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Abstract. Trust-region interior—point SQP algorithms for the solution of minimization problems
with equality constraints and simple bounds on some of the variables are presented. These nonlinear
programs arise from the discretization of many optimal control problems. The algorithms are designed
to take advantage of this structure; in particular, provision is made for user—supplied linearized state
equation solvers.

The algorithms keep strict feasibility with respect to the bound constraints and use trust-region
techniques to ensure global convergence. First—order convergence of these algorithms is proved for
very mild conditions on the trial steps. The results given here include as special cases current results
both for equality constraints and for simple bounds.

Numerical solution of an optimal control problem governed by a nonlinear heat equation is re-
ported.
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1. Introduction. In this paper we are interested in the solution of the following
minimization problem

minimize fly,u)
(1) subject to  C(y,u)=0,
weEB={u: a <u<b},
where y e R™, v € R"™™, a € (RU{—00})"" ™, b€ (RU{+oc})"™™, f: R" —

R,C:R" — IR™, m < n. The functions f and C' are assumed to be at least contin-
uously differentiable. This minimization problem often arises from the discretization
of optimal control problems. In this case y is the vector of state variables, u is the
vector of control variables, and C(y,u) = 0 is the discretized state equation. Other
applications include design optimization and parameter identification problems. For

convenience we write
T = y .
U

Our interest is to design sequential quadratic programming (SQP) algorithms for
this problem that use a affine—scaling interior—point approach to keep strict feasibil-
ity with respect to the simple bounds and that take advantage of the strong global
convergence properties of trust—region methods for equality—constrained optimization.
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The interior—point approach used to maintain strict feasibility has the flavor of the
Dikin-Karmarkar scaling. We propose two interior—point approaches. In the first one,
the trust region is of the Dikin—Karmarkar type at a constraining bound, although
we allow the trust radius to be greater than one. This is similar to the approaches
given by Coleman and Li [4] and Dennis and Vicente [8] for minimization problems
with simple bounds. The second maintains the trust region in the unscaled variables
and has been suggested by Dennis and Vicente [8]. In both, the quadratic models are
scaled and the step is inside the trust region and strictly inside 8. Other affine—scaling
approaches for nonlinear programming have recently been proposed by Bonnans and
Pola [1], Coleman and Liu [5], Li [18], [19], and Plantenga [22].

The trust-region SQP algorithms decompose a step s in s = s" 4+ st, where s"
is the quasi-normal component associated with the trust-region subproblem for the
linearized constraints and st is the tangential component computed from the trust—
region subproblem for the Lagrangian reduced to the tangent subspace. This approach
is like those recently followed by several authors (see references [6], [7], [10], [17], and
[21]). The components s" and s' can be computed in several ways (see [17] and
[22]). However we have in mind nonlinear programs of the type (1) that come from
the discretization of optimal control problems and where C(y,u) = 0 is a discretized
partial differential equation. The algorithms suggested in this paper take advantage
of this structure to compute the components s" and st of a step s.

We prove that any sequence of iterates produced by our trust—region interior—point
(TRIP) SQP algorithms has a subsequence for which the first-order Karush-Kuhn-
Tucker conditions are satisfied in the limit. It is important to note that this result
is obtained under very mild assumptions on the trial steps, and that the sequence of
approximations to the full or reduced Hessian matrix of the Lagrangian is assumed
only to be bounded. We use the theory developed by Dennis, El-Alem and Maciel [6]
for equality—constrained optimization.

We implemented the TRIP SQP algorithms and solved a discretized optimal con-
trol problem governed by a nonlinear heat equation. We tested several alternatives
and the numerical results given in Section 8 are quite promising.

A projected sequential quadratic programming method to solve (1) that also ex-
ploits the discretized optimal control structure has recently been proposed by Heinken-
schloss [12]. His algorithm uses line searches and requires an approximation to the
reduced Hessian matrix.

Reduced sequential quadratic programming methods for the solution of (1) with-
out inequality constraints have been analyzed in a Hilbert space setting by Kupfer [15]
and applied to control and parameter identification problems by Kunisch and Sachs
[14] and by Kupfer and Sachs [16].

We review the notation used in this paper. The Lagrangian function £ : R"*™ —
IR™ associated with the equality constraints C'(z) = 0 is given by {(z,A) = f(z) +
AT C(z), where A € R™ are the Lagrange multipliers. The Jacobian matrix of C(z) is
denoted by J(z). We use subscripted indices to represent the evaluation of a function
at a particular point of the sequences {z;} and {A;}. For instance, fj represents
f(zr), and £y is the same as £(xg, A\r). The vector and matrix norms used are the ¢,
norms, and [; represents the identity matrix of order I. Also (z), and (z), represent
the subvectors of z € IR™ corresponding to the y and w components, respectively.

This paper is organized as follows. In Section 2 we present the structure of the
problem, and in Section 3 we use this structure to derive a form of the first-order
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Karush-Kuhn—Tucker conditions. In Sections 4 and 5 we describe our TRIP SQP
algorithms. The convergence theory for these algorithms is given in Section 6. In
Section 7 we describe algorithms to compute trial steps and the multiplier estimates.
The numerical results are reported in Section 8. Finally, in Section 9 we end the paper
with conclusions and a discussion of future work.

2. Structure of the minimization problem. We seek to design algorithms
that exploit the structure of this problem. For this purpose let us partition the Jaco-
bian matrix of C'(z) as

J@)=( Cylx) Cule) ),

corresponding to the partitioning of  in y and u. Here Cy(z) € R™*™ and Cy(z) €
R™*("=™)  We assume that the matrix Cy(z) is nonsingular for every z with ¢ < u <
b. Often, efficient linear system solvers are available from the application specialist for
the coefficient matrix Cy(z) and its transpose. We designed our algorithms to allow
the use of these system solvers rather than incorporate a particular method into the
optimization algorithm. This is important for many applications since the solution of
these systems is very time consuming and the coefficient matrix is often not available
in the explicit form. Of course, we also can furnish solvers for these systems, but our
approach allows more flexibility. We also need to assume that we can multiply the
matrices Cy(z) and C,(z)! times a given vector.

We say that s satisfies the linearized state equations at z if J(z)s = —C(z) or
equivalently if

Here s is partitioned as

s
s = v,
Su

and s, € R™ and s, € IR"™™. One way to compute such an s is to set s, to zero and
to calculate the corresponding s,:

5:(*M@*“@).
0

We also are interested in finding a matrix W (z) whose columns form a basis for

the null space N(J(2)) of J(z). Such a basis can be given by

Wi(z) = ( _Cy(i)jf“(x) ) .

One can see that matrix—vector multiplications of the form W(z)'s and W(z)s, in-
volve only the solution of linear systems with the matrices Cyy(z) and C,(z)T.
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3. First—order Karush—Kuhn—Tucker conditions. A point z, satisfies the
first-order Karush-Kuhn-Tucker (KKT) conditions if there exist A, € IR™ and u, u’ €
IR™™™ such that

These KKT conditions are necessary conditions for z, to be a local solution of (1)
since the invertibility of Cy(z,) and the form of the bound constraints imply the linear
independence of the active constraints. We can use the structure of the problem to
rewrite the first-order KK'T conditions:

C(zs) =0,
a < u, <b,
As -C ( ) Vyf(-r*)a
a; < ( Wi <bp = (Vul(zs, ), =0,
(us)i = a; =  (Vul(z,,A)); >0,
(4.)i = bi s (Vol(za, M), < 0.

One can obtain a useful form of the first-order KKT conditions by noting that

Vil(ze, M) = Viof(ze) 4 Culz)T A
= Vuf(z:) = Cul@)TCy(2:)7TV, [(24)

W(z)TV f(z.).

In other words, V,{(z,, A.) is just the reduced gradient corresponding to the u vari-
ables. Hence z, is a first—order KK'T' point if

C(zy) =0,
a<u, <b,
a; < (u); < by = (W(Jc*)TVf(w*))Z_ =0,
(us)i = a; = (W(z)TV f(x*))i >0,
(us); = b, = (W(@)V[(z.) <0

Now we adapt the idea of Coleman and Li [4] to this context and define D(u) as
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a diagonal matrix whose diagonal elements are given by

(b—wu); if (W(x)TVf(:L‘) < 0and b; < +oo,

AN
)
&
=
o
S
Il

+o0,

)
)
)
)

(u—a); if (W(x)TVf(w) > 0and a; > —o0,
1 if (W(Q?)TVf(LL‘) > 0and a; = —o0,
fort =1,...,n — m. In the following proposition we give the form of the first-order

KKT conditions that we use in this paper. To us, they indicate the suitability of (2)
as a scaling for (1).
ProposiTioN 3.1. The point z, salisfies the first-order KKT conditions if
C(z.) =0,
a < u, <0,
D(u)W(z) 'V f(z,) = 0.

4. Decomposition of the step. The algorithms that we propose generate a
sequence of iterates {x;} where
) = ( Yk ) ’
U,

and wy, is strictly feasible, i.e., @ < ug < b. At iteration k we are given xj and we need
to compute a trial step s;. If s; is accepted, we set z341 = 2 + ;. Otherwise we set
Tk+1 to . Each trial step si is decomposed as s = s} + 527 where s} is called the
quasi—normal component and 52 is the tangential component.

4.1. The quasi—-normal component. Let ¢ be the trust radius at iteration &,
and let r be a positive real number. We discuss the role of r later when we define the
tangential component. The quasi-normal component sj is related to the trust-region
subproblem for the linearized constraints

1
minimize §HJksn + Ci|)?
subject to  ||s"|| < réy,

and it is required to have the form

g 2= ().

Thus the displacement along s} is made only in the y variables, and as a consequence,
zy and zj + s} coincide in their u components. Furthermore, the trust-region sub-
problem introduced above can be rewritten as

1
minimize §HC'y(xk)(sn)y + C|?

subject to  [|(s"),]] < rép.
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We also need to impose on the quasi-normal component the following conditions:

(4) skl < & [|ICkl
and
(5) ICEl? = [|Cy(2k)(sR)y + Crll* > || Crl| min{ra||Cyl|, réx},

where K1, k9 and k3 are positive constants independent of k. In Section 7.1, we describe
several ways of computing the quasi-normal component that satisfy the requirements

(3), (4), and (5).

4.2. The tangential component. The tangential component s}c lies in the null
space N (Ji). For this purpose we consider the matrix

= (SO )

whose columns form a basis for A’(J;). Thus we can write st as W3t for some 5t in

IR"™™ and s;, as

n _ C _1Cu _t
S = 82 + 52 = SZ + Wkgz — ( (Sk)y y(i]i) (l‘k)sk ) .
k

From this it is clear that the (s ), and (sg), components of the trial step s; are given

by

(sk)y = (s7), = Cylzr) " Cular)st = (s7), — Cylar) " Cul@r)(k)u,

(Sk)y = 5t

4.2.1. The decoupled trust—-region approach. Our approach to compute the
tangential component Wy (s), begins like SQP. First we consider the local quadratic
programming subproblem

minimize qr(sp + Wisy)

subject to or(a —ug) < sy < op(b—ug),

gotten by building a quadratic model
T 1 T
qr(s) =l + Voly s + 75 Hys
of l(zk + s,A) about (zg, Ar), where Hy is an approximation to the Hessian matrix
V2 l(zy,Ar) and Ay represents the multiplier estimate. Here o; € [o,1) ensures
that the solution to the subproblem remains strictly feasible with respect to the box
constraints. The parameter o € (0,1) is fixed for all k. A trivial manipulation shows
that
_ 1
(6) gr(sh + Wisy) = gr(sh) + g su + §SuTWkTHkaSu7

with g, = WIVaqr(s?) = Wl (Hps? + V fi).
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We rewrite this quadratic problem in a basis §, = D;lsu, where Dy, is a diagonal
matrix whose diagonal elements are given by

(b—wug); if g;<0andb; < +oo,

1 if g; <0andb; =400,
(7) (Dk)m = (uk _ a)i if gl Z 0 and a; > —0oQ,

1 if g;>0anda; = —o0,
fori=1,....,n—m.

This gives the local quadratic programming subproblem:

minimize  gx(s} + Wi Dy3y)
subject to UkD,;I(a —ug) < 8, < Ukblzl(b —ug),

gotten by building a quadratic model
A s n Ao \Ta Lora oor Ao
r(sp + Wi Didu) = ail(sp) + (Dige)” 8u + 58, DiWy HiWiDidu.

In this subproblem there is an ezplicit scaling given by Dj,. For instance, the steepest—
descent direction in the {3 norm is given by —Dy.gi.

We would like to minimize this quadratic function over a trust region with the
requirement that uy + (sg), has to be strictly feasible. Although we do this in the
original basis s, so that we can always work with the same variables, we have inherited
the scaling that is used in the basis 5,. The reference trust-region subproblem that
we consider, written in the original basis, is the following:

minimize qe(sh + Wys,)
(8) subject to Hsk_lsuH < b,
or(a —ug) < sy < op(b—ug),

where ¢ is the trust radius, and Sy is a (n — m) X (n — m) nonsingular matrix. This
subproblem is implicitly scaled. Here the scaling is of the form Di. For instance the
direction —Dygy given in the 5, variables is now defined as —Dk(Dkgk) = —D,%gk in
the s, variables.

We discuss two alternatives for S now.

If we continue to follow the affine—scaling idea, then we use the ellipse defined at
each iteration in the original s, coordinates by the {3 norm on these new coordinates
5, to help to enforce the bounds. In other words, we would choose S, = Dy, and
the shape of the trust region would be ellipsoidal in the original basis. This has been
suggested in [4].

This substitution of one ellipsoidal constraint for all the bound constraints was
a prime motivation for interior—point methods. However from the beginning of the
computational study of interior—point methods, it was found to be important to allow
steps to past the boundary of this ellipsoid, as long as they still satisfy the subproblem
bound constraints. This translates here to saying that if the trust region is to have
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the ellipsoidal shape, then the trust radius should be allowed to exceed one, and so
the trust region really is not used to enforce the bound constraints.

The motivation for our second choice of S} is that there is no reason to use the
scaling to define the shape of the trust region if it is not useful for enforcing the
bounds. In fact, there are even more good reasons not to use it here than in the linear
programming problem. One of the most important is that for nonlinear programs u.,
may lie strictly inside B. This happens in problems where the bounds are really to
define the region of interest. Hence our second choice of S} is the identity matrix of
order n — m. This has been suggested in [8].

4.2.2. The coupled trust-region approach. In the decoupled trust—region
approach we impose the trust region separately on the y component of the quasi-
normal step and on the u component of the tangential step. In this case there is no
need to restrict the parameter r. For example, r = 1 is a reasonable choice.

The approach we follow in this section forces the whole trial step s = s} + W (sk)y
to lie inside the trust region of radius é;. In this case we need to choose r in (0,1).
The reference trust-region subproblem is given by

minimize qe(sp + Wisy)

( (s7), = Cylzr) ' Cul@r)sy )

Sk_lsu

or(a —ug) < sy < op(b—ug),

(9) subject to < b,

where S} plays the role described in the decoupled approach. This approach is similar
to those followed by many other authors for equality—constrained optimization (see
references [6], [7], [10], [17], and [21]).

4.2.3. What to impose on the tangential component. Our aim will be to
impose as little as possible on the tangential components. This suggests that we
consider analogs for the subproblems (8) and (9) of the fraction of Cauchy decrease
conditions for the unconstrained minimization problem.

First we consider the decoupled trust-region subproblem (8). The Cauchy step

cg is defined as the solution of

minimize  gx(s} + Wgsy)
subject to || sul| < 8k, sy € span{—Digi},
or(a—ug) < sy < op(b— ug).

As in many trust-region algorithms, we require (s;), to give a decrease on gx(s} +
Wys,) smaller than a uniform fraction of the decrease given by cg for the same function
qr(s) + Wis,). This condition is often called fraction of Cauchy decrease, and in this
case is

(10) ar(s]) = ar(s] + Wisi)u) > 8 (ax(s8) = g (T + Wie))

where [ is positive and fixed across all iterations. It is not difficult to see that dogleg or
conjugate—gradient algorithms can compute trial steps (si), conveniently that satisfy
condition (10) with 3 = 1. We leave these issues to Section 7.2.
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In a similar way, the component (s), satisfies a fraction of Cauchy decrease for
the coupled trust-region subproblem (9) if
)

(11) G(sh) = ae(sp + Wi(se)u) 2 8 (ar(sg) — a(sg + Wieg))
for some 3 independent of k, where the Cauchy step cf, is the solution of

minimize  gx(sy + Wsy)

( (s7), — Cylzr) ' Cular)sy )

Sk_lsu

or(a —ug) < sy < op(b— ug).

subject to < 6k, sy € span{—Djgi},

In Section 7.2 we show how to use conjugate—gradients to compute components (sx)y
satisfying the condition (11).

One final comment is in order. In the coupled approach the Cauchy step cf
was defined along the direction —D,%gk. To simplify this discussion, suppose that
there are no bounds on w. In this case the trust-region constraint is of the form
Ish + Wisy|| < 6k, where W}, gives the trust region an ellipsoidal shape. The steepest
descent direction for the quadratic (6) in the norm ||Wy - || is given by —(WI W)~ gy.
The reason why we drop the term (W,?Wk)_l is that in many applications there is no
reasonable way to solve systems with W,?Wk We will show in Section 7.2 how this
affects the use of conjugate gradients (see Remark 7.2). Finally, we point out that this
problem does not arise if the decoupled approach is used.

4.3. Reduced and full Hessians. In the previous section we considered an
approximation Hy to the full Hessian. The algorithms and theory presented in this
paper are also valid if we use an approximation H, to the reduced Hessian WEH;CW;C.
In this case we set

(12) Hk:(g f?k)

and due to the form of Wy, we have
wlHW, = H,.

This allows us to see the expansion (6) in the context of a reduced Hessian approxi-
mation.

For the algorithms with reduced Hessian approximation the following observations
are useful:

de = (Oyﬁkdu)7
(13) d"Hyd = dYHpd,,
WLIH.d = Hyd,.

5. Outline of the algorithms and general assumptions. We need to intro-
duce a merit function and the corresponding actual and predicted reductions. The
merit function used is the augmented Lagrangian

L(2,Xip) = f(x) + A C(2) 4+ pC(2)"C(2).
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We follow [6] and define the actual decrease at iteration k as
ared(sp; pr) = L(xg, Ar; pr) = L(Tk + Sk, Akg1; o),

and the predicted decrease as
pred(s; pr) = L(xg, Ak; pr) — (Qk(sk) + AN (Jesk + Cr) + prl| Jnsk + CkHQ) ;

with AXg = A1 — A
To decide whether to accept or reject a trial step si, we evaluate the ratio

ared(sk; pr)

pred(sy; pr)’
and to update the penalty parameter p; we use the scheme proposed by El-Alem [9].
Other schemes to update the penalty parameter have been suggested in [10] and [17].
We can describe now the main procedures of the trust-region interior—point SQP

algorithms and leave the computation of s} and (s), to Section 7. In this section we
also suggest convenient multiplier updates.

ALGORITHM 5.1 (TRUST-REGION INTERIOR-POINT SQP ALGORITHMS).
1 Choose zg such that a < ug < b, pick ég > 0, and calculate Ag. Set p_; > 1
and €;,; > 0. Choose a1, 71, 0, 6min s Omaz, i, and 7 such that 0 < ay,m1,0 < 1,
0 < 0min < Omaz, p >0, and r > 0.
2 For k=0,1,2,...do
2.1 If ||Cy|| + [|DkWEV fi|| < €, stop and return z; as an approximate solu-
tion for problem (1).
2.2 Set s]) = 32 =0.
Compute s} satisfying (3), (4), and (5).
Compute 52 = Wi(sk)y where (si), satisfies

or(a — ug) < (sg)y < ok(b—ug),

with o € [0,1), (10), and Hsk_l(sk)uH < by.
Set s = sp + 52-
2.3 Compute Agp4q and set Adg = Agy1 — Ag.
2.4 Set pred(sg; pr—1) to

0(0) = ai(s) = ANE (s + Co) + prcr (ICKII = [[Tksi + Cul?) -

If pred(sp;pr—1) > 255 (|Ck||* — || Jksk + Ck||?) then set pp = pr_1.
Otherwise set
2 (Qk(sk) — q(0) + AN (Jgsp + Ck))
o [CHIZ = ks + Cill

+ p.

ared(sg;
2.5 If % < m, set

1 -
fess = o max { S1IsE1L 157 (se)al

and reject sg.
Otherwise accept s and choose éx11 such that max{é,,i,, 0k} < dpy1 <

6mam .
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2.6 If s; was rejected set x541 = xr. Otherwise set zp41 = z% + Sk.

If we use the coupled trust-region approach suggested in Section 4.2.2, then we
need to restrict 7 to be in (0, 1) and to change Steps 2.2 and 2.5. In Step 2.2 (sg), is
now required to satisfy (11) and

In Step 2.5, if aedlssiee) 71, we now set

pred(sg;pk)
( (st), = Cylar) ™ Cular)(sk)u )"‘
Sk_l(sk)u

It is not difficult to see that in the coupled trust-region approach we have |[|sg|| <
(1+ v10)0k and g1 > 7=|[sk|| in Step 2.5, where v1q is a uniform bound for |5/,
see Assumption A.7 below. However this is not the case in the decoupled approach.
Here [|sk|| = [lsp + Wi(sk)ull < (r 4 v7v10)05 and similarly 641 > ;7L —||sk(|, where
v7 is a uniform bound for [|[Wy||, see Assumption A.4 below. We can combine these
bounds to obtain

5k+1 =y

[[sk]] < max{l+ vi0,7 + vrrvi0} 0k,
(14)

6k+1 > min{ 1—?510 ’ 7"-I-l/7l/10 } ” k”

Of course the rules to update the trust radius in the previous algorithm can
be much more involved but the above suflices to prove convergence results and to
understand the trust-region mechanism.

As before we have the choices S, = Dy and Si = I,_p,.

In order to establish global convergence results we need some general assumptions.
We list these assumptions below.

A.1 For all iterations k, zg, z + si € 2, where  is an open convex set of IR”.

A.2 The functions f(z), ¢;(z), 7 =1,...,m, are twice continuously differentiable
on 2. Here ¢;() represents the i—th component of C'(z).

A.3 The partial Jacobian Cy(z) is nonsingular for all z € Q.

A.4 The functions f(z), Vf(z), V*f(z), C(z), J(z), V?ci(z), i = 1,...,m, and
Cy(z)™! are bounded in Q.

A.5 The sequences {Hy}, {\r} are bounded.

As consequence of A.4 and A.5, there exist positive constants vg,...,vs inde-
pendent of k such that |fi| < vo, |[V/fell < v1, |V2Sell < va, [|Ckll < v, || k]| < va
and ||(V2e)ell < wsy @ = 1,...,m, [[Hil| < vs, [|Cylzr)™Y| < vr, ||Wi] < v7, and
el < vs.

If for some ¢, a; = —oc0 or b; = 400, we need to assume that {u;} is bounded.
Thus we add the following assumption.

A.6 The sequence {u} is bounded.
We need to restrict the choices of the scaling matrix S%.

A.7 The sequences {||S%||} and {||S; ' Dx||} are bounded.
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Under the Assumption A.6, the choices S, = Dy and Sy = I,,_,, satisfy A.7.

It follows from the Assumptions A.6 and A.7 that ||Dy| < v, ||Sk|| < v10, and
HS;leH < vq1, where vy, v19 and vq7 are positive constants independent of k.

For the rest of this paper we suppose that general Assumptions A.1-A.7 are
always satisfied.

6. First—order convergence theory. The first—order convergence result estab-
lished in this section is obtained by using the convergence theory presented in [6] for
the equality—constrained optimization problem. To do this we need some technical
lemmas.

First we recall that the quasi-normal component s} is assumed to satisfy the
conditions (3), (4), and (5). From (5) and the fact that the tangential component lies
in the null space of Ji, we obtain

(15) ICkII* = 17ksk + Crll* > s2| Cll min{ sz || Cll, réi }-

In the following lemma we rewrite the fraction of Cauchy decrease conditions (10)
and (11) in a more useful form for the analysis.
LEMMA 6.1. If (sk)y satisfies either (10) or (11) then

0r(sR) = ak(sf + Wi(se)u) > mal DeWE Va(sp)lI
(16) )
min {KSHDkWEqu(SE)W 566k} ;

where K4, k5, and kg are positive constants independent of the iteration k.
Proof. We first consider the decoupled trust region and thus assume (10). Let 6y
be the maximum ||D;' - || norm of a step, say (x),, along —Dng—Z” allowed inside

the trust region given by (8). Here g = Dygx. From Assumption A.7, we have
(17) 8 = 1551 (Bk)ull < virdy.

Define ¢ : Rt — R as ¢(t) = qr(s] — thDng—zH) — qr(sp). Then 9¥(t) =

AT I 5 ~ _ _
—|lgx|lt + %’“t{‘), where 7, = gﬁiﬁgk and Hp = DkaTHkaDk. Now we need to

minimize ¢ in [0,7T%] where T} is given by

[19x1l (91); > o}, o} min {—(gk)i t(gr)i < 0}}.

(9k):
Let ¢} be the minimizer of ¢ in [0,T}]. If ¢ € (0,7}) then

T = min {5;“ o, min{

1 [|g]? 1 ]| g|l*
18 P(y) = —= < -
(13) ()= —5 S =
If {7 = T) then either r, > 0 in which case ”g:” > T3 or rp, < 0 in which case

Tk < ||gk||. In either event,

(19) V() = ¥(Tk) = Tk

We can combine (18) and (19) with

N Tk 12 Ty .
—Tr7 < == .
ng‘Q RS 2|gk’

0 () — qe (] + Wilsi)u) > B (ax(s]) — au(s] + Wiel) ) = —Bu(t5)
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to get

06(6) = a6 + Wals)e) > 3611 m{ i } |
k

The fact that o, > o

implies that

ae(s]) — qr(sh + Wi(sk)u) > 38| DeWI Var(sp)l|-

: DWW Vap (s { }
min { ||DTWTHkaDk|| ,min < 0,0

Now we consider the coupled trust region and the condltlon (11). Let & be the
maximum || D;! - H norm of a step, say (3 )., along — Dy Moo allowed inside the trust

(20)

region given by (9). It is a simple matter to see that

(21) H( 8k8 )k )

From the Assumptions A.6 and A.7 we have

R
i Gk

> (1 —7)bg.

2

I = Cylae) ™ Culzr) Sk S5 (Se)ull® + 115 (51 )ul?

IN

(v3viy + VIS, (Br)ull?
= (vio+ 1) 1S5 DD (3 )ull®
< (viviy + Vv || Dy (k) ul?

= (vl + Dy 6.

So from this and inequality (21), we get

(22) P
[ —
vy VAvi, + 1

Using the arguments applied before we can show that (20) holds true.
To complete the proof, we use (17), (20), (22), the general assumptions and
the fact that d; < 0,4, to establish (16) with kg = %ﬂ, Ky = ﬁ and kg =
Vi l/7l/9

1—r o
mm{y11 T &mx}. O

We also need the following three inequalities.
LEMMA 6.2. There exist posilive constanls k7, kg, and kg independent of k such
that

(23) 7(0) — qr(s§) — AN (Jesi + C) > —rr7]| ||,

0.
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(24)  lared(s; pi) — pred(se; pi)| < rsllsell® + mspellsill” + sspel|Cell llsell”

and

(25) lared(si; pr) — pred(sy; pr)| < Kopk| skl

Proof. For the proof of the first inequality see Lemma 7.3 in [6]. The proofs of
(24) and (25) are given in [9, Lemma 6.3] and [6, Lemma 7.5], respectively. 0

The following four lemmas bound the predicted decrease.

LEMMA 6.3. If (sg), salisfies either (10) or (11), then the predicted decrease in
the merit function satisfies

pred(siip) >kl DeWI V(s min {5 ]| DT Vagi(sP)ll, mob }

(26)
—r7|Crll + p(|Ckl1? = [|Tksk + Cell?),
where p > 1.
Proof. The inequality (26) follows from a direct application of (23) and from the
lower bound (16). a

LEMMA 6.4. Assume that (sg), salisfies either (10) or (11) and that | DeWE Var(sD)||+
|Ckll > €to1- If ||Ckl| < @bk, where a is a positive constant satisfying

. € Kq€ . 2K5€
(27) a < mm{ tol 7 4€¢0l mm{ 5 toz,lﬂ)g}},

(Smaz‘ 3""37 (5ma1‘

then we have

pred(si:p) > DTV au(sD)| minges | DeW V(s madi )
(28)
0 (ICHI12 = 1 Tes + Cell?),

where p > 1.
Proof. From ||DiWIVar(s?)|| + ||Ck|| > €1 and the first bound on a given by
(27), we get

_ 2
(29) IDWE g > et

If we use this, (26), and the second bound on a given by (27), we obtain

pred(siip) > D Vau(s)] mings | DWW Va(sP)ll, medi )

+ M;wz min{ 2553&01 , 1‘166k}

—r7l|Crll 4+ p (ICKII? = | ksk + Ckl|?)

v

FDW V(s min{ris || De W, Var(spll, kedr }

+0 (ICl? = | sk + Crll?) -
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We can use Lemma 6.4 with p = py_; and conclude that if ||DW]I'Va.(sD)| +
|Ck|| > €tor and ||Cy|| < by, then the penalty parameter at the current iteration does
not need to be increased. This is equivalent to Lemma 7.7 in [6]. The next lemma
states the same result as Lemma 7.8 in [6] but with a different choice of a.

LEMMA 6.5. Let (s )y salisfy either (10) or (11) and suppose that || Dy W'V qp(sD)||+
|Ck|l > €tor- If||Cr|| < @by, where a satisfies (27), then there exists a positive constant
K10 > 0 such that

(30) pred(sg; pr) > K100k-

Proof. From (28) with p = py and || Dgi| > Zeto1, cf. (29), we obtain

pred(sy; pr) > "5 min{ 2”53%1 , Kelr }

Ba€iol i f 2K5€00
> 3 mm{%mw,%}ék.

Hence (30) holds with

R4l . 2K5€401
K10 = min Rg ¢ -

3 36maaz ’
d
LEMMA 6.6. The predicled decrease salisfies
k

(31) pred(sii o) 2 B (ICHI2 = 1 wsk + Cul?)
for all k.

Proof. The assertion follows directly from the scheme that updates pg in Step 2.4
of Algorithms 5.1. 0

Now we use the theory given by Dennis, El-Alem and Maciel [6] to state the
following result.

THEOREM 6.1. The sequences of ilerates generaled by the trusl-region interior—
point SQP Algorithms 5.1 satisfy

limkinf | DWW V(s + [|Ckll = 0.

Proof. Lemmas 7.9-7.13 and 8.2 as well as Theorems 8.1, 8.3 and 8.4 in [6] can be
applied based on (4), (14), (15), (16), (23), (24), (25), (30), (31) and on the fact that
il | DeWEVar(sM)|| + ||Ckll > €0 and ||C|| < @by, then the penalty parameter at the
current iteration does not need to be increased. Thus this result is just a restating of
Theorem 8.4 of [6]. 0

Now let Dy = D(uyg), where D(u) is given by (2). The matrix Dy is different from
Dy, (given in Section 4.2.1) because we are choosing the diagonal elements based on the
sign of the components of W,;[ka and not on the sign of the elements of W,;[qu(sg)
as we did when we defined D;. Now we can state the first—order convergence result
that the trust-region interior—point SQP algorithms satisfy.

THEOREM 6.2. The sequences of iterates generaled by the trusli-region interior—
point SQP Algorithms 5.1 salisfy

limkinf HDkaTka” + [|C|| = 0.
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Proof. From Theorem 6.1 there exists a subsequence k; such that

lim || Dy W, Vg, (sl + [1Ck || = 0.

We need to show that lim; || Dy, ij:kai || = 0. From (4) and the fact that lim; ||Cy,|| =
0, we get lim; ||s7 [| = 0. This completes the proof of the theorem. 0

Although we have decided not to include it here, we can follow an argument similar
to the one given for minimization with simple bounds [8], to extend Theorems 6.1 and
6.2 to scalings of the form D} and Di for p > % We content ourselves with p = 1,
which seems to us the most straightforward choice.

7. Trial steps and multiplier estimates. When we described the trust—region
interior—point SQP algorithms, we deferred the computation of the quasi—-normal and
tangential components and of the multiplier estimates. In the following sections we
address these issues.

7.1. Computation of the quasi—-normal component. The quasi-normal com-
ponent s is an approximate solution of the trust-region subproblem

1
(32) minimize §HC'y(mk)(sn)y + C|?
subject to  ||(s"),]] < réx,

and it is required to satisfy conditions (3), (4) and (5). Property (4) is a consequence
of (5). In fact, using ||Cy(zx)(s])y + Ck|| < ||Ck|| and the boundedness of {Cy(z5)~*}
we find that

st ll < I1Cy(ze) T IACy (k) (sE)y + Crll + 1Ckll) < 207 [|Ck]] -

Whether the property (5) holds depends on the way in which the quasi-normal com-
ponent is computed. We will show below that (5) is satisfied for some of the most
reasonable ways to compute sJ.

There are various ways to compute the quasi-normal step s} for large scale prob-
lems. For example, one can use the conjugate—gradient method as suggested in [24]
and [25], or one can use the Lanczos bidiagonalization as described in [11]. Both
methods compute an approximate minimizer to the least squares functional in (32)
from a subspace which contains its negative gradient —C(z;)TC(21). Thus, the steps
s generated by these methods satisfy ||s]|| < ré, and

A Cy(@e)(sP)y + Cill®
(33)
< min{}||Cy(zr)s + Ckl|* : s € span{Cy(zx)TCy}, [|s|| < réx}.

We can appeal to a classical result due to Powell, see [23, Thm. 4], [20, Lemma 4.8],
to show that

1 . |Cy(zr) Ci|
Cill* = 1C (z)(sM)y + Crll? > =||1C (25 TCk mln{ Y , 70k ¢
Gl = Cy(ex) o)y + Call* 2 lCy ) Cillmin § pr 2 SmTt

Now one can use the fact that {C,(zx)} and {C,(z;)"1} are bounded and write

ICkI* = IICy(2x)(sR)y + Cill* > kol Cyl| min{rs||Cxll, réx},
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where k9 and k3 are positive and do not depend on k.
An alternative to the previous procedures is to compute the solution of Cy(z)s =
—C'(x) and to scale this solution back into the trust region, i.e., to set

(34) of = ( G ) ,

where

1 if ” - Cy(xk)_leH < rég,
§p =

7’5k :
T=Cater =TChT otherwise.

It follows from the boundedness on {Cy(z3)~'} that s given by (34) satisfies the con-
dition (4). In the following lemma we show that this choice of quasi-normal component
also satisfies (5).

LemMA 7.1. The quasi-normal component (34) satisfies

ICElI* = 1Cy(2r)(sR)y + Crll* > s2l|Cell min{rs||Cell, 76k},

where ko and k3 are positive constants independent of k.
Proof. A simple manipulation shows that

ICkII* = 1Cy (2k)(sE)y + Ckll?

V

[C,lI” = || = &k Cy(@x)Cy(@r) ™ Cr + Ci||?

v

ICkII? = (1= EDNICRll + & || = Cylar)Cy(mr) 7 Cr + Cil))?

Er(2 = ENICKI® > & lICll?

We need to consider two cases. If £ = 1, then
ICI* = 1Cy(2r)(5R)y + Crll* 2 [|Crll min[|Cill, 765}

Otherwise, &, = m. In this case we get
2 n 2o 1 1 .
ICHI" = 1€y (ze)(sk)y + Cell” 2 ZlICkll 766 2 || Cl| ming[|Cill, 76}

Thus the result holds with k3 = min{l, %} and k3 = 1. 0

7.2. Computation of the tangential component. In this section we show
how to derive conjugate-gradient algorithms to compute (sg),. Let us consider first
the decoupled trust-region approach given in Section 4.2.1. If we ignore the bound
constraints for the moment, we can apply the conjugate—gradient algorithm proposed
by Steihaug [24] and Toint [25] to solve the problem

T 1
minimize  gr(sy) + (W,?qu(sg)) Su+ §3£WkTHka5u

subject to || sy < 8k,
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with our choices S = Dy and S; = I,,_,,. However we also need to incorporate the
constraints

or(a —ug) < sy < op(b— ug).

The algorithm is the following.
ALGORITHM 7.1 (COMPUTATION OF s; = sj+Wy(sk), (DECOUPLED APPROACH)).
1 Set s2 =0, rg = —WIVaq(s?), gqo = Dirg, dy = qo, and € > 0.
2 For:=10,1,2,...do

rTq;
2.1 Compute v; = ATWIH Wy d;
2.2 Compute ;
T=max{r >0 : [S (s} + Td)l| < &,

or(a —ug) < st +7d; < op(b—uk)}.
23 If 7, <0, orif 7; > 7, then set (sg), = si + 7d;, where 7 is given as in
2.2 and go to 3; otherwise set st = st + 7;d;.
2.4 Update the residuals r;41 = r; — WW,;‘FHkadi and g;41 = Diriﬂ.

T _ .
2.5 Check truncation criteria: If ,/%’%i% <, set (sg), = sttt and go to 3.
0

T
2.6 Compute a; = T”ﬁﬁ and set d;41 = ¢41 + o;d;.

L ai
3 Compute s = sj + Wy(sk), and stop.

Step 2 iterates entirely in the u—space. After the u—component of the step si
has been computed, Step 3 finds its y—component. The decoupled approach allows an
efficient use of an approximation flk to the reduced Hessian W,?Hka. In this case
only two linear systems are required, one with Cy(xk)T in Step 1 and the other with
Cy(z) in Step 3. If it is the Hessian Hj, that is being approximated, then the total
number of linear systems is 2Ly 4+ 2, where L is the number of conjugate-gradient
iterations.

One can transform this algorithm to work in the whole space rather then in the
reduced space by considering the coupled trust-region approach given in Section 4.2.2.
This requires the solution of two linear systems at each iteration no matter what type
of Hessian approximation (reduced or full) is used. In either case the coupled approach
requires a total of 2Ly + 2 linear systems. This alternative is presented below.

ALGORITHM 7.2 (COMPUTATION OF s = sp + Wj(sk)y (COUPLED APPROACH)).
1 Set s = s0, rg = —WIVaq(s!), qo = Dirg, dy = Wiqo, and € > 0.
2 For:=10,1,2,...do

2.1 Compute v; = %.
2.2 Compute z
(s)y = Cylar) ' Cu(r)(di)u
= 0 : v <é
T = max{7T > H( Sk_lT(di)u < b,

or(a —ug) < st + 7(d;)y < op(b—ug)}.
2.3 If v; <0, 0rif ; > 7, then stop and set s = st 4 Td;, where T is given
as in 2.2; otherwise set s't1 = s* + ~id;.
2.4 Update the residuals r;41 = r; — 'inkTdei and g;41 = Dirﬂ_l.

T .
2.5 Check truncation criteria: If ,/% < ¢, set sp = s'T! and stop.
0
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T
2.6 Compute a; = T‘Jﬁ& and set dit1 = Wi(qiy1 + oid;).

Note that in Step 2 both the y— and the u—components of the step are being
computed. The coupled approach is particularly suitable when an approximation
to the full Hessian Hj is used. The coupled approach can also be used with an
approximation flk to the reduced Hessian WkTHkW/k. In this case we consider that
Hy, is given by (12), and we use the equalities (13) to compute the terms involving Hj,
in Algorithm 7.2.

Two final important remarks are in order.

ReMARK 7.1. If (WIW;)~! was included as a preconditioner in Algorithm 7.2,
then the conjugate—gradient iterates would monotonically increase in the norm ||Wy - |.
Dropping this preconditioner means that the conjugate—gradient iterates do not nec-
essarily increase in this norm. As result if the quasi-Newton step is inside the trust
region, Algorithm 7.2 can terminate prematurely by stopping at the boundary of the
trust region.

REMARK 7.2. Since the conjugate—gradient Algorithms 7.1, 7.2 start by minimiz-
ing the quadratic function gx (s} + Wys, ) along the direction —ngjk, it is quite clear
that they produce reduced tangential components (sg), that satisfy (10) and (11),
respectively, with g = 1.

7.3. Multiplier estimates. A convenient estimate for the Lagrange multipliers
is the adjoint update

(35) Me = =Cya) TV y fi,

which we use after each successful step. However we also consider the following update:
(36) Mo = =Cy(ar) T Vyar(s)) = =Cy(ar) ™" (Hrs})y + Vi fe) -

Here the use of (36) instead of

(37) A1 = —Cylap + s1) IV, f(zr + s1),

might be justified since we obtain (36) without any further cost from the first iteration
of any of the conjugate-gradient algorithms described above. The updates (35), (36),
and (37) satisfy the requirement given by A.5 needed to prove first-order convergence.

8. Numerical example. A typical application that has the structure described
in this paper is the control of a heating process. In this section we introduce a simplified
model for the heating of a probe in a kiln discussed in [2]. The temperature y(z,?)
inside the probe is governed by a nonlinear partial differential equation. The spatial
domain is given by (0, 1). The boundary z = 1 is the inside of the probe and z = 0 is
the boundary of the probe.

The goal is to control the heating process in such a way that the temperature
inside the probe follows a certain desired temperature profile y4(t). The control u(t)
acts on the boundary z = 0. The problem can be formulated as follows.

minimize %/()T[(y(l, 1) — ya())? + yu?(1)]dt
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subject to

—0:(K(y(2,1))0:y(z, 1)) = qlz,1), (2,1) €(0,1)x(0,T),
’{(y(ovt))azy(ovt) = g[y(O,t) - u(t)]v le (OvT)7
R(y(L0))dey(L,t) = 0, te(0,1),

y(z,0) = yo(z), z€(0,1),

Uow < u < Unpp

where y € L*(0,T; H'(0,1)), and w € L?(0,T). The functions 7 : IR — IR and
k : IR — IR denote the specific heat capacity and the heat conduction, respectively, yq
is the initial temperature distribution, ¢ is the source term, g is a given scalar, and ~
is a regularization parameter. Here wjoy, thypp € L°°(0,1") are given functions.

If the partial differential equation and the integral are discretized we obtain an
optimization problem of the form (1). The discretization uses finite elements and
was introduced in [2] (see also [12] and [16]). The spatial domain (0,1) is divided
into N, subintervals of equidistant length, and the spatial discretization is done using
piecewise linear finite elements. The time discretization is performed by partitioning
the interval [0, 7] into N, equidistant subintervals. Then the backward Euler method
is used to approximate the state space in time, and piecewise constant functions are
used to approximate the control space.

We implemented the TRIP SQP Algorithms 5.1 in FORTRAN 77. We use the
formula (34) to compute the quasi-normal component, and Algorithms 7.1 and 7.2 to
calculate the tangential component. The numerical test computations were done on a
Sun Sparcstation 10 in double precision.

With this discretization scheme, C(z) is a block bidiagonal matrix with tridiag-
onal blocks. Hence linear systems with C,(z) and C,(z)" can be solved efficiently.
In the implementation we use the LINPACK subroutine DGTSL to solve the tridiago-
nal systems. Inner products and norms used in the TRIP SQP algorithms are not
Euclidean; instead we use discretizations of the L*(0,7) and L?(0,7; H'(0,1)) norms
for the control and the state spaces respectively. This is important for the correct
computation of the adjoint and the appropriate scaling of the problem.

In our numerical example we use the functions

Ty)=a+qy, yelR, k(y)=ri+ry, yelk,

with parameters 11 = ¢4 =4, 79 = —1, ¢ga = 1. The desired and initial temperatures,
and the right hand side are given by
ya(t) = 2—€™,
yo(z) = 24 cosma,
q(z, 1) = [n(q+ 2q2) + 72(r1 + 2r3)]e" cos mx

—rom2e? 4 (2rym? 4 ngy)e*" cos® mx,

with 7 = —1. The final temperature is chosen to be 7" = 0.5 and the scalar g in the
boundary condition is set to be one. The functions in this example are those used in
[16, Ex. 4.1]. The size of the problem tested is n = 2100, m = 2000 corresponding to
the values N; = 100, N, = 20.

The scheme used to update the trust radius is the following;:
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o If ratio(sg; pr) < 1074, reject s, and set dp11 = 0.5 norm(s);

o If 107* < ratio(sy; pr) < 0.1, reject s and set 8541 = 0.5 norm(sy);
o If 0.1 < ratio(sg; pr) < 0.75, accept si and set 641 = Ok;

o If ratio(sk; pr) > 0.75, accept s and set dpy1 = 20;

_ ared(sk;pk)
— pred(sk;ipr)

1 _
max {121 155 Csw)ull

where ratio(sg; pi) and norm(sy) is given by

in the decoupled approach and by

H( (1), = Cylar) " Cul@r)(k)u )H
Sk_l(sk)u

in the coupled approach.

We have used r = 0.5 in the decoupled approach and » = 1 in the coupled
approach; op = ¢ = 0.99995 for all k; g = 1 as initial trust radius; p_; = 1 and
g = 1072 in the penalty scheme. The tolerances used were ¢ = 10~% for the main
iteration and € = 10~* for the conjugate-gradient iteration. The upper and lower
bounds were b; = 1072, @; = —1000, 7 = 1,...,n — m. The starting vector was
(yo, Uo) = (0, O)

For both, the decoupled and the coupled approaches, we used approximations to
reduced and to full Hessians. We approximate these matrices with the limited memory
BFGS representations given in [3] with a memory size of 5 pairs of vectors. The initial
approximation chosen was y1I,,_,, for the reduced Hessian and 1, for the full Hessian,
where v is the regularization parameter in the objective function.

In our implementation we use the following form of the diagonal matrices Dy and

min{1, (b — ug);} if (WkTka) <0,

(38) (Dp)ii =
min{l, (u; —a);} if (W,?ka) >0,
) min{l, (b — ux);} if ¢; <0,
(39) (Dp)ii =
min{l, (ux —a);} if g, >0,
for i = 1,...,n — m. This form of D; and D gives a better transition between

the infinite and finite bound and is less sensitive to the introduction of meaningless
bounds. Proposition 3.1 and the convergence result given in Theorem 6.2 hold true
with Dy and Dy given by (38) and (39) respectively.

The results are shown in Tables 1, 2 corresponding to the values v = 1072 and
v = 1073, respectively. There were no rejected steps. The different alternatives tested
performed quite similarly. The decoupled approach with reduced Hessian approxima-
tion seems to be the best for this example. Note that in this case the computation
of each trial step costs only three linear systems with C,(zz) and Cy,(zx)T, one to
compute the quasi-normal component and two for the computation of the tangential
component.
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TaBLE 1
Numerical results for y = 1072.

Decoupled Coupled
Reduced flk Full Hy, Reduced flk Full Hy,
number of iterations k* 13 16 19 19
[|Cex ] .8638FK — 10 | .4426F — 10 | .5768F — 12 | .1216F — 10
| Des WAV fir | A273FE — 08 | BRT4E — 08 | 3221 K — 09 | .3145F — 08
[|skx—1]| 3405FE — 04 | .3697TFE — 04 | .4641F — 05 | .1629F — 04
Opr 1 B192F + 04 | .6554E 4+ 05 | .5243FE 4+ 06 | .5243F 4 06
Pr*_1 .1000F + 01 | .1000E 4 01 | .1000£ 4+ 01 | .1000F 4 01
TABLE 2
Numerical results for y = 1072,
Decoupled Coupled
Reduced flk Full Hy, Reduced flk Full Hy,
number of iterations k* 15 19 16 21
[|Cex] 2518FE — 09 | .[4550F — 10 | .1739E — 09 | .3699F — 10
| Dix WLV fix | 9276 — 08 | 2780E — 09 | .1967TE — 09 | 4887F — 10
[|skx—1]| J1024F — 03 | .3620F — 04 | .5402F — 04 | .2338F — 04
Opr_1 B277TE+ 05 | b243E 4+ 06 | .6554E 4+ 05 | .2097F 4 07
Pr*_1 .1000E + 01 | .1000E 4 01 | .1000£ 4+ 01 | .1000F 4 01
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x 107 Computed Control x 107 Computed Control

10 T — T T T T

I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
t

FiGg. 1. Coleman—Li scaling. FiGg. 2. Dikin-Karmarkar scaling.

We made an experiment to compare the use of the Coleman—Li scaling with the
Dikin—Karmarkar scaling. The latter scaling is given by

(40) (I(k)”' = (Kyk)“ = min{l, (uk — a)i, (b — uk)z}

and has no dual information built in. We ran the TRIP SQP algorithm with the
decoupled and reduced Hessian approximation and (38), (39) replaced by (40). The
algorithm took only 11 iterations to reduce ||K WV fi|l + [|Ck|| to 1078, However
as we can see from the plots of the controls in Figures 1 and 2 the algorithm did not
find the correct solution when it used the Dikin-Karmarkar scaling (40). Some of the
variables are at the wrong bound corresponding to negative multipliers.

9. Conclusions. In this paper we have introduced and analyzed some trust—
region interior—point SQP algorithms for an important class of nonlinear program-
ming problems that appear in many engineering applications. These algorithms use
the structure of the problem, and they combine trust-region techniques for equality—

constrained optimization with a affine-scaling interior—point approach for simple bounds.

We have proved a first—order convergence result for these algorithms that includes as
special cases both the results established for equality constraints [6] and those for
simple bounds [4], [8].

We implemented the trust-region interior—point SQP algorithms and tested them
on a specific optimal control problem governed by a nonlinear heat equation. The
numerical results were quite satisfactory.

We are investigating extensions of these algorithms to handle bounds on the state
variables y. We are also developing an inexact analysis to deal with trial step compu-
tations that allow for inexact linear system solvers and inexact directional derivatives
[13]. The formulation and analysis of these methods in an infinite dimensional frame-
work is also part of our current studies.
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