Schwarz Methods: To Symmetrize
or Not to Symmetrize

Michael Holst
Stefan Vandewalle

CRPC-TR94604
1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Also available as CRPC-94-13 from the Center for Re-
search on Parallel Computation at the California Institute
of Technology.



SCHWARZ METHODS:
TO SYMMETRIZE OR NOT TO SYMMETRIZE*

MICHAEL HOLST! AND STEFAN VANDEWALLE'

Abstract. A preconditioning theory for Schwarz methods is presented. The theory establishes
sufficient conditions for multiplicative and additive Schwarz algorithms to yield self-adjoint positive
definite preconditioners. It allows for the analysis and use of non-variational and non-convergent linear
methods as preconditioners for conjugate gradient methods, and it is applied to domain decomposition
and multigrid. It is illustrated why symmetrizing may be a bad idea for linear methods. It is conjectured
that enforcing minimal symmetry achieves the best results when combined with conjugate gradient
acceleration. Also, 1t 1s shown that absence of symmetry in the linear preconditioner is advantageous
when the linear method is accelerated by using the Bi-CGstab method. Numerical examples are
presented for two test problems which illustrate the theory and conjectures.
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1. Introduction. Domain decomposition (DD) and multigrid (MG) methods have
been studied extensively in recent years, both from a theoretical and numerical point
of view. DD methods were first proposed in 1869 by H. A. Schwarz as a theoretical
tool in the study of elliptic problems on non-rectangular domains [20]. More recently,
DD methods have been reexamined for use as practical computational tools in the
(parallel) solution of general elliptic equations on complex domains [8]. MG methods
were discovered much more recently [9]. They have been extensively developed both
theoretically and practically since the late seventies [5, 10], and they have proven to be
extremely efficient for solving very broad classes of partial differential equations. Recent
insights in the product nature of certain MG methods have led to a unified theory of
MG and DD methods, collectively referred to as Schwarz methods [4, 25].

In this paper, we consider additive and multiplicative Schwarz methods and their
acceleration with Krylov methods, for the numerical solution of self-adjoint positive
definite (SPD) operator equations arising from the discretization of elliptic partial dif-
ferential equations. The standard theory of conjugate gradient acceleration of linear
methods requires that a certain operator associated with the linear method — the pre-
conditioner — be symmetric and positive definite. Often, however, as in the case of
Schwarz-based preconditioners, the preconditioner is known only implicitly, and sym-
metry and positive definiteness are not easily verified. Here, we try to construct natural
sets of sufficient conditions that are easily verified and do not require the explicit for-
mulation of the preconditioner. More precisely, we derive conditions for the constituent
components of MG and DD algorithms (smoother, subdomain solver, transfer opera-
tors, etc.), that guarantee symmetry and positive definiteness of the preconditioning
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operator which is (explicitly or implicitly) defined by the resulting Schwarz method.

We examine the implications of these conditions for various formulations of the
standard DD and MG algorithms. The theory we develop helps to explain the often
observed behavior of a poor or even divergent MG or DD method which becomes an
excellent preconditioner when accelerated by a conjugate gradient method. We also
investigate the role of symmetry in linear methods and preconditioners. Both analysis
and numerical evidence suggest that linear methods should not be symmetrized when
used alone, and only minimally symmetrized when accelerated by conjugate gradients,
in order to achieve the best possible convergence results. In fact, the best results are
often obtained when a very nonsymmetric linear iteration is used in combination with
a nonsymmetric system solver such as Bi-CGstab, even though the original problem is
SPD.

The outline of the paper is as follows. We begin in §2 by reviewing basic linear
methods for SPD linear operator equations, and examine Krylov acceleration strategies.
In §3 and §4, we analyze multiplicative and additive Schwarz preconditioners. We
develop a theory that establishes sufficient conditions for the multiplicative and additive
algorithms to yield SPD preconditioners. This theory is used to establish sufficient
conditions for multiplicative and additive DD and MG methods, and allows for analysis
of non-variational and even non-convergent linear methods as preconditioners. A simple
lemma, given in §5, illustrates why symmetrizing may be a bad idea for linear methods.
In §6, results of numerical experiments obtained with finite-element-based DD and MG
methods applied to some non-trivial test problems are reported.

2. Krylov acceleration of linear iterative methods. In this section, we re-
view some background material on self-adjoint linear operators, linear methods, and
conjugate gradient acceleration. A more thorough reviews can be found in [11, 16].

2.1. Background material, terminology and notation. Let H be a real finite-
dimensional Hilbert space equipped with the inner-product (-,-) inducing the norm
|- |l = (+,-)'/%. H can be thought of as, for example, the Euclidean space R”, or as an
appropriate finite element space.

The adjoint of a linear operator A € L(H,H) with respect to (-,-) is the unique
operator AT satisfying (Au,v) = (u, ATv), Yu,v € H. An operator A is called self-
adjoint or symmetric if A = AT a self-adjoint operator A is called positive definite or
simply positive, if (Au,u) > 0, Yu € H, u # 0. If A is self-adjoint positive definite
(SPD) with respect to (-, -), then the bilinear form (Au, v) defines another inner-product
on H, which we denote as (-,-)4. It induces the norm || - |4 = (-, -)2/2.

The adjoint of an operator M with respect to (-,-)a, the A-adjoint, is the unique
operator M* satisfying (Mu,v)s = (u, M*v)4, Yu,v € H. From this definition it
follows that

(1) M*=A""MTA .

An operator M is called A-self-adjointif M = M*, and A-positiveif (Mu,u)s >0, Yu €
H, u#0.



If N € L(Hy,H;), then the adjoint satisfies NT € L(H,,H;), and relates the

inner-products in H; and Hy as follows:
(Nu,v)p, = (u, NTo)y, , Yu€Hy, Yv&H,.

Since it is usually clear from the arguments which inner-product is involved, we shall
drop the subscripts on inner-products (and norms) throughout the paper, except when
necessary to avoid confusion.

We denote the spectrum of an operator M as o(M). The spectral theory for self-
adjoint linear operators states that the eigenvalues of the self-adjoint operator M are
real and lie in the closed interval [Amin(M), Amax(M )] defined by the Raleigh quotients:

(2) Nt (M) = min Py = max )

w0 (u,u) w0 (u, u)
Similarly, if an operator M is A-self-adjoint, then its eigenvalues are real and lie in the
interval defined by the Raleigh quotients generated by the A-inner-product. A well-
known property is that if M is self-adjoint, then the spectral radius of M, denoted as
p(M), satisfies p(M) = |[M]|. This property can also be shown to hold in the A-norm
for A-self-adjoint operators (or, more generally, for A-normal operators [1]).

LEMMA 2.1. If A is SPD and M is A-self-adjoint, then p(M) = ||M||4.

2.2. Linear methods. Given the equation Au = f, where A € L(H,H) is SPD,
consider the preconditioned equation BAu = Bf, with B € L(H,H). The operator B,
the preconditioner, is usually chosen so that the linear iteration:

(3) w'"t = u" — BAu" + Bf = (I — BA)u" + Bf,

has some desired convergence properties. The convergence of (3) is determined by the
properties of the so-called error propagation operator,

(4) E=1—BA.

The spectral radius of the error propagator K is called the convergence factor for the
linear method, whereas the norm is referred to as the contraction number. We recall
two well-known lemmas; see for example [15] or [18].

LEMMA 2.2. For arbitrary f and u°, the condition p(E) < 1 is necessary and
sufficient for convergence of the linear method (3).

LEMMA 2.3. The condition |F|| < 1, or the condition ||E||4 < 1, is sufficient for
convergence of the linear method (3).

We now state a series of simple lemmas that we shall use repeatedly in the following
sections. Their short proofs are added for the reader’s convenience.

LEMMA 2.4. If A ts SPD, then BA is A-self-adjoint if and only if B is self-adjoint.

Proof. Note that: (ABAu,v) = (BAu, Av) = (Au, BT Av). The lemma follows
since BA = BT A if and only if B = BT. 00

LEMMA 2.5. If A is SPD, then E is A-self-adjoint if and only if B is self-adjoint.
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Proof. Note that: (AFu,v) = (Au,v) — (ABAu,v) = (Au,v) — (Au, (BA)*v) =
(Au, (I — (BA)*)v). Therefore, E* = F if and only if BA = (BA)*. By Lemma 2.4,
this holds if and only if B is self-adjoint. O

LEMMA 2.6. If A and B are SPD, then BA s A-SPD.

Proof. By Lemma 2.4, BA is A-self-adjoint. Also, (ABAu,u) = (BAu, Au) =
(B2 Au, B'?Au) > 0, Yu # 0. Hence, BA is A-positive, and the result follows. O

LEMMA 2.7. If A is SPD and B is self-adjoint, then ||E||4 = p(F).

Proof. By Lemma 2.5, E is A-self-adjoint. By Lemma 2.1 the result follows. O

LEMMA 2.8. If E* is the A-adjoint of E, then ||E|% = ||EE*]| 4.

Proof. The proof follows that of a familiar result for the Euclidean 2-norm [11]. O

LEMMA 2.9. If A and B are SPD, and F is A-non-negative, then ||E|4 < 1.

Proof. By Lemma 2.5, E is A-self-adjoint. As F is A-non-negative, it holds that
(Eu,u)a >0, 0or (BAu,u)s < (u,u)4. By Lemma 2.6, BA is A-SPD, and we have that
0 < (BAu,u)s < (u,u)a, Yu # 0, which, by (2), implies that 0 < X\; <1, V\; € o(BA).
Thus, p(E) =1 — min; A\; < 1. Finally, by Lemma 2.7, we have ||E||4 = p(F). O

We will have use for the following two simple lemmas, appearing previously in [24].

LEMMA 2.10. If A is SPD and B s self-adjoint, and E s such that:
—Ci(u,u)a < (Fu,u)s < Cy(u,u)s, VYuéeH,

for C1 >0 and Cy >0, then p(E) = ||E||4 < max{Cy,Cs}.
Proof. By Lemma 2.5, E is A-self-adjoint, and by (2) A.in(F) and A, (F) are
bounded by —C and (s, respectively. The result then follows by Lemma 2.7. O
LEMMA 2.11. If A and B are SPD, then Lemma 2.10 holds for some Cy < 1.
Proof. By Lemma 2.6, BA is A-SPD, which implies that the eigenvalues of BA are
real and positive. Hence, we must have that \;(£) =1 — X\ (BA) < 1, Vi. Since Cy in
Lemma 2.10 bounds the largest positive eigenvalue of F, we have that Cy < 1. O

2.3. Krylov acceleration of SPD linear methods. The conjugate gradient
method was developed by Hestenes and Stiefel [12] as a method for solving linear sys-
tems Au = f in a space ‘H, with SPD operators A. In order to improve convergence,
it is common to precondition the linear system by an SPD preconditioning operator
B ~ A7', in which case the generalized or preconditioned conjugate gradient method
results ([7]). Our goal in this section is to briefly review some relationships between the
contraction number of a basic linear preconditioner and that of the resulting precondi-
tioned conjugate gradient algorithm.

We start with the well-known conjugate gradient contraction bound ([11]):

2

1+1
W) 1€la = 2 6" [1e°]]a.

(5) le s < 21
1—|— R A

The ratio of extreme eigenvalues of BA appearing in the derivation of the bound gives

rise to the generalized condition number k4(BA) appearing above. This ratio is often

mistakenly called the (spectral) condition number k(BA); in fact, since BA is not self-

adjoint, this ratio is not in general equal to the usual condition number (this point is
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discussed in great detail in [1]). However, the ratio does yield a condition number in
the A-norm. The following lemma is a special case of Corollary 4.2 in [1].

LEMMA 2.12. If A and B are SPD, then

)‘max(BA)

(6) ka(BA) = || BA||all(BA) |4 = N (BA)

Remark 2.1. Often a linear method requires a parameter « in order to be conver-
gent, leading to an error propagator of the form £ = I — aBA. Equation (6) shows
that the A-condition number does not depend on the particular choice of . Hence,
one can use the conjugate gradient method as an accelerator for the method without a
parameter, avoiding the possibly costly estimation of a good «.

The following result gives a bound on the condition number of the operator BA
in terms of the extreme eigenvalues of the error propagator £ = I — BA; such bounds
are often used in the analysis of linear preconditioners (cf. Proposition 5.1 in [24]). We
give a short proof of this result for completeness.

LEMMA 2.13. If A and B are SPD, and E is such that:
(7) — Ci(u,u)a < (Fuyu)s < Co(u,u)s, VYuéeH,

for C1y >0 and Cy > 0, then the above must hold with Cy < 1, and it follows that:

Proof. First, since A and B are SPD, by Lemma 2.11 we have that Cy < 1. Since
(Fu,u)a = (u,u)s — (BAu,u)a4, it is clear that

(1 =Cy)(u,u)s < (BAu,u)a < (14 Cy)(u,u)s, Yu € H.

By Lemma 2.6, BA is A-SPD. Its eigenvalues are real and positive, and lie in the
interval defined by the Raleigh quotients generated by the A-inner-product. Hence,
that interval is given by [(1 — C3),(1 + C4)], and by Lemma 2.12 the result follows. O

Remark 2.2. Even if a linear method is not convergent, it may still be a good
preconditioner. If it is the case that Cy << 1, and if C; > 1 does not become too large,
then k4(BA) will be small and the conjugate gradient method will converge rapidly,
even though the linear method diverges. This implication of Lemma 2.13 was first
noticed in [24].

If only a bound on the norm of the error propagator £ = I — BA is available, then
the following result can be used to bound the condition number of BA. This result is
used for example in [25].

COROLLARY 2.14. If A and B are SPD, and |[I — BA||4 <6 <1, then

(%Y

(8) ka(BA) < %

>



Proof. This follows immediately from Lemma 2.13 with é = max{C;,C5}. O

The next result connects the contraction number of the preconditioner to the con-
traction number of the preconditioned conjugate gradient method. It shows that the
conjugate gradient method always accelerates a linear method (if the conditions of the
lemma hold).

LEMMA 2.15. If A and B are SPD, and ||[[ — BA|[4 < 6 <1, then 6, < 6.

Proof. An abbreviated proof appears in [25], a more detailed proof in [13]. O

2.4. Krylov acceleration of nonsymmetric linear methods. The conver-
gence theory of the conjugate gradient iteration requires that the preconditioned oper-
ator BA be A-self-adjoint (see [2] for more general conditions), which from Lemma 2.4
requires that B be self-adjoint. If a Schwarz method is employed which produces a
nonsymmetric operator B, then although A is SPD, the theory of the previous section
does not apply, and a nonsymmetric solver such as conjugate gradients on the normal
equations [2], GMRES [19], CGS [21], or Bi-CGstab [23] must be used for the now
non-A-SPD preconditioned system, BAu = Bf.

The conjugate gradient method for SPD problems has several nice properties (good
convergence rate, efficient three-term recursion, and minimization of the A-norm of
the error at each step), some of which must be given up in order to generalize the
method to nonsymmetric problems. For example, while GMRES attempts to maintain
a minimization property and a good convergence rate, the three-term recursion must
be sacrificed. Conjugate gradients on the normal equations maintains a minimization
property as well as the efficient three-term recursion, but sacrifices convergence speed
(the effective condition number is the square of the original system). Methods such as
CGS and Bi-CGstab sacrifice the minimization property, but maintain good convergence
speed and the efficient three-term recursion. For these reasons, methods such as CGS
and Bi-CGstab have become the methods of choice in many applications that give rise
to nonsymmetric problems. Bi-CGstab has been shown to be more attractive than CGS
in many situations due to the more regular convergence behavior [23].

In §6, we shall use the preconditioned Bi-CGstab algorithm to accelerate nonsym-
metric Schwarz methods. In a sequence of numerical experiments, we shall compare the
effectiveness of this approach with unaccelerated symmetric and nonsymmetric Schwarz
methods, and with symmetric Schwarz methods accelerated with conjugate gradients.

3. Multiplicative Schwarz methods. We develop a preconditioning theory of
product algorithms which establishes sufficient conditions for producing SPD precon-
ditioners. This theory is used to establish sufficient SPD conditions for multiplicative

DD and MG methods.
3.1. A product operator. Consider a product operator of the form:
(9) E=1—-BA=(I—-BA)(I—-BA)(I - B A),

where By, By and B; are linear operators on H, and where A is, as before, an SPD
operator on H. We are interested in conditions for By, By and B;, which guarantee
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that the implicitly defined operator B is self-adjoint and positive definite and, hence,
can be accelerated by using the conjugate gradient method.
LEMMA 3.1. Sufficient conditions for symmelry and positivity of operator B, im-
plicitly defined by (9), are:
1. By = BT ;
2. By =Bl ;
3. H]— BlAHA <1 N
4. By non-negative on H .
Proof. By Lemma 2.5, in order to prove symmetry of B, it is sufficient to prove
that £ is A-self-adjoint. By using (1), we get

BT = AT'ETA
= AYI - ABDHY(1 - ABE)(1 — ABHA
(I = BIA)(I — B A)(I - B A)
= (I — BiA)(I — BoA)(I — B,A) = E,

which follows from conditions 1 and 2.
Next, we prove that (Bu,u) > 0, Yu € H, u # 0. Since A is non-singular, this is
equivalent to proving that (BAu, Au) > 0. Using condition 1, we have that

(BAu, Au) = ((I — E)u, Au)

Au) — ((I = Bf A)(I — BoA)(I — By A)u, Au)
Au) — (I = BoA)(I — By A)u, A(I — By A)u)
Au

)= ((I = B1A)u, A(I — B1A)u) + (Bow, w),

u,

(
(
(u,
= (u
where w = A(] — By A)u. By conditions 2 and 4, we have that (Byw,w) > 0. Condition
3 implies that ((I — B1A)u, A(1 — B1A)u) < (u, Au) for v # 0. Thus, the first two terms
above are together positive, while the third is non-negative, so that B is positive. O
COROLLARY 3.2. If By = BT, then condition 3 in Lemma 3.1 is equivalent to
Proof. This follows directly from Lemma 2.1 and Lemma 2.5. 0

3.2. Multiplicative domain decomposition. Given the finite-dimensional Hil-
bert space H, consider J spaces Hi, k= 1,...,.J, together with linear operators [} €
L(Hk, H), null({;) = {0}, such that I,;Hy C H = Eizl I.H,. We also assume the
existence of another space Hy, the associated operator Iy such that IyHy C H, and
some linear operators I* € L(H,Hy;),k = 0,...,J. We shall assume that the inner-
products (and hence also their induced norms) on Hj, are inherited from the “parent”
space H, and we shall denote them by (-, -).

In a domain decomposition context, the spaces Hy, k& = 1,...,.J are typically
associated with local subdomains of the original domain on which the partial differential
equation is defined. The space Hy is then a space associated with some global coarse
mesh. The operators I,k = 1,...,.J are usually inclusion operators, while I; is an
interpolation or prolongation operator (as in a two-level MG method). The operators
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I*.k = 1,...,J are usually orthogonal projection operators, while I° is a restriction
operator (again, as in a two-level MG method).

The error propagator of a multiplicative DD method on the space ‘H employing the
subspaces [ Hj, has the general form [8]:

(10) E=1—-BA=(I—I1;R;I"A)--- (I — IyRoI°A)--- (I — I;R;17A) ,

where Ry, and Ry, k= 1,...,.J, are linear operators on Hj, and Ry is a linear operator
on Ho. Usually the operators Rj and R are constructed so that Rj ~ A,;l and
Ry ~ A;', where Ay is the operator defining the subdomain problem in Hy. Similarly,
Ry is constructed so that Ry ~ Ag'. Actually, quite often Ry is a “direct solve”, i.e.,
Ry = A;'. The subdomain problem operator A is related to the restriction of A to
Hyi. We say that Ay is vartationally defined or satisfies the Galerkin conditions when

(11) A =1FAL, 1" =cll, ¢ >0.

In the case of finite element, finite volume, or finite difference discretization of an elliptic
problem, conditions (11) can be shown to hold naturally for both the matrices and the
abstract weak form operators, with ¢, = 1, for all subdomains £ = 1,...,.J. For the
coarse space Hy, often (11) must be imposed algebraically, perhaps with ¢y # 1.
Propagator (10) can be thought of as the product operator (9), by choosing

1 J
I—BA=[[(I-LRIFA), Bo=ILRoI°, I —BA=][(I— LRI*A),
k=J k=1
where B; and B, are known only implicitly. (Note that we take the convention that
the first term in the product appears on the left.) This identification allows for the use
of Lemma 3.1 to establish sufficient conditions on the subdomain operators Rj, R; and
Ry to guarantee that multiplicative domain decomposition yields an SPD operator B.
THEOREM 3.3. Sufficient conditions for symmetry and positivity of the multiplica-
tive domain decomposition operator B, implicitly defined by (10), are:
1. I"=clIl, >0, k=0,---,J;
2. R,=RI, k=1,---,J;
3. Ry = RY ;
4o o (T = LRIFA)| <1
9. Rg non-negative on Hy .
Proof. We show that the sufficient conditions of Lemma 3.1 are satisfied. First, we
prove that By = BT, which, by Lemma 2.5, is equivalent to proving that (I — B A)* =
(I — By A). By using (1), we have

(kljl(] — ]kRk]’“A))* =A™t (kljlu — IkRk]’“A))T A= kljj(] — (INTRI(1)TA)

which equals (I — B; A) under conditions 1 and 2 of the theorem. The symmetry of By
follows immediately from conditions 1 and 3; indeed,

B = (IoRoI°)" = (I°)T RE (1) = (colo) Ro(cg ' I°) = IoRoI° = B, .
8



By condition 4 of the theorem, condition 3 of Lemma 3.1 holds trivially. The
theorem follows by realizing that condition 4 of Lemma 3.1 is also satisfied, since,

(Bou,u) = (IgRoI%u,u) = (Rol%u, ITu) = g (RoI%u, I°u) >0, Yue&H .

Remark 3.3. Note that one sweep through the subdomains, followed by a coarse
problem solve, followed by another sweep through the subdomains in reversed order,
gives rise an error propagator of the form (10).

Remark 3.4. Note that no conditions are imposed on the nature of the operators
Ay, associated with each subdomain. In particular, the theorem does not require that
the variational conditions are satisfied. While it is natural for condition (11) to hold
between the fine space and the spaces associated with each subdomain, these conditions
are often difficult to enforce for the coarse problem. Violation of variational conditions
can occur, for example, when complex coefficient discontinuities do not lie along element
boundaries on the coarse mesh (we present numerical results for such a problem in §6).

Condition 1 of the theorem (with ¢ = 1) for k& = 1,...,.J is usually satisfied
trivially for domain decomposition methods. For & = 0, it may have to be imposed
explicitly. Condition 2 of the theorem allows for several alternatives which give rise
to an SPD preconditioner, namely: (1) use of exact subdomain solvers (if A is a
symmetric operator); (2) use of identical symmetric subdomain solvers in the forward
and backward sweeps; (3) use of the adjoint of the subdomain solver on the second
sweep. Condition 3 is satisfied when the coarse problem is symmetric and the solve
is an exact one, which is usually the case. If not, the coarse problem solve has to be
symmetric. Condition 5 is satisfied for example when the coarse problem is SPD and
the solve is exact.

Condition 4 in Theorem 3.3 is clearly a non-trivial one; it is essentially the assump-
tion that the multiplicative DD method without a coarse space is convergent. Conver-
gence theories for DD methods can be quite technical and depend on such things as
the discretization, the subdomain number, shape, and size, and the regularity of the
solution [4, 8, 25]. However, since variational conditions hold naturally between the
fine space and each subdomain space for nearly any formulation of a DD method, very
general convergence theorems can be derived, if one is not concerned about the actual
rate of convergence. Using the Schwarz theory framework in any of [4, 8, 25], it can be
shown that Condition 4 in Theorem 3.3 (convergence of multiplicative DD without a
coarse space) hold if the variational conditions (11) holds, and if the subdomain solvers
Ry are SPD. A proof of this result may be found for example in [13].

Remark 3.5. Note that the theorem does not require that the overall multiplicative
DD method be convergent. In particular, the conditions on the coarse problem and
coarse problem solver are very relaxed.

3.3. Multiplicative multigrid. Given are the Hilbert space H, J spaces H, to-
gether with linear operators Iy € L(Hy, H), null(/z) = 0, such that the spaces I, Hj
are nested and satisfy [yH; C IyHy € -+ C Iy 1Hj_1 € Hy = H. As before we shall
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denote the Hj-inner-products by (-,-), and assume that they are inherited from the
parent inner-product on H. We assume also the existence of operators I* € L(H, Hy).

In a multigrid context, the spaces Hj, are typically associated with a nested hierar-
chy of successively refined meshes, with H; being the coarsest mesh, and H; being the
fine mesh on which the PDE solution is desired. The linear operators [ are prolongation
operators, constructed from given interpolation or prolongation operators that operate
between subspaces, i.e., I} | € L(Hy_1,Hz). The operator I}, is then constructed (only
as a theoretical tool) as a composite operator

(12) Ly=19 197y IFFEEY k=1, -1,

?

The composite restriction operators I*¥, k = 1,...,.J —1, are constructed similarly from
some given restriction operators ]}j_l € L(Hy, Hi-1).

The coarse problem operators A, are related to the restriction of A to Hy. As in
the case of DD methods, we say that A is variationally defined or satisfies the Galerkin
conditions when conditions (11) hold. It is not difficult to see that conditions (11) are
equivalent to the following recursively defined variational conditions:

(13) A = ]1]5+1Ak+1]1§+17 ]1§+1 = Ck(IIICCH)Ta cr >0,

when the composite operators [ appearing in (11) are defined as in (12).

In a finite element setting, conditions (13) with ¢ = 1 can be shown to hold in ideal
situations, for both the stiffness matrices and the abstract weak form operators, for a
nested sequence of successively refined finite element meshes. In the finite difference or
finite volume method setting, conditions (13) must often be imposed algebraically, in a
recursive fashion, typically with ¢; # 1.

The error propagator of a multiplicative V-cycle MG method is defined implicitly:

(14) E=1—-BA=1—-DjA;,,
where Ay = A, and where operators Dy, k= 2,...,.J are defined recursively,

(15) I —DyAy = (I — ReA)(I — I} De I A (I — R Ay), k=2,...,J,
(16) D1 — Rl .

Operators R, and R}, are linear operators on Hy, usually called smoothers. The linear
operators Ay € L(Hy, Hy) define the coarse problems. They often satisfy the variational
condition (11).

The error propagator (14) can be thought of as an operator of the form (9) with

Bi=R;, Bo=1j_,D;_I]7", B, =Rjy.

Such an identification with the product method allows for the use of the result in
Lemma 3.1. The following theorem establishes sufficient conditions for the subspace
operators Ry, Rj and Ay in order to generate an (implicitly defined) SPD operator B
that can be accelerated with conjugate gradients.
THEOREM 3.4. Sufficient conditions for symmetry and positivity of the multiplica-
tive mulligrid operator B, implicitly defined by (14), (15), and (16), are
10



1. Ay is SPDonHy , k=1,...,J—1;

2. = (IF )T, >0, k=2,...,J;
3. Rp=RI, k=2,....J;

4. Ry = RT ;

5 1= RsA||, <1, ;

6.

HI—RkAkHAkgl, kZQ,...,J—l;

7. Ry non-negative on Hy .

Proof. Since R; = RY, we have that B, = BI, which gives condition 1 of
Lemma 3.1. Now, By is symmetric if and only if

By = ]:]]—IDJ—lj:II_l = (cjljj_l)TD§—1(CJ]j—1)T = Bga
which holds under condition 2 and a symmetry requirement for D;_;. We will prove
that Dj_; = D§—1 by induction. First, D; = Df since Ry = R?. By Lemma 2.5 and

condition 1, Dy is symmetric if and only if K = [ — Dy Ay 1s Ag-self-adjoint. By using
(1), we have that

_ T
Ep = A7 ((I = ReAe)(I = IE Dea IFT AR (T — Ry Ar)) - Ay
= AP = ALRO(I = ALY DL (L)) — ALRD Ay
= (I = READAT T = ALY DL (T2 ) Ak = R Av)
= (I = R Ap)(I = (erIE_ ) Diy (e I A (1 — ReAy)

where we have used conditions 1, 2 and 3. Therefore, E} = Ey, if Dj_; = DI_,|. Hence,
the result follows by induction on k.

Condition 3 of Lemma 3.1 follows trivially by condition 5 of the theorem.

It remains to verify condition 4 of Lemma 3.1, namely that By is non-negative.
This is equivalent to showing that Dj_; is non-negative on H;_;. This will follow again
from an induction argument. First, note that Dy = R; is non-negative on H;. Next,
we prove that (Dgvk,vi) > 0, Vv, € Hy, or, equivalently, since Ay is non-singular, that
(D Agvg, Arvg) > 0. So, for all v, € Hy,

(DrAgvr, Agvg) = (Agvg, vk

(Apvg, vk

— (ApEyvr, vg)

— (AR(I = ReAp) (I — I Dy IF7V AR (I — R Aoy, o)
— (AR(I = IF_ Dy IV AR (I — RyAg)vg, (I — RyAy)vy)
— (AR(I — ReAp)vr, (I — RpAp)vr)

+ (AR Dp I AT — R Ap)vg, (I — Ry Ag)vg)

= (vk,vr)a, — (Skvr, Skvr)a, + C};I(Dk—lvk—lavk—l)

(Apvg, vk

— e’ e N

= (Agvg, vk

where S, = [ — Ry A; and vi_q = ],]j_lAk(] — RpAp)vr € Hi—1. By condition 6, the
first two terms add up to a non-negative value. Hence, D is non-negative if Dy_; 1s
non-negative. Condition 4 of Lemma 3.1 follows. O
COROLLARY 3.5. If the fine grid smoother is symmetric, i.e., Ry = RY, then
condition 5 in Theorem 3.J is equivalent to p(I — R;A) < 1.
Proof. This follows directly from Corollary 3.2. O
11



Remark 3.6. The coarse grid operators A, &k = 1,...,J — 1, need only be SPD.
They need not satisfy the Galerkin conditions (11).

Condition 1 of the theorem requires that all coarse grid operators be SPD. This is
easily satisfied when they are constructed either by discretization or by explicitly using
the Galerkin or variational condition. Condition 2 requires restriction and prolonga-
tion to be adjoints in the inherited inner-product, possibly multiplied by an arbitrary
constant. Condition 3 of the theorem is satisfied when the number of pre-smoothing
steps equals the number of post-smoothing steps, and in addition one of the following
is imposed: (1) use of the same symmetric smoother for both pre- and post-smoothing;
(2) use of the adjoint of the pre-smoothing operator as the post-smoother. Condition 4
requires a symmetric coarsest mesh solver. When the coarsest mesh problem is SPD,
the symmetry of R is satisfied when it corresponds to an exact solve (as is typical for
MG methods). Condition 5 is a convergence requirement on the fine space smoother.
Condition 6 requires the coarse grid smoothers to be non-divergent. The nonnegativity
requirement for R; is a non-trivial one; however, since A; is SPD, it is immediately
satisfied when the operator corresponds to an exact solve.

If variational conditions are satisfied on all levels, and convergent smoothers are
used on all levels, then there is a simple proof which shows that in addition to defining
an SPD operator B, the conditions of the theorem are sufficient to prove the convergence
of the MG method itself. The result is as follows.

THEOREM 3.6. If in addition to the conditions for Theorem 3.4, it holds that
Ap = I*AL, IF = 1T, ¢, = 1, and R, = A7, then the MG error propagator satisfies:

p(E) < [lE]la <1

Proof. Under the conditions of the theorem, the MG error propagator can be
written explicitly as the product ([3, 17]):

E=(I—-1RYITA)--- (I — LR (O[T A) - (I — ;R ITA) .

Since the coarse problem is solved exactly, and since variational conditions hold, the
coarse product term is an A-orthogonal projector:

I— LR ITA=1—L(LAIDTITA= (I - L(LAIDTITA)? = (1 - LR I A).

Therefore, we may define £ = (I — Ry ITA)--- (I — I;R;ITA), and represent E as
the product £ = E*E. Now, since A is SPD, we have that:

(AEv,v) = (AEv, Ev) >0 .

Hence, F is A-non-negative. Under the conditions of the theorem, Lemma 3.1 implies
that the preconditioner is SPD, and so by Lemma 2.9 it holds that ||£]|4 < 1. O

4. Additive Schwarz methods. We now present an analysis of additive Schwarz
methods. We establish sufficient conditions for additive algorithms to yield SPD pre-
conditioners. This theory is then employed to establish sufficient SPD conditions for
additive DD and MG methods.

12



4.1. A sum operator. Consider a sum operator of the following form:
(17) E=1—-BA=1-w(By+ B1)A, w>0,

where, as before, A is an SPD operator, and By and B, are linear operators on H.
LEMMA 4.1. Sufficient conditions for symmelry and positivity of B, defined in
(17), are
1. By is SPD in 'H ;
2. Bqy is symmelric and non-negative on H .
Proof. We have that B = w(By + By), which is symmetric by the symmetry of By
and Bj. Positivity follows since (Bou,u) > 0 and (Byu,u) >0, Yu € H, u # 0. O
Remark 4.7. The parameter w is usually required to make the additive method a
convergent one. Its estimation is often nontrivial, and can be very costly. As was
noted in Remark 2.1, the parameter w is not required when the linear additive method
is used as a preconditioner in a conjugate gradients algorithm. This is exactly why
additive multigrid and domain decomposition methods are used almost exclusively as
preconditioners.

4.2. Additive domain decomposition. As in §3.2, we consider the Hilbert
space ‘H, and .J subspaces [ H; such that I Hy C H = Ei:l IHi. Again, we al-
low for the existence of a “coarse” subspace IoHy C H.

The error propagator of an additive DD method on the space H employing the
subspaces [ Hy, has the general form (see [25]):

(18) E=1-BA=1-w(oRo®+ LRI+ + I;R;I")A.

The operators Ry are linear operators on Hy, constructed in such a way that R ~ A},
where the Ay are the subdomain problem operators. Propagator (18) can be thought
of as the sum method (17), by taking

J
By = IoRoI°, By =Y LiRyI".
k=1

This identification allows for the use of Lemma 4.1 in order to establish conditions to
guarantee that additive domain decomposition yields an SPD preconditioner. Before we
state the main theorem, we need the following lemma, which characterizes the splitting
of H into the subspaces I ’H; in terms of a positive splitting constant Sy.

LEMMA 4.2. Given any v € H, there exists a splitting v = Y 1_, Iyv, vp € Hy,
and a constant So > 0, such that

J
(19) > IHxvill < Sollvlls.

k=1

Proof. Since Zi:l I H, = H, we can construct subspaces Vi C Hy, such that

J
LVen LV, ={0} , for k#1 and H = E]kvk :
k=1
13



Any v € H, can be decomposed uniquely as v = S7_, Ivs, vp € Vi. Define the
projectors @y € L(H, Vi) such that Qzv = Izvg. Then,

J J J
Do Mwvell% = Do NQuvlld < 32 NQxIE ol -
k=1 k=1 k=1

Hence, the result follows with So = >>7_, ||Q«||%. O
THEOREM 4.3. Sufficient conditions for symmetry and positivity of the additive
domain decomposition operator B, defined in (18), are
1. Ak:]kA]k 5 kzl,...,J 5
2. I"=c I, >0, k=0,...,J;
3. R is SPDonH,, k=1,...,J;
4. Ro ts symmetric and non-negative on Hy .

Proof. Symmetry of By and By follow trivially from the symmetry of Ry and Ry,
and from I* = ck]kT. That By is non-negative on ‘H follows immediately from the
non-negativity of Ry on Hp.

Finally, we prove positivity of B;. By conditions 1 and 2, and the full rank nature
of I, we have that Ay i1s SPD. Now, since Ry is also SPD, the product Ry Ay is A,-SPD.
Hence, there exists an wp > 0 such that 0 < wy < A\;(RpAx), k=1,...,.J. This is used
together with (19) to bound the following sum,

J J
S (Betvgve) = 3 e (AAr Ry ok, vg)

k=1 k=1
J —1p—1 J
_ AR AL Ry vy, k) 4
< 1 A ( k k ’ < 1 1 A
- kZ::le ( kvk,vk)g:% (Agvr, vi) o kz::lck o (ke o)
! -1 ! -1 2 SO 2
= > wo (Alywi, Trv) = Y- wg [ Teorlla < (= ) 0]l
k=1 k=1 wo

We can now employ this result to establish positivity of B;.

J J J
0] = (Av,0) = 3 (Av, Iyog) = S_(IF Av, o) = S (Reey *IT Av, Ry e o)

k=1 k=1 k=1

By using the Cauchy-Schwarz inequality in the Rji-norm, we have that

J /2 , 5 1/2
bz < (me;c;%,R;Ic;”%w) (Dmciﬂzmv,ciﬂzmv))

IN

So 1/2 J 1/2
<_) [v]] 4 (Z(]kchk]kTAv,Av))

«“o k=1

1/2
— (ﬁ) |v]|4 (B Av, Av)/? .

wo
14



Finally, division by ||v||4 and squaring yields

(B, Av, Av) > %HUHZ>O, VoeH, v#£0.
0

Remark 4.8. Variational conditions are required for the subdomain operators Ay,
k # 0. However, this is a very natural condition with domain decomposition methods.
No variational conditions are needed for the coarse space operator Ag.

As explained in the previous remark, condition 1 of the theorem is usually satisfied.
Condition 2 is also naturally satisfied for £k =1,...,.J, with ¢, = 1, since the associated
I and I* are usually inclusion and orthogonal projection operators (which are natural
adjoints). The fact that 1° = coIT needs to be satisfied explicitly. Condition 3 requires
the use of SPD subdomain solvers. The condition will hold, for example, when the
subdomain solve is exact. (Note that Ay is SPD by condition 1 and the full rank
nature of Ix.) Finally, condition 4 is nontrivial, and needs to be checked explicitly. The
condition holds when Ay is SPD and the solve is exact.

4.3. Additive multigrid. As in §3.3, given are the Hilbert space H, and J — 1
nested subspaces I Hy such that I7/H; C IbyHy € -+« C I Hyj-y € Hy =H . The
operators Iy, I*, IF_, and I} are the usual linear operators between the different
spaces, as in the previous sections.

The error propagator of an additive MG method is defined explicitly:

(20) E — ] - BA — ] - (.U(]lRl]l —|— ]2]%2]2 —|— st —|— ]J_lBJ_ljJ_l —|— RJ)A

This can be thought of as the sum method analyzed earlier, by taking
J-1
By =Y LR I*, Bi=Ry.
k=1

This identification allows for the use of Lemma 4.1 to establish sufficient conditions
to guarantee that additive MG yields an SPD preconditioner.
THEOREM 4.4. Sufficient conditions for symmetry and positivity of the additive
multigrid operator B, defined in (20), are:
L IF=clIl, >0, k=1,...,J—1;
2. Ry is SPD in'H ;
3. Ry ts symmetric non-negative in Hp , k=1,...,J—1.
Proof. Symmetry of By and Bj is obvious. Bj is positive by condition 2. Non-
negativity of By follows from

J-1 J-1
(Bou,u) = E(]kRk(ck]k)Tu,u) = Z ck(Rk]gu,]gu) >0, YueH,u#0.
k=1 k=1

Remark 4.9. Variational conditions for the subspace operators Ay are not required.

15



Condition 1 of the theorem has to be imposed explicitly. Conditions 2 and 3 require
the smoothers to be symmetric. The positivity of Ry is satisfied when the fine grid
smoother is convergent, although this is not a necessary condition. The non-negativity
of Ry, k < J, has to be checked explicitly. When the coarse problem operators Aj are
SPD, this condition is satisfied, for example, when the smoothers are non-divergent.

5. To symmetrize or not to symmetrize. The following lemma illustrates why
symmetrizing is a bad idea for linear methods. It exposes the convergence rate penalty
incurred by symmetrization of a linear method.

LEMMA 5.1. For any E € L(H,H), it holds that:

P(EE) <|EE|a <|IEIy = |EE|la = p(EE").

Proof. The first and second inequalities hold for any norm. The first equality
follows from Lemma 2.8, and the second follows from Lemma 2.1. O

Note that this is an inequality not only for the spectral radii, which is only an
asymptotical measure of convergence, but also for the A-norms of the nonsymmetric
and symmetrized error propagators. The lemma illustrates that one may actually see
the differing convergence rates early in the iteration as well.

Based on this lemma, and Corollary 2.14, we conjecture that when symmetrization
of a linear method is required for its use as a preconditioner, the best results will be
obtained by enforcing only a minimal amount of symmetry.

6. Numerical results. We present numerical results obtained by using multi-
plicative and additive finite-element-based DD and MG methods applied to two test
problems, and we illustrate the theory of the preceding sections.

6.1. Example 1. Violation of variational conditions can occur in DD and MG
methods when, for example, complex coefficient discontinuities do not lie along element
boundaries on coarse meshes. An example of this occurs with the following test problem.
The Poisson-Boltzmann equation describes the electrostatic potential of a biomolecule
lying in an ionic solvent (see, e.g., [6] for an overview). This nonlinear elliptic equation
for the dimensionless electrostatic potential u(r) has the form:

—V - (e(r)Vu(r)) + & sinh(u(r)) (Z:;(ET) Z:zZ (r—r;), reR’  wu(co)=0.

The coefficients appearing in the equation are discontinuous by several orders of magni-
tude. The placement and magnitude of atomic charges are represented by source terms
involving delta-functions. Analytical techniques are used to obtain boundary conditions
on a finite domain boundary.

We will compare several MG and DD methods for a two-dimensional, linearized
Poisson-Boltzmann problem, modeling a molecule with three point charges. The surface
of the molecule is such that the discontinuities do not align with the coarsest mesh or
with the subdomain boundaries. Beginning with the coarse mesh shown on the left
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TABLE 1
Normalized operation counts per iteration, Fzample 1.

Method | UNACCEL |  CG [ Bi-CGstab |
multiplicative MG 1.0 1.3 2.6
additive MG 1.1 1.4 2.7
multiplicative DD 3.5 3.8 7.5
additive DD 3.1 34 6.7

in Figure 1, we uniformly refine the initial mesh of 10 elements (9 nodes) five times,
leading to a fine mesh of 2560 elements (1329 nodes). Piecewise linear finite elements,
combined with one-point Gaussian quadrature, are used to discretize the problem. The
three coarsest meshes used to formulate the MG methods are given in Figure 1. For
the DD methods, the subdomains, corresponding to the initial coarse triangulation,
are given a small overlap of one fine mesh triangle. The DD methods also employ a
coarse space constructed from the initial triangulation. Figure 2 shows three overlapping
subdomains overlaying the initial coarse mesh.

Computed results are presented in Tables 2 to 5. Given for each experiment is the
number of iterations required to satisfy the error criterion (reduction of the A-norm
of the error by 107'%). We report results for the unaccelerated, CG-accelerated, and
Bi-CGstab-accelerated methods. Since the cost of one iteration differs for each method,
Table 1 gives the operation counts per iteration, normalized by the cost of a single
multigrid iteration. For the MG operation counts, two smoothing iterations (one pre-
and one post-smoothing) are used. The DD operation counts are for methods employing
two sweeps through the subdomains, each approximate subdomain solve consisting of
four sweeps of a Gauss-Seidel iteration.

Table 1 shows that multiplicative MG is slightly less costly than additive MG, since
it is formulated in the usual recursive fashion, requiring fewer prolongations and restric-
tions. On the other hand, multiplicative DD is somewhat more costly than additive DD,
due to the need to update boundary information after the solution of each subdomain
problem. Table 1 should not be used to compare MG and DD methods for efficiency.
Similar experiments [14] with more carefully optimized DD and MG methods show
DD to be often competitive with MG for difficult elliptic equations such as those with
discontinuous coefficients, although there may be some debate as to which approach is
more effective on parallel computers [22].

Multiplicative multigrid. The results for multiplicative V-cycle MG are pre-
sented in Table 2. Each row corresponds to a different smoothing strategy, and is anno-
tated by (v, v2), with v1: pre-smoothing strategy, and vy: post-smoothing strategy. An
“f” indicates the use of a single forward Gauss-Seidel sweep, while a “b” denotes the use
of the adjoint of the latter, i.e., a backward Gauss-Seidel sweep. (v1,v2) = (ff, fb), for
example, corresponds to two forward Gauss-Seidel pre-smoothing steps, and a symmet-
ric (forward/backward) post-smoothing step. Two series of results are given. For the
first set, we explicitly imposed the Galerkin conditions when constructing the coarse op-
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Fic. 1. Ezample 1:

FiG. 2. Ezample 1: Overlapping subdomains for DD.

erators. In this case, the multigrid algorithm is guaranteed to converge by Theorem 3.6.
In the second series of tests, corresponding to the numbers in parentheses, the coarse
mesh operators are constructed using standard finite element discretization. In that
case, Galerkin conditions are not satisfied everywhere due to coefficient discontinuities
appearing within coarse elements; hence, the MG method may diverge (DIV).

The unaccelerated MG results clearly illustrate the symmetry penalty discussed in
§5. The nonsymmetric methods are always superior to the symmetric ones (the cases
(f,b), (ff,bb), and (fb,fb)). Note that minimal symmetry (ff,bb) leads to a better conver-
gence than maximal symmetry (fb,fb). The correctness of Lemma 5.1 is illustrated by
noting that two iterations of the (f,0) strategy are actually faster than one iteration of
the (f,b) strategy; also, compare the (ff,0) strategy to the (ff,bb) one. CG-acceleration
leads to a guaranteed reduction in iteration count for the symmetric preconditioners
(see Lemma 2.15). We observe that the unaccelerated method need not be convergent
for CG to be effective (recall Remarks 2.1 and 4.7, and the (f,b) result). CG appears
to accelerate also some non-symmetric linear methods. Yet, it seems difficult to pre-
dict failure or success beforehand in such cases. The most robust method appears to
be the Bi-CGstab method. The number of iterations with this method depends only
marginally on the symmetric or nonsymmetric nature of the linear method. Note the
tendency to favor the nonsymmetric V-cycle strategies. Overall, the fastest method
proves to be the Bi-CGstab-acceleration of a (very nonsymmetric) V(1,0)-cycle.

Multiplicative domain decomposition. Some numerical results for multiplica-
tive DD with different subdomain solvers, and different subdomain sweeps are given
in Table 3. In the column “forw”, the iteration counts reported were obtained with a
single sweep though the subdomains on each multiplicative DD iteration. The other
columns correspond to a symmetric forward /backward sweep or to two forward sweeps.
Four different subdomain solvers are used: an exact solve, a symmetric method con-
sisting of two symmetric Gauss-Seidel iterations, a nonsymmetric method consisting
of four Gauss-Seidel iterations, and, finally, a method using four forward Gauss-Seidel
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iterations in the forward subdomain sweep and using their adjoint, i.e., four backward
Gauss-Seidel iterations, in the backward subdomain sweep. The latter leads to an sym-
metric iteration; see Remarks 3.3 and 3.4. Note that the cost of the three inexact
subdomain solvers is identical.

Although apparently not as sensitive to operator symmetries as MG, the same
conclusions can be drawn for DD as for MG. In particular, the symmetry penalty is
seen for the pure DD results. Lemma 5.1 is confirmed since two iterations in the column
“forw” are always more efficient that one iteration of the corresponding symmetrized
method in column “forw/back”. The CG results indicate that using minimal symmetry
(the “adjointed” column) is a more effective approach than the fully symmetric one (the
“symmetric” column). Again, the most robust acceleration is the Bi-CGstab one.

Additive multigrid. Results obtained with an additive multigrid method are re-
ported in Table 4. The number and nature of the smoothing strategy is given in the
first column of the table.

In the case of an unaccelerated additive method, the selection of a good damping
parameter is crucial for convergence of the method. We did not search extensively for an
optimal parameter; a selection of w = 0.45 seemed to provide good results in the case
when the coarse problem is variationally defined. No w-value leading to satisfactory
convergence was found in the case when the course problem is obtained by discretiza-
tion. In the case of CG acceleration the observed convergence behavior was completely
independent of the choice of w; see Remarks 3.3 and 3.4. The symmetric methods
(v = fb, ffbb, fbfb) are accelerated very well. Some of the nonsymmetric methods are
accelerated too, especially when the number of smoothing steps is sufficiently large. In
the case of Bi-CGstab-acceleration, there appeared to be a dependence of convergence
on w (only with use of non-variational coarse problem). In that case we took w = 1.
The overall best method appears to be the Bi-CGstab acceleration of the nonsymmetric
multigrid method with a single forward Gauss-Seidel sweep on each grid-level.

Additive domain decomposition. The results for additive DD are given in Ta-
ble 5. The subdomain solver is either an exact solver, a symmetric solver based on two
symmetric (forward/backward) Gauss-Seidel sweeps, or a nonsymmetric solver based
on four forward Gauss-Seidel iterations.

No value of w was found that led to satisfactory convergence of the unaccelerated
method. CG-acceleration performs well when the linear method is symmetric; it per-
forms less well for the nonsymmetric method. Again, the best overall method is the
Bi-CGstab-acceleration of the nonsymmetric additive solver.

6.2. Example 2. The second test problem is the Laplace equation on a semi-
adapted L-shaped domain, with Dirichlet boundary conditions chosen in such a way
that the equation has the following solution (in polar coordinates):

u(r,0) = \/r sin(6/2) .

Note that the one-point Gaussian quadrature rule which we employ to construct the
stiffness matrix entries is an exact integrator here. Hence, the variational conditions (11)
19



TABLE 2
Ezample 1: Multiplicative MG with variational (discretized) coarse problem

| 1 vy | UNACCEL | CG | Bi-CGstab |
| £ 0 |65 (DIV) [ »100 (>100)]14 (16) |
f b [[55 (DIV) 16 (18) 10 (15)
f f |40 (31) 30 (>100) | 9 (9)
ff0 |39 (48) >100 (>100) | 8 (10)
fb 0 |53 (DIV) | >100 (>>100) |10 (11)
0 ff [[39 (29) 29 (>100) | 8 (9)
0 fb |53 (DIV) 17 (99) 10 (12)
fb b [[ 34 (27) 12 (13) 8 (8)
ff bb [ 28 (18) 11 (11) 7 (7)
ffff [[24 (15) 12 (12) 6 (6)
fif £ |24 (15) 17 (27) 6 (6)
fif 0 |25 (17) >100 (>100) | 7 (6)
TABLE 3

Ezample 1: Multiplicative DD with variational (discretized) coarse problem

‘ Accel. ‘ subdomain solve H forw ‘ forw/back ‘ forw /forw ‘

UNACCEL exact 10 (42) 38 (39) | 20 (21)
symmetric 279 (282) | 146 (149) | 140 (141)
adjointed - 110 (112) | 102 (103)

nonsymmetric 189 (191) 102 (104) | 95 (96)

CG exact >500 (>500) | 13 (13) 20 (20)
symmetric 140  (56) 24 (24) 20 (27)

adjointed - - 21 (21) 25 (26)

nonsymmetric 135 (83) 22 (23) 28 (28)

Bi-CGstab exact 9 (9) 9 (9) 6 (6)
symmetric 23 (23) 17 (16) 16 (16)

adjointed - - 14 (14) 14 (13)

nonsymmetric 19 (20) 13 (13) 13 (13)

TABLE 4

FEzample 1: Additive MG with variational (discretized) coarse problem

| v || UNACCEL | CG | Bi-CGstab |
| £ 175 (>1000) | >100 (>100) |23 (52) |
ff 110 (>1000) [ 119 (168) [ 19 (43)
fb || 146 (>>1000) 34 (54) 23 (49)
fiff || 95 (>1000) 28 (67) 17 (37)
ffbb || 100 (>>1000) 27 (47) 17 (34)
fbfb || 95 (>>1000) 28 (48) 20 (43)
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TABLE 5
Ezample 1: Additive DD with variational (discretized) coarse problem

‘ subdomain solve H UNACCEL ‘ CG ‘ Bi-CGstab ‘
exact >1000 (>1000) | 34 (34) | 25 (27)
symmetric >1000 (>1000) | 57 (57) | 50 (49)
nonsymmetric || >1000 (>>1000) | 69 (65) | 38 (41)

FiGa. 3. Ezample 2: Nested finite element meshes for MG.

X

FiGg. 4. Ezample 2: Quverlapping subdomains for DD.

hold automatically between the fine space and all subdomain and coarse spaces for both
the MG and the DD methods.

Figure 3 shows a nested sequence of uniform mesh refinements used to formulate
the MG methods. Figure 4 shows several overlapping subdomains constructed from a
piece of the fine mesh of 9216 elements (4705 nodes) overlaying the initial coarse mesh
of 36 elements (25 nodes).

Multiplicative Methods. The results for multiplicative MG are given in Table 6,
whereas the results for multiplicative DD are given in Table 7. The results are similar
to those for Example 1; in particular, imposing minimal symmetry is the most effective
CG-accelerated approach to the problem. Employing the least symmetric linear method
alone is the most effective linear method, and the same nonsymmetric linear method
yields the most effective Bi-CGstab-accelerated approach.

Additive Methods. As for Example 1, in the case of the unaccelerated additive
methods the selection of the damping parameter was crucial for convergence of the
methods. We did not search extensively for an optimal parameter; a selection of w =
0.45 seemed to provide acceptable results for DD. Note that improved convergence
behavior might be obtained by allowing different w values for each subdomain solver
(this will not be further investigated here). No satisfactory value for w was found for
additive MG. In the case of CG acceleration, the observed convergence behavior was
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completely independent of the choice of w. However, again in the case of the additive
methods with discretized (non-variational) coarse problems accelerated by Bi-CGstab,
there was convergence rate dependence on w. For uniform comparisons we took w = 1
in those cases. The results for additive MG are given in Table 8, whereas the results for
additive DD are given in Table 9. The effect of the symmetry of the linear method’s
error propagator on its convergence, and on the convergence behavior of CG and Bi-
CGstab, was as for Example 1.

7. Concluding remarks. In this paper, we have developed a preconditioning
theory for additive and multiplicative Schwarz methods. We established sufficient con-
ditions which guarantee that abstract multiplicative and additive algorithms yield SPD
preconditioners. We then analyzed four specific methods: MG and DD methods, in
both their additive and multiplicative forms. In all four cases, we used the general
theory to establish sufficient conditions that guarantee the resulting preconditioner is
SPD. As discussed in Remarks 3.4, 3.6, 4.8, and 4.9, the sufficient conditions for the
theory, in the case of all four methods, are easily satisfied for non-variational, and even
non-convergent methods. The analysis shows that by simply taking some care in the
way a Schwarz method is formulated, one can guarantee that the method is convergent
when accelerated with the conjugate gradient method. These results hold for finite
difference or finite element-based methods, even if variational conditions are violated.

We also investigated the role of symmetry in linear methods and preconditioners. A
certain penalty lemma (Lemma 5.1) was stated and proved, illustrating why symmetriz-
ing is actually a bad idea for linear methods. It was conjectured that enforcing minimal
symmetry in a linear preconditioner achieves the best results when combined with the
conjugate gradient method, and our numerical examples illustrate this behavior almost
uniformly. A sequence of experiments with two non-trivial test problems showed that
the most efficient approach may be to abandon symmetry in the preconditioner alto-
gether, and to employ a nonsymmetric solver such as Bi-CGstab. While acceleration
with CG was strongly dependent on the symmetric nature of the preconditioner, Bi-
CGstab always converged rapidly. In addition, BiCGstab appeared to benefit from the
behavior predicted by Lemma 5.1, namely that a nonsymmetric linear preconditioner
should have better convergence properties than its symmetrized form.
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