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problems in ordinary differential equations (ODEs). Companion papers are [1,2].
Earlier versions were described in [3,4].

The software described in this document, AUTQO94, is the sequential version
of AUTO94P [5], an experimental parallel program for the Intel Delta. Both were
developed in the Applied Mathematics Department at the California Institute of
Technology as one of the projects of the Differential Equations Group in the Center
for Research on Parallel Computation.

Compared to previous versions AUT094 has significant internal structural
changes that are not apparent to the user. In addition it is somewhat more conve-
nient to use, and it has a graphical user interface (GUI) written by Xianjun Wang,.
An earlier GUI for AUTO on SGI machines was written by Mark Taylor and loannis
Kevrekidis [6]. AUT094 also incorporates an improved Floquet multiplier algorithm
written by Thomas Fairgrieve [7,8].
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1. Installing AUTO.

1.1 Imstallation. To obtain a copy of AUTO, send email to doedel@cs.concordia.ca.
The software is transported as a compressed, encoded file, called auto.tar.Z.uu .
Put this file in your main directory. Remove the first few lines put there by the
mailer, if applicable. Type
uudecode auto.tar.Z.uu
followed by
uncompress auto.tar.Z
and
tar zvfo auto.tar
This will result in the creation of a directory, auto, with one subdirectory, 94,
containing the AUTO files. Type
cd auto/94
to change directory to auto/94. Then type either
make sqi
to compile AUTO on Silicon Graphics machines, or just
make
on SUNs and, in principle, on other Unix systems. Upon compilation, type
make clean
to remove unnecessary files. Also enter the following command :
source SHOME/auto/94/cmds/auto.env
and add the above line to your .cshrc file.

Some EISPACK [9] routines used by AUTO for computing eigenvalues and
Floquet multipliers are included in the package. The Graphical User Interface (GUI)
requires X Windows and Motif [10] to be on your machine. It may be necessary
to enter their pathname in the appropriate makefile in auto/94/gui. AUTO can
also be run in Command Mode, independently of the GUIL To compile the AUTO
library files without compiling the GUIL, type make ¢md in directory auto/94.

For timing purposes, the file auto/94/src/autlibl.f contains references to the
function etime. If this function is not automatically supplied by your {77 compiler
then it can be replaced by an appropriate alternative call, or it can be disabled by
replacing the two occurrences of the string T=etime(timaray) with T=0.

To prepare AUTO for transfer to another machine, type make superclean in
directory auto/94. This will remove all executable, object, and other non-essential

files, and thereby minimize the size of the package.



AUTO can be tested by typing make > TEST & in directory auto/94/test.
This will execute a selection of demos from auto/94/demos and write a summary
of the computations in the file TEST. The contents of TEST can then be compared
to other test result files in directory auto/94/test. In case of suspected portability

problems send TEST to doedel@cs.concordia.ca.

1.2 Restrictions on problem size. There are pre-defined size restrictions in the
file auto/94/include/auto.h on the following AUTO-constants : the effective prob-
lem dimension NDIM, the number of collocation points NCOL, the number of mesh
intervals NTST, the effective number of boundary conditions NBC, the effective
number of integral conditions NINT, the effective number of equation parameters
NPAR, the number of stored bifurcation points NBIF (algebraic problems), and
the number of user output points NUZR. See Section 5 for the significance of each
of the above constants. Their maxima are denoted by the corresponding constant
followed by an X. For example, NDIMX in auto.h denotes the maximum value of
NDIM. If any of these maxima is exceeded in an AUTO-run then a message will
be printed. The exception is the the maximum value of NPAR, which, if exceeded,
may lead to unreported errors. Upon installation NPARX=35; it should never be
decreased below that value. See also Section 3.4. Size restrictions can be changed
by editing auto.h. This must be followed by recompilation by typing make in di-
rectory auto/94/src. It 1s strongly recommended that NCOLX=4 be used, and that
the value of NDIMX and NTSTX be chosen as small as is possible for the intended
application of AUTO.

Note that in certain cases the effective dimension may be greater than the
user dimension. For example, for the two-parameter continuation of folds, the
effective dimension is 2NDIM+1 for algebraic equations, and 2NDIM for ODEs,
respectively. Similarly, for the two-parameter continuation of Hopf bifurcations,

the effective dimension is SNDIM-42.

1.3 Compatibility with AUTO86. There is a change in the preparation of
equations-files : The subroutines INIT and USZR are no longer needed; instead
AUTO-constants and output parameter values are read from a file; see Section 3.2.
There is also a change in output file format. However, AUTO86 output files
can be converted to AUTQ94 format with the @86t09 command; see Section 3.1.
There is no longer is a preprocessor; instead there are adjustable size limitations

on certain AUTO-constants; see Section 1.2 above.



2. Overview of Capabilities.

2.1 Summary. AUTO can do a limited bifurcation analysis of algebraic systems

of the form

(2'1) f(u,p) =0, f(? ')7“ € R",

and of systems of ODEs of the form

(2.2) u'(t) = f(u(t),p), f(-,),u(-) € R,

Here p denotes one or more free parameters.

It can also do certain wave computations for the PDE
(23) Uy :Durr ‘|‘f(uap)7 f(v)?u() S Rn?

where D denotes a diagonal matrix of diffusion constants. The basic algorithms

used in the package, as well as related algorithms, can be found in [1,2] and [11,12].

2.2 Algebraic systems. Specifically, for (2.1) the program can :
- Compute solution branches.
- Locate bifurcation points and automatically compute bifurcating branches.
- Locate Hopf bifurcation points and continue these in two parameters.
- Locate folds (limit points) and continue these in two parameters.

- Do the above for fixed points of the discrete dynamical system
uF D = f(u® p).

- Find extrema of an objective function along solution branches and successively

continue such extrema in more parameters.



2.3 Ordinary differential equations. For the ODE (2.2) the program can :

Compute branches of stable and unstable periodic solutions and compute the
Floquet multipliers, that determine stability, along these branches. Starting
data for the computation of periodic orbits are generated automatically at
Hopf bifurcation points.

Locate folds, regular bifurcations, period doubling bifurcations, and bifurca-
tions to tori, along branches of periodic solutions. Branch switching is possible
at regular and period doubling bifurcations.

Continue folds and period-doubling bifurcations in two parameters. The two-
parameter continuation of orbits of fixed period is also possible. This allows
the approximate computation of curves of homoclinic orbits, if the period is
sufficiently large.

Locate extrema of an integral objective functional along a branch of periodic
solutions and successively continue such extrema in more parameters.
Compute curves of solutions to (2.2) on [0,1], subject to general nonlinear
boundary and integral conditions. The boundary conditions need not be sep-
arated, i.e., they may involve both u(0) and u(1) simultaneously. The side
conditions may also depend on parameters. The number of boundary condi-
tions plus the number of integral conditions need not equal the dimension of
the ODE, provided there is a corresponding number of additional parameter
variables.

Determine folds and bifurcation points along solution branches to the above
boundary value problem. Branch switching is possible at bifurcation points.

Curves of folds can be computed in two parameters.

2.4 Periodic waves in diffusive systems. For (2.3) the program can :

Trace out branches of spatially homogeneous solutions. This amounts to a
bifurcation analysis of the algebraic system (2.1). However, AUTO uses a
related system instead, in order to enable the detection of bifurcations to wave
train solutions of given wave speed. More precisely, bifurcations to wave trains

are detected as Hopf bifurcations along fixed point branches of the related ODE

(2.2")
v'(2) = —-D7! [c v(z) + f(u(z),p)],

where z = x — ¢t , with the wave speed ¢ specified by the user.



- Trace out branches of periodic wave solutions to (2.3) that emanate from a Hopf
bifurcation point of (2.2'). The wave speed ¢ is fixed along such a branch, but
the wave length L, i.e., the period of periodic solutions to (2.2'), will normally
vary. If the wave length L becomes large, i.e., if a homoclinic orbit of (2.2) is
approached, then the wave tends to a solitary wave solution of (2.3).

- Trace out branches of waves of fixed wave length L in two parameters. The
wave speed ¢ may be chosen as one of these parameters. If L is large, then such
a continuation gives a branch of approximate solitary wave solutions to (2.3).

- Do time evolution calculations for (2.3), given periodic initial data on the in-
terval [0, L]. The initial data must be specified on [0,1] and L must be set
separately because of internal scaling. The initial data may be given analyti-
cally or obtained from a previous computation of wave trains, solitary waves,
or from a previous evolution calculation. Conversely, if an evolution calculation
results in a stationary wave, then this wave can be used as starting data for a

wave continuation calculation.

Note that the system (2.2') is just a special case of (2.2) and that its fixed point
analysis is a special case of (2.1). One advantage of the built-in capacity of AUTO
to deal with problem (2.3) is that the user need only specify f, D, and ¢. Another
advantage is the compatibility of output data for restart purposes. This allows

switching back and forth between evolution calculations and wave computations.

2.5 Discretization. AUTO discretizes ODEs by the method of orthogonal col-
location using piecewise polynomials with 2-7 collocation points per mesh interval
[13]. The mesh automatically adapts to the solution to equidistribute the local dis-
cretization error [14]. The number of mesh intervals and the number of collocation
points remain constant during any given run, although they may be changed at
restart points. Time evolution computations of (2.3) are adaptive in space and in
time. Discretization in time is not very accurate : only implicit Euler. Indeed,
time integration of (2.3) has only been included as a convenience and it is not very

efficient.



2.6 Output files. AUTO writes four output files :

fort.6

A summary of the computation is written in Fortran unit 6; usually the

screen. Only special solution points are noted, including :

BP (1) :  Bifurcation point (algebraic systems).

LP (2) : Fold (algebraic systems).

HB (3) :  Hopf bifurcation.

UZ (4) : User-specified parameter value.

LP (5) : Fold (differential equations).

BP (6) :  Bifurcation point (differential equations).
PD (7) :  Period doubling bifurcation.

TR (8) :  Torus bifurcation.

EP (9) : End point of branch; normal termination.
MX (-9) : Abnormal termination; no convergence.

The above letter codes are used in the unit 6 output. The equivalent numerical

codes are used internally and in the unit 7 and 8 output described below.

fort.7

fort.8

fort.9

: The output file fort.7 contains the bifurcation diagram. This information is
written by the subroutines STHD, HEADNG, and STPLAE in the section ’Out-
put (Algebraic Problems)’, and by STPLBYV in the section 'Output (Boundary
Value Problems)’ of the file auto/94/src/autlibl.f . The user has some control
over this output via the AUTO-constant IPLT; see Section 5.9. The graphics
program PLAUT can be used to graphically inspect this file.

The output file fort.8 contains complete graphics and restart data for se-
lected solutions. The information per solution is much more extensive than
that in fort.7 and should normally be written only for a limited number of
solutions. This file is written by WRTSPS in the section ’Output (Algebraic
Problems)” and by WRTBVS in the section ’Output (Boundary Value Prob-
lems)’ in auto/94/src/autlibl.f . The graphics program PLAUT can be used
to graphically inspect this output.

Diagnostic messages, convergence history, eigenvalues, and Floquet multi-
pliers are written in fort.9. It is strongly recommended that this output be

habitually inspected.



3. How to Run AUTO.

3.1 Command mode. AUTO can be run with the GUI described in Section 4

or with the commands described in this section. The AUTOQO aliases must have

been activated; see Section 1.1; and an equations-file xxx.f and a corresponding

constants-file r.xxx (see Section 3.2) must be in the current user directory.

Do not run AUTO wn the directory auto/94 or in any of its subdirectories.

Qr

@R

Qsv

Q@ap

@p

Qcp

Qmv

edf
Qcl

edl

: Type @r zzz, to run AUTO. Restart data, if needed, are expected in q.xxx,
and AUTO-constants in r.xxx. This is the most common way to run AUTO.
Type @r zzz yyy, to run AUTO with equations-file xxx.f and restart data file
q-yyy. AUTO-constants must be in r.xxx.

Type @r zzz yyy zzz, to run AUTO with equations-file xxx. £, restart data file
q.yyy, and constants-file r.zzz.

: The command @R zzz is equivalent to the command @r zzz above.

Type @R zzz 1, to run AUTO with equations-file xxx. £, constants-file r.xxx.i
and, if needed, restart data file q.xxx.

Type @QR zzz @ yyy, to run AUTO with equations-file xxx.f, constants-file
r.xxx.1i, and restart data file q.yyy.

: Type @sv zzx to save the output files fort.7, fort.8, fort.9, as p.xxx, q.xxx,
d.xxx, respectively. Existing files by these names will be deleted.

: Type @ap zzz to append the output files fort.7, fort.8, fort.9, to existing
data files p.xxx, q.xxx, d.xxx, resp.

Type @Qap zzz yyy to append p.xxx, q.xxx, d.xxx, to p.yyy, q.yyy, d.yyy, resp.

: Type @p zzz to run the graphics program PLAUT for the graphical inspection
of the data files p.xxx and q.xxx.

Type @p to run the graphics program PLAUT for the graphical inspection of
the output files fort.7 and fort.8.

: Type @cp zzz yyy to copy the data files p.xxx, q.xxx, d.xxx, r.xxx to p.yyy,

q.y7yy, d.yyy, r.yyy, respectively.
: Type @mu zzz yyy to move the data files p.xxx, q.xxx, d.xxx, r.xxx, to p.yyy,

q.7yy, d.yyy, r.yyy, respectively.

: Type @df to delete the output files fort.7, fort.8, fort.9.

: Type @cl to clean the current directory. This command will delete all files
of the form fort.*, *.0, and *.exe.

: Type @dl zzz to delete the data files p.xxx, q.xxx, d.xxx.



@dm

@lb

@pn

@86to094

: Type @dm zzz to copy the demo files xxx.f and r.xxx.* from the demo
directory auto/94/demos/xxx to the current user directory. Here xxx denotes a
demo name; e.g., pp2; see Section 7.

: Type @b to run an interactive utility program for listing, deleting, and
relabeling solutions in the AUTO output-files fort.7 and fort.8. The original
files are backed up as fort.7~ and fort.8".

Type @Ib zzx to list, delete, and relabel solutions in the AUTO data-files p.xxx
and q.xxx. The original files are backed up as p.xxx~ and q.xxx".

Type @b zzz yyy to list, delete, and relabel solutions in the AUTO data-files
p.xxx and q.xxx. The modified files are written as p.yyy and q.yyy.

: Type @pn zzz to run the pendula animation program with data file q.xxx.
(On SGI machine only; see the pen demo in Section 7, as well as the file
auto/94/pendula/README and reference [15].)

: Type @86t094 zxx to convert the AUTOS86 data file q.xxx to AUTO94 format.
The original file is backed up as q.xxx".

3.2 User supplied files. The user must prepare the two files described below.
This can be done with the GUI described in Section 4, or independently.

xxx.f

Ir.XXX

The

FUNC
STPNT

A source file xxx.f containing the Fortran subroutines FUNC, STPNT,
BCND, ICND, and FOPT. Here xxx stands for a user-selected name. If any of
these subroutines is irrelevant to the problem then its body need not be com-
pleted. For their precise form see the model equations-file auto/94/gui/aut.f,
which can be directly loaded with the GUI button Equations/New; see Sec-
tion 4.2. Examples are in auto/94/demos, where, e.g., the file pp2/pp2.£ defines
a two-dimensional dynamical system, and the file bvp/bvp. £ defines a boundary
value problem. The simplest way to create a new equations-file is to copy and
edit the model equations-file or an appropriate demo file.

AUTO-constants for xxx.f are normally expected in a corresponding file
r.xxx. Specific examples include bvp/r.bvp and pp2/r.pp2 in auto/94/demos.

See Section 5 for the significance of each constant.

purpose of the user-supplied subroutines in the file xxx.f is described below.

defines the function f(u,p) in (2.1),(2.2), or (2.3).

This subroutine is typically called only during the first AUTO run, when
IRS=0; see Section 5.8. It defines a solution (u,p) of (2.1) or (2.2). This

starting solution should not be a bifurcation point. When starting from a

8



fixed point, the arguments of STPNT are (NDIM,U,PAR). When starting from
an analytically known time- or space-dependent solution, the arguments of
STPNT are (NDIM,U,PAR,T), where T denotes the independent time or space
variable which takes values in the interval [0,1]. When restarting from an
analytically known periodic orbit, one must in addition specify the period in
PAR(11).

BCND : A subroutine BCND that defines the boundary conditions, if any.

ICND : A subroutine ICND that defines the integral conditions, if any.

FOPT : A subroutine FOPT that defines the objective functional, if any.

3.3 User supplied derivatives. If the value of the AUTO-constant JAC is
JAC=0 then derivatives need not be specified in FUNC, BCND, ICND, and FOPT.
However, if one sets JAC=1 then derivatives must be given. This may be necessary
for extremely sensitive problems, and is recommended for computations in which
AUTO generates an extended system; see Section 5.2. Examples of user-supplied
derivatives can be found in directory auto/94/demos, for example, in the equations-

files dd2/dd2.f, int/int.f, opt/opt.f, and ops/ops.f.

3.4 Restrictions on the use of PAR. The array PAR in the user-supplied
subroutines is available for equation parameters that the user wants to vary at some
point in the computations. In any particular computation the free parameter(s)
must be designated in ICP; see Section 5.7. The following restrictions apply :

- The maximum number of parameters, NPARX in auto/94/include/auto.h, has
pre-defined value NPARX=35. NPARX should not normally be increased and
it should never be decreased. Any increase of NPARX must be followed by
recompilation of AUTO.

- For computations with ISW=2 or IPS=11-15 (see Section 5.8) only PAR(1)-
PAR(9) should be used, as AUTO may need the remaining components inter-
nally.

- For computations with ISW=1 or ISW=-1, all entries of PAR are available to
the user, except PAR(11) and PAR(12). AUTO uses PAR(11) for the detection
of Hopf bifurcations, for periodic solutions PAR(11) contains the period, and
for algebraic optimization problems PAR(11) contains the value of the objective
function. PAR(12) is also needed internally.



4. Graphical User Interface.

4.1 General overview. The AUTO094 graphical user interface (GUI) is a tool
for creating and editing equations-files and constants-files; see Section 3.2 for a
description of these files. The GUI can also be used to run AUTO and to manipulate
and plot output files and data files; see Section 3.1 for corresponding commands.
To use the GUI for a new equation, change to an empty work directory. For an
existing equations-file, change to its directory. (Do not activate the GUI in the
directory auto/94 or in any of its subdirectories.) Then type
Qauto or just Qa

Here we assume that the AUTO aliases have been activated; see Section 1.1. The
GUI includes a window for editing equations-files, and four groups of buttons,
namely, the Menu Bar at the top of the GUI, the Define Constants buttons at
the center-left, the Load Constants buttons at the lower left, and the Stop and Exit

buttons.

Note : GUI buttons are normally activated by point-and-click action with the left

mouse button. If a beep sound results then the right mouse button must be used.

The Menu Bar. It contains the main buttons for running AUTO and for manip-
ulating the equations-file, the constants-file, the output files, and the data files. In a
typical application, these buttons are used from left to right. First the Equations are
defined and, if necessary, Edited, before being Written. Then the AUTO-constants
are Defined. This is followed by the actual Run of AUTO. The resulting output
files can be Saved as data files, or they can be Appended to existing data files. Data
files can be Plotted with the graphics program PLAUT, and various file operations
can be done with the Files button. Auxiliary functions are provided by the Demos,
Misc, and Help buttons. The Menu Bar buttons are described in more detail in
Section 4.2 below.

The Define Constants buttons. These have the same function as the Define
button on the Menu Bar, namely to set and change AUTO-constants. However, for
the Define button all constants appear in one panel, while for the Define Constants
buttons they are grouped by function, as in Section 5, namely Problem definition
constants, Discretization constants, convergence Tolerances, continuation Step Size,
diagram Limits, designation of free Parameters, constants defining the Computation,

and constants that specify OQutput options.
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The Load Constants buttons. The Previous button can be used to load an
existing AUTO-constants file. Such a file is also loaded, if it exists, by the Equations
button on the Menu Bar. The Default button can be used to load default values of

all AUTO-constants. Custom editing is normally necessary.

The Stop and Exit buttons. The Stop button can be used to abort execution
of an AUTO-run. This should be done only in exceptional circumstances. OQutput
files, if any, will normally be incomplete and should be deleted. Use the Ezit button

to end a session.

4.2 The Menu Bar.

Equations. This pull-down menu contains the items Old, to load an existing
equations-file, New, to load a model equations-file, and Demo, to load a selected
demo equations-file. Equations-file names are of the form xxx.£. The corresponding
constants-file r.xxx is also loaded if it exists. The equation name xxx remains active

until redefined.

Edit. This pull-down menu contains the items Cut and Copy, to be performed on
text highlighted by click-and-drag action of the mouse, and the item Paste, which

places editor buffer text at the location of the cursor.

Write. This pull-down menu contains the item Write, to write the loaded files
xxx.f and r.xxx, by the active equation name, and the item Write As to write these

files by a selected new name, which then becomes the active name.

Define. Clicking this button will display the full AUTO-constants panel. Most
of its text fields can be edited, but some have restricted input values that can be
selected with the right mouse button. Some text fields will display a subpanel for
entering data. To actually apply changes made in the panel, click the OK or Apply
button at the bottom of the panel.

Run. Clicking this button will write the constants-file r.xxx and run AUTO. If
the equations-file has been edited then it should first be rewritten with the Write
button.

Save. This pull-down menu contains the item Sawve, to save the output files fort.7,
fort.8, fort.9, as p.xxx, q.xxx, d.xxx, respectively. Here xxx is the active equation
name. It also contains the item Save As, to save the output files under another

name. Existing data files with the selected name, if any, will be overwritten.

11



Append. This pull-down menu contains the item Append, to append the output
files fort.7, fort.8, fort.9, to existing data files p.xxx, q.xxx, d.xxx, respectively.
Here xxx is the active equation name. It also contains the item Append To, to

append the output files to other existing data files.

Plot. This pull-down menu contains the items Plot, to run the plotting program
PLAUT for the files p.xxx and q.xxx, where xxx is the active equation name, and
the item Name, to run PLAUT with other data files.

Files. This pull-down menu contains the item Restart, to redefine the restart file.
Normally, when restarting from a previously computed solution, the restart data is
expected in the file q.xxx, where xxx is the active equation name. Use the Restart
button to read the restart data from another data file in the immediately following
run. The pull-down menu also contains the following items :

Copy, to copy p.xxx, q.xxx, d.xxx, r.xxx, t0 p.yyy, q.yyy, 4d.¥yy, T.yyy, resp.;
Append, to append data files p.xxx, q.xxx, d.xxx, to p.yyy, q9.yyy, d.yyy, resp.;
Move, to move p.xxx, q.xxx, d.xxx, r.xxx, t0 p.yyy, q.yyy, 4.yyy, T.yyy, resp.;
Delete, to delete data files p.xxx, q.xxx, d.xxx; and

Clean, to delete files of the form fort.*, *.o0, and *.exe.

Demos. This pulldown menu contains the items Select, to view and run a selected
AUTO demo, and Reset, to restore the demo directory to its original state. Demo

files can be copied to the user work directory with the Equations/Demo button.

Misc. This pulldown menu contains the items Tek Window and VT102 Window,
for opening windows; Emacs and Xedit, for editing files, and Print, for printing the

active equations-file xxx.f.

Help. This pulldown menu contains the items AUTO-Constants, for a descrip-
tion of AUTO-constants, and User Manual, for viewing the user manual; i.e., this

document.
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4.3 Using the GUI. AUTO-commands are described in Section 3.1 and illustrated
in the demos of Section 7. Below we list the main AUTO commands together with

the corresponding GUI button.

@r Run

@sv Save

@ayp Append (output data)
@p Plot

@cp Files/Copy

@mo Files/Move

@cl Files/Clean

@dl Files/Delete

@dm Equations/Demo

The AUTO-command @r zzz yyy is given in the GUI as follows : click Files/Restart
and enter yyy as data. Then click Run. As noted in Section 3.1, this will run
AUTO with the current equations-file xxx.f and the current constants-file r.xxx,

while expecting restart data in q.yyy. The AUTO-command @ap zzz yyy is given
in the GUI by clicking Files/Append.

4.4 User notes.

Print. The Misc/Print button on the Menu Bar can be customized by editing
auto/94/include/GuiConsts.h.

Color. GUI colors can be customized by creating an X resource file. Two model
files can be found in directory auto/94/gui, namely, Xdefaults.1 and Xdefaults.2.
To become effective, edit one of these and copy it to .Xdefaults in your home

directory. Color names can often be found in the file /usr/1ib/X11/rgb.txt.

Help. The file auto/94/include/GuiGlobal.h contains on-line help on AUTO-
constants and demos. The text can be updated, subject to a modifiable maximum
length. On SGI machines this is 10240 bytes, which can be increased, for example,
to 20480 bytes, by replacing the line

CC = cc -Wf, -XNI10240 -0
in auto/94/gui/Makefile by

CC = cc -Wf, -XNI20480 -0
On other machines, the maximum message length is the system defined maximum

string literal length.
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5. Description of AUTO-constants.

5.1 The AUTO-constants file. As described in Section 3.2, if the equations-file
is xxx.f then the constants that define the computation are normally expected in
the file r.xxx. The general format of this file is the same for all AUTO runs.
For example, the file r.exp for the boundary value problem exp.f in directory

auto/94/demos/exp is listed below.

2401 NDIM,IPS,IRS,ILP

1 1 NICP, (ICP(I),I=1,NICP)
54311020 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT
50 0.0 4.0 0.0 50.0 NMX ,RLO,RL1,A0,A1

50 10 2 8 5 3 0 NPR,MXBF,IID,ITMX, ITNW,NWTN,JAC
1.d-4 1.d-4 1.d-4 EPSL,EPSU,EPSS

0.01 0.001 1.0 1 DS,DSMIN,DSMAX ,IADS

0 NTHL, (/,I,THL(I)),J=1,NTHL)

0 NTHU, (/,I,THU(I)),J=1,NTHU)

2 NUZR, (/,I,PAR(I)),J=1,NUZR)

1

1

The significance of the AUTO-constants, grouped by function, is described below.

5.2 Problem constants.

NDIM : Dimension of the system of algebraic equations or ODEs.
NBC : The number of boundary conditions. Must be specified if IPS=4 or 6.
NINT : The number of integral conditions. Must be specified if IPS=4 or 6.
JAC : TUsed to indicate whether derivatives are supplied by the user or to be
obtained by differencing :
JAC=0 : No derivatives are given by the user.
JAC=1 : Derivatives are given in the user-supplied subroutines FUNC, BCND,
ICND and FOPT. This may be necessary for extremely sensitive problems.
It 1s also recommended for computations in which AUTO generates an
extended system, namely, if ISW=2 or IPS=15.
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5.3 Discretization constants.

NTST : The number of mesh intervals to be used for discretization. NTST re-
mains fixed during any particular run, but can be changed when restarting at
a previously computed solution. However, the location of the mesh points can
be made to adapt to the solution by setting the constant IAD. Recommended
value of NTST : As small as possible, while maintaining convergence.

NCOL : The number of Gauss collocation points per mesh interval, (2 < NCOL
< 7). NCOL remains fixed during any given run, but can be changed when
restarting at a previously computed solution. Strongly recommended value :
NCOL=4.

IAD
IAD=0: Fixed mesh. This choice is not recommended, as it may result in the
computation of spurious solutions.
IAD>0 : Adapt the mesh every IAD steps along the branch. Strongly recom-
mended value : IJAD=3.

5.4 Tolerances.

EPSL : Relative convergence criterion for equation parameters in the Newton /Chord
method. Recommended value EPSL=1.D-6 or EPSL=1.D-8.

EPSU : Relative convergence criterion for solution components in the Newton /Chord
method. Recommended value EPSU=1.D-6 or EPSU=1.D-8.

EPSS : Relative arclength convergence criterion for detecting bifurcations and user
output points. Recommended value EPSS=1.D-4 or EPSS=1.D-6, i.e., approx-
imately 100 times the value of EPSL, EPSU.

ITMX : The maximum number of iterations allowed in the accurate location of
bifurcations, folds, and user output points. Recommended value : ITMX=8.
NWTN : For ODEs only : After NWTN Newton iterations the Jacobian is frozen,
i.e., the Chord method is used if NWTN < iteration index < ITNW. Strongly
recommended value : NWTN=3.
ITNW : The maximum number of combined Newton-Chord iterations. When
reached, the step will be retried with half the stepsize. This is repeated un-
til convergence, or until the minimum stepsize is reached. In the latter case

the computation of the branch is discontinued and a message printed in fort.9.

Recommended value : Usually ITNW=5, but ITNW=T7 for ‘difficult’ problems.
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5.5 Continuation step size.

DS

DSMIN

DSMAX

IADS

Pseudo-arclength stepsize for the first step along any branch, including
the first step after restart. DS may be chosen positive or negative; its sign
determines the direction of computation. The relation DSMIN < | DS | <
DSMAX must be satisfied. Recommended value of | DS | : somewhere between
DSMIN and DSMAX, but typically closest to DSMIN.

The minimum allowable absolute value of the pseudo-arclength stepsize.
Only relevant if TADS>0. DSMIN must be positive. Recommended value :
highly problem-dependent; see Section 6.1.

The maximum allowable absolute value of the pseudo-arclength stepsize.
Only relevant if TADS>0. DSMAX must be positive. Recommended value :
highly problem-dependent; see Section 6.1.

IADS=0 : Use fixed pseudo-arclength stepsize. Not recommended.
IADS>0 : Adapt the pseudo-arclength stepsize after every TADS steps. If the

NTHL

NTHU

Newton/Chord iteration converges rapidly then | DS | will be increased,
but never beyond DSMAX. If a step fails then it will be retried with half
the stepsize. This will be done repeatedly until the step is successful or
until | DS | reaches DSMIN. In the latter case nonconvergence will be
signalled. Recommended value : TADS=1.

The number of parameter weights to be modified in the definition of the
pseudo-arclength continuation algorithm. If NTHL=0 then all weights will have
default value 1.0 . Under certain circumstances one may want to modify some
weights. In such case NTHL>0 and one must enter NTHL pairs (Parameter
Index, Weight), each pair on a separate line. In particular, for the computation
of periodic solutions it is recommended to set NTHL=1, with, on a separate
line, the pair ( 11 0.0), without brackets. This removes PAR(11); the period;
from the pseudo-arclength continuation stepsize, which avoids period-induced
limitations on the stepsize near orbits of infinite period. See the file r.pp2.31in
auto/94/demos/pp2 for an example.

The number of solution-component weights to be modified in the definition
of the pseudo-arclength continuation algorithm. Normally NTHU=0 and all
weights will have default value 1.0 . Under exceptional circumstances one may
want to modify some weights. In such case NTHU>0 and one must enter

NTHU pairs (Solution-Component-Index, Weight), each pair on a separate line.

16



5.6 Diagram limits.

NMX : Maximum number of steps to be taken along any branch.

RLO : Lower bound on the principal continuation parameter; i.e., on PAR(ICP(1)).

RL1 : Upper bound on the principal continuation parameter.

A0

Lower bound on the principal solution measure, i.e., on the Ls-norm or

other measure selected through IPLT; see Section 5.9.

A1l : Upper bound on the principal solution measure.

5.7 Free parameters.

NICP : The number of free equation parameters specified, i.e., the number of indices
(ICP(I),I=1 NICP). This number should be greater than or equal to the generic

number required by the computation.

ICP : Designates the free parameter(s) :

Often there is only a single free equation parameter. In this case NICP=1
and ICP(1) specifies the free parameter’s index, i.e., PAR(ICP(1)) is free.
For the two-parameter continuation of folds and Hopf bifurcations, set
NICP=2 and use ICP(1) and ICP(2) to indicate the free parameters.

For boundary value problems set NICP = NBC + NINT—NDIM +1, and
use ICP(1)- - - ICP(NICP) to specify the free equation parameters. A simple
case 1s when NBC=NDIM and NINT=0. Then NICP=1, i.e., only one free
parameter needs to be specified.

For the continuation of folds in a boundary value problem, set NICP
= NBC 4+ NINT—-NDIM +2. A simple case is when NBC=NDIM and
NINT=0. Then NICP=2, i.e., two free parameters must be specified.

For the first run of an algebraic optimization problem (IPS=5; see Sec-
tion 5.8) one must set ICP(1)=11, as AUTO uses PAR(11) as principal
parameter to monitor the value of the objective function. Furthermore,
one must designate one free equation parameter in ICP(2). Thus NICP=2
in such a first run. Folds with respect to the principal parameter then
correspond to local one-parameter extrema of the objective function. In
a second run, with NICP=3, one can restart at such an extremum and
specify an additional equation parameter in ICP(3). Folds located in a
second run then correspond to local two-parameter extrema of the objec-

tive function. This procedure can be repeated indefinitely.
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5.8 Computation constants.

ILP

ILP=0 : No detection of folds. This choice is recommended.
ILP=1 : Detection of folds. Use if subsequent fold continuation is intended.

ISP

ISP=0 : No detection of bifurcation points. No Floquet multipliers.

ISP=1 : For algebraic equations : Detection of bifurcations. For ODEs : No

detection of bifurcations. For periodic solutions : Floquet multipliers com-

puted.

ISP=2 : For all equations : Detection of bifurcations. For periodic solutions :

Floquet multipliers computed.

ISP=3 : If IPS=2,3,6 then the choice ISP=3 is similar to ISP=2, except that

the first two, rather than one, closest Floquet multipliers to z = 1 are
excluded from stability and bifurcation considerations. Furthermore, folds
will be determined with respect to the period. This option can be useful

for certain non-generic systems.

If IPS=2.3, or 6, then the choice ISP=2,3 should be used with care, due to potential

inaccuracy in the computation of the linearized Poincaré map and possible rapid

variation of the Floquet multipliers. The linearized Poincaré map always has a

multiplier z = 1. If this multiplier becomes inaccurate, then the automatic detection

of potential secondary periodic bifurcations, if ISP=2,3, will be discontinued and a

warning message will be printed in fort.9.

ISW

Normally ISW=1.

If ISW=-1 and IPS= 2,34, or IPS > 5, and if IRS is the label of a bifur-

cation point, then the restart procedure will attempt to switch branches,
rather than continue computation of the given branch. For period dou-
bling bifurcations it is recommended that NTST be increased to twice the

value used in the computation that detected the bifurcation.

If ISW=2 and IPS=-1,0.1,2,3 or 4, and if IRS is the label of a fold, a

Hopf bifurcation point, a period-doubling bifurcation, or a torus bifur-
cation, then the program will try to trace out a curve of such points in
two parameters. The choice of second parameter must be specified in
ICP(2), while ICP(1) remains the index of the first parameter. For bound-
ary value problems with more than one free parameter one should use

ICP(NBC+NINT—-NDIM+2) to indicate the additional parameter neces-

sary for the computation of the curve of folds.
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MXBF : For algebraic problems only : MXBF sets the maximum number of bifurcat-

ing branches to be traced out. Additional bifurcations will be noted, but the

corresponding bifurcating branches will not be computed. If MXBF is negative

then bifurcations will only be traced out in one direction. If MXBF is positive

then both directions are traced out.

IRS
IRS=0:
IRS>0:

A new problem : No previously computed restart data. A starting solution
must be specified in STPNT; see Section 3.2.

Computation to be restarted at a previously computed solution with label
IRS. This solution is normally expected to be in the current solution file

q.xxx. Most AUTO-constants can be modified at a restart point.

IPS : This constant defines the problem type :

IPS=0

IPS=1

IPS=-1

IPS=2

IPS=3

IPS=4

IPS=5

Algebraic bifurcation problem. Hopf bifurcations will not be detected
and stability properties will not be indicated in fort.7.

Algebraic bifurcation problem with detection of Hopf bifurcations. The
sign of PT, the point number, in fort.7 is used to indicate stability : —=
stable , + = unstable.

Fixed points of the discrete dynamical system u(¥+1) = f(u(k),p),
with detection of Hopf bifurcations. The sign of PT in fort.7 indicates
stability : —= stable , + = unstable.

Computation of periodic solutions. Starting data can be a Hopf bifur-
cation point from a previous run with IPS=1, or a periodic orbit from a
previous run with IPS=2 or 3. One can also specify an analytically known
periodic orbit in the user subroutine STPNT. One free equation parameter
must be designated in ICP(1); AUTO will automatically add the period,
PAR(11), as second free parameter. The sign of PT in fort.7 is used to
indicate stability : —= stable , + = unstable or unknown.

: Two-parameter continuation of orbits of fixed period. Starting data may

be a periodic orbit from a previous run with IPS=2 or 3, or an analytically
known periodic orbit specified in STPNT. Two free equation parameters
must be designated in ICP(1) and ICP(2). The sign of PT in fort.7 is
used to indicate stability : —= stable , + = unstable or unknown.

A boundary value problem. Boundary conditions must be specified in
the user-supplied subroutine BCND and integral constraints in ICND.

Algebraic optimization problems. The objective function must be

specified in the user-supplied subroutine FOPT.
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IPS=6
IPS=17
IPS= 8
IPS=11
IPS=12
IPS=13
IPS=14

: Equivalent to IPS=4, except that AUTO will compute Floquet multipli-

ers and check for associated bifurcations. This option is useful for periodic
solutions of the second kind (rotations). It is also useful for computing
periodic solutions when integral quantities; defined in ICND; are to be
monitored. The user must supply BCND and ICND.

: This option is equivalent to IPS=2, except that AUTO will not monitor
the Floquet multipliers. Instead, if ISP>1. bifurcations will be located as
singularities of the full collocation system, as is done if IPS=4. This option
is useful for certain problems with non-generic Floquet behavior.

: This option is equivalent to IPS=3, except that AUTO will not monitor
the Floquet multipliers. Instead, if ISP>1. bifurcations will be located as
singularities of the full collocation system, as is done if IPS=4. This option
is useful for certain problems with non-generic Floquet behavior.

Spatially uniform solutions of (2.3) with detection of bifurcations to
traveling waves, i.e., continuation of fixed points of (2.2’). The user need
only define f, initialize the wave speed in PAR(10), the NDIM diffusion
constants in PAR(15,16,...), and a free equation parameter in ICP(1).

Continuation of traveling waves, i.e., continuation of periodic solutions
of (2.2"). The user need only define f and designate a free equation pa-
rameter in ICP(1). PAR(10) is used for for the (fixed) wave speed and

PAR(11) for the (variable) wave length. Starting data can be a Hopf bi-
furcation point from a previous run with IPS=11, or a traveling wave from
a previous run with IPS=12 or 13.

: Continuation of traveling waves of fixed wave length, i.e., continuation of
fixed period solutions of (2.27). The user need only define f and designate
two free parameters, for example, the wave speed PAR(10) and an equation
parameter. Starting data can be a traveling wave from a previous run with
IPS=12 or 13.

Time evolution computation for (2.3) on a periodic space interval.
The initial data must be specified in the interval [0,1]. The actual length
of the interval must be specified in PAR(11). AUTO uses PAR(14) for
the time variable and PAR(15,16,...) for the diffusion constants. DS,
DSMIN, and DSMAX govern the pseudo-arclength continuation in the
(U,Time) variables. Starting data may be solutions from a previous run
with IPS=12, 13 or 14, or given analytically in STPNT.
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IPS=15 : Optimization of periodic solutions. Restart at a solution computed with
IPS=2, IPS=3, or IPS=15. The integrand of the objective functional must
be specified in the user supplied subroutine FOPT. It is recommended to
compute with JAC=1 (specify derivatives). Only PAR(1-9) should be used
for problem parameters. PAR(10) is the value of the objective functional,
PAR(11) the period, PAR(12) the norm of the adjoint variables, PAR(14)
and PAR(15) are internal optimality variables. PAR(21-29) and PAR(31)
are used to monitor the optimality functionals associated with the problem

parameters and the period. For a detailed example see the demo ops.

5.9 Output control.

NPR : Write plotting and restart information in fort.8 every NPR steps along
solution branches.
ITID : Controls diagnostic output printed in fort.9.
IID=0 : Minimal output.
IID=2 : Recommended value of IID.
IID=3 : Algebraic problems : Jacobian and residual vector printed at the initial
starting point.
IID=4 : ODEs : Reduced system and residual vector printed at each iteration.
This setting should not normally be used.
IID=5 : ODEs : Very extensive output from the linear equation solver. This
setting should not normally be used.
IPLT : Gives the user some control over the fort.7 output, namely the choice of
principal solution measure; the second real number written per output line.
- IfIPLT =0: Ls - norm.
- If 0 < IPLT < NDIM : Maximum of the IPLT’th component.
- If =NDIM < IPLT <0 : Minimum of the IPLT’th component.
- If NDIM < IPLT < 2*NDIM : Integral of (IPLT—NDIM)’th component.
Note that, for algebraic problems, maximum and minimum are identical. Also, for
ODEs, the maximum and the minimum of a solution component are generally much
less accurate than the Ly-norm and component integrals.

NUZR : Allows the setting of parameter values at which labelled graphics or restart
information is wanted. Set NUZR=0 if no such output is needed. If NUZR >0
then one must enter NUZR pairs (Parameter-Indez, Parameter- Value), each
pair on a separate line. For an example, see the file r.exp at the beginning of

this section.
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6. Notes on Using AUTO.

6.1 Efficiency. In AUTO, efficiency has at times been sacrificed for generality of
programming. This applies in particular to computations in which AUTO generates
an extended system, e.g., computations with ISW=2. However, the user has signifi-
cant control over computational efficiency, in particular through judicious choice of
the AUTO-constants DS, DSMIN, and DSMAX, and, for ODEs, NTST and NCOL.
Initial experimentation normally suggests appropriate values.

Slowly varying solutions to ODEs can often be computed with remarkably
small values of NTST and NCOL, e.g., NTST=5, NCOL=2. Generally, however,
it is recommended to set NCOL=4, and then to use the ‘smallest’ value of NTST
that maintains convergence.

The choice of the pseudo-arclength stepsize parameters DS, DSMIN, and DS-
MAX is highly problem dependent. Generally, DSMIN should not be taken too
small, in order to prevent excessive step refinement in case of non-convergence.
It should also not be too large, in order to avoid instant non-convergence. DS-
MAX should be sufficiently large, in order to reduce computation time and amount
of output data. On the other hand, it should be sufficiently small, in order to
prevent stepping over bifurcations without detecting them. For a given equation,
appropriate values of these constants can normally be found after some initial ex-
perimentation.

The constants ITNW, NWTN, THU, THL, EPSU, EPSL, EPSS also affect
efficiency. Understanding their significance is therefore useful; see Section 5.4 and
Section 5.5. Finally, it is recommended that initial computations be done with
ILP=0; no fold detection; and ISP=1; no bifurcation detection for ODEs.

6.2 Correctness of results. AUTO-computed solutions to ODEs are almost
always structurally correct, because the mesh adaption strategy, if IAD>0, safe-
guards against spurious solutions. If these do occur, possibly near infinite-period
orbits, the unusual appearance of the solution branch typically serves as a warning.

Repeating the computation with increased NTST is then recommended.

6.3 Bifurcation points and folds. As noted above, in Section 6.1, it is rec-
ommended that the detection of folds and bifurcation points be initially disabled.
For example, if an equation has a ‘vertical’ solution branch then AUTO may try to

locate one singular point after another; namely folds.
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Generally, degenerate bifurcations cannot be detected. Furthermore, bifurca-
tions that are close to each other may not be noticed when the pseudo-arclength
step size is not sufficiently small. Hopf bifurcation points may go unnoticed if no
clear crossing of the imaginary axis takes place. This may happen when there are
other real or complex eigenvalues near the imaginary axis and when the pseudo-
arclength step is large compared to the rate of change of the critical eigenvalue pair.
A typical case is a Hopf bifurcation close to a fold. Similarly, Hopf bifurcations may
go undetected if switching from real to complex conjugate, followed by crossing of
the imaginary axis, occurs rapidly with respect to the pseudo-arclength step size.
Secondary periodic bifurcations may not be detected for similar reasons. In case of

doubt, carefully inspect the contents of the output file fort.9.

6.4 Floquet multipliers. The Floquet multiplier solver of AUTO94 has been
written by Thomas Fairgrieve [7]. For a detailed description of the algorithm see
Fairgrieve and Jepson [8].

If IPS=2.3,6,12,13, and ISP=1,2, then AUTO extracts approximations to the
Floquet multipliers from the Jacobian of the linearized system in Newton’s method.
This procedure is very efficient; the multipliers are computed at negligible extra cost.
For periodic solutions, the exact linearized Poincaré map always has a multiplier
z = 1. A good accuracy check is to inspect this multiplier in the diagnostics out-
put file fort.9. Note that if this multiplier becomes inaccurate, then the automatic
detection of potential secondary periodic bifurcations (if ISP=2,3) will be discontin-
ued and a warning message printed in fort.9. It is strongly recommended that the
contents of this file be habitually inspected, in particular to verify whether solutions
labelled as LP, BP, PD. or TR have indeed been correctly classified.

The current linear equations solver of AUTO is described in [2]. A more robust
linear systems solver for AUTO is presented in [16], but at this time it has not yet

been incorporated.

6.5 Memory requirements. Pre-defined maximum values of certain AUTO-
constants are defined in auto/94/include/auto.h; see also Section 1.2. These max-
ima affect the run-time memory requirements and should not be set to unnecessarily
large values. If an application does not require the differential equations options,
ie., if only IPS=0,1,-1,5, or 11 are used, and if NDIM is “large”, then memory re-
quirements can be much reduced by setting NTSTX=NCOLX=NBCX=NINTX=1
in auto/94/include/auto.h, followed by recompilation of the AUTO libraries.
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7. AUTO Demos.

The directory auto/94/demos has a number of subdirectories containing the necessary
files for certain illustrative bifurcation calculations. Each subdirectory xxx; e.g.,
pp2; corresponds to a particular equation and contains an equations-file xxx.f; e.g.,
pp2.£f; and one or more constants-files r.xxx.i; e.g., r.pp2.1, r.pp2.2, - - -.

For each demo, the Command Mode actions for performing various calculations
and file maintenance operations are listed in this section; see Section 4.3 for corre-
sponding GUI actions. The first action is always to copy the demo files to a user
work directory. In Command Mode this is done with the @dm zzz command. In
GUI Mode use the Equations/Demo button. Commands for plotting the data files
are not listed in this section; use of the graphics program PLAUT is described in
Section 8. To understand in detail how AUTO is instructed to carry out a particular
task, inspect the equations-file xxx. £, as well as the appropriate constants-file r.xxx.
For second and subsequent runs, it is indicated below which AUTO-constants in
r.xxx have been changed with respect to the preceding run.

It is also possible to execute all runs of a selected demo automatically. This is
mainly useful for testing purposes. To do this in GUI Mode, click Demos/Select,
select a demo, and click the Run button in the pop-up window. Do not otherwise
run AUTO in the directory auto/94 or in any of its subdirectories.

New demos that illustrate a new type of computation are welcome for inclusion

in this manual. Contact the first author for more information.

pp2 : Basic computations for continuous dynamical systems.

This demo illustrates the computation of stationary solutions, periodic solu-
tions, and the two-parameter continuation of folds, Hopf bifurcation points, and
homoclinic orbits, for an autonomous ODE. The equations, which model a predator-

prey system with harvesting, are

uy = pour(l —uy) — ugug — pr(1 — e P340,
Uy = —ug + pauquz.

Here p, is used as the principal continuation parameter, p3 = 5, py = 3, and,

initially, p» = 3. For two-parameter computations p; is also free.
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COMMAND

mkdir pp?2
cd pp?2
@dm pp?2

cp r.pp2.1 r.pp2
Qr pp2

@sv pp2

cp r.pp2.2 r.pp2
Qr pp2

Q@Qap pp2

cp r.pp2.53 r.pp2
@r pp?2

Qap pp?2

cp r.pp2.4 r.pp2
Qr pp2
Qap pp?2

cp r.pp2.5 r.pp2
Qr pp2
Q@Qsv Ip

cp r.pp2.6 r.pp2
@r pp?2
@sv hb

cp r.pp2.7 r.pp2
@r pp?2

@sv hom

cp r.pp2.8 r.pp2
@r pp2 hom
@Qap hom

@cl
@dl lp

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
1st run; stationary solutions

save output files as p.pp2, q.pp2, d.pp2

constants changed : IRS, RL1
2nd run; restart at labelled solution

append output files to p.pp2, q.pp2, d.pp2

constants changed : IRS, IPS, ILP
3rd run; periodic solutions

append output files to p.pp2, q.pp2, d.pp2

constants changed : IRS, NTST
4th run; restart at labelled periodic solutions

append output files to p.pp2, q.pp2, d.pp2

constants changed : IRS, IPS, ISW, NICP
5th run; two-parameter continuation of folds

save output files as p.1p, q.1lp, d.1lp

constants changed : IRS
6th run; two-parameter continuation of Hopf bifurcations

save output files as p.hb, q.hb, d.hb

constants changed : IRS, IPS, ISP
7th run; two-parameter continuation of homoclinic orbits

save output files as p.hom, q.hom, d.hom

constants changed : IRS, RL1
8th run; restart homoclinic orbits; read restart data from q.hom

append the output files to p.hom, q.hom, d.hom

clean directory of unnecessary files

as an example, delete p.1p, q.1p, d.1lp

NOTE : A sequence of commands such as ¢p r.pp2.1 r.pp2 followed by @r pp2 is

equivalent to the single command @R pp2 I; see Section 3.1.
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exp : A boundary value problem (Bratu’s equation).

This demo illustrates the computation of a solution branch to the boundary

value problem

Uy, = Uz,
uIQ = _p1€U17
with boundary conditions u;(0) = 0, w;(1) = 0. This equation is also considered
in [1].
COMMAND ACTION
mkdir exp create an empty work directory
cd exp change directory
@dm exp copy the demo files to the work directory

cp r.exp.l r.exp get the first constants-file
@r exp 1st run; compute solution branch containing fold

@sv exp save output files as p.exp, q.exp, d.exp

cp r.exp.2 r.exp constants changed : IRS, NTST, A1, DSMAX
Q@Qr exp 2nd run; restart at labelled solution with increased accuracy

Qap exp append output files to p.exp, q.exp, d.exp
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int : An ODE with boundary and integral constraints.
This demo illustrates the computation of a solution branch to the equation
uy = us,
uy = —prett,

with a non-separated boundary condition and an integral constraint:

u1(0) —ui(1l) — py =0, /0 u(t)dt — ps = 0.

The solution branch contains a fold, which, in the second run, is continued in two

equation parameters.

COMMAND ACTION

mkdir int create an empty work directory

cd int change directory

@dm wnt copy the demo files to the work directory
cp rant.1 rant get the first constants-file

@r int 1st run; detection of a fold

@sv int save output files as p.int, q.int, d.int

cp rant.2 rant constants changed : IRS, ISW

@r int 2nd run; compute a curve of folds

Q@Qsv Ip save the output files as p.1p, q.1p, d.1lp
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dd2 : Basic computations for discrete dynamical systems.

This demo illustrates the computation of a solution branch and its bifurcating
branches for a discrete dynamical system. Also illustrated is the two-parameter
continuation of Naimark-Sacker, or Hopf, bifurcations. The equations, a discrete

predator-prey system, are

k+1 k k k_ k
Uy = Pl“l(l - “1) — P2Uy Uy,

k+1 _ k k_ k
us ' = (1 —ps)uy + paujus.

In the first run p; is free. In the second run, both p; and p; are free. The remaining

equation parameter, ps3, is fixed in both runs.

COMMAND ACTION

mkdir dd2 create an empty work directory

cd dd2 change directory

@dm dd?2 copy the demo files to the work directory

cp r.dd2.1 r.dd2 get the first constants-file
@r dd?2 1st run; fixed point solution branches
@sv dd2 save output files as p.dd2, q.dd2, d.dd2

cp r.dd2.2 r.dd2 constants changed : IRS, ISW
@r dd2 2nd run; a two-parameter curve of Naimark-Sacker bifurcations

@sv ns save output files as p.ns, q.ns, d.ns

28



opt : A model algebraic optimization problem.

This demo illustrates the method of successive continuation for constrained

optimization problems [1,2], by applying it to the following simple problem : Find

the maximum sum of coordinates on the unit sphere in R3. Coordinate 1 is treated

as the state variable. Coordinates 2-5 are treated as control parameters.

COMMAND

mkdir opt
cd opt
@dm opt

cp r.opt.1 r.opt
Q@Qr opt
@sv 1

cp r.opt.2 r.opt
@r opt 1
Q@sv 2

cp r.opt.3 r.opt
@r opt 2
@sv 3

cp r.opt.4 r.opt
@r opt 3
Q@sv 4

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
one free equation parameter

save output files as p.1, q.1, d.1

constants changed : IRS
two free equation parameters; read restart data from q.1

save output files as p.2, q.2, d.2

constants changed : IRS
three free equation parameters; read restart data from q.2

save output files as p.3, q.3, d.3

constants changed : IRS
four free equation parameters; read restart data from q.3

save output files as p.4, q.4, d.4
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lin : A linear ODE eigenvalue problem.

This demo illustrates the location of eigenvalues of a linear ODE boundary

value problem as bifurcations from the trivial solution branch. By means of branch

switching an eigenfunction is computed, as is illustrated for the first eigenvalue.

This eigenvalue is then continued in two parameters by fixing the L;-norm of the

first solution component. The eigenvalue problem is given by the equations

[
ul—u2,

u’2 = (plﬂ-)Zulv

with boundary conditions u1(0) — p; = 0 and u4(1) = 0. We add the integral
constraint fol u1(t)*dt — p3 = 0. Then p3 is simply the Ly-norm of the first solution

component. In the first two runs ps is fixed, while p3 is free. In the third run ps is

free, and p3 is fixed.

COMMAND

mkdir lin
cd lin
@dm lin

cp r.lin.1 r.lin
@r lin

@sv lin

cp r.lin.2 r.lin
@r lin
Q@Qap lin

cp r.lin.§ r.lin
@r lin
Q@sv 2p

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
1st run; compute the trivial solution branch and locate eigenvalues

save output files as p.1lin, q.lin, d.lin

constants changed : IRS, ISW, DSMAX
2nd run; compute a few steps along the bifurcating branch

append output files to p.1lin, q.lin, d.lin

constants changed : IRS, ISW, ICP(2)
3rd run; compute a two-parameter curve of eigenvalues

save the output files as p.2p, q.2p, d.2p
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bvp : A nonlinear ODE eigenvalue problem.

This demo illustrates the location of eigenvalues of a nonlinear ODE boundary
value problem as bifurcations from the trivial solution branch. The branch of so-
lutions that bifurcates at the first eigenvalue is computed in both directions. The
equations are

uy = uz,
uy = —(p17)2uy + ui,

with boundary conditions u1(0) =0, wuy(1)=0.

COMMAND ACTION

mkdir bvp create an empty work directory

cd bup change directory

@dm bvp copy the demo files to the work directory

cp r.bvp.1 r.bvp get the first constants-file
@r bvp compute the trivial solution branch and locate eigenvalues

@sv bup save output files as p.bvp, q.bvp, d.bvp

cp r.bup.2 r.bup constants changed : IRS, ISW, NPR, DSMAX
@r bvp compute the first bifurcating branch
Q@Qap bvp append output files to p.bvp, q.bvp, d.bvp

cp r.bup.8 r.bup constants changed : DS
@r bvp compute the first bifurcating branch in opposite direction

Q@Qap bvp append output files to p.bvp, q.bvp, d.bvp
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pp3 : A continuous dynamical system with period-doubling.

This demo illustrates the computation of stationary solutions, Hopf bifurca-
tions, and periodic solutions, including the computation of a branch bifurcating
from a period-doubling bifurcation, and the computation of a 2-parameter branch
of period-doubling bifurcations. The equations model a 3D predator-prey system
with harvesting [17].

Uy = —pauty + paugtiy — psugug — pr(l — e POU2)

Uy = —p3uz + psuats.

The free parameter is p;, except in the 2-parameter period-doubling continuation,

where both p; and p, are free.

COMMAND

mkdir pp3
cd pp3
@dm pp3

cp r.pp3.1 r.pps
Qr pp3
@sv pp3

cp r.pp3.2 r.pps
@r pp3

Qap pp3

cp r.pp3.3 r.pps
Qr pp3

Qap pp3

cp r.pp3.4 r.ppd
Qr pp3
@sv tmp

cp r.pp3.5 r.pps
@r pps tmp

Q@Qsv 2p

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
1st run; stationary solutions

save output files as p.pp3, q.pp3, d.pp3

constants changed : IRS, IPS, NMX
compute a branch of periodic solutions

append output files to p.pp3, q.pp3, d.pp3

constants changed : IRS, ISW, NTST
compute the branch bifurcating at the period-doubling
append output files to p.pp3, q.pp3, d.pp3

constants changed : ISW

generate starting data for the 2-parameter period-doubling continuation

save output files as p.tmp, q.tmp, d.tmp

constants changed : IRS
2-parameter period-doubling continuation; restart from q.tmp

save output files as p.2p, q.2p, d.2p
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wav : Periodic waves in a nonlinear parabolic PDE.

This demo illustrates the computation of various periodic wave solutions to

a system of coupled parabolic partial differential equations on the spatial interval

[0,1]. The equations, that model an enzyme catalyzed reaction [18], are :

ot

0 0?
B = aor PR ) = (p2 — )]
8uQ . 82u2

= 92 I [PaR(u1,uz) — pr(ps — u2)],

U2 Uy

ps +uz 1+ uy + peu?

R(ul,u2) =

All equation parameters, except ps, are fixed throughout.

COMMAND

mkdir wav
cd wav

@dm wav

cp rowav.l r.waev

@r wav

@sv ode

cp r.wav.2 r.wav
@r wav

@sv wav

cp r.wav.d r.wav
@r wav

Qap wav

Cp TWaV.4 T. W
@r wav

@sv rng

cp T.wav.d T.wav
@r wav

@sv tim

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
1st run; stationary solutions of the system without diffusion

save output files as p.ode, q.ode, d.ode

constants changed : IPS
2nd run; detect bifurcations to wave train solutions

save output files as p.wav, q.wav, d.wav

constants changed : IRS, IPS, NUZR, ILP
3rd run; wave train solutions of fixed wave speed

append output files to p.wav, q.wav, d.wav

constants changed : IRS, IPS, NMX, NICP, NUZR
4th run; computation of fixed wave length waves (on a ring)

save output files as p.rng, q.rng, d.rng

constants changed : IPS, NMX, NPR, NICP
5th run; time evolution computation

save output files as p.tim, q.tim, d.tim
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tim : A test problem for timing AUTO.

This demo is a boundary value problem with variable dimension NDIM. It can
be used to time the performance of AUTO for various choices of NDIM (which must
be even), NTST, and NCOL. The equations are

u; = uy,
i=1,---,NDIM/2,
v; = DN e(ui)v

with boundary conditions u;(0) =0, wu;(1) = 0. Here

with n = 25. The computation requires 10 full LU-decompositions of the linearized
system that arises from Newton’s method for solving the collocation equations. The
commands for running the timing problem for a particular choice of NDIM, NTST,
and NCOL are given below.

COMMAND ACTION

mkdur tim create an empty work directory

cd tim change directory

@dm tim copy the demo files to the work directory

cp r.tim.1 r.im get the first constants-file
@r tim do the computations

@sv tim save output files as p.tim, q.tim, d.tim
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ezp : Complex bifurcation in a boundary value problem.

This demo illustrates the computation of a solution branch to the the complex

boundary value problem

uy = ug,

uy = —pre,
with boundary conditions u1(0) = 0, u1(1) = 0. Here u; and uy are allowed to be
complex, while the parameter p; can only take real values. In the real case, this
is Bratu’s equation, whose solution branch contains a fold; see the exp demo. It is
known [19] that a simple quadratic fold gives rise to a pitch fork bifurcation in the

complex equation. This bifurcation is located in the first computation below. In the

second and third run, both legs of the bifurcating solution branch are computed.

On it, both solution components u; and uy have nontrivial imaginary part.

COMMAND ACTION

mkdir ezp create an empty work directory

cd ezp change directory

@dm ezp copy the demo files to the work directory

cp r.ezp.1l r.ezp
Qr ezp
Q@sv ezp

cp r.ezp.2 r.ezp
Qr ezp
Qap ezp

cp r.ezp.d r.ezp
Qr ezp
Qap ezp

get the first constants-file
1st run; compute solution branch containing fold

save output files as p.ezp, q.ezp, d.ezp

constants changed : IRS, ISW
2nd run; compute bifurcating complex solution branch

append output files to p.ezp, q.ezp, d.ezp

constant changed : DS
3rd run; compute 2nd leg of bifurcating branch
append output files to p.ezp, q.ezp, d.ezp
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non : A non-autonomous boundary value problem.

This demo illustrates the continuation of solutions to the non-autonomous

boundary value problem

u'l = U2,
1 1‘311,1
Uy = —P1€ 5
with boundary conditions u1(0) = 0, wuy(1) = 0. Here z is the independent vari-

able. This system is easily converted to the following equivalent autonomous sys-

tem :
1
ul—u2,
3

r Uq U7
u2__p163 3
o

usg =1,

with boundary conditions u1(0) = 0, wu1(1) =0, wu3(0) = 0. For the case of a

periodically forced system see the demo fre.

COMMAND ACTION

mkdir non create an empty work directory

cd non change directory

@dm non copy the demo files to the work directory
cp r.non.1 r.non  get the constants-file

@r non compute the solution branch

@sv non save output files as p.non, q.non, d.non
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plp : Continuation of a fold on a periodic solution branch.

This demo, which corresponds to computations in [1], shows how one can continue a

fold on a branch of periodic solution in two parameters. The equations, that model

a one-compartment activator-inhibitor system [20], are given by

where

D = (50— 5) — pR(s,a),
i _ ;
dt —a(ao —a)—p (Sva)v
sa
R(S,G) = m, K > 0.

The free parameter is p. In the two-parameter fold continuation sg is also free.

COMMAND

mkdur plp
cd plp
@dm plp

cp r.plp.1 r.plp
@r plp
@sv plp

cp r.plp.2 r.plp
@r plp

@Qap plp

cp r.plp.3 r.plp
@r plp
@sv tmp

cp r.plp.4 r.plp
@r plp tmp
Q@Qsv 2p

cp r.plp.5 r.plp
Q@Qr plp 2p

@sv 150

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
1st run; compute a stationary solution branch

save output files as p.plp, q.plp, d.plp

constants changed : IPS, IRS, NMX
compute a branch of periodic solutions and locate a fold

append output files to p.plp, q.plp, d.plp

constants changed : IRS, ISW, NMX
generate starting data for the 2-parameter fold continuation

save output files as p.tmp, q.tmp, d.tmp

constants changed : IRS, NUZR
2-parameter fold continuation; restart data from q.tmp

save output files as p.2p, q.2p, d.2p

constants changed : IRS, ISW, NMX, NUZR
compute an isola of periodic solutions; restart data from q.2p

save output files as p.iso, q.iso, d.iso
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2cl : A two-cell, one-substrate enzyme model.

The equations, that model a two-compartment enzyme system [20], are given
by
sy = (s0 = s1) + (s2 — s1) — pR(s1),

sy = (S0 + p — s2) + (51 — 52) — pR(s2),

where
s
R(s) = ———.
(s) 1+ s+ ks?

The free parameter is sg. Other parameters are fixed. This equation is also consid-
ered in [1].
COMMAND ACTION
mkdir 2¢l create an empty work directory
cd 2¢l change directory
@dm 2¢cl copy the demo files to the work directory
cp r.2cl.1 r.2¢l get the constants-file
@r 2cl compute stationary solution branches
@sv 2¢l save output files as p.2cl, q.2¢c1, d.2cl
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cbv : Optimization in a boundary value problem.

This demo illustrates use of the method of successive continuation for a bound-
ary value optimization problem. A detailed description of the basic method, as
well as a discussion of the specific application considered here, is given in [2]. The
required extended system is fully programmed here in the user-supplied subrou-
tines in auto/94/demos/cbv/cbv.£f. For the case of periodic solutions the optimality
system can be generated automatically; see the demo ops.

Consider the system

uy(t) = ua(t),
u;(t) — —)\1€p(u1’)\2’)\3)7
where p(u1, A2, A\3) = u1 + Au? + A\zuj, with boundary conditions

u1(0) =0,
0.

The objective functional is

1 1 3
= =12 dt4+ — ) .
o= [ -1t 53y

The successive continuation equations are given by

ui(t) = ua(t),
ub(t) = —A eP(#1,22,23)
wy (1) = M2 py g (8) + 2y(ua (1) - 1),
wy(t) = —wi (1),
where o
Pu = g - = 1+ 2Xu; + 4h3u?,
with
u1(0)=0, wi(0) =B =0,  wy(0)=0,
ur(1) =0,  wi(l)+B2=0,  wy(l)=0,
! 2 1 : 2
[ o= tuntn - 12 - 15 2. M de=o.



1
1
[—ep(ul’)‘z’)‘?’)wg(t) — 57)\1] dt =0,

1
1
[—/\1ep(ul”\w\?’)ul(t)sz(t) - 57/\2 — 7] dt =0,

1

S~ S— S—

1
[_Alep(u1,)\2,)\3)u1(t)4,wz(t) _ 57/\3 _ 7-3] dt = 0.

In the first run the free equation parameter is Ay. All adjoint variables are
zero. Three extrema of the objective function are located. These correspond to
bifurcation points and, in the second run, branch switching is done at one of these.
Along the bifurcating branch the adjoint variables become nonzero, while state
variables and A\{ remain constant. Any such non-trivial solution point can be used
for continuation in two equation parameters, after fixing the Ly-norm of one of the
adjoint variables. This is done in the third run. Along the resulting branch several
two-parameter extrema are located by monotoring certain inner products. One of
these is further continued in three equation parameters in the final run, where a

three-parameter extremum is located.

COMMAND ACTION

mkdir cbv create an empty work directory

cd cho change directory

@dm cbv copy the demo files to the work directory

cp r.cbv.1 r.chy get the first constants-file
@r cbv locate 1-parameter extrema as bifurcation points

@sv cbv save output files as p.cbv, q.cbv, d.cbv

cp r.cbv.2 r.chy constants changed : IRS, ISW, NMX
@r cbv compute a few step on the first bifurcating branch

Q@Qsv 1 save the output files as p.1, q.1, d.1

cp r.chv.§ r.chv constants changed : IRS, ISW, NMX, ICP(3)
@Qr cbv 1 locate 2-parameter extremum; restart from q.1

Q@sv 2 save the output files as p.2, q.2, d.2

cp r.cbv.4 r.chbv constants changed : IRS, ICP(4)
@r cbv 2 locate 3-parameter extremum; restart from q.2

Q@sv 3 save the output files as p.3, q.3, d.3
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ext : Spurious solutions to a boundary value problem.

This demo illustrates the computation of spurious, or extraneous, solutions to

the boundary value problem

uy —ug =0,
/ 2_2 2 3y
uy + A7 sin(uy +uy +uy) =0, t €10,1],
u1(0) =0, wuy(l)=0.
Here the differential equation is discretized using a fixed uniform mesh. This results

in spurious solutions that disappear when an adaptive mesh is used. See the AUTO-

constant IAD in Section 5.3. This example is also considered in [2].

COMMAND ACTION

mkdir ext create an empty work directory

cd ext change directory

@dm ext copy the demo files to the work directory

cp r.ext.l r.ext get the first constants-file

@r ext detect bifurcations from the trivial solution branch
Q@Qsv ext save output files as p.ext, q.ext, d.ext

cp r.ext.2 r.ext constants changed : IRS, ISW, NUZR
@r ext compute a bifurcating branch containing spurious bifurcations

Qap ext append output files to p.ext, q.ext, d.ext
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nag : Heteroclinic orbits : a saddle-saddle connection.

This demo illustrates the computation of traveling wave front solutions to

Nagumo’s equation,

Wy = wey + f(w,a), —o < <oo, t>0,
flw,a) =w(l —w)(w — a), 0<a<l.

We look for solutions of the form w(z,t) = u(x + ct), where ¢ is the wave speed.

This gives the first order system

u(2) = ua(2),

“'2(2) = cuy(z) — f(ul(z)va)v

where z = x4 ¢t, and ' = d/dz. If a = 1/2 and ¢ = 0 then there are two analytically

known heteroclinic connections, one of which is given by

1
65\/52

_ e _ ! _

ui(z) = A uz(z) = uj(z), 00 < z < 00.

The second heteroclinic connection is obtained by reflecting the phase plane rep-
resentation of the first with respect to the wq-axis. In fact, the two connections
together constitute a heteroclinic cycle. One of the exact solutions is used below
as starting orbit. To start from the second exact solution, change SIGN=-1 in the

subroutine STPNT in nag.f and repeat the computations below; see also [21].

COMMAND ACTION

mkdir nag create an empty work directory

cd nag change directory

@dm nag copy the demo files to the work directory

cp r.nag.1 r.nag get the first constants-file
@r nag compute part of first branch of heteroclinic orbits

@sv nag save output files as p.nag, q.nag, d.nag

cp r.nag.2 r.nag constants changed : DS
@r nag compute first branch in opposite direction

Q@Qap nag append output files to p.nag, q.nag, d.nag
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fsh : Heteroclinic orbits : a saddle-node connection.

This demos illustrates the computation of travelling wave front solutions to the

Fisher equation,

Wy = Wy + f(w), —o<r<oo, t>0,

flw) =w(l —w).

We look for solutions of the form w(z,t) = u(x + ct), where ¢ is the wave speed.

This gives the first order system

) (2) = ua(2),

uh(z) = cua(z) — f(ul(z))

Its fixed point (0, 0) has two positive eigenvalues when ¢ > 2. The other fixed point,
(1,0), is a saddle point. A branch of orbits connecting the two fixed points requires
one free parameter; see [21] for details. Here we take this parameter to be the wave
speed c.

In the first run a starting connecting orbit is computed by continuation in the
period T'. This procedure can be used generally for time integration of an ODE
with AUTO. Starting data in STPNT correspond to a point on the approximate
stable manifold of (1,0), with 7" small. In this demo the ‘free’ end point of the
orbit necessary approaches the unstable fixed point (0,0). A computed orbit with
sufficiently large T is then chosen as restart orbit in the second run, where, typically,
one replaces T by ¢ as continuation parameter. However, in the second run below,

we also add a phase condition, and both ¢ and T remain free.

COMMAND ACTION

mkdir fsh create an empty work directory

cd fsh change directory

@dm fsh copy the demo files to the work directory

cp r.fsh.1 r.fsh get the first constants-file

@r fsh continuation in the period 7', with ¢ fixed; no phase condition
@sv 0 save output files as p.0, q.0, d.0

cp r.fsh.2 r.fsh constants changed : IRS, NICP, NINT, DS

@r fsh 0 continuation in ¢ and 7', with active phase condition

@sv fsh save output files as p.fsh, q.fsh, d.fsh
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phs : Effect of the phase condition on periodic orbits.

This demo illustrates the effect of the phase condition on the computation of

periodic solutions. We consider the differential equation

uy = Ay — ug,

uh = ug(1l — uq).

This equation has a Hopf bifurcation from the trivial solution at A = 0. The

bifurcating branch of periodic solutions is vertical and along it the period increases

monotonically. The branch terminates in a homoclinic orbit containing the saddle

point (u1,us) = (1,0). Graphical inspection of the computed periodic orbits, e.g.,

uq versus the scaled time variable ¢, shows how the phase condition has the effect

of keeping the ‘peak’ in the solution in the same location.

COMMAND

mkdir phs
cd phs
@dm phs

cp r.phs.1 r.phs
@r phs
@sv phs

cp r.phs.2 r.phs
@r phs
Q@Qap phs

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
detect Hopf bifurcation
save output files as p.phs, q.phs, d.phs

constants changed : IRS, IPS, NPR
compute periodic solutions branch

append output files to p.phs, q.phs, d.phs
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pen : Rotations of coupled pendula.

This demo illustrates the computation of rotations, i.e., solutions that are pe-
riodic, modulo a phase gain of an even multiple of w. In this case one can not
make use of the built-in capability of AUTO to compute periodic solutions; instead
the boundary conditions and the phase condition must be defined by the user in
the subroutines BCND and ICND. The model equations, a system of two coupled

Josephson junctions, or equivalently, two coupled pendula [15], are given by

T+edi+6 singr =1+7(¢p2 — ¢1)
5+ epy+6 singy =1+ (g1 — ¢2).

The first run is a homotopy from 6 = 0, for which there is an analytical solution,
to 6 = 1. In the second run, part of the in-phase solution branch is computed and
a bifurcation to out-of phase solutions is located. Part of the bifurcating branch
is computed in the third run. Throughout, the forcing I = 0, and € is a free
parameter, even though its computed value is zero. In fact, an appropriate free
equation parameter is necessary for computing energy preserving solutions. The

phase gain per period is 47, rather than 27, even in the first two runs. As a result,

the bifurcation, which is actually a period-doubling, is located as a pitch fork.

COMMAND ACTION

mkdir pen create an empty work directory

cd pen change directory

@dm pen copy the demo files to the work directory

cp r.pen.1 r.pen
Q@r pen
@sv 0

cp r.pen.2 r.pen
@r pen 0

@sav pen

cp r.pen.3 r.pen

get the first constants-file
homotopy to 6 =1
save output files as p.0, q.0, d.0

constants changed : IRS, ICP(1), NMX
branch of in-phase rotations; restart from q.0

save output files as p.pen, q.pen, d.pen

constants changed : IRS, ISW, ISP, IPS, NMX, NPR, DSMAX

@r pen compute bifurcating branch of out-of-phase rotations;
@Qap pen append output files to p.pen, q.pen, d.pen
@pn pen run an animation program to view the solutions in q.pen

(on SGI machines only; see also [15] and auto/94/pendula/README )
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frc : A periodically forced system.

This demo illustrates the computation of periodic solutions to a periodically
forced system. In AUTO this can be done by adding a nonlinear oscillator with the
desired periodic forcing as one of the solution components. An example of such an
oscillator is

o' =2+ Py —z(a” +y°),

y' = —Pr+y—yla®+y?),
which has the asymptotically stable solution x = sin(ft), y = cos(3t). We couple
this oscillator to the Fitzhugh-Nagumo equations :

o' = (F(v) —w)/e,
w' = v — dw — (b + TSil’l(ﬁt))v

by replacing sin(3t) by z. Above, F(v) = v(v —a)(1 —v) and a, b, e and d are fixed.
The first run is a homotopy from r = 0, where a solution is known analytically, to
r = 0.2. Part of the solution branch with r = 0.2 and varying f is computed in the

second run. It contains a fold and a bifurcation point. For detailed results see [22].

COMMAND ACTION

mkdir fre create an empty work directory

cd fre change directory

@dm frc copy the demo files to the work directory

cp r.fre.1 r.fre get the first constants-file

@r fre homotopy to r = 0.2

@sv 0 save output files as p.0, q.0, d.0

cp r.fre.2 r.fre constants changed : IRS, ICP(1), NTST, NMX, DS, DSMAX
@r frec 0 compute solution branch; restart from q.0

@sv fre save output files as p.frc, q.frc, d.frc
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spb : A singularly perturbed boundary value problem.

This demo illustrates the use of continuation to compute a small e solution to

the singularly perturbed boundary value problem

o
ul—u27

A

uy = ;<u1u2(uf — 1)+ u1),

with boundary conditions u1(0) = 3/2, w3(1) = . The parameter A has been
introduced into the equations in order to allow a homotopy from a simple equation
with known exact solution to the actual equation. This is done in the first run. In
the second run € is decreased by continuation. In the third run € is fixed at e = .001
and the solution is continued in 4. This run takes more than 1500 continuation

steps. For a detailed analysis of the solution behavior see [23].

COMMAND ACTION

mkdir spb create an empty work directory

cd spb change directory

@dm spb copy the demo files to the work directory

cp r.8pb.1 r.spb get the first constants-file
@r spb 1st run; homotopy from A =0to A =1
Q@Qsv 1 save output files as p.1, q.1, d.1

cp r.8pb.2 r.spb constants changed : IRS, ICP(1), NTST, DS
@r spb 1 2nd run; let € tend to zero; restart from q.1

@sv 2 save the output files as p.2, q.2, d.2

cp r.8pb.3 T.8pb constants changed : IRS, ICP(1), RLO, ITNW, EPSL, EPSU, NUZR
@r spb 2 3rd run; continuation in «; € = 0.001; restart from q.2

Q@sv 3 save the output files as p.3, q.3, d.3
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lor : Starting a periodic orbit from numerical data.

The special purpose subroutines used in this demo were written by Victor
Burnley, California Institute of Technology.

The demo illustrates how to start the computation of a branch of periodic
solutions from numerical data obtained, for example, from an initial value simula-
tion. The data, which must correspond to a complete periodic orbit, is expected in
fort.4. In this demo, the user-supplied subroutine STPNT contains a call to the
library subroutine STDAT in auto/94/src/stdat.f

As an illustrative application we consider the Lorenz equations

r_
Uy —P3(u2 —U1)7

!
Ug = P1Uy — U2 — UIU3,

!
Uz = U1U2 — pP2Us3.

Numerical simulations with a simple initial value solver show the existence of a sta-
ble periodic orbit, when p; = 280, p» = 8/3, ps = 10. Numerical data representing
one complete periodic oscillation are contained in the file lor.dat. This file must be

copied to fort.4 before the start of the AUTO calculations.

COMMAND ACTION

mkdir lor create an empty work directory

cd lor change directory

@dm lor copy the demo files to the work directory

cp r.lor.1 r.lor get the first constants-file

cp lor.dat fort.4 copy the periodic orbit data to fort.4

@r lor compute a solution branch starting from the numerical data
@sv lor save output files as p.lor, q.lor, d.lor

cp r.lor.2 r.lor constants changed : IRS, ISW, NTST
@r lor switch branches at a period-doubling detected in the first run
@ap lor append the output files to p.lor, gq.lor, d.lor
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pde : A parabolic PDE (Brusselator), using finite differences.

This demo illustrates the computation of stationary solutions and periodic
solutions to systems of parabolic PDEs in one space variable. A fourth order accu-
rate finite difference approximation is used to approximate the second order space
derivatives. This reduces the PDE to an autonomous ODE of fixed dimension which
AUTO is capable of treating. The spatial mesh is uniform; the number of mesh
intervals, as well as the number of equations in the PDE system, can be set by the
user in the file pde.inc.

As an illustrative application we consider the Brusselator [24]

D,

Uy = Fu” +ule — (B4 1)u+ A,
D

vy = L—vam — v+ Bu,

with boundary conditions u(0,¢) = u(1,t) = A and v(0,t) = v(1,t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational
procedure here is not appropriate for PDEs with solutions that rapidly vary in

space, and care must be taken to recognize spurious solutions and bifurcations.

COMMAND ACTION

mkdir pde create an empty work directory

cd pde change directory

@dm pde copy the demo files to the work directory

cp r.pde.1 r.pde get the first constants-file
@r pde compute the stationary solution branch with Hopf bifurcations

@sv pde save output files as p.pde, q.pde, d.pde

cp r.pde.2 r.pde constants changed : IRS, IPS
@r pde compute a branch of periodic solutions from the first Hopf point

Q@Qap pde append the output files to p.pde, q.pde, d.pde

cp r.pde.§ r.pde constants changed : IRS, ISW
@r pde compute a solution branch from a secondary periodic bifurcation

Q@Qap pde append the output files to p.pde, q.pde, d.pde
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che : The Brusselator, using Chebyshev collocation in space.

This demo illustrates bifurcation analysis of the same class of problems as the
preceding demo (pde), but now using Chebyshev collocation in space. More pre-
rro uk(t)k().

Here ug(t) corresponds to u(zg,t) at the Chebyshev points {xk}zzl with respect

cisely, the approximate solution is assumed of the form u(z,t) =

to the interval [0,1]. The polynomials {ﬁk(x)}:i; are the Lagrange interpolating
coefficients with respect to points {iﬁk}:i;, where g = 0 and 2,47 = 1. The num-

ber of Chebyshev points in [0, 1], as well as the number of equations in the PDE

system, can be set by the user in the file che.inc.

Note that, given the non-adaptive spatial discretization, the computational

procedure here is not appropriate for PDEs with solutions that rapidly vary in

space, and care must be taken to recognize spurious solutions and bifurcations.

COMMAND

mkdir che
cd che
@dm che

cp r.che.l r.che
@r che
@sv che

cp r.che.2 r.che
@r che
@Qap che

cp r.che.8 r.che
@r che

@Qap che

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
compute the stationary solution branch with Hopf bifurcations

save output files as p.che, q.che, d.che

constants changed : IRS, IPS
compute a branch of periodic solutions from the first Hopf point

append the output files to p.che, gq.che, d.che

constants changed : IRS, ISW
compute a solution branch from a secondary periodic bifurcation

append the output files to p.che, gq.che, d.che
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ops : Optimization of periodic solutions.

This demo illustrates the method of successive continuation for the optimization
of periodic solutions. For a detailed description of the basic method see [2]. The

illustrative system of autonomous ODEs, taken from [25], is

2'(t) = [-Xa(2? /3 —2) + (2 — 2) /D2 — yl/ M,

with objective functional

1
o= / g2y, 2 00 oy N, Aa) dt,
0

where ¢(z,y,2; A1, A2, A3, 1) = A3. Thus, in this application, a one-parameter
extremum of ¢ corresponds to a fold with respect to the problem parameter A3, and
multi-parameter extrema correspond to generalized folds. Note that, in general,
the objective functional is an integral along the periodic orbit, so that a variety of
optimization problems can be addressed.

For the case of periodic solutions, the extended optimality system can be gen-
erated automatically, i.e., one need only define the vector field and the objective
functional (see auto/94/demos/ops/ops.f). For reference purpose it is convenient

here to write down the full extended system in its general form :

u'(t) = Tf( (1), ), T € R (period), u(-), f(-,-) € R", A € R™,
(t) = —Tfu( (1), 2) w(t) + kug(t) +vgu(u(t),\)",  w(-) €R", k7 €R,
w(1)—u(0) =0, w(1)— w(0) =0,

1

g

u ) dt =0, ug 1s a reference solution,

E

),A) dt =0,

kﬁ

() ’YgT(())\)—Todt:O, 7 € R,

J o
XS
/w Y+ kP42 —adt=0, acR,
f
[

Tf>\z )*w(t) — Vg, (u(t),)\) — 7 dt =0, mEeER, 1=1,---,njy.
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In the computations below, the two preliminary runs, with IPS=1 and IPS=2,

respectively, locate periodic solutions. The subsequent runs are with IPS=15 and

hence use the automatically generated extended system.

Run 1
Run 2
Run §

Run 4

Run 5

Run 6

Locate a Hopf bifurcation. The free system parameter is A3.

Compute a branch of periodic solutions from the Hopf bifurcation.

This run retraces part of the periodic solution branch, using the full optimal-
ity system, but with all adjoint variables, w(-), &, v, and hence «, equal to zero.
The optimality parameters 7y and 73 are zero throughout. An extremum of the
objective functional with respect to A3 is located. Such a point corresponds
to a bifurcation point of the extended system. Given the choice of objective
functional in this demo, this extremum is also a fold with respect to As.

Branch switching at the above-found bifurcation point yields nonzero val-
ues of the adjoint variables. Any point on the bifurcating branch away from
the bifurcation point can serve as starting solution for the next run. In fact,
the branch-switching can be viewed as generating a nonzero eigenvector in
an eigenvalue-eigenvector relation. Apart from the adjoint variables, all other
variables remain unchanged along the bifurcating branch.

The above-found starting solution is continued in two system parameters,
here A3 and )\g; i.e., a two-parameter branch of extrema with respect to As
is computed. Along this branch the value of the optimality parameter 75 is
monitored, i.e., the value of the functional that vanishes at an extremum with
respect to the system parameter Ay. Such a zero of 7, is, in fact, located, and
hence an extremum of the objective functional with respect to both As and A3
has been found. Note that, in general, 7; is the value of the functional that
vanishes at an extremum with respect to the system parameter \;.

In the final run, the above-found two-parameter extremum is continued in
three system parameters, here A\{, Ay, and A3, toward Ay = 0. Again, given the
particular choice of objective functional, this final continuation has an alternate
significance here : it also represents a three-parameter branch of transcritical

secondary periodic bifurcations points.

Although not illustrated here, one can restart an ordinary continuation of peri-

odic solutions, using IPS=2 or IPS=3, from a labeled solution point on a branch
computed with IPS=15.
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The free scalar variables specified in the AUTO constants-files for the optimality-

system runs, i.e., the runs with IPS=15, are as follows :

Runs 8 and 4 (files r.ops.3 and r.ops.4):

Index 3 11 12 22 -22 23 -31
Variable A3 T « T2 2] [As] [T

Here «, the norm of the adjoint variables, becomes nonzero after branch switching.
The negative indices (-22, -23, and -31) set the active optimality functionals, namely
for A9, A3, and T, respectively, with corresponding variables 75, 73, and 79, respec-
tively. These should be set in the first run with IPS=15 and remain unchanged in

all subsequent runs.

Run 5 (file r.ops.5):

Index 3 2 11 22 -22 -23 -31
Variable /\3 /\2 T 72 [)\2] [)\3] [T]

In this run «, which has been replaced by A, remains fixed and nonzero. The
variable 75 monitors the value of the optimality functional associated with Ay. The

zero of 75 located in this run signals an extremum with respect to A,.

Run 6 (file r.ops.6):

Index 3 2 1 11 -22 -23  -31
Variable /\3 /\2 /\1 T [)\2] [)\3] [T]

Here 75, which has been replaced by Ay, remains zero.

Note that 79 and 73 are not used as variables in any of the runs; in fact, their values
remain zero throughout. Also note that the optimality functionals corresponding
to 79 and 73 (or, equivalently, to T' and A3 ) are active in all runs. This set-up allows
the detection of the extremum of the objective functional, with 7" and A3 as scalar
equation parameters, as a bifurcation in the third run.

The parameter Ay, and its corresponding optimality variable 74, are not used
in this demo. Also, A i1s used in the last run only, and its corresponding optimality

variable 7 is never used.
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COMMAND

mkdir ops
cd ops
@dm ops

cp r.ops.1 r.ops
@r ops
@sv 0

cp r.0ps.2 r.ops
@r ops 0
Qap 0

cp r.ops.3 r.ops
@r ops 0
Q@sv 1

Cp T.0PS.4 T.0PS
Q@Qr ops 1
Qap 1

cp r.0ps.H r.ops
@r ops 1
@sv 2

cp r.0ps.0 r.ops
@r ops 2
Q@sv 3

ACTION

create an empty work directory
change directory

copy the demo files to the work directory

get the first constants-file
locate a Hopf bifurcation

save output files as p.0, q.0, d.0

constants changed : IPS, IRS, NMX, NUZR
compute a branch of periodic solutions; restart from q.0

append the output files to p.0, q.0, d.0

constants changed : IPS, IRS, NICP, ICP, and more...
locate a 1-parameter extremum as a bifurcation; restart from q.0

save the output files as p.1, q.1, d.1

constants changed : IRS, ISP, ISW, NMX
switch branches to generate optimality starting data; restart from q.1

append the output files top.1, q.1, d.1

constants changed : IRS, ISW, ICP, ISW, and more...
compute 2-parameter branch of 1-parameter extrema; restart from q.1

save the output files as p.2, q.2, 4.2

constants changed : IRS, ICP, EPSL, EPSU, NUZR
compute 3-parameter branch of 2-parameter extrema; restart from q.2

save the output files as p.3, q.3, 4.3
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tor : Detection and continuation of torus bifurcations.

This demo uses a model in [26] to illustrate the detection and two-parameter con-
tinuation of a torus bifurcation. It also illustrates branch switching at a secondary
periodic bifurcation with double Floquet multiplier at 2 = 1. The computational
results also include folds, homoclinic orbits, and period-doubling bifurcations. Their
continuation is not illustrated here; see instead the demos plp (also ops), pp2, and

ppd, respectively. The equations are

2'(t) =] = (B+v)z+ By — asa® + bs(y — x)°]/r,
y'(t) =Bz — (B+y)y—z—bs(y — ),
A(t) =y,

where v = —0.6, r = 0.6, a3 = 0.328578, and b3 = 0.933578. Initially v = —0.9 and
4 =0.5.

COMMAND ACTION

mkdir tor create an empty work directory

cd tor change directory

@dm tor copy the demo files to the work directory

cp r.tor.1 r.tor get the first constants-file

@r tor 1st run; compute a stationary solution branch with Hopf bifurcation
Q@Qsv 1 save output files as p.1, q.1, d.1

cp r.tor.2 r.tor constants changed : IPS, IRS
Q@r tor 1 compute a branch of periodic solutions; restart from q.1

Qap 1 append output files to p.1, q.1, d.1

cp r.tor.8 r.tor constants changed : IRS, ISW, NMX
@r tor 1 compute a bifurcating branch of periodic solutions; restart from q.1

Qap 1 append output files to p.1, q.1, d.1

cp r.tor.4 r.tor constants changed : IRS, NICP, ISP, ISW, NMX, DS
@r tor 1 generate starting data for torus continuation; restart from q.1

@sv tmp save output files as p.tmp, q.tmp, d.tmp

cp r.tor.5 r.tor constants changed : IRS, ILP, NMX, NPR, ITNW
@r tor tmp 2-parameter torus continuation; restart data from q.tmp

@sv tor save output files as p.tor, q.tor, d.tor
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stw : Continuation of sharp traveling waves.

This demo illustrates the computation of sharp traveling wave front solutions

to nonlinear diffusion problems of the form
wy = A(w)wgy + B(w)wi + C(w),

with A(w) = ajw + aaw?, B(w) = by + byw + byw?, and C(w) = ¢o + c1w + caw?.
Such equations can have sharp traveling wave fronts as solutions, i.e., solutions of
the form w(z,t) = u(x 4 ct) for which there is a zy such that u(z) = 0 for z > =z,
u(z) # 0 for z < zp, and u(z) — constant as z — —oo. These solutions are actually
generalized solutions, since they need not be differentiable at zg.

Specifically, in this demo a homotopy path will be computed from an analyti-

cally known exact sharp traveling wave solution of

(1) wi = 2wwe, + 2w + w(l — w),

to a corresponding sharp traveling wave of

(2) wy = (2w + wz)wm + wwi + w(l — w).

This problem is also considered in [2]. For these two special cases the functions

A, B, C are defined by the following sets of coefficients:

a az bo bl bz Co C1 C2

With w(z,t) = u(x + ct), z = ¥ 4 ct, one obtains the reduced system

ull(z) = U2,

up(z) = [cu2 — B(ul)ug — C’(ul)] JA(uq).
To remove the singularity when u; = 0, we apply a nonlinear transformation of the

independent variable (see [27]), viz., d/dZ = A(u;)d/dz, which changes the above

equation into

uy(Z) = cug — B(ul)ug — C(uy).
Sharp traveling waves then correspond to heteroclinic connections in this trans-

formed system.
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Finally, we map [0, T] — [0, 1] by the transformation £ = Z/T. With this scaling of

the independent variable, the reduced system becomes

ull(‘f) = TA(ul)u27

uy(€) = T[Cuz — B(uy)uj — C(Ul)}-
For Case 1 this equation has a known exact solution, namely,

o e
14 exp(TE)’ (&)= 1+ exp(—TE)

u(¢)

This solution has wave speed ¢ = 1. In the limit as 7" — oo its phase plane trajectory
connects the stationary points (1,0) and (0, —%)

The sharp traveling wave in Case 2 can now be obtained using the following
homotopy. Let (a1, az,bo,b1,b2) = (1 — A)(2,0,2,0,0) + A(2,1,0,1,0). Then as A
varies continuously from 0 to 1, the parameters (ay,az, by, by, by) vary continously

from the values for Case 1 to the values for Case 2.

COMMAND ACTION

mkdir stw create an empty work directory

cd stw change directory

@dm stw copy the demo files to the work directory
cp r.stw.1 r.stw get the constants-file

@r stw continuation of the sharp traveling wave

Q@sv stw save output files as p.stw, q.stw, d.stw
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kar : The Von Karman swirling flows.

The steady axi-symmetric flow of a viscous incompressible fluid above an infinite
rotating disk is modeled by the following ODE boundary value problem (Equation
(11) in [28]) :

uy = Tug,

uly = Tus,

Uy = T[—Z’yuzl + ui — 2ujuz — ui],
uly = Tus,

u'5 = T[27u2 + 2uqug — QU1U5],

with left boundary conditions

and (asymptotic) right boundary conditions

[foo + Cl(fOO7’Y)] Ug(l) + U3(1) — au4(1)

a(foor )
b (foo:7) ua(1) + [foo + a( foo,7)] wa(l) +us(1) =0,

=0,

a( foor)
Ul(l) = foos

where

(foory) = —=[(f4 + 492 + £2]"°,

2

b(foosv) = ﬁ [(fgo + 472)1/2 - f§0]

Note that there are five differential equations and six boundary conditions. Corre-

HS‘H

1/2

spondingly, there are two free parameters in the computation of a solution branch,
namely v and fo. The “period” T is fixed; T' = 500. The starting solution is
u;=0,0=1,---,5,at vy =1, foo =0.

COMMAND ACTION

mkdir kar create an empty work directory

cd kar change directory

@dm kar copy the demo files to the work directory

cp r.kar.1 r.kar get the constants-file
Qr kar computation of the solution branch

Q@sv kar save output files as p.kar, q.kar, d.kar
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8. Using the Graphics Program PLAUT.

In command mode, type @p zzz to use PLAUT to inspect the contents of the
AUTO data files p.xxx and q.xxx. In GUI mode, click the Plot button on the Menu
Bar. More precisely, click Plot/Plot for plotting the active data files, and Plot/Name
for other data files. A graphics window will appear in which PLAUT commands
can be entered. The PLAUT Help command lists the available commands.

To illustrate the use of PLAUT, we assume that the first three runs of the
pp2-demo have been completed in a user work directory; see Section 7. The files
p.pp2 and q.pp2 will then exist in this directory. To interactively plot their contents,
run PLAUT, as indicated above, by typing @p pp2, or by the corresponding GUI

action. Then enter the commands below in the PLAUT window.

PLAUT-COMMAND ACTION

d3 set convenient defaults

bd0 plot the default bifurcation diagram; Ly-norm versus p;
cl clear the screen

ax select axes

13 select real columns 1 and 3 in p.pp2

bd0 plot the bifurcation diagram; max uy versus p;
cl clear the screen

d2 choose other default settings

bd0 bifurcation diagram

bd get blow-up of current bifurcation diagram
01-0.251 enter limits

cl clear the screen

2d enter ‘2D’ mode, for plotting labelled solutions
1213 14 select labelled orbits 12, 13, and 14 in q.pp2

d default orbit display; u; versus time

13 select columns 1 and 3 in q.pp2

d display the orbits; uy versus time
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23

cl

ex

3d
15

CZ

SC

2182

PJ

sav

fig.1

cl

ex

end

Each saved plot must be written in a separate file fig.x (e.g., fig.1 above).
These files are in Tektronix format. A program by Michael Fischbein of NASA to
convert a file fig.x to PostScript format is in directory auto/94/tek2ps. To activate

it, first see the README file. Once activated, the following commands can be used :

eps : Type @ps fig.xz to convert plot file fig.x to PostScript format. The PostScript

select columns 2 and 3 in q.pp2
phase plane display; us versus ug
clear the screen

exit from 2D mode

enter ‘3D’ mode, for plotting labelled solutions
select labelled orbit 15

put coordinate axes at (0,0,0)

display (default) columns 1,2,3 in q.pp2

scale the diagram
enter scaling factors

display; as above, © =time, y = uy, 2 = us

select projections
display
save plot

upon prompt, enter file name, e.g., fig.1

clear the screen

exit from 3D mode

exit from PLAUT

file will be called fig.x.ps. The file fig.x is left unchanged.

epr : Type @pr fig.z to convert £fig.x to PostScript, and to send the resulting file
fig.x.ps to the printer. It may be necessary to edit the file auto/94/cmds/@pr

to define the correct printer path name.
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