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Abstract

We compare the performance on a concurrent computer of two domain-
decomposition methods and a full-multigrid method for solving the Poisson
equation on a square. Independent of the granularity of the computation,
domain decomposition is almost always significantly slower than multigrid.
Our largest computations use a multicomputer with 128 nodes to solve a
problem on a 2048 x 2048 grid. In these computations, multigrid outperforms
domain decomposition by at least four orders of magnitude.



1 Introduction

Although there are many variants, there are only two basic types of domain-
decomposition methods. The oldest variety is due to Schwarz [7] and dates
back to 1869. The Schwarz-iteration method decomposes a domain into two
or more overlapping subdomains. In 1986, Bjorstad and Widlund[1] pro-
posed a domain-decomposition method with nonoverlapping subdomains.
Originally, these methods were used to reduce problems on irregular domains
to problems on regular domains. More recently, domain decomposition has
been used as a technique for concurrent computing. The proceedings of
several international conferences [3, 4] cover these and other developments.

Multigrid methods have gained an enormous popularity since 1977, when
Brandt [2] showed that they are practical fast solution methods. Concurrent
implementations were developed as soon as concurrent computers became
available.

Our computational experiment compares the two types of domain de-
composition and a full-multigrid method. Each numerical method solves
the same problem to the same error tolerance. With our implementations,
we found that domain decomposition is almost always slower than multigrid.
As the size of the problem increases, the performance difference increases.
For our largest problems, multigrid outperforms domain decomposition by
several orders of magnitude.

Section 2 summarizes our experimental results. Section 3 on performance
analysis outlines the major issues that are encountered when measured exe-
cution times are used to compare and to evaluate numerical methods. Sec-
tion 4 discusses the specific test problems used in our experiment.

Sections 5, 6, and 7 give a brief overview of the programs. Implementa-
tion details are important, particularly because the magnitude of the differ-
ence in performance is beyond any prior expectation. Unfortunately, only
the most important aspects of each program can be discussed within the
space limitations of a paper. Van de Velde [9] gives a high-level deriva-
tion of the two most important concurrent programs: multigrid (Chapter 9)
and domain decomposition with nonoverlapping subdomains (Chapter 10).
Readers who wish all the technical details may request from the author the
program listings, documented by an electronic supplement [10] to this paper.

Any experiment is necessarily limited in scope; this experiment is not
an exception. Section 8 examines these limitations and studies known vari-
ants of domain decomposition and their potential for bridging the observed
performance gap.



2 Results of the Experiment

Speed-up and efficiency graphs are the traditional tools to display and to
analyze the performance of concurrent programs. These graphs can be
extremely misleading, however, because an inaccurate sequential-execution
time can destroy the validity of the whole graph. Unfortunately, inaccurate
sequential-execution times occur frequently, because they are often obtained
with nonoptimal methods and with nonoptimized or insufficiently optimized
sequential programs.

To avoid such problems, we use logarithmic execution-time plots, which
plot the execution times against the number of nodes used. Although the
sequential-execution time remains important to interpret some results, an
inaccurate sequential-execution time does not invalidate the whole plot. A
detailed discussion on logarithmic execution-time plots is found in Chapter 1
of Van de Velde [9].

Ideally, a computation using twice the number of nodes should finish in
half the time. Such ideal performance is called linear speed-up. Because
of the logarithmic scales, lines of linear speed-up are straight lines with
a known slope. The dotted lines in our plots show this slope. Given a
sequential-execution time and the slope of linear speed-up, one can draw a
line of linear speed-up. The vertical distance of a computation to its line
of linear speed-up is inversely related to the efficiency of that computation.
Efficient computations lie in the proximity of their line of linear speed-up.

In our plots, we identify numerical methods by the following symbols:

SZ(k,SOR) Schwarz iteration with an overlap of &k grid cells and a subdo-
main solver based on successive overrelaxation with optimal parameter.

DD(SOR) Nonoverlapping domain decomposition with a subdomain solver
based on successive overrelaxation with optimal parameter.

FMG(k) Full-multigrid method with & coarser levels underneath the finest
level; the total number of levels is k& + 1.

In our computations, the number of processes always equals the number
of nodes. There remains a considerable freedom in choice of process mesh.
For example, 32 processes can be configured as six different two-dimensional
process meshes: 32 x 1, 16 x 2, 8 x 4, 4 x 8 2 x 16, or 1 x 32. The
choice of process mesh has an impact on performance through area-perimeter
considerations. In the case of domain-decomposition methods, it also has



an impact on the convergence rate of the method. Preliminary studies,
which are not reported here, show that all methods perform best on square
meshes. Therefore, all reported execution times are obtained with one of
the following process meshes:

| Number of Nodes |
| 1 ] 2 | 4 | 8 | 16 | 32 | 64 | 128 |
| |
| |

IX1]2x1]12Xx214x2]4x4]8x4]8x8]16x8
Process Mesh

Figures 1 through 4 display the performance of our methods when used
to solve the Poisson equation on a square. The grids range in size from
16 x 16 to 256 x 256. Fach plot compares computations that solve identical
problems to identical accuracy requirements. To compute the error on the
numerical solution, we compare it to the known exact solution of the contin-
uous problem. Within a plot, the only variables are the numerical method
and the number of nodes. Computations of the same plot solve the identical
problem. However, computations of different plots solve different problems:
not only the grid size differs, but also the exact solution of the continuous
problem. On finer grids, we solve a continuous problem whose solution is
more oscillatory. This is also discussed in Section 4.

Figure 1. For this 32 X 32 problem, SZ(3,S0R) can use at most 64
nodes. To see this, consider using 128 nodes and a 16 X 8 process mesh. In
this case, the data for the outer ghost boundary must be retrieved from a
nonneighboring process in the process mesh. Qur implementation does not
allow this.

The coarsest grid of FMG(2) has size 8 X 8 and can be distributed over
at most 64 nodes. As a result, our implementation of FMG(2) can use at
most 64 nodes. Similarly, our implementation of FMG(3) can use at most
16 nodes because its coarsest grid has size 4 x 4. FMG(3) on 16 nodes is the
fastest computation among all tested methods.

Multigrid with the largest number of levels performs the best among all
tested methods. The multicomputer inefficiency of the coarser levels does
not negate the numerical benefits of introducing the coarse levels. For all
three multigrid methods, the performance curve as a function of the number
of nodes is rather Qat. Although FMG(3) is the overall fastest method, its
speed-up or efficiency plot would be quite disappointing. This is to be
expected for a small problem.

The slope of the performance curve of DD(SOR) is more encouraging.
If one were to use the sequential-execution time of DD(SOR) to compute



speed-ups and efficiencies, DD(SOR) would do very well in a speed-up or in
an efficiency graph. However, it does not make sense to use DD(SOR) for a
sequential computation. DD(SOR? performs two successive-overrelaxation
iterations on the complete grid. The first iteration is superQ2uous and com-
putes the residual of the capacitance system, which we know to be zero. The
second iteration computes the interior unknowns. The sequential-execution
time of DD(SOR) is, therefore, twice that of successive overrelaxation and
about ten times that of FMG(3).

Theory dictates that one compute speed-ups and efficiencies with respect
to the best sequential-execution time. In practice, that minimum is not
known. Figure 1 shows how dangerous it is in concurrent computing to
ignore the best sequential methods. If we would have been unaware of
the multigrid computations, we could easily have arrived at a completely
different conclusion.

The Schwarz-iteration methods are not competitive, neither in execution
time, nor in speed-up, nor in efficiency.

Figure 2. SZ(1,50R) on more than 16 nodes did not converge within
512 Schwarz-iteration steps. FMG(3) can use at most 64 nodes and FMG(4)
at most 16 nodes because of the data distribution of the coarsest grids.
FMG(2) requires one multigrid-iteration step per level. However, FMG(3)
and FMG(4) barely miss the accuracy requirement with one step per level
and require two multigrid-iteration steps per level. FMG(4) on 16 nodes is
the fastest computation.

As in Figure 1, multigrid with the maximum number of levels wins.
Schwarz iteration is not competitive. DD(SOR) requires substantially more
nodes to achieve a performance that is competitive with multigrid.

When the number of nodes is between 2 and 64, the performance curve of
DD(SOR) is steeper than the lines of linear speed-up. This case shows how
misleading speed-up and efficiency plots can be. With an erroneous or inac-
curate sequential-execution time, one might easily conclude that DD(SOR)
achieves “superlinear speed-up.” The occurrence of superlinear speed-up is
possible only because DD(SOR) computations on few nodes are particularly
slow. However, when the number of nodes is increased, superlinear speed-up
does recoup some of the early damage.

Figure 3. We did not time some of the Schwarz iterations on few nodes,
because these computations required an excessive time. SZ(1,SOR) on more
than 8 nodes does not converge within 512 Schwarz-iteration steps. As in
Figure 2, DD(SOR) shows characteristics of superlinear speed-up between 2
and 64 nodes. FMG(4) can use at most 64 nodes and FMG(5) at most 16



nodes because of the data distribution of the coarsest grid. FMG(5) barely
misses the accuracy requirement with one multigrid-iteration step per level
and needs two steps. FMG(3) and FMG(4), on the other hand, converge
in one multigrid-iteration step per level. As a result, multigrid with the
largest number of levels no longer wins. FMG(4) on 64 nodes is the fastest
computation. Compared with multigrid, all tested domain-decomposition
methods are noncontenders.

Figure 4. For these computations on a 256 x 256 grid, the accuracy re-
quirement is relaxed, because the highly oscillatory test problem is difficult
to approximate to within the original strict error criterion (whether using
multigrid or any of the domain-decomposition methods). DD(SOR) on 2
nodes requires 20,440 seconds (about five and a half hours), and this com-
putation is out of range of the plot. DD(SOR) on 32 nodes does not converge
within 512 conjugate-gradient-iteration steps. In fact, this iteration seemed
stalled. After 128 iteration steps, the error was 1.71 x 1072, After 512 iter-
ation steps, which required 3,210 seconds, the error was hardly changed at
1.70x1073. FMG(5) can use at most 64 nodes and FMG(6) at most 16 nodes
because of the data distribution of the coarsest grid. Our implementation
of FMG(6) loses out to FMG(5), because the latter can run on more nodes.
With a different implementation, which would allow duplicating instead of
distributing the coarsest grids, FMG(6) could beat FMG(5). For the present
implementation, FMG(5) on 64 nodes is the fastest computation.

This 256 x 256 problem is large enough for multigrid to exhibit behavior
of “efficient” methods: the computations lie on a line that is almost parallel
to the line of linear speed-up. This is not the case in previous plots, where
the problems are too small. Slopes in the logarithmic execution-time plot
show that multigrid is less efficient with fewer levels. This may come as a
surprise, since computations with fewer levels use finer grids, which have a
more favorable ratio of arithmetic over communication. The reason for loss
of efficiency is load imbalance. If the coarsest grid is fine, the coarsest-grid
solver requires many Jacobi-relaxation steps. These amplify the slight load
imbalance of the data distribution of the coarsest grid, which is caused by
the compatibility requirements between levels.

DD(SOR) underperforms FMG(4), FMG(5), and FMG(6) by at least
two orders of magnitude. However, our current implementation does not
allow using FMG(5) with more than 64 nodes. Considering that DD(SOR),
once again, shows characteristics of superlinear speed-up, one might raise
the possibility that DD(SOR) might beat multigrid by using many nodes.
Assume that DD(SOR) continues the same steep descent beyond 128 nodes.



Graphically, it is easily verified that DD(SOR) with about 2048 nodes breaks
even with FMG(5) on 64 nodes. In reality, the break-even point would be
further, because DD(SOR) performance would Qatten out. Moreover, by
duplicating instead of distributing the coarsest grid, one could easily increase
the performance of FMG(5). With this fairly straightforward algorithmic
change, FMG(5) could run on more than 64 nodes. This would put the
break-even point even further out of reach.

Figures 5 and 6. In these figures, we compare the execution times of
one iteration step. Note, however, that full multigrid computes the solution
to prescribed tolerance in one iteration step per level. FMG(4) in Figure 5
and FMG(5) in Figure 6 coincide with FMG%ZL) in Figure 3 and FMG(5) in
Figure 4, respectively. The execution time of DD(SOR) with one iteration
step includes the computation of the residual, which occurs before the first
iteration step, and the computation of the subdomain interiors, which occurs
after the last iteration step.
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Figure 1: Logarithmic execution-time plot for problem on 32 x 32 grid solved
to a tolerance 7 = 9.77 x 107%.






64 x 64 grid
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Figure 2: Logarithmic execution-time plot for problem on 64 x 64 grid solved
to a tolerance 7 = 2.44 x 107%.
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128 x 128 grid
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Figure 3: Logarithmic execution-time plot for problem on 128 x 128 grid
solved to a tolerance 7 = 6.10 x 1074,
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256 x 256 grid
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Figure 4: Logarithmic execution-time plot for problem on 256 x 256 grid
solved to a tolerance 7 = 1.53 x 1073,
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128 x 128 grid
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Figure 5: Logarithmic execution-time plot for one iteration step of problem
on 128 x 128 grid.
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256 x 256 grid
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Figure 6: Logarithmic execution-time plot for one iteration step of problem
on 256 x 256 grid.
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I Grid | Tolerance | Method | K | Error | Time (s) ||
| 512x 512 | 3.81x 107* | SZ(3,50R) | 1]2.60x10° | 26.16 ||
DD(SOR) 1]2.69 x 10° 42.61
178 | 3.81 x 107* | 2653.00
FMG(5) 11]519x%x107* 9.73
2| 285%x107* 11.59
1024 x 1024 | 9.54 x 10* | DD(SOR) 1| 4.24 x 10° 309.70

128 | 9.21 x 1072 | 13,900.00
256 | 4.32 x 10~* | 27,580.00

[ | | FMG(6) | 1]7.72x107% | 11.66
?

2048 x 2048 | 2.38 x 10~ | DD(SOR) 1 . +1150.00
192 | 2.77 x 10~ | 74,490.00
I | | FMG(7) | 1]727x107% 29.65 ||

Table 1: Large problems computed on 128 nodes.

Table 1. For concurrent computing, we are most interested in the execu-
tion times for the largest feasible problems. First, consider execution times
of converged iterations, for which the actual error is less than the tolerance.
For the 512 x 512 problem, DD(SOR) requires 178 iteration steps and about
45 minutes. The same problem with FMG(5) has converged in two iteration
steps per level and in less than twelve seconds. For the 1024 x 1024 prob-
lem, DD(SOR) requires at least 128 and at most 256 iteration steps and an
execution time between four and eight hours. Compare this with FMG(6),
which converges with two steps per level and in less than twelve seconds.
FMG(7) solves the 2048 x 2048 problem in about half a minute. DD(SOR)
requires more than twenty hours to reach an accuracy that is three orders
of magnitude worse. FMG(7) outperforms DD(SOR) by at least four orders
of magnitude!

As in Figures 5 and 6, the execution times of DD(SOR) with K =1
include the residual calculation and the interior calculation, which occur,
respectively, before the first and after the last iteration step. For the 2048 x
2048 problem, the listed execution time is an estimate. It equals 13@ times
the execution time of DD(SOR) with 192 iteration steps. This estimate
assumes that the execution times of the residual calculation, the interior

calculation, and one plain iteration step of DD(SOR) are the same.
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Memory. Any computation uses two resources: processor time and
memory. Thus far, our discussion has centered around number of nodes and
execution time. Because it often determines the maximum feasible problem
size, memory is a significant performance measure. For multicomputer com-
putations with one process per node, we are primarily interested in memory
use per process. Because virtual memory is either unavailable or inefficient
on current multicomputers, computations are infeasible if any process re-
quires more memory than is available on a node.

Our multigrid implementation requires about 50% more memory than
the other methods, because it allocates not only a solution and a right-hand-
side field but also a residual field. The extra field is convenient, because
the right-hand side of the coarse problem can be computed in two easy
steps. First, the residual is computed on the fine grid. Second, this fine-grid
residual is restricted to the coarse right-hand side. It is possible to eliminate
the residual field by combining residual calculation and restriction into one
rather messy operation. In that case, memory use per node would not differ
substantially from one method to the next. The coarse grids of multigrid
require about the same amount of memory as the extra ghost boundaries of
the domain-decomposition methods (see Section 7 and Figure 12).

3 Performance Analysis

The execution time of a computation is the most important performance-
analysis measure. Under normal circumstances, this measure depends on
many factors. When developing a computational experiment, one must set
up the experimental conditions such that the measured execution times are
relevant for the purpose in mind. In this section, we discuss the princi-
ples that guided the development of our experiment, which is intended to
compare numerical methods.

A computation is a program with particular input data executed on a
given compuler at a particular moment in time. A computation occurs
each time a program is executed on a computer, and every computation
establishes a certain execution time. One program is always associated with
an unlimited number of computations and, hence, with an unlimited number
of execution times. From these, we wish to gain insights into aspects of
the program, the input data, or the computer. This task is complicated,
because the relationships between programs, input data, computers, and
computations are complicated.
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In the space of all computations, each element is defined by a set of
“coordinates.” This set includes the program, the input data, the computer,
and the moment in time. Obviously, each of these coordinates is quite
complicated just by itself. The design of a performance-analysis experiment
must simplify this unwieldy space of computations. Ideally, a computation
should be defined in terms of a few interesting parameters. The remaining
coordinates that define each computation should be carefully controlled and,
ideally, kept constant.

Classical analysis of iterative methods for linear systems as developed by
Young [12] computes a convergence rate. Given this rate, one can estimate
the number of iteration steps until convergence from the magnitude of the
initial error and the required accuracy on the result. This type of analy-
sis is actually an application of performance analysis as defined here. The
convergence rate is inversely proportional to the execution time on an ab-
stract computer that performs one iteration step per unit of time. The use
of this abstract computer simplifies the space of computations to the point
where a computation is defined by the problem, the magnitude of the error
on the initial guess, and the tolerance on the computed solution. In this
simplified space of computations, one can study how the abstract execution
time (the convergence rate) depends on the remaining parameters. When
using convergence-rate results to compare different iterative methods, one
is actually comparing execution times on different abstract computers.

Performance analyses that rely on measured execution times cannot use
abstraction to simplify the space of computations: an execution time is
obtained on a given computer with a given program for given input data.
If any of these coordinates is not fully specified, it is impossible to start a
computation, let alone to obtain an execution time. A numerical method
does not define the whole program. A program also incorporates an arbitrary
number of implementation decisions. We must set up the experiment such
that the measured execution times are relevant for comparing numerical
methods and not for comparing implementation decisions.

If it is our goal to assess numerical methods and not the patience and
diligence of the implementors, then we must compare execution times of
comparable implementations. For example, it would be a bad idea to com-
pare implementations in different programming languages or, more subtle,
in different programming styles. For this reason, the implementations were
kept as simple as possible. Low-level optimizations were avoided: all loops
are written with standard index notation, not the more efficient but hardly
readable pointer arithmetic of C. To maintain complete control over the
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implementation, we did not use any libraries except for the communication
library of the Reactive Kernel/Cosmic Environment operating system.

Other issues are less obvious when assessing whether or not implemen-
tations are comparable. For example, how does one objectively assess that
two programs implementing different numerical methods are equally robust?
This is usually a subjective judgment call, because robustness can depend
strongly on choice of error estimator and heuristics. By changing either, one
may drastically change robustness as well as execution times. When error
estimation could not be avoided, we used simple nonadaptive schemes.

The space of feasible input data is always extremely large. In any ex-
periment, only a few test problems can be used. Although objective criteria
can limit the choice, they cannot fully specify the set of test problems.

Finally, one must examine whether the results are valid on any other
computer besides the one of the experiment. On sequential computers, one
may translate many performance results from one computer to the next. Al-
though the design of concurrent computers has not converged to as strong
a degree as that of sequential computers, we are confident in wide applica-
bility of our results. Programs may not be portable from a multiprocessor
(shared-memory computer) to a multicomputer (local-memory computer),
but the performance issues remain the same. Data locality, memory latency,
and message latency must be addressed on all concurrent computers, albeit
with different notation in different programming models. Nevertheless, we
are interested in repeating the experiment on different platforms, and our
programs are written with portability in mind.

4 The Test Problem

Solving the Poisson problem with Dirichlet-boundary conditions on a rect-
angle Q@ = (0,L;) X (0,L,) is a minimum requirement for any proposed
solver. This standard comparison problem is defined by

{Vomeds. @l g

We introduce an M x N grid defined by grid points (z,,,y,) = (mdy, ndy),
where 0 <m < M,0<n<N,d,=L;/M,and d, = L,/N. The exterior-
boundary points are those for which m =0, m = M, n =0,or n = N. The
continuous problem is discretized on this grid using the classical second-order
difference scheme, which results in:
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O<ml<Mi0<n<{V: )
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0<m< *11 P Um0 = Im,05 Um,N = Ym,N
0<n<N: Uo,n = Jon, UMn = GMn-

In these equations, [, = f(Zm,¥n), Gmn = 9(Tm,Yn), and U, , is the
numerical approximation to w(z.,, y.,).
To obtain execution times, we solve the problem with exact solution

u(z,y) = e** 1Y cos(Mz/35) cos(Ny/25)

on domain © = (0,1) X (0,1). Our test problem is more oscillatory for
larger grids, because only difficult problems require fine grids. When com-
paring numerical methods, computed solutions must satisfy the same error
tolerance 7. We must make sure that the computed solution wu,y, ,, satisfies:

| M N
L Z Z(umn — (T, Yp)) dedy < T (2)

7Y m=0n=0

Because the exact solution u(z,y) of (1) is known, this is easily verified.
The tolerance 7 should be an appropriate function of grid size. Because
the discretization is second-order accurate, we choose

d2
T = ﬁv (3)

where d is a representative length scale for a grid cell and L is a represen-
tative length scale for the global domain. The problems on the finest grids
(256 x 256 and up) are very oscillatory. For these problems, none of our
numerical methods can achieve the accuracy requirement (2) with the toler-
ance 7 of (3). In these cases, we multiplied 7 by 10 until the relaxed accuracy
requirement could be satisfied. This explains why 7 is not monotonically
decreasing with grid size in our experiment.

In addition to the length scales d and L, we also need a representative
length scale £ for a subdomain. Some formulas simplify considerably if we
choose these length scales as follows:

N R T .12
TEyxeray CTaeray MY Tymry W
z- Yy T Yy T Yy

We only consider subdomains of §) that are rectangles of size £, x £, with
{; and {, integer multiples of d, and d,, respectively.
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void restrict_grid(F,C)

grid *F, *C ;

{ int i, j, i2, j2, Ip, Jq, sp, sq ;
double **c, **xf ;

sp = 2%C->Mp-F->Mp ; sq = 2%C->Nq-F->Nq ;
Ip = C->Ip ; Jq = C->Jq ;
c = C->s ; f = F->s ;

exch_grid_ghost(F) ;
for ( i=0, i2=sp ; i<Ip ; i++, i2+=2 )
for ( j=0, j2=sq ; j<Jq ; j++, j2+=2 )
c[il[j] = 0.25xf[i2] [j2] +
0.1250*(f[i2-1] [j2]+f[i2] [j2-1]
+f[i2+1] [j2]+f[i2] [j2+1]) +
0.0625x (f[12-1]1 [j2-1]+f[i2-1] [j2+1]
+f[i2+1] [j2-1]+f[i2+1] [j2+1]) ;

Figure 7: The restriction operator based on full-weight restriction.

5 Full Multigrid

Our multigrid program achieves its concurrency by pure data distribution:
numerically, there is no difference between a concurrent and a sequential
multigrid computation. Because we use Jacobi smoothing and a Jacobi
coarsest-grid solver, even the round-off errors are identical. There is only
one significant data-distribution issue: the compatibility of data distribu-
tions of different levels. Once this compatibility between levels is achieved,
smoothing, restriction, and prolongation operators only need one communi-
cation operation: a boundary exchange. This is implemented by procedure
exch_grid_ghost, which is not displayed.

With compatible data distributions, the intergrid transfers are easy. Fig-
ure 7 shows procedure restrict _grid, which implements full-weight restric-
tion. This procedure takes a fine grid F and a compatible coarse grid C as
parameters and computes coarse-grid values as the weighted sum of sur-
rounding fine-grid values. Prolongation based on linear interpolation has
a similar structure, but is somewhat more cumbersome, because there are
more cases to consider.
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void  smooth_Poisson_grid(K,U,F)

int K ;
grid *U, *F ;
{ int k, i, j, Ip, Jq ;

double #**u,**f,a,ax,ay,tmp, omg=2/3.0, omgl=1/3.0 ;

ax = 1.0/(U->dx*U->dx) ; ay = 1.0/(U->dy*U->dy) ;
a = 0.5*xomg/(ax+ay) ;

ax = akax ; ay = a*ay ;

u =U-> ; £f = F->s ;

Ip = U->Ip ; Jq = U->Jq ;

for ( k=0 ; k<K ; k++ ) {
for ( j=0 ; j<Jq ; j++ ) buf2[j] = ul-11[j] ;
for ( i=0 ; i<Ip ; i++ ) {
for ( j=-1; j<Jq ; j++ ) bufi[j]l = ulil[j] ;
for ( j=0 ; j<Jq ; j++ ) {
tmp = a*xf[i] [jl+axx(buf2[jl+uli+1][jl)
+ayx(bufi[j-1]+uli] [j+1]1) ;
ulil[j] = tmp+omglxuli][j] ;

for ( j=0 ; j<Jq ; j++ ) buf2[j] = bufi[jl ;
}
exch_grid_ghost(U) ;
}

Figure 8: The smoothing operator based on Jacobi underrelaxation.

Figure 8 displays the smoothing procedure based on Jacobi underre-
laxation. Multigrid spends the majority of its execution time in this rou-
tine. The parameters of procedure smooth Poisson_grid are the number of
smoothing steps K, the solution grid U, and the right-hand-side grid F. The
underrelaxation parameter is stored in variable omg. The Jacobi underre-
laxation procedure uses two buffers buf1 and buf2, which are declared and
created externally to this procedure.

We use Jacobi underrelaxation with parameter omg = 2/3. For the
one-dimensional Poisson problem, every such iteration step multiplies the
high-frequency errors by an amplification factor of at most 1/3. For two-
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void mg_Poisson_grid(X,L,U,F,R)

int K, L ;
grid *x¥U, **F, **R ;
{ int k ;

solve_Poisson_grid(U[0],F[0]) ;
return ;

}

for ( k=0 ; k<K ; k++ ) {
smooth_Poisson_grid(3,U[L],F[L]) ;
residual_Poisson_grid(U[L],F[L],R[L]) ;
restrict_grid(R[L],F[L-1]) ;
zero_grid(U[L-1]) ;
mg_Poisson_grid(1,L-1,U,F,R) ;
prolongadd_grid(U[L-1],U[L]) ;

}

smooth_Poisson_grid(3,U[L],F[L]) ;

Figure 9: The multigrid program.

dimensional problems, Wesseling [11] argues that omg = 4/5 achieves an
optimal smoothing factor of 2/5. Our smoother and, hence, our multigrid
method may be less than optimal.

Figure 9 displays the basic multigrid program. The five parameters of
mg Poisson_grid are the number of multigrid iterations K, the level L, and
arrays of pointers to grids that represent the solution U, the right-hand-side
function F, and the residual R on every level. The multigrid procedure uses
L 4 1 levels, level 0 being the coarsest and level L the finest.

If L = 0, procedure mg Poisson_grid calls solve Poisson_grid, the
coarsest-grid solver. For the coarsest-grid problem, we do not worry about
performance and use Jacobi relaxation, which is the easiest to implement.
Isaacson and Keller [6] show that this scheme has a convergence rate

72 d?

2 L7

The length scales L and d are as defined in (4) but with the footnote that d
is the length scale of the coarsest grid.

Ry =
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The coarsest-grid solver applies K Jacobi-relaxation steps to the coarsest-
grid problem. We compute this number K as follows. Let ¢y be the er-
ror on the initial guess. Let ex be the error after K Jacobi-relaxation
steps. Given the Jacobi-convergence factor p; and the Jacobi-convergence
rate Ry = —log ps, we make the heuristic assumption that

K
€K X pT €.
Requiring this expression to be less than a tolerance 7, we obtain that

K~ lo8e/T)

Ry
As in (3), we choose T = al2/L2 with d the length scale of the coarsest grid.
We assume that ¢ = O(1). The program, rather arbitrarily, sets ey = 2.

If L > 1, procedure mg Poisson _grid performs K multigrid-iteration
steps on level L. Each step smoothes level L with three steps of Jacobi un-
derrelaxation. The residual of level L is restricted to level L — 1. In V-cycle
multigrid, procedure mg Poisson_grid calls itself recursively to apply one
multigrid-iteration step to the problem on level L— 1. The prolongation
operator corrects level L using the solution of level L — 1.

The multigrid-iteration step performs three additional smoothing steps
to eliminate high-frequency errors due to the prolongation; this is known as
post-correction smoothing. Three post-correction smoothing steps is con-
sidered high. One could increase the performance of the multigrid itera-
tion by eliminating one or two post-correction smoothing steps. (Usually,
post-correction smoothing is put inside the loop. Because post-correction
smoothing is immediately followed by pre-correction smoothing, our version
is equivalent in all but the first and last iteration steps.)

Figure 10 displays procedure fmg Poisson_grid, which implements the
full-multigrid method. The second part is the most interesting. A solution
is computed on the coarsest grid (level 0) by calling mg Poisson_grid. The
coarsest-grid solution is interpolated to level 1 and is used as the initial
guess to a two-level multigrid procedure. The resulting solution on level 1 is
interpolated to level 2 and used as the initial guess for a three-level multigrid
procedure. This is continued until the finest level is computed.

The first part of fmg Poisson_gridis somewhat awkward. Here, bound-
ary and right-hand-side information is transmitted from the calling program
to the full-multigrid procedure in such a way that the initialization of the
right-hand side and the boundary is excluded from the measured execution
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void fmg_Poisson_grid(X,L,U,F,R)

int K, L ;
grid *x¥U, **F, **R ;
{ int 1 ;

for ( 1=L ; 1>0 ; 1--)
restrict_grid(F[1],F[1-1]) ;
copy_grid_ghost_ext(F[0],U[0]) ;

mg_Poisson_grid(1,0,U,F,R) ;

for ( 1=1 ; 1<=L ; 1++ ) {
prolong_grid(U[1-1],U[1]) ;
copy_grid_ghost_ext(F[1],U[1]) ;
mg_Poisson_grid(X,1,U,F,R) ;

Figure 10: The full-multigrid program.

times. Before calling fmg Poisson_grid, the interior of grid F[L] is ini-
tialized by the right-hand-side function f(z,y), and the exterior boundary
of F[L] is initialized by the Dirichlet-boundary function g(z,y). The first
for-loop over 1 in fmg Poisson_grid initializes the right-hand sides of all
coarser problems by means of successive full-weight restriction. Calls to
procedure copy_grid_ghost_ext copy the Dirichlet-boundary data from the
right-hand-side grid F[1] to the solution grid U[1].

Procedure fmg Poisson_grid performs K multigrid-iteration steps on ev-
ery level. A suitable value for K is chosen as follows. First, we time the
full-multigrid procedure with one multigrid-iteration step per level. If the
computed solution satisfies (2), we accept this computation and its execu-
tion time. Otherwise, we increment the number of multigrid-iteration steps
per level until the computed solution is sufficiently accurate. For some prob-
lems, it is impossible to satisfy (2) independent of the number of multigrid-
iteration steps per level. In these cases, the procedure is repeated after
multiplying 7 by 10. With this a-posteriori procedure, measured execution
times do not include any arithmetic due to error estimation.
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6 The Schwarz-Iteration Method

Domain decomposition achieves concurrency by numerically splitting up the
original problem into a set of subproblems. Each subdivision of the global
domain leads to a different numerical procedure. In our implementation,
each subdomain is mapped to a separate process, and the number of subdo-
mains equals the number of processes. As a result, computations with dif-
ferent numbers of processes use different numerical procedures. This stands
in fundamental contrast to concurrent programs that achieve concurrency
by pure data distribution.

The domain-decomposition method of Schwarz is based on overlapping
subdomains. One Schwarz-iteration step consists of the simultaneous so-
lution of all subdomain problems followed by a boundary exchange that
initializes the Dirichlet-boundary values of the subdomain problems.

The amount of overlap can be varied. It must be at least one grid cell.
The upper limit on the overlap follows from the constraint that boundary
data for the subdomain problems must be available in neighboring processes.
This is violated as soon as any of the local-grid dimensions is less than the
amount of overlap.

It is an advantage of the Schwarz iteration that one can use sequential
solvers on the subdomains. We use successive overrelaxation with optimal
parameter. This procedure is almost optimal and easy to implement. Isaac-
son and Keller [6] show that the convergence rate is given by

d
Rsor = Qﬂ'Z.

Note that we use the length scale £ of the subdomain. The computation of
the number of SOR-iteration steps K follows the same heuristic procedure
as the one used in the coarsest-grid solver of multigrid. We find that

K~ 10%(60/7').
Rsor

We set ¢g = 2 (rather arbitrarily), and we choose 7 = d*/L? to ensure that
every subdomain is solved to the same accuracy.

The asymplotic convergence rate Rgop underestimates the observed con-
vergence rate; this fact is discussed by Young [12]. As a result, the computed
number of iteration steps does not solve the subproblems to sufficient ac-
curacy. For this reason, the program reduces the convergence rate Rgopr
by the heuristic factor alpha = 0.5, which doubles the number of iteration
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void Poisson_Schwarz(K,U,F)

int K ;

grid *U, *F ;

{ double RGS, omg ;
int k, K_1 ;
omg = omega(...) ;

RGS = -alphaxloglip(omg-2.0) ;
K_1 = log(epsO/tau)/RGS ; K_1++ ;

for ( k=0 ; k<K ; k++ ) {
overrelax_Poisson_Schwarz(K_1,omg,U,F) ;
exch_grid_ghost(U) ;

Figure 11: Domain decomposition with overlap.

steps. Young suggested a better remedy: set the overrelaxation parameter
equal to one in the first iteration step and use the optimal parameter there-
after. This suggestion came to our attention too late to be incorporated in
the current experiment. However, the subdomain solver would speed up, at
most, by a factor of two. Although significant, this cannot possibly bridge
the performance gap between domain decomposition and multigrid.

Procedure Poisson_Schwarz of Figure 11 performs K Schwarz-iteration
steps. The computation of the overrelaxation parameter omg is omitted for
brevity. The asymptotic convergence rate RGS is reduced by the heuristic
factor alpha. The variable epsO estimates the magnitude of the error on the
initial guess, and tau is the error tolerance for the subdomain solver. The
number of overrelaxation steps on the subdomain is computed in K_1. The
variables eps0, tau, and alpha are initialized externally to the procedure.
The procedure overrelax Poisson_Schwarz is not displayed; it is almost
identical to procedure overrelax Poisson domain of Figure 14.

The Schwarz iteration must compute the global solution to the same
tolerance as multigrid. The execution time is the time required by the
minimum number of Schwarz-iteration steps for which the computed solution
is sufficiently near the known exact solution.
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7 Domain Decomposition Without Overlap

When the subdomains do not overlap, the unknowns are split into two sub-
sets. The first subset consists of boundary unknowns, which are associated
with grid points on the boundaries between subdomains. The second subset
consists of interior unknowns, which are associated with grid points located
in the interior of the subdomains. As soon as the boundary unknowns are
computed, it is trivial to compute the interior unknowns using a sequen-
tial Poisson solver on each subdomain. Therefore, we focus on developing a
procedure for the boundary unknowns.

The boundary unknowns solve a reduced system of linear equations,
called the capacitance system. Although the coeflicient matrix of this system
is dense, there exists a procedure to compute the product of the capacitance
matrix and an arbitrary vector of boundary values. As a result, one can use
Krylov-type iterations to solve the capacitance system.

Procedure domdec Poisson domain of Figure 12 solves the capacitance
system using the conjugate-gradient method. (In the present case, we know
that the capacitance system has a symmetric positive-definite coefficient
matrix.) Once the boundary unknowns are computed to sufficient accuracy,
all the other unknowns are computed in procedure solve Poisson_domain,
which is called in the last line of procedure domdec Poisson_domain.

The conjugate-gradient iteration requires several vectors: the search di-
rection p, the residual 7, the vector @ = C'p, and the current solution Z.
Each component of these vectors is attached to a specific grid point on the
subdomain boundaries. The vector components are, therefore, stored in a
set of extra ghost boundaries around the subdomains. Since boundaries are
shared by up to four subdomains, the data distribution partially duplicates
the boundary vectors, such that each subdomain has access to all compo-
nents attached to grid points on its boundary. The solution grid U needs
three and the right-hand-side grid F needs two ghost boundaries. In the
program, the pair U,0 refers to ghost boundary number 0 of grid U.

Procedure capacitance Poisson _domain _ghost of Figure 13 applies the
capacitance matrix to a search direction p, which is stored in ghost bound-
ary U,0. This search direction defines the Dirichlet-boundary values for a
Laplace equation on each subdomain. These subdomain problems are solved
by a call to procedure solve Poisson domain. After a ghost-boundary ex-
change performed by procedure exch_domain_ghost, the five-point stencil
is applied to the subdomain boundaries. The resulting vector @ is stored in
ghost boundary F,0.
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When procedure capacitance Poisson_domain_ghost calls procedure
solve Poisson_domain of Figure 14, it is to solve Laplace problems on the
subdomains. When domdec Poisson_domain calls solve Poisson domain,
it is to solve Poisson problems on the subdomains. In principle, any known
sequential solver can be used to solve all subdomain problems. Here, we use
successive overrelaxation, because it is near optimal and easy to implement.
In Section 8.4.2, we shall consider other possible choices.

Procedure solve Poisson_domain computes the number of iteration steps
and the overrelaxation parameter. As discussed in Section 6, the asymptotic
convergence rate of successive overrelaxation is reduced by a heuristic factor
of 0.5, the magnitude of the error of the initial guess €y is arbitrarily set
equal to 2, and we choose 7 = d?/L?. In the program, the variables alpha,
eps0, and tau are all initialized externally to the procedure.

Procedure overrelax Poisson_domain has four parameters: the number
of relaxation steps K, the overrelaxation parameter omg, the solution grid U,
and the right-hand-side grid F. Procedure overrelax Laplace domain is
identical to procedure overrelax Poisson domain, except that the right-
hand side vanishes.

To obtain an execution time that can be compared with multigrid, do-
main decomposition must compute the solution to the same error tolerance.
To avoid including error estimation in our execution times, we use a pre-
liminary run to find the minimum number of conjugate-gradient-iteration
steps to satisfy the error tolerance. Subsequently, we time a computation
with the same number of iteration steps, but without computing any errors
along the way. It is the execution time of this computation that we accept.
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void domdec_Poisson_domain(X,U,F)

int K ;
domain *U, *F ;
{ int k ;

double xi, bt, rrO, rrl, pw, err, corr ;

residual_Poisson_domain_ghost(U,F) ;

copy_domain_ghost(U,0,U0,2) ;

copy_domain_ghost(F,0,F,1) ;

copy_domain_ghost(F,0,U,0) ;

rr0 = iprd_domain_ghost(F,0,F,0) ;

for ( k=0 ; k<K && rr0>0.0 ; k++ ) {
capacitance_Poisson_domain_ghost(U,F) ;
pw = iprd_domain_ghost(U,0,F,0) ;
xi = rrO/pw ;
wsum_domain_ghost(U,2,U,2,xi,U,0) ;
wsum_domain_ghost(F,1,F,1,-xi,F,0) ;
rrl = iprd_domain_ghost(F,1,F,1) ;
bt = rr1/rr0 ;
wsum_domain_ghost(U,0,F,1,bt,U,0) ;
rr0 = rrl ;

+

copy_domain_ghost(U,2,U0,0) ;

solve_Poisson_domain(U,F) ;

Figure 12: Domain decomposition without overlap.
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void capacitance_Poisson_domain_ghost(U,F)
domain *U, *F ;
{ int i, j, Ip, Jq ;

double **u, **f, a, ax, ay ;

u = U->s ; f = F->s ;

Ip = U->Ip ; Jq = U->Jq ;

ax = 1.0/(U->dx*U->dx) ; ay = 1.0/(U->dy*U->dy) ;
a = 2.0x(ax+ay) ;

solve_Poisson_domain(U,NULL) ;
exch_domain_ghost(U) ;
for ( i=-1 ; i<=Ip ; i++ ) {

J = -1
fLi][5]

axuli] [j]1-ax*(uli+1] [j1+uli-1]1[j]1)
—ayx(ulil [j+11+ulil [j-11)

j =Jq;
fLi1[03] = a*ulil [jl-ax*x(uli+1][j]+uli-1]1[j])
) —ayx(ulil [j+1]1+ulil [j-11) ;
for ( j=0 ; j<Jq ; j++ ) {
i=-1;
fL[i103] = a*ulil[jl-ax*x(ul[i+1][jI+uli-1]1[j])
—ayx(uli] [j+1]+ulil [j-11) ;
i=1Ip;
fLi103] = a*ulil [jl-ax*x(uli+1] [j]+uli-1]1[j])
) —ayx(uli] [j+11+ulil [j-11) ;

zero_domain_ghost_ext(F,0) ;

}

Figure 13: Applying the capacitance matrix to a search direction stored in
a ghost boundary of U.
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void overrelax_Poisson_domain(K,omg,U,F)

int K ;
double omg ;
domain *U, *F ;
{ int i, j, k, Ip, Jq ;
double **u, **xf, a, ax, ay, tmp, omgl ;
omgl = 1.0-omg ;
ax = 1.0/(U->dx*U->dx) ; ay = 1.0/(U->dy*U->dy) ;
a = 0.5xomg/(ax+ay) ;
ax = akxax ; ay = akay ;
u = U->s ; f = F->s ;
Ip = U->Ip ; Jq = U->Jq ;

for ( k=0 ; k<K ; k++ )

tmp = a*xf[i] [jl+ax*x(uli-1][j]+uli+1][j])
+ay*(ulil [j-11+ulil [j+11) ;
ulil [j] = tmp+omglxulil[j] ;

+

void solve_Poisson_domain(U,F)

domain *U, *F ;

{ int K ;
double R, omg ;
omg= omega(U->dx,U->dy,U->d2,U->Ip+1,U->Jq+1) ;
R = -alpha*loglp(omg-2.0) ;
K = log(epsO/tau)/R ; K++ ;
if (F) overrelax_Poisson_domain(K,omg,U,F) ;
else overrelax_Laplace_domain(K,omg,U) ;

}

Figure 14: Subdomain solver based on Gauss-Seidel relaxation with optimal
overrelaxation parameter.
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8 Limitations of the Experiment

Any computational experiment is necessarily limited: a limited set of test
problems, a limited set of variations to the basic numerical methods, a lim-
ited set of computational parameters (like tolerance, number of processes,
process mesh, number of smoothing steps, V- or W-cycle, etc.), a limited
number of computers on which the experiment is run. Having performed a
limited experiment, we should indeed be careful before drawing a general
conclusion. Obviously, it would be of great interest to repeat the experiment
for a much wider variety of problems, numerical methods, etc.

The following subsections challenge the limitations of our experiment and
examine whether these limitations could significantly change the outcome.
Because of the significant performance difference, we are also concerned with
the question whether the experiment is biased in favor of multigrid.

8.1 The Problem

Beyond the Poisson equation. The Poisson equation with Dirichlet-
boundary conditions on a rectangular grid is, admittedly, a fairly straight-
forward test problem. Is it too simple for the purpose of our experiment?

It is almost a given that convergence factor, operation count, and other
complexity measures will increase as the problem deviates from the canon-
ical Poisson problem. Although it is far from obvious how to extrapolate
performance of the Poisson problem to performance of more general prob-
lems, the Poisson problem is a widely-accepted benchmark for the evaluation
of any numerical method for large sparse systems. Nevertheless, the choice
of test problem remains a limitation of the experiment.

For the Poisson problem, Jacobi smoothing is one of the best smoothers
available. Different problems require other carefully-chosen smoothing oper-
ators. Strongly-anisotropic problems, for example, require smoothers based
on line relaxation. Other problems need other modifications of the basic
method. Nevertheless, the multigrid approach is numerically effective over
an impressive application range, which includes nonlinear elliptic equations
and compressible and incompressible Quid dynamics. Multigrid methods for
these problems are often significantly less efficient on multicomputers than
the tested method.

The conjugate-gradient method requires a symmetric positive-definite
capacitance system. This severely limits the choice of test problem for do-
main decomposition. If the capacitance system is not symmetric positive-
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definite, a general iterative solver is required. This adds substantial com-
plications. The quasi-minimal-residual method, for example, requires at
least 13 auxiliary vectors stored in ghost boundaries of the solution and
right-hand-side fields. This is an extravagant memory overhead. Moreover,
every iteration step computes a matrix-vector and a transpose-matrix-vector
product.

Although many other solvers are available, all are substantially more
complicated than the basic conjugate-gradient method. This virtually ex-
cludes any problem with a nonsymmetric or nonpositive-definite capacitance
system from the application range of domain decomposition without overlap.
As shown in Figures 5 and 6 and the last line of Table 1, just one step of the
elementary conjugate-gradient procedure is too expensive. Therefore, one
cannot expect that a more complicated outer-iteration scheme will perform
any better.

The original convergence proof of the Schwarz-iteration method required
the maximum principle. Although more recent proofs relax this requirement,
the application range of the Schwarz method is still restricted.

When deviating from the Poisson equation, multigrid performance will
suffer. The situation for domain-decomposition methods is worse, however,
because problems quickly fall outside the range of feasible applications.

Grids. Domain-decomposition methods may have advantages for com-
putations on irregular grids. This is not explored in our experiment.

On regular grids, multigrid methods have the disadvantage that grid
dimensions should be a multiple of powers of two. If this is not the case, ex-
otic restriction and interpolation operators must be developed. With these,
it is difficult to find data distributions that ensure compatibility between
multigrid levels.

Three-dimensional problems. We only studied two-dimensional prob-
lems. Could domain decomposition perform better when applied to three-
dimensional problems? In fact, the analysis in Van de Velde [9] already
indicates that domain decomposition without overlap is not suitable for
three-dimensional problems. This conclusion is reached purely on grounds
of memory overhead for the ghost boundaries. The same conclusion is valid
for domain decomposition with large overlap. In view of our two-dimensional
results, it is highly unlikely that domain decomposition with small overlap
could outperform multigrid in three dimensions, but the formal tests have
not been performed.

Test problems. The timings presented in this paper are obtained using
a very limited set of right-hand-side functions f(z,y) and boundary-value
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Figure 15: L-Shaped domain.

functions g(z,y). Even with this limited set, running the experiment re-
quired about two weeks of dedicated multicomputer time. Although the
formal study is limited to a few test functions, we experimented with sev-
eral other cases in a restricted fashion. No significant variations in the results
were observed.

Irregular domains. The original applications of domain decomposi-
tion centered on reducing problems on irregular domains to problems on
regular domains. This is particularly interesting if the interfaces between
the subdomains are small. It is a limitation of our experiment that it does
not include this strength of domain decomposition.

Consider, for example, the Poisson problem defined on an L-shaped do-
main as in Figure 15. The two rectangular subdomains Qg and ; are
separated by a small interface {2. The capacitance system corresponding
to this decomposition will have a small number of unknowns and will be
symmetric positive-definite. Domain decomposition is, therefore, an appro-
priate solution method for this problem. One could even consider solving
the subproblems in different processes. However, this domain decomposi-
tion can use at most two processes, and its maximum possible speed-up is
two. In fact, the speed-up might be significantly less because of possible
load imbalance between g and Q.

To achieve a higher level of concurrency, one must use a concurrent
solver for the two subdomain problems. Our experiment shows that one
should not further subdivide the rectangular subdomains. Instead, one could
use concurrent multigrid as a subdomain solver for a domain-decomposition
method defined over the two regular subdomains.
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Conclusion. Expanding the application range beyond the regular Pois-
son problem requires considerable effort for any method. However, the ob-
stacles seem significantly greater for domain decomposition.

8.2 The Computer

All timings were obtained on the Symult S2010 [8]. This multicomputer
is a collection of 168 Motorola 68020 processors connected in a rectangu-
lar communication network with worm-hole routing. In many concurrent-
computing circles, this computer is classified as antique furniture. However,
it does have advantages. Our main motivation for using this system is ac-
cess. At Caltech, the Symult is used mostly for educational purposes, and
its load is very light when not being used by classes. In spite of its age
and the demise of the company that built this computer, the Symult system
software is the most stable and error-free of any multicomputer available.
As a result, this system is a friendly environment for performing an elabo-
rate computational experiment. Although the Symult is too slow for many
applications, it is sufficiently fast for our experiment. Experiments with
three-dimensional problems would require a faster platform, however. Our
main concern should be whether Symult performance is relevant for current
multicomputers and multiprocessors.

Vectorization. Most current computers are designed around vector
processors; the Symult is based on scalar processors. One could argue that
this slants the experiment in favor of multigrid. Because domain decompo-
sition performs more arithmetic between successive communication calls, it
will use vector processors more effectively than multigrid. This advantage
does not show in our experiment. It is virtually inconceivable, however, that
a higher vectorization efficiency could be a significant help in bridging the
performance gap.

Communication. Another difference between the Symult and more
recent computers is the ratio of communication time over arithmetic time.
In this respect, the Symult performs better than most current multicomput-
ers, because communication technology has not kept pace with advancing
processor technology. The communication-arithmetic ratio of modern mul-
ticomputers is often disappointing, if not at the hardware level then at the
user level. The Symult was built with a favorable hardware ratio, and its op-
erating system provides simple low-latency communication primitives that
keep the ratio favorable at the user level.

The lower communication overhead of the Symult favors multigrid over
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domain decomposition, because multigrid performs fewer arithmetic opera-
tions between successive communication calls. This slant in favor of multi-
grid is most relevant for fine-grained computations, when the communication
time is the most significant fraction of the execution time. However, none
of the tested methods are highly suitable for fine-grained computations, and
the advantage in favor of multigrid is a slight one.

Conclusion. Although the choice of computer favors multigrid some-
what, this slant does not threaten the validity of the experiment.

8.3 Computational Parameters

Problem size. Having examined a substantial range of problem sizes,
we are confident that our experiment is valid for problems of feasible size.

Number of nodes. Current high-end multicomputers have at least
500 nodes, a few have more than a thousand nodes. Although this is a
significant difference with the maximum of 128 nodes used in our experi-
ment, our performance results should translate to computations of similar
granularity. It should be noted, however, that neither multigrid nor domain
decomposition are well suited for fine-grain concurrency. The coarser lev-
els of multigrid and the ghost boundaries of domain decomposition force a
medium- to coarse-grain programming style.

Number of processes. It is standard practice on current multicomput-
ers to choose the number of processes always equal to the number of nodes.
The most important argument in favor of using several processes per node is
communication hiding: instead of keeping a processor waiting until a mes-
sage arrives, control is switched to another process ready to perform useful
work. It remains an open question whether communication hiding can off-
set the inefliciencies of process scheduling. However, since multigrid spends
a larger fraction of its execution time on communication, it holds better
promise than domain decomposition when it comes to exploiting communi-
cation hiding.

Process mesh and process placement. Process mesh (P x @) and
process placement (on which node to place each process) have only a minor
impact on multicomputer performance. However, they do have a substantial
impact on numerical performance of domain-decomposition methods. We
even observed several examples of nonconvergence on highly rectangular
process meshes. We avoid these robustness problems by choosing P =~ ).

Conclusion. Our choice of computational parameters does not bias our
experiment in favor of any particular method.
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8.4 Numerical Variants

The most significant limitation of our experiment is that we test only the
most basic version of each numerical method. In this section, we evaluate
whether known variants of the basic methods can lead to a different conclu-
sion of the experiment. Of course, no experiment can prove the nonexistence
of methods that outperform multigrid. For this reason, our experimental
set-up will remain useful as a benchmark for new methods.

Coding complexity. The basic multigrid method and the basic domain-
decomposition method without overlap contain about an equal number of
lines of code in the C programming language. The individual routines are
of about the same complexity. The Schwarz-iteration method is, by far, the
shortest and the simplest program and is comparable in complexity with the
smoothing operator of multigrid. Some of the proposed variations require
a substantial coding effort. We do not address the question whether or not
coding efforts are worth the potential benefits.

8.4.1 Full Multigrid

Adaptive control. The simplest variants of multigrid adaptively de-
termine the number of smoothing steps and adaptively switch between V,
W, and F cycle. Adaptive control does not necessarily increase performance,
because the required error estimation can be expensive. Adaptivity of this
type is more important for robustness than for performance. In production
implementations, all numerical methods require some amount of error es-
timation and adaptive control. Because of their heuristic nature, we avoid
these strategies in this experiment.

Data distribution and duplication. Coarse-level computations are
overwhelmed by communication. It is a viable option to duplicate the coars-
est levels in every process and to avoid coarse-level data distribution and
communication. Consider, for example, the performance of FMG(4) on a
64 x 64 grid in Figure 2. FMG(4) on 16 nodes is the best performer. Unfor-
tunately, it is impossible to run FMG(4) on 32 nodes because of the coarsest
grid. Duplicating the coarsest grid in every process would increase the ef-
ficiency of FMG(4) on 8 and 16 nodes. Moreover, this variant of FMG(4)
would probably run efficiently on 32 and 64 nodes. If the coarsest grid is
sufficiently coarse, as in the above example, the memory overhead of dupli-
cation is an acceptable price to pay for the increased performance. Advanced
implementations of the same idea could decide on the appropriate amount
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of duplication and distribution for every level. Substituting duplication for
communication is inherently computer dependent, because the decision de-
pends on the ratio of communication time over arithmetic time.

Conclusion. The performance of concurrent multigrid can be increased
further by the purely algorithmic technique of substituting duplication for
communication.

8.4.2 Domain Decomposition Without Overlap

Adaptive control. The theory requires that one solve the subdomain
problems exactly. We violate this theoretical requirement and solve only up
to discretization-error accuracy. This reduces the amount of work in the sub-
domain solver considerably. With inexact subdomain solvers, the conjugate-
gradient iteration is applied to a perturbed capacitance system. At best, the
iteration converges to a solution of the perturbed system. As shown by a
limited number of nonconverging cases, inexact subdomain solvers lead to a
loss of robustness. This problem can be avoided either by using exact sub-
domain solvers based on direct methods or by using better stopping criteria
for the iterative subdomain solvers.

At the start of the conjugate-gradient iteration, the values on the sub-
domain boundaries are inaccurate initial guesses. One might consider it
pointless to solve the subdomain problems with this boundary data to high
accuracy. As the outer iteration progresses and the boundary values be-
come more accurate, the accuracy of the subdomain solver should increase.
However, the intuition leading to such adaptive accuracy-control strategies is
difficult to translate into rigorous theory. Adaptive accuracy control changes
the perturbation of the capacitance system from one iteration step to the
next. Different iteration steps compute, therefore, search directions that be-
long to slightly different coeflicient matrices. This may result in a reduced
convergence rate or, at worst, in loss of convergence. Accuracy strategies
merely trade off robustness for speed.

Production codes require some adaptive error control to determine the
number of outer-iteration steps. It is a mathematical challenge to do this
without computing the global solution estimate (which consists not only of
values on the subdomain boundaries, but also of values in the subdomain
interiors). Unfortunately, it is too expensive to compute the interior values
every iteration step. In our experiment, error estimation and adaptive con-
trol are omitted, and the interior values are computed only after the outer
iteration has converged.
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| Method | 2-D | 3-D
Dense LU N3 N3)

0 O(!

Banded LU O(N? O(N?33)
Sparse LU O(N19) O(N?)

| Fast Poisson Solver | O(NlogN) | O(NlogN) |
Jacobi O(N%log N O(N'"log N
Gauss-Seidel O(NZ%log N O(N'"log N
Overrelaxation O(N'5log N) | O(N'33log N
Conjugate Gradient O(N'5log N) | O(N'33log N
Preconditioned Conjugate Gradient | O(N1*log N) | O(N*17log N
Multigrid O(N log N O(N log N%
Full Multigrid O(N) O(N)

Table 2: Complexity of candidate subdomain solvers.

Subdomain solvers. Table 2 was adapted from Holst [5]. It lists several
possible subdomain solvers and their theoretical complexity when applied
to the Poisson equation in two and three dimensions. The number N is
the number of unknowns. In the text, we focus on the complexity of two-
dimensional solvers.

As noted above, inexact subdomain solvers may reduce convergence and
robustness of the method. This is an argument in favor of direct solvers,
which solve the subdomain problems to an accuracy near machine precision.
However, the cost of just one iteration step is already prohibitively large, as
was shown in Figures 5 and 6 and the last line of Table 1. Clearly, we cannot
afford to increase the complexity of the subdomain solver. This immediately
excludes using dense and banded LU-decomposition.

Among the direct solvers, fast Poisson solvers are the optimal choice, and
they have a complexity better than that of optimal overrelaxation. Consider,
for example, a fast Poisson solver based on the fast Fourier transform. This
solver requires that the dimensions of all subdomain problems be powers
of two, unless a complicated general-radix transform is used. More impor-
tantly, fast Poisson solvers are only applicable if the domain-decomposed
solver is applied to the Poisson problem. This is a tight restriction on the
application range of the method. Finally, if solving the Poisson problem is
the only goal, one can use a concurrent implementation of the fast Poisson
solver for the whole domain.

Sparse LU-decomposition has a larger application range and, for two-
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dimensional problems, a lower complexity than optimal overrelaxation. How-
ever, the order-of-magnitude estimates of the table omit the constants in
front of the expressions. For small to moderate values of N, one should ex-
pect that the reduction of O(N1®log N) to O(N1?) is more than offset by
a larger constant. Moreover, the direct solver requires the coefficient matrix
explicitly and carries a substantial memory overhead.

The preconditioned conjugate-gradient method can be used to solve the
subdomain problems with a reduction of O(N%2%) in complexity (compared
with overrelaxation). This method carries a substantial memory overhead,
because the conjugate-gradient iteration requires at least four fields to store
search directions, residuals, etc.

Multigrid as a subdomain solver seems rather pointless: if one uses multi-
grid on the subdomains, why bother writing a capacitance solver around it?
Why not merely distributing multigrid on the global domain? If one per-
sists, a technical difficulty arises. To construct coarse grids, the subproblems
must have dimensions that are multiples of a power of two. If this is not
the case, subdomain problems must use nonconforming grids, which lead to
additional complications. One must also contend with substantial memory
overhead for all the levels of multigrid as well as for the ghost boundaries
necessary for solving the capacitance system.

All of the above alternatives to overrelaxation with optimal parameter
require a substantial coding effort and carry a substantial memory over-
head. Moreover, our execution-time plots strongly indicate that one cannot
significantly improve performance by choosing a different subdomain solver.
Consider, for example, Figure 3 for problems on 128 x 128 grids. The sub-
domain problems range in size from 64 X 128 to 8 X 16 as the number of
nodes is increased from 2 to 128. When the subdomain problems are as
small as 8 x 16, the performance difference between any of the considered
alternatives is minimal.

The outer iteration. The number of conjugate-gradient iteration steps
can be significantly reduced if one is able to construct a preconditioner for
the capacitance matrix. This is a considerable mathematical challenge, par-
ticularly if one’s ambitions exceed solving the Poisson equation. Moreover,
many preconditioners are difficult to integrate into a concurrent program.

However, Figures 5 and 6 and the last line of Table 1 indicate that pre-
conditioners are unlikely to have a significant impact in the present case.
Assume that there exists a preconditioner that reduces the number of outer-
iteration steps to one. Moreover, assume that this preconditioner does
not introduce any computational overhead. The resulting preconditioned
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method would have an execution time equal to that of one iteration step
of our nonpreconditioned method. Multigrid outperforms even this ideal
domain-decomposition method by a significant margin.

Conclusion. Although marginal improvements to the tested domain-
decomposition program are possible, there is no hope to make it competitive
with multigrid.

8.4.3 The Schwarz-Iteration Method

Subdomain solvers. For the same reasons as above, other subdomain
solvers cannot significantly improve performance of the Schwarz iteration.

Overlap. Increasing the area of overlap beyond three grid points will
improve the convergence rate somewhat. However, the area of overlap also
represents a significant duplication of effort between neighboring processes,
which may wipe out the convergence-rate improvement.

Multiplicative methods. Multiplicative Schwarz methods achieve
faster convergence than the additive Schwarz method of our experiment.
Unfortunately, multiplicative methods are less concurrent.

The outer iteration. The number of Schwarz-iteration steps can also
be reduced by using preconditioning techniques. Once again, Figures 5
and 6 and Table 1 show that multigrid outperforms one Schwarz-iteration
step for a wide range of computations. This is a strong indication that
preconditioners will not have a significant impact on the conclusion.

Conclusion. None of these variants are likely to deliver the orders-of-
magnitude improvement required to make Schwarz iteration competitive.

9 Conclusion

“Classical” measures like speed-up and efliciency can be quite misleading.
If we were to choose the sequential-execution time carelessly, our best-
performing methods would have the lowest speed-up and the lowest effi-
ciency. Logarithmic execution-time plots do not depend on a good sequential-
execution time. For this reason, they are much more reliable than speed-up
and efficiency graphs to analyze the performance of concurrent programs.
We used two fundamentally different techniques to derive a concurrent
Poisson solver. Domain decomposition numerically splits the original prob-
lem into several subproblems. Data distribution, on the other hand, is a
purely algorithmic technique and does not alter any aspect of the numerical
method. For a significant range of computational parameters, the tested
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domain-decomposition methods are several orders of magnitude slower than
data-distributed full multigrid. For the Poisson problem, there are no obvi-
ous remedies to bridge this performance gap.

Nevertheless, domain decomposition remains an important technique for
certain problems, like those defined on irregular domains composed of regu-
lar subdomains. However, based on our results for the Poisson solver, con-
currency alone does not seem to be a sufficient justification for considering
domain decomposition.
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