_block] = 0;
¥
else
{
buckets[curr_block] = 0;
curr_block = next_block;
¥
next_block = move_pointer(buckets, next_block + 1);
¥
buckets[curr_block] = 0;
¥
<&

Macro referenced in scrap 57a.

The move_pointer function is used to find the next non-empty element of the buckets array. If all remaining
elements are empty, the function will return zero.

(Functions 61b) =
static Unsigned_Int move_pointer(Unsigned_Int2 #buckets, Unsigned_Int start)

{
while (start <= block_count)
if (buckets[start]) return start;
else start++;
return 0;
¥
<&

Macro defined by scraps 58c, 59a, 61b, 77b, 78a.
Macro referenced in scrap 3.

4.2 AVAIL-Based Removal

To perform AVAIL-based removal, we must compute the set of available expressions at the beginning of
each block. An expression is available if it is computed along all paths from start block. If an operation
computes a value already in the set of available expressions then it can be removed. First, we compute the
AVAIL set for each block, then we remove any operations whose result is in the set.

Because of the properties of the partitioning algorithm, the data-flow problem solved is slightly different
from the traditional AVAIL problem. We do not consider the killed set for a block because any values
killed will be in different classes in the final partition. Consider the code fragment in Figure 4.6. Under the
traditional data-flow framework, the assignment to X would kill the Z expression. However, since we know
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J —X+Y
X — ...
J —X+Y

Figure 4.6: AVAIL Example

0, if 7 is the entry block
AVAILin; = .
i ﬂ AVAIL out;, otherwise
jepred(i)
AVAIL out; = AVAIL.in; Udefined;

Figure 4.7: Data-Flow Equations for AVAIL

that we have partitioned the values into congruence classes, if the two assignments to Z are congruent, then
the second one is redundant and can be removed. One way this can happen is if the assignment to X is
congruent to the definition of X that reaches the first assignment to Z. Note that if the assignment to X
caused the two assignments to Z to have different values, then they would not be congruent to each other,
and they would be assigned different locations in the bit vectors. The data-flow equations we use are shown
in Figure 4.7.

(Optionally perform AVAIL-based removal 62) =
if (do_avail)

{
Arena avail_arena = Arena_Create();
if (debug >= MAJOR_PHASES)
fprintf(stderr, "Perform AVAIL-based removal\n'");
(Compute the AVAIL set for each block 63b)
(Remove operations whose result is in AVAIL 68a)
Arena_Destroy(avail_arena);
¥
O

Macro referenced in scrap 4.
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We will store some information for each block in the block_extension field contained in the Block structure.
The ConvertToSSA routine stored the ¢-nodes there, but since the routine has already been converted out
of SSA form, we don’t need them. However, we cannot redefine the block_extension structure so we will
define a new structure and type cast the pointers to it.

(Type Declarations 63a) =
typedef struct

{
VectorSet defined; /* The set of values defined inside this block */
VectorSet AVAIL_in; /* The set of available expressions at the beginning
of this block #*/
VectorSet AVAIL_out; /* The set of available expressions at the end
of this block */
Boolean dirty; /* A flag indicating if AVAIL_in should be recomputed #*/
} AVAIL_Extension;
<&

Macro defined by scraps 11ab, 13a, 22c, 29b, 43a, 57b, 63a.
Macro referenced in scrap 3.

We compute the AVAIL sets using iterative data-flow analysis. The defined set can be determined locally
for each block. The analysis starts with an initial approximation to the solution and iteratively refines
the solution until it stabilizes. We are only interested in available registers, so all bit vectors will have
num _registers elements.

(Compute the AVAIL set for each block 63b) =

{
Unsigned_Int set_size = num_registers;
if (debug >= MINOR_PHASES)
fprintf (stderr, " Compute the AVAIL set for each block\n");
(Find the defined set for each block 64a)
(Initialize the AVAIL data-flow problem 64c)
(Find the AVAIL set for all blocks 66a)
¥
O

Macro referenced in scrap 62.
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The defined set will contain all the registers defined in a block.

(Find the defined set for each block 64a) =

{
Block *block;
ForAllBlocks (block)
{
VectorSet defined;
Inst *inst;
(Allocate the block_extension and the defined set 64b)
Block_ForAllInsts(inst, block)
{
Operation **oper_ptr;
Inst_ForAllOperations (oper_ptr, inst)
{
Operation *oper = *oper_ptr;
Unsigned_Int2 *reg_ptr;
Operation_ForAllDefs(reg_ptr, oper)
VectorSet_Insert(defined, *reg_ptr);
¥
¥
¥
¥
<&

Macro referenced in scrap 63b.

(Allocate the block_extension and the defined set 64b) =
block->block_extension = Arena_GetMem(avail_arena, sizeof (AVAIL_Extension));
defined = ((AVAIL_Extension *) block->block_extension)->defined =
VectorSet_Create(avail_arena, set_size);

&

Macro referenced in scrap 64a.

(Initialize the AVAIL data-flow problem 64c) =

{
Block *block;
ForAllBlocks (block)
if (block == start_block)
(Initialize AVAIL for the start_block 65a)
else
(Initialize AVAIL for the other blocks 65b)
¥
<&

Macro referenced in scrap 63b.
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The initial value for the AVAIL set for the start_block is the empty set. In fact, we don’t even need to
allocate a set for it. We know that the AVAIL set for the start block is definitely the empty set, so we set
its dirty flag to FALSE.

(Initialize AVAIL for the start_block 65a) =

{
AVAIL_Extension *extension = (AVAIL_Extension *) start_block->block_extension;
extension->AVAIL_out = VectorSet_Create(avail_arena, set_size);
extension->AVAIL_in = NULL;
extension->dirty = FALSE;

¥

<&

Macro referenced in scrap 64c.

The initial value for the AVAIL set for blocks other than the start_block is the set of all registers. Since
this is merely an initial guess for the AVAIL set, we set the dirty flag to TRUE.

(Initialize AVAIL for the other blocks 65b) =

{
AVAIL_Extension *extension = (AVAIL_Extension *) block->block_extension;
VectorSet AVAIL_in = extension->AVAIL_in = VectorSet_Create(avail_arena, set_size);
VectorSet AVAIL_out = extension->AVAIL_out = VectorSet_Create(avail_arena, set_size);
VectorSet_Complement (AVAIL_in, AVAIL_in);
VectorSet_Complement (AVAIL_out, AVAIL_ out);
extension->dirty = TRUE;

¥

<&

Macro referenced in scrap 64c.
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We perform iterative data-flow analysis to find AVAIL for all blocks. We step through the blocks in reverse
postorder because it makes the analysis terminate faster. Notice that we only compute the information for
a block if it is marked dirty. The algorithm terminates when an iteration completes with no changes to the
AVAIL sets.

(Find the AVAIL set for all blocks 66a) =

{
Boolean changed;
VectorSet temp = VectorSet_Create(avail_arena, set_size);
do
{
Block *block;
changed = FALSE;
ForAllBlocks_rPostorder(block)
{
AVAIL_Extension *extension = (AVAIL_Extension *) block->block_extension;
if (extension->dirty)
{
(Start with AVAIL out from the first predecessor 66b)
(Look at AVAIL_ out for the other predecessors 67a)
(See if we have changed AVAIL_in, setting changed 67b)
}
¥
} while (changed);
}
<&

Macro referenced in scrap 63b.

The predecessors of a block are stored in a linked list pointed to by the pred field of the Block structure.
We’ll use the AVAIL out set from the first predecessor as our initial value for the AVAIL in set. The set will
be computed in temp so we can see if we have changed anything.

(Start with AVAIL out from the first predecessor 66b) =

{

Edge *edge = block->pred;

extension->dirty = FALSE;

VectorSet_Copy(temp, ((AVAIL_Extension *) edge->pred->block_extension)->AVAIL out);
¥
<&

Macro referenced in scrap 66a.

66



After we have looked at the AVAIL out set from the first predecessor, we iterate through the other predecessors
by starting with block->pred->next_pred (the second predecessor) and moving through the next _pred
pointers until we reach a NULL pointer. For each of these predecessors, we update the intersection of the
AVAIL out sets. This intersection will be the AVAIL in set for the block.

(Look at AVAIL_out for the other predecessors 67a) =

{
Edge *edge;
for (edge = block->pred->next_pred;
edge;
edge = edge->next_pred)
{
AVAIL_Extension *extension = (AVAIL_Extension *) edge->pred->block_extension;
VectorSet_Intersect(temp, temp, extension->AVAIL_ out);
}
¥
<&

Macro referenced in scrap 66a.

If the AVAIL set for this block has changed, we must recompute the AVAIL out set and mark all the successor
blocks dirty.

(See if we have changed AVAIL_in, setting changed 67b) =
if (!'VectorSet_Equal (extension->AVAIL_in, temp))

{
changed = TRUE;
VectorSet_Copy(extension->AVAIL_in, temp);
VectorSet_Union(extension->AVAIL_out, extension->AVAIL_in, extension->defined);
(Mark all the successors dirty 67c)

}

<

Macro referenced in scrap 66a.

(Mark all the successors dirty 67¢) =

{
Edge *edge;
Block_ForAllSuccs(edge, block)
((AVAIL_Extension *) edge->succ->block_extension)->dirty = TRUE;
¥
<&

Macro referenced in scrap 67b.
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Once we have computed AVAIL for each block, we are ready to start removing operations from the routine.
We step through the blocks and use the AVAIL_in set as a guide for removing operations.

(Remove operations whose result is in AVAIL 68a) =

{
Unsigned_Int num_removed = 0;
Block *block;
if (debug >= MINOR_PHASES)
fprintf (stderr, " Remove operations whose result is in AVAIL\n");
ForAl1Blocks(block)
{
VectorSet AVAIL_in = ((AVAIL_Extension *) block->block_extension)->AVAIL_in;
Inst *inst;
Block_ForAllInsts(inst, block)
{
Operation **oper_ptr;
Inst_ForAllOperations (oper_ptr, inst)
{
Operation *oper = *oper_ptr;
(If oper is in AVAIL, remove it 68b)
}
¥
}
if (debug)
fprintf (stderr, " %d operations removed based on AVAIL.\n",
num_removed) ;
}
<&

Macro referenced in scrap 62.

We can remove any LOAD or EXPR operation whose result register is in the AVAIL in set. If the operation is
not removed, we add its defined registers to the AVAIL_in set because they are available to operations later in
the block. Notice that we can safely add these before we finish processing all operations in the instruction®.
This is because if two operations in the same instruction compute the same value, we can eliminate either
one of them. We choose to eliminate the second.

(If oper is in AVAIL, remove it 68b) =

{
Unsigned_Int details = opcode_specs[oper->opcode].details;
Unsigned_Int reg = oper->arguments[oper->referenced];
if ((details & (LOAD | EXPR)) && VectorSet_Member(AVAIL_in, reg))
{
oper->critical = FALSE;
num_removed++;
}
else
(Add all the defined registers to AVAIL_in 69)
}
<&

Macro referenced in scrap 68a.

1 All operations in an ILOC instruction are considered to execute in parallel.
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(Add all the defined registers to AVAIL_in 69) =

{
Unsigned_Int2 *reg_ptr;
Operation_ForAllDefs(reg_ptr, oper)
VectorSet_Insert (AVAIL_in, *reg_ptr);
¥
<&

Macro referenced in scrap 68b.
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Appendix A

Memory Management

Figure A.1 shows the lifetimes of the major data structures used in gval. The major phases of execution
are shown at the top of the diagram. The column marked Data contains variable names and descriptions of
the data structures. The bars in the center of the diagram represent the lifetimes of the data. The column
marked Arena contains the name of the arena where the data is allocated. Notice that all data allocated in
temp_arena is short-lived. These objects will be freed using Arena Mark and Arena Release.
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Initializing the Partition
Refining the Partition
Dominator-Based Removal
Preparing for PRE
Renumbering

—— AVAIL-Based Removal

dominator_info —] dom_arena
dom_preorder list — dom_arena
Dominator buckets — dom_arena
reg map — partial_arena
in reg map — partial_arena

avail_arena
avail_arena

AVAIL extensions
defined sets
AVAIL in sets
AVAIL out sets

avail_arena

[11

avail_arena

Data A A A A A A i Arena

T T T T T T T
¢-nodes a : : : : i ! SSA_arena
Definition Sites | X | SSA_arena
Use lists e | SSA_arena
lookup i} ; ; ; ; ¥ ! SSA_arena
classes e e E ; ; ! partition._arena
Member Nodes e e ; ; | | partition_arena
Copy Nodes T E E E 1 partition_arena
worklist E — E E E ! partition_arena
intersections E — E E E ! partition_arena
classes_to_split i — i i i | partition_arena
touched once classes ! —: ! partition._arena
touched twice classes! —: | partition._arena
touched_once E — E E E ! partition_arena
touched_twice E — E E E ! partition_arena
op_classes T i temp arena
constant lists H—q E E E ; ! temp_arena
Use buckets — | temp_arena

| | | | | |

Figure A.1: Memory Use Diagram for gval
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Appendix B

Debugging Output

B.1 Printing a Histogram of the Congruence Classes

If the user specified the -h option, we will print a histogram of the sizes of the congruence classes to stderr.
This is useful for assessing the effectiveness of the optimization. The histogram is printed in three columns:
1. The size (number of members) of the class
2. The number of classes with this size
3. A number of “*’s to represent the number of classes

The last line of the histogram shows the total number of classes and members. Figure B.1 shows an example
histogram.

Class Number of

Size Classes

1 | 39 sk ok 3k 3 ok ok oK o oK oK oK o o oK oK ok ok K ok ok Kok oK Kok Kok o koK ok o oK ok ok Kok kK ok ok koK ok ok ko kK kK
2 | 8 kKKK kKK kd Kk

6 | 1 *

19 | 1 *

Total: 49 classes with 80 members

Figure B.1: Example Histogram

(Optionally print a histogram 72) =
if (hist)
{
Unsigned_Int max_size = 0;
Unsigned_Int2 #counters;
Unsigned_Int max_counter = 0;

(Find the maximum class size 73a)
{Count how many partitions of each size there are 73b)
(Print the histogram 73c)
(Print the total number of classes and members 74b)
¥
O

Macro referenced in scrap 13c.
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(Find the maximum class size 73a) =

{
Unsigned_Int i;
for (1 = 1; i < num_classes; i++)
{
Unsigned_Int size = classes[i].num_members;
if (size > max_size) max_size = size;
}
¥
<&

Macro referenced in scrap 72.

(Count how many partitions of each size there are 73b) =

{
Unsigned_Int i;
counters = Arena_GetMemClear(partition_arena, (max_size+l)*sizeof(Unsigned_Int2));
for (i = 1; i < num_classes; i++)
{
Unsigned_Int size = classes[i].num_members;
Unsigned_Int counter = ++counters[size];
if (counter > max_counter) max_counter = counter;
¥
¥
<&

Macro referenced in scrap 72.

If there are no classes of a given size, a blank line will be printed, but there will be at most one blank line
at a time.

(Print the histogram 73c) =

{
Unsigned_Int i;
Boolean blank_line = FALSE;
fprintf (stderr, "Class\t Number of\n");
fprintf (stderr, "Size\t Classes\n");
for (i = 1; i <= max_size; i++)
{
Unsigned_Int counter = counters[i];
Unsigned_Int num_stars = counter*60/max_counter;
if (counter)
{
fprintf (stderr, "%d\t| %d\t", i, counter);
(Print num_stars stars 74a)
fprintf(stderr, "\n");
blank_line = FALSE;
¥
else if (!'blank_line)
{
fprintf(stderr, "\n");
blank_line = TRUE;
¥
¥
¥
<

Macro referenced in scrap 72.
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Notice that we always print at least one star.

(Print num_stars stars 74a) =

{
Unsigned_Int j;
if (!'num_stars) num_stars = 1;
for (j = 0; j < num_stars; j++)
fprintf (stderr, "*");
¥
<&

Macro referenced in scrap 73c.

Once we have completed printing the histogram, we print a summary showing the total number of classes
and members.

(Print the total number of classes and members 74b) =
fprintf (stderr, "\nTotal: %d classes with %d members\n",
num_classes-1, defCount-1);

<&

Macro referenced in scrap 72.

B.2 Printing the Partiton

It is useful to be able to print either the initial or the final partition. We will do so if the debug level is
higher than PARTITION. Figure B.2 shows an example of a final partition. Each line displays the SSA names
of the members of one class in curly braces ({}). The number after the pound sign (#) is the number of
members of the class. If a star (*) appears before the class number, this indicates that the class represents

¢-nodes.

(Optionally print the initial partition 74c) =
if (debug >= PARTITION)

{
fprintf(stderr, "Initial partition:\n");
(Print the partition 75)
(Check the lookup table 77a)

}

<&

Macro referenced in scrap 13c.

(Optionally print the final partition 74d) =
if (debug >= PARTITION)

{
fprintf(stderr, "\nFinal partition:\n");
(Print the partition 75)
(Check the lookup table 77a)

}

<&

Macro referenced in scrap 13c.
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Final partition:
Equiv. class 1 = #1{ 1 }

Equiv. class 2 = #1{ 2 }
Equiv. class *3 = #1{ 17 }
Equiv. class *4 = #1{ 59 }
Equiv. class *5 = #1{ 76 }
Equiv. class *6 = #1{ 25 }
Equiv. class *7 = #1{ 15 }
Equiv. class 8 = #1{ 3 }
Equiv. class 9 = #1{ 4 }

Equiv. class 10 = #1{ 5 }

Equiv. class 11 = #1{ 6 }

Equiv. class 12 = #2{ 7 18 }

Equiv. class 13 = #19{ 8 10 12 19 22 60 62 67 69 77 26 28 33 35 40 42 47 49 54 }
Equiv. class 14 = #6{ 63 70 29 36 43 50 }
Equiv. class 15 = #2{ 9 21 }

Equiv. class 16 = #1{ 39 }

Equiv. class 17 = #1{ 53 }

Equiv. class 18 = #1{ 78 }

Equiv. class 19 = #1{ 68 }

Equiv. class 20 = #2{ 51 37 }

Equiv. class 45 = #1{ 11 }
Equiv. class 46 = #2{ 34 48 }
Equiv. class 47 = #1{ 71
Equiv. class 48 = #1{ 72
Equiv. class 49 = #1{ 73
lookup is OK.

o

Figure B.2: Example Final Partition

We print the classes in order, displaying the class number, the number of members, and the members list. If
a class represents ¢-nodes, we print a “*” just in front of its class number (See class 2 in Figure B.2).

(Print the partition 75) =

{
Unsigned_Int i;
for (i = 1; i < num_classes; i++)
{
Member_Node *members = classes[i].members;
if (IsPhiNode (members->next->item))
fprintf(stderr, "Equiv. class *%d = #/d", i, classes[i].num_members);
else
fprintf (stderr, "Equiv. class %d = #%d", i, classes[i].num_members);
(Print the members list 76)
¥
¥
<

Macro referenced in scraps 74cd.
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We print the members of a class by iterating through the list. If any member has a non-empty copy list,
we print the copies in parentheses after the member. Refer to the discussion of redundant-store elimination
(Section 2.6) for an explanation of the copy lists.

(Print the members list 76) =
fprintf (stderr, "{");

{
Member_Node *node;
Class_ForAllMembers (node, members)
{
fprintf (stderr, " %d", node->item);
if (node->copies)
{
Copy_Node *copy_node;
fprintf(stderr, " (");
Node_ForAllCopies(copy_node, node)
fprintf(stderr, " %d", copy_node->item);
fprintf(stderr, " )");
}
¥
fprintf(stderr, " }\n");
¥
<&

Macro referenced in scrap 75.

76



Since the lookup array must be manipulated consistently with the classes array, it is useful to check that
we have done so. For each class, we iterate through its members list and check the lookup entry for each
item. If the lookup entry is correct, the class num and node fields must have the proper values. Otherwise,
we print an error message.

(Check the lookup table 77a) =

{

}

&

Unsigned_Int i;
Boolean error = FALSE;

for (i

{

=1; i < num_classes; i++)

Member_Node *node;
Class_ForAllMembers(node, classes[i] .members)

{

}
}

Unsigned_Int item = node->item;
if (lookup[item].class_num != i)
{
fprintf (stderr, "Error: lookupl%d].class_num = %d4",
item, lookup[item].class_num);
fprintf(stderr, " (should be %d)\n", i);
error = TRUE;

¥

if (lookup[item].node !'= node)

{
fprintf(stderr, "Error: lookup[%d].node is incorrect\n'", item);
error = TRUE;

¥

if (lerror) fprintf(stderr, "lookup is OK.\n");

Macro referenced in scraps 74cd.

B.3 Printing Dominator Information

The tree_printer function can be passed to Block Dump_All to display the dominator tree information

about a block in the CFG.

(Functions 77b) =

static Void tree_printer(Block *block)

{

}
&

Unsigned_Int index = block->preorder_index;

fprintf(stderr, "dominator index = %d,",

dominator_info[index] .dominator_index);

fprintf(stderr, " dominator size = %d.\n",

dominator_info[index] .dominator_size);

Macro defined by scraps 58c, 59a, 61b, 77b, 78a.
Macro referenced in scrap 3.

(Print dominator tree info 77¢) =
Block_Dump_All(tree_printer, 0);

&

Macro never referenced.

7



B.4 Printing AVAIL Information

The AVAIL printer function can be passed to Block Dump_All to display the information about available
expressions for a block in the CFG.

(Functions 78a) =
static Void AVAIL_printer(Block *block)

{
AVAIL_Extension *extension = (AVAIL_Extension *) block->block_extension;
if (extension)
{
if (extension->defined)
{
fprintf(stderr, "defined = ");
VectorSet_Dump(extension->defined);
¥
else
fprintf(stderr, "defined = NULL.\n");
if (extension->AVAIL_in)
{
fprintf (stderr, "AVAIL in = ");
VectorSet_Dump(extension->AVAIL_in);
¥
else
fprintf (stderr, "AVAIL in = NULL\n");
if (extension->AVAIL_out)
{
fprintf (stderr, "AVAIL out = ");
VectorSet_Dump (extension->AVAIL_ out);
¥
else
fprintf(stderr, "AVAIL out = NULL\n");
¥
¥
<&

Macro defined by scraps 58c, 59a, 61b, 77b, 78a.
Macro referenced in scrap 3.

(Print AVAIL info 78b) =
Block_Dump_Al11(AVAIL_ printer, 0);
<&

Macro never referenced.
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Appendix C

Indices

C.1 Index of File Names

"gval.c" Defined by scrap 3.

C.2 Index of Macro Names

Add (valuel, value2) to constant_list 26a) Referenced in scrap 25a.

Add item to buckets 60&> Referenced in scrap 59b.

Add item to the members list 17a> Referenced in scraps 16b, 19b, 20a.

Add node to classes[classnum] 24b) Referenced in scraps 24a, 25b.

Add reg to the copy list for tag 45b> Referenced in scrap 45a.

dd tag to the copy list for reg 46a> Referenced in scrap 45c.

dd value to constant_ list 24c> Referenced in scrap 23a.

dd a class for each type of opcode found in the routine 20b) Referenced in scrap 17c.
dd a scalar load operation to the initial partition 45a) Referenced in scrap 19a.

dd a scalar store operation the the initial partition 45c) Referenced in scrap 19a.
dd a store to the initial partition 20a> Referenced in scrap 19b.

dd all the defined registers to AVAIL_in 69) Referenced in scrap 68b.

dd all the items defined to op_classes[opcode] 19a) Referenced in scrap 18a.

dd all the members to the same congruence class 26¢) Referenced in scrap 21a.

dd class zero to regmap 49b) Referenced in scrap 49a.

dd the appropriate class to worklist 34c) Referenced in scrap 34a.

dd the new class to the partition 34b) Referenced in scrap 34a.

dd the set of items defined by opcode to the partition 21a) Referenced in scrap 20b.
dd the set of items defined by load immediate, add immediate, or shift immediate 21b) Referenced in scrap 21a.
dd the set of items defined by loads and stores from memory 22a) Referenced in scrap 21a.
dd the set of items defined by FRAME and JSR 22b> Referenced in scrap 21a.

dd this class to the partition 17b> Referenced in scrap 16b.

Allocate the block_extension and the defined set 64b) Referenced in scrap 64a.
Append node to the members list 15C> Referenced in scraps 15a, 17a, 24b, 32¢, 39ac.
Bucket sort the members of classes[i] 59b) Referenced in scrap 57a.

Bucket sort the redundant-store information of node 47a) Referenced in scrap 30a.
Bucket sort the uses by position 30a) Referenced in scrap 29a.

Bucket sort the uses of item 31a> Referenced in scraps 30a, 47a.

Check the lookup table 77a) Referenced in scraps 74cd.

Check the uses of item 30c> Referenced in scraps 30b, 46c.

Check the uses of all the redundant-store information 46c) Referenced in scrap 30b.
Compare items defined in different blocks 61a) Referenced in scrap 57a.

Compute the AVAIL set for each block 63b) Referenced in scrap 62.

Convert the routine out of SSA form 7c) Referenced in scrap 4.

Count how many partitions of each size there are 73b) Referenced in scrap 72.
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(Create a class for each of the pseudo-definitions 16a) Referenced in scrap 14a.

(Create a class for the ¢-nodes in each block 16b) Referenced in scrap 14a.

(Create a mapping of register numbers to obey partial’s register naming rules 49a) Referenced in scrap 48.
<Create a new members list 15b> Referenced in scraps 15a, 16b, 18b, 32b, 38b, 39b.

<Create a new class for node 15a> Referenced in scraps 16a, 20a, 23a, 25a, 26b, 46b.
(Create a new register number for any ¢-nodes that define registers 50a) Referenced in scrap 49a.
(Create a new register number for any operations that define registers 50b) Referenced in scrap 49a.
(Create classes for the items defined by operations 17c) Referenced in scrap 14a.

<Create the initial partition 14a> Referenced in scrap 13c.

<Delete node from its current list 23b> Referenced in scraps 23a, 25a, 26b, 32¢, 39ac.

(Fill in 1ookup[0] 14c) Referenced in scrap 14b.

<Find the defined set for each block 64a> Referenced in scrap 63b.

(Find the maximum class size 73a) Referenced in scrap 72.

(Find the maximum position of a use of an item in members 30b) Referenced in scrap 30a.
(Find the names defined by each opcode in the routine 18a) Referenced in scrap 17c.
<Find the AVAIL set for all blocks 66&) Referenced in scrap 63b.

<Functi0ns 58c, 59a, 61b, 77b, 78a> Referenced in scrap 3.

<Global Variables 5ac, 6d, 7b, 11c, 13b, 28a, 36, 57c, 58a> Referenced in scrap 3.

(Handle an opcode with one constant argument 23a) Referenced in scraps 21b, 22a.
(Handle an opcode with two constant arguments 25a) Referenced in scrap 22a.

(Handle an operation that is not under redundant-store elimination 19b) Referenced in scrap 19a.
(If oper is a redundant store, eliminate it and continue 47c) Referenced in scrap 52b.

(If oper is in AVAIL, remove it 68b) Referenced in scrap 68a.

(If there is not already a class for opcode, create one 18b) Referenced in scrap 18a.
<Initialize other Lookup fields 35b, 44a> Referenced in scraps 15a, 17a, 34b.

<Initialize other Member Node fields 43c> Referenced in scraps 15b, 16a, 17a, 20a.

(Initialize the data structures for commutative operations 37a) Referenced in scrap 28b.
(Initialize the data structures for refining the partition 28b) Referenced in scrap 27a.
(Initialize the dominator data structures 58bd) Referenced in scrap 57a.

<Initialize the partition 14b> Referenced in scrap 14a.

<Initialize the AVAIL data-flow problem 64c> Referenced in scrap 63b.

<Initialize AVAIL for the start_block 65a> Referenced in scrap 64c.

<Initialize AVAIL for the other blocks 65b> Referenced in scrap 64c.

(Insert all the initial classes into worklist 27b) Referenced in scrap 27a.

(Look at AVAIL_out for the other predecessors 67a) Referenced in scrap 66a.

<MaCIOS 5b, 6b, 12, 29c, 43d> Referenced in scrap 3.

(Make sure intersections[classnun] is initialized 32b) Referenced in scrap 32a.

(Make sure touched oncel[classnun] is initialized 38b) Referenced in scrap 38a.

(Make sure touched twice[class num] is initialized 39b) Referenced in scrap 38a.

(Mark all the successors dirty 67c) Referenced in scrap 67b.

(Move item out of its class and into touched xxx 38a) Referenced in scrap 37c.

{Move node to intersections[classnum] 32c) Referenced in scrap 32a.

{Move node to touched once[class num] 39a) Referenced in scrap 38a.

(Move node to touched twice[classnum] 39c) Referenced in scrap 38a.

(Optionally perform dominator-based removal 57a) Referenced in scrap 4.

(Optionally perform AVAIL-based removal 62) Referenced in scrap 4.

(Optionally print a histogram 72) Referenced in scrap 13c.

(Optionally print the final partition 74d) Referenced in scrap 13c.

(Optionally print the initial partition 74c) Referenced in scrap 13c.

<Other Lookup fields 35a, 43e> Referenced in scrap 13a.

<Other Member Node fields 43b> Referenced in scrap 11a.

(Overwrite the class num field of the lookup array 51a) Referenced in scrap 49a.

(Parse a list of flags 6a) Referenced in scrap 5d.

<Parse the command line 5d> Referenced in scrap 4.

(Partition all the values in the routine into congruence classes 13c) Referenced in scrap 4.
(Place each item into a separate congruence class 26b) Referenced in scrap 22b.

(Prepare the partition for redundant-store elimination 47b) Referenced in scrap 27a.
<Print num_stars stars 74a.> Referenced in scrap 73c.
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Print dominator tree info 77c) Not referenced.

Print only those operations that have been marked critical 7d) Referenced in scrap 4.
Print the members list 76> Referenced in scrap 75.

Print the histogram 73c) Referenced in scrap 72.

Print the partition 75> Referenced in scraps 74cd.

Print the total number of classes and members 74b) Referenced in scrap 72.

Print the usage message and halt 6c) Referenced in scraps 5d, 6a.

Print AVAIL info 78b> Not referenced.

Process the elements in touched once_classes 41a) Referenced in scrap 40b.

Process the elements in touched twice_classes 41b) Referenced in scrap 40b.
Prototypes 85abc, 86> Referenced in scrap 3.

Put the aliases in separate classes 46b) Referenced in scrap 45c.

Read the ILOC file and convert to SSA form 7a) Referenced in scrap 4.

Refine the partition 27a> Referenced in scrap 13c.

Remove members from classes[classnum] 34a) Referenced in scraps 33c, 41ab.
Remove operations whose result is in AVAIL 68a) Referenced in scrap 62.

Remove the definition of del_item 60b) Referenced in scrap 60a.

Renumber the ¢-nodes and operations in the routine 51b) Referenced in scrap 48.
Renumber the ¢-nodes and registers based on the congruence classes 48) Referenced in scrap 4.

Renumber the operations that define registers 52b) Referenced in scrap 51b.

Renumber the registers according to their congruence class 53) Referenced in scrap 52b.
Reset the data structures for commutative operations 37b) Referenced in scrap 29a.
Search constant list for valuel and value2 25b) Referenced in scrap 25a.

Search constant list for value 24a) Referenced in scrap 23a.

See if intersections[classnum] contains the entire class 33a) Referenced in scrap 32a.
See if touched twice[class num] contains the entire class 40a) Referenced in scrap 38a.
See if we have changed AVAIL_in, setting changed 67b) Referenced in scrap 66a.

Split classes representing commutative operations 40b) Referenced in scrap 29a.

Split the members of classes_to_split 33c) Referenced in scrap 29a.

Start with AVAIL out from the first predecessor 66b) Referenced in scrap 66a.

The main routine 4> Referenced in scrap 3.

This item is handled by redundant-store elimination 44b) Referenced in scraps 32a, 38a.
Touch all uses in position pos 31b) Referenced in scrap 29a.

Touch all uses of elements in members 29a) Referenced in scrap 27a.

Touch the defined item 32a> Referenced in scraps 31b, 33b.

Touch the items defined by a commutative operation 37c) Referenced in scrap 31b.
Touch the items defined by a non-commutative operation 33b) Referenced in scrap 31b.

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
g
(Renumber the ¢-nodes that define registers 52a) Referenced in scrap 51b.
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< ype Declarations 11ab, 13a, 22c, 29b, 43a, 57b, 63&> Referenced in scrap 3.

C.3 Index of Identifiers

ABORT: 3, 6¢, 38a.

Arena: 3, 6d, 13c, 49a, 57a, 62.

Arena_Create: 3, 7a, 13c, 49a, 57a, 62.
Arena_Destroy: 3, 7c, 13c, 49a, 57a, 62.

Arena_GetMem: 3, 14b, 15b, 16a, 17a, 20a, 24c, 26a, 28b, 31a, 37a, 45b, 46ab, 49a, 58b, 64b.
Arena_GetMemClear: 3, 18a, 30a, 58b, 73b.
Arena_Mark: 3, 17c, 23a, 25a, 29a.

Arena_Release: 3, 17c, 23a, 25a, 29a.

avail_arena: 62, 64b, 65ab, 66a.

AVAIL_Extension: 63a, 64b, 65ab, 66ab, 67ac, 68a, 78a.
AVAIL _printer: 78a, 78b, 86.

bCONor: 3, 22a.

bLDor: 3, 22a.

bLDrr: 3, 22a.

block_count: 3, 58b, 61b.
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Block_Dump_Al1l: 3, 77c, 78b.

block_extension: 3, 64b, 65ab, 66ab, 67ac, 68a, 78a.

Block_ForAllInsts: 3, 18a, 50b, 52b, 64a, 68a.

Block_ForAllPhiNodes: 3, 16b, 50a, 52a.

Block_ForAllSuccs: 3, 67c.

Block_HasPhiNodes: 3, 16b.

Block_Init: 3, 7a.

Block_List_Node: 3, 58c.

Block_Put_A11: 3, 7d.

bSLDor: 3, 22a.

bSLDrr: 3, 22a.

bSSTor: 3, 22a.

bSSTrr: 3, 22a.

bSTor: 3, 22a.

bSTrr: 3, 22a.

buckets: 29a, 30a, 31ab, 58a, 58b, 59b, 60a, 61ab, 85c.

cCONor: 3, 22a.

cJSR1: 3, 22b.

cJSRr: 3, 22b.

Class: 11b, 11c, 14b, 17c, 18a, 28ab, 36, 37a, 73c.

classes: 4, 11c, 14ab, 15a, 17b, 19b, 24ab, 25b, 26¢, 27a, 29a, 33ac, 34abc, 40a, 41ab, 45¢c, 47b, 57a, 59b, 72, 7T3ab,
74b, 75, TTa.

Class_ForAllMembers: 12, 26¢, 30ab, 34b, 40a, 41a, 47b, 59b, 76, T7a.

cLDI: 3, 21b.

cLDor: 3, 22a.

cLDrr: 3, 22a.

COMMUTE: 3, 31b.

Const_Node: 22¢, 23a, 24ac, 25ab, 26a.

ConvertFromSSA: 3, 7c.

ConvertToSSA: 3, Ta.

copies: 43b, 43cd, 45b, 46ab, 76.

Copy_Node: 43a, 45b, 46ac, 47ab, 59b, 76.

cSLDor: 3, 22a.

cSLDrr: 3, 22a.

cSSTor: 3, 22a.

cSSTrr: 3, 22a.

cSTor: 3, 22a.

cSTrr: 3, 22a.

dCONor: 3, 22a.

debug: 5a, 6a, Ta, 13c, 14a, 27a, 48, 49a, 51b, 57a, 62, 63b, 68a, T4cd.

defCount: 3, 14b, 27a, 28b, 37a, 51a, T4b.

DefiningBlock: 3, 60a.

Defining0Oper: 3, 23a, 25a, 60b, 61a.

DefiningPhiNode: 3, 60b.

dJSR1: 3, 22b.

dJSRr: 3, 22b.

dLDI: 3, 21b.

dLDor: 3, 22a.

dLDrr: 3, 22a.

Dominator_ForChildren: 3, 58c.

dominator_info: 57c, 58bc, 59a, 60a, 77b.

dom_arena: 57a, 58b.

Dom_Info: 57b, 57c, 58b.

dom_preorder_list: 58a, 58bc, 59a.

do_avail: 5a, 6a, 62.

do_commute: 5a, 6a, 31b, 37ab, 40b.

do_dominators: 5a, 6a, 57a.

dSLDor: 3, 22a.
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dSLDrr: 3, 22a.

dSSTor: 3, 22a.

dSSTrr: 3, 22a.

dSTor: 3, 22a.

dSTrr: 3, 22a.

elim_stores: 5a, 6a, 19a, 47c, 51b.

EXPR: 3, 68b.

fCONor: 3, 22a.

£JSR1: 3, 22b.

£JSRr: 3, 22b.

fLDI: 3, 21b.

fLDor: 3, 22a.

fLDrr: 3, 22a.

ForAl1lBlocks: 3, 16b, 18a, 51b, 64ac, 68a.

ForAllBlocks_rPostorder: 3, 49a, 66a.

FRAME: 3, 21a, 22b.

fSLDor: 3, 22a.

fSLDrr: 3, 22a.

£S8Tor: 3, 22a.

£SS8Trr: 3, 22a.

fSTor: 3, 22a.

£STrr: 3, 22a.

hist: 5a, 6a, 7T2.

iADDI: 3, 21b.

iCONor: 3, 22a.

iJSR1: 3, 22b.

iJSRr: 3, 22b.

ilDI: 3, 21b.

iLDor: 3, 22a.

iLDrr: 3, 22a.

Inst_ForAllOperations: 3, 18a, 50b, 52b, 64a, 68a.

intersections: 28a, 28b, 32abc, 33ac.

iSLDor: 3, 22a.

iSLDrr: 3, 22a.

iSLI: 3, 21b.

IsPhiNode: 3, 60b, 75.

IsRegister: 3, 5la, 60a.

iSRI: 3, 21b.

i88Tor: 3, 22a.

i88Trr: 3, 22a.

iSTor: 3, 22a.

i8Trr: 3, 22a.

iSUBI: 3, 21b.

is_copy: 43¢, 44ab, 45b, 46a.

Item_ForAllUses: 3, 30c, 31a.

JSR1: 3, 22b.

JSRr: 3, 22b.

keep_comments: 3, 6a.

LOAD: 3, 19a, 68b.

Lookup: 13a, 13b, 14b, 15a, 17a, 34b.

lookup: 13b, 14bc, 15a, 17a, 24b, 26¢, 32a, 34b, 35b, 38a, 39ac, 40a, 41a, 44ab, 45b, 46a, 47bc, 49a, 50ab, 51a, 52a,
53, T4cd, T7a.

1SLI: 3, 21b.

1SRI: 3, 21b.

main: 3, 4.

MAJOR_PHASES: 5b, 13c, 48, 57a, 62.

max_register: Tb, Tc, 52a, 53.
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Member_Node: 11a, 11b, 13a, 15ab, 16ab, 17a, 18b, 19b, 20ab, 23a, 24b, 25a, 26bc, 27a, 30ab, 32abc, 33c, 34b, 38ab,
39abc, 40a, 41ab, 45b, 46ab, 47b, 59b, 75, 76, T7a.

MINOR_PHASES: 5b, 14a, 27a, 49a, 51b, 63b, 68a.

move_pointer: 61la, 61b, 85c.

Node_ForAllCopies: 43d, 46c, 47ab, 59b, 76.

number_of_opcodes: 3, 18a, 20b.

num_classes: 11c, 15a, 17ab, 24c, 26ac, 27b, 34abc, 47b, 49a, 57a, 73ab, 74b, 75, 77a.

num_registers: 7b, 7c, 49ab, 50ab, 63b.

opcode_specs: 3, 19a, 31b, 47c, 68b.

Operation_ForAllDefs: 3, 19b, 33b, 37c, 50b, 53, 64a, 69.

Operation_ForAllUses: 3, 53.

partial_arena: 49a.

PARTITION: 5b, T4cd.

partition_arena: 13c, 14b, 15b, 16a, 17a, 20a, 27a, 28b, 37a, 45b, 46ab, 73b.

PhiNode: 3, 16b, 50a, 52a.

PhiNodeArg: 3, 52a, 60b.

PhiNode_ForAllArgs: 3, 52a, 60b.

PhiNode_IsRegister: 3, 50a, 52a.

Position_ForAllUses: 29c, 31b.

prepare_for_partial: 5a, 6a, 48.

print_all_operations: 3, 7d.

qCONor: 3, 22a.

qJSR1: 3, 22b.

qJSRr: 3, 22b.

qLDI: 3, 21b.

gLDor: 3, 22a.

qLDrr: 3, 22a.

gqSLDor: 3, 22a.

qSLDrr: 3, 22a.

qSSTor: 3, 22a.

qSSTrr: 3, 22a.

qSTor: 3, 22a.

qSTrr: 3, 22a.

ShowSSA: 3, 7a.

SHOW_SSA: 5b, 7a.

SparseSet: 3, 27a, 28a, 36.

SparseSet_ChooseMember: 3, 27a.

SparseSet_Clear: 3, 31b, 37b.

SparseSet_Create: 3, 27a, 28b, 37a.

SparseSet_Delete: 3, 27a, 33a, 40a.

SparseSet_ForAll: 3, 33c, 41ab.

SparseSet_Insert: 3, 27b, 32b, 34c, 38b, 39b.

SparseSet_Member: 3, 32b, 34c, 38b, 39b.

SparseSet_Size: 3, 27a.

SSA_arena: 6d, Tac, 14b.

start_block: 3, 58d, 64c, 65a.

STORE: 3, 19ab, 47c.

temp_arena: 13c, 17c, 18a, 23a, 24c, 25a, 26a, 29a, 30a, 3la.

time: 4, 7a.

Timer: 3, 4.

Time_Dump: 3, 4, 7a.

time_print: 3, 6a.

Time_Start: 3, 4.

touched_once: 36, 37a, 38b, 39ac, 41a.

touched_once_classes: 36, 37ab, 38b, 41a.

touched_twice: 36, 37a, 39bc, 40a, 41b.

touched_twice_classes: 36, 37ab, 39b, 40a, 41b.

tree_printer: 77b, 77c, 86.
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UNINITIALIZED_REG: 5b.

USAGE_STRING: 6b, 6c.

UseIsPhiNode: 3, 31b.

Uselode: 3, 29b, 30c, 31ab.

UseOper: 3, 31b.

UsePhiNode: 3, 31b.

UsePos: 3, 30c, 31a.

Use_Bucket: 29a, 29b, 30a, 31ab.
VectorSet: 3, 49a, 63a, 64a, 65b, 66a, 68a.
VectorSet_Complement: 3, 65b.
VectorSet_Copy: 3, 66b, 67b.
VectorSet_Create: 3, 49a, 64b, 65ab, 66a.
VectorSet_Dump: 3, 78a.
VectorSet_Equal: 3, 67b.
VectorSet_Insert: 3, 49b, 50ab, 64a, 69.
VectorSet_Intersect: 3, 67a.
VectorSet_Member: 3, 50ab, 68b.
VectorSet_Union: 3, 67b.

walk_tree: 58¢, 538d, 85a.

C.4 Function Prototypes

The walk_tree function walks the dominator tree in preorder and initializes the dominator_info and
dom_preorder list arrays. It returns the size of the subtree of the dominator tree rooted at block. The ini-
tial call to walk_tree should be passed the start block and a pointer to a variable that has been initialized
to one.

(Prototypes 85a) =
static Unsigned_Int walk_tree(Block *block, Unsigned_Int *index);
<&

Macro defined by scraps 85abc, 86.
Macro referenced in scrap 3.

Once we have used walk_tree to initizliae the dominator_info and dom_preorder list arrays, we can use
the function dominates to determine if one block dominates another. The arguments to dominates should
be the preorder indices in the dominator tree of the two blocks.

(Prototypes 85b) =
static Boolean dominates(Unsigned_Int bl, Unsigned_Int b2);
<&

Macro defined by scraps 85abc, 86.
Macro referenced in scrap 3.

The move_pointer function is used to find the next non-empty element of the buckets array. If all remaining
elements are empty, the function will return zero.

(Prototypes 85c) =
static Unsigned_Int move_pointer(Unsigned_Int2 #buckets, Unsigned_Int start);
<&

Macro defined by scraps 85abc, 86.
Macro referenced in scrap 3.
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The tree printer and AVAIL printer functions can be passed to Block Dump_Al1l to display the dominator
tree information or the AVAIL information, respectively, about a block in the CFG.

(Prototypes 86) =
static Void tree_printer(Block *block);
static Void AVAIL_printer(Block #block);
<o

Macro defined by scraps 85abc, 86.
Macro referenced in scrap 3.
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