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Abstract

Computation of the inner state parameters in DSO inversion requires solving a large normal
matrix system. A combined conjugate gradient and Lanczos iterative technique can be used to
both solve the system and approximate some of the spectrum of the normal operator. At each
iteration of the conjugate gradient algorithm, a small tridiagonal matrix (of dimension equal
to the number of iterations) is created which has extreme eigenvalues approximating those of
the original matrix. A second matrix whose columns are the normalized residual vectors from
the conjugate gradient algorithm allows the corresponding eigenvectors to be computed as well
if desired. Implemented so that it can be applied to different DSO inversion problems, the
conjugate gradient code provides the user with a tool to analyze the condition of the problem
as well as the quality of the inversion results. Storage of the residual (Lanczos) vectors may
be costly if large problems are being solved. Numerical experiments indicate that the largest
eigenvalue is the best approximation in the spectrum and the smallest is generally the next
best.

1 Introduction

It is well-known that the inverse problem of wave propagation in reflection seismology is difficult
because multiple local minima generally render Newton-type methods unsuitable. The Differential
Semblance Optimization (DSO) inversion package was designed to allow quasi-Newton methods to
be used to search through model space for parameters which explain seismic data. Separate the
model parameters into short and long-wavelength components (which we call the inner and outer
states respectively). Then one of the important features of the DSO approach is that gradient-
based optimization can be used to solve the inversion problem when we solve first for the inner
state and then the outer state parts of the model.

In this paper we discuss an implementation of the conjugate gradient algorithm used to solve
the normal equations for the inner state problem. Although other iterative techniques exist as
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part of DSO for solving the normal equations, there was at least one important reason to im-
plement the conjugate gradient code. The conjugate gradient algorithm automatically generates
the parameters needed to construct the tridiagonal matrix which arises in the Lanczos iteration.
The extreme eigenvalues of this tridiagonal matrix approximate those of the original matrix (in
our case, the normal matrix). The eigenvalues and eigenvectors provide information about the
condition of the normal matrix. They indicate which components of the model are the least and
best determined. Finally, they provide a way to measure how well or poorly one set of inversion
model parameters compares with another. (For a reference to the conjugate gradient and Lanczos
algorithms see [GOLUB and LOAN, 1989]. For a discussion of the algorithmic construction of
DSO see [SYMES and KERN, 1994])

DSO contains code modules (for example, optimization software) which are used by all modeling
and inversion experiments performed in our group and modules written for specific applications
(i.e., forward modeling code). The conjugate gradient algorithm is part of the generic half of DSO
and thus can be used to solve many different types of problems (as well as estimate part of the
normal operator spectrum). One could, for example, use the code without modification to invert
real or synthetic data modeled using an acoustic, elastic, or viscoelastic simulator.

The next section of this paper describes in general terms the structure of the differential sem-
blance optimization technique and where this code is situated in that framework. Section 3 covers
the conjugate gradient and Lanczos algorithms, and section 4 describes their implementation in
the context of DSO. A numerical example of the conjugate gradient (and Lanczos) algorithms is
given in section 5.

2 How the Conjugate Gradient Algorithm Fits into DSO

Differential semblance optimization was motivated by the properties of wave propagation, specifi-
cally in the context of exploration seismology. One aspect of the DSO approach is that the model
parameters sought in the inversion are grouped according to the influence they have on the data.
The elements which have a nonlinear effect on the data become part of the outer (model) state.
The inner state elements have a linear effect on the data. Finally, the elements in the parameter
state are the fized elements of the total model space.

Like the least squares objective function, the DSO objective function suffers from being highly
nonconvex. However, the separation of the short and long-wavelength components of the model
into the inner and outer states provides the following path to getting around this problem. Namely,
if the differential semblance objective function is minimized first over the inner state variables, the
remaining function of the outer state variables is smooth and convex in a large domain. Thus, it can
be minimized effectively by gradient-based optimization methods. (See [SYMES and KERN, 1994].)

At each step in velocity model space (the most common outer state element), inversion must
be carried out to estimate the parameters which define the inner state (such as the short-scale
relative fluctuations in the elastic parameters or reflectivities). This inversion involves comput-
ing and solving the normal equations that arise in the process of the inner state minimization.
(An explicit calculation of the normal equations for the DSO objective function may be found in

[SYMES and KERN, 1994].)
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Due to the large size of the normal matrices which are typical for seismic inverse problems,
we prefer to use iterative methods to solve these linear systems. Since the normal operator is
symmetric and positive definite, an obvious technique to use to solve this system is the conjugate
gradient algorithm. The next section describes the conjugate gradient and Lanczos algorithms in
general terms. (The following general description of the two algorithms may be found in expanded

form in [GOLUB and LOAN, 1989].)

3 Discussion of the Conjugate Gradient and Lanczos Al-
gorithms

3.1 The Conjugate Gradient Idea

The Hestenes-Stiefel conjugate gradient algorithm may be understood in the context of minimizing

the function ¢(z) defined by

(3.1) o(x) = -zt Az — 2'b

where beR™, and AeR™*™ is assumed to be positive definite and symmetric. The minimizer of ¢
is ¢ = A7'b. So, minimizing the function ¢ and solving the linear system Az = b are seen to be
equivalent problems.

One obvious choice for decreasing the function ¢ is to travel in the negative gradient direction
—Vé(z.) = b— Az, from the current point z,. One notices that the negative gradient direction is
the residual direction r, of the system at the current point. Unfortunately, as is well known, this
method (steepest descent) may converge extremely slowly if the condition of the system (or ratio
of largest to smallest eigenvalues) is large. The conjugate gradient algorithm, therefore, chooses
to minimize ¢ in a set of directions {p1, p2, ...} which do not necessarily correspond to the residual
directions. One approach with obvious benefits is to choose linearly independent directions p; so
that each z; solves

(3.2)

min z
zeSpan{pi,...,px} ¢( )

This choice of search directions ensures finite termination of the algorithm in at most n steps.
We would like a vector pj such that when we solve the one-dimensional minimization problem

(3.3) ngn¢(xk_1 + ap)

we also solve the k-dimensional problem 3.2. Luckily, such a solution is possible if we require the
directions py to be A-conjugate to the previous directions p1, ..., pr_1. The vectors pq, ..., p; are A-
conjugate if P}_; Apyr = 0. These requirements can be satisfied and an algorithmic implementation
is described in subsection 2.3 below.
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3.2 The Lanczos Idea and Connection to the Conjugate Gradient Algo-
rithm

Estimates of the eigenvalues and eigenvectors of the normal operator could be very useful for
analyzing the inversion results we obtain from DSO. The Lanczos algorithm when applied to a
symmetric matrix AeR"*", generates a sequence of tridiagonal matrices TjeR/*J/ with extreme
eigenvalues which are progressively better estimates of the extreme eigenvalues of A.

One way to motivate the Lanczos idea is to recall the Rayleigh quotient which can be used
to approximate the eigenvalues of a matrix A. Let A; be the largest eigenvalue of A and A, the

smallest. For Q; = [q1, ..., ¢;] a matrix in $"*J with orthonormal columns, we define the scalars
M; and m; by

1 tA .
(3.4) My = max LGAGW )

y#0 Yy
0t
. Y(Q;AQ;)y

3.5 m; = min ———""" > \.(A
(35) j = min TS > ()

The Lanczos algorithm provides a way to compute the ¢; so that the scalars M; and m; are
better and better estimates of A1(A4) and A, (A4). Let = Q;y. Then the Rayleigh quotient changes
most rapidly in the direction of its gradient which is a vector contained in span{z, Az}. For this
reason, the Lanczos vectors {¢; }{ are chosen to be an orthonormal basis for the Krylov subspace

(36) K(Aa qlaj) = Span{qla AQh ce Aj_lql} = Span{qla sty q]}
At the jth iteration of the Lanczos algorithm we have a matrix @ (the Lanczos matrix) whose
columns are the normalized residuals resulting from the conjugate gradient algorithm (which can

be shown to be orthonormal) and a symmetric, tridiagonal matrix Tef?*J. In fact, the Lanczos
matrix “tridiagonalizes” the matrix A up to an error matrix.

(3.7) AQ; = Q;Tj +rjej.

The entries in 7" are combinations of the parameters generated in the conjugate gradient iteration
(for details see the algorithm next section).

3.3 Algorithm

We present here a pseudocode version of the two algorithms (conjugate gradient and Lanczos)
which have been implemented in DSO.
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Variables Used

A normal operator

b: data

r: residual

zp: starting solution

x: approximate solution

p: conjugate gradient direction

3: parameter used in computation of new direction p

Q. step length in current direction p

ap step length in previous direction

rtr.: inner product of current residual with itself

riry: inner product of previous residual with itself

tol: relative residual tolerance used for determining algorithm convergence
Q: Lanczos matrix

T tridiagonal matrix resulting from Lanczos process with eigenvalues approximating those of A
A matrix of eigenvectors of the tridiagonal matrix T’

X matrix of approximate eigenvectors of the original matrix A

Algorithm: (Conjugate Gradient/Lanczos) If AcR"*" is symmetric and positive definite
and beR" then the following algorithm computes zeR”™ so that Az = b. The algorithm also
optionally approximates some of the eigenvalues and eigenvectors of the matrix A.

nitialize:
r=b— Axg
r =2

for k =1 :iteration limit
if eigenvector flag = true

QG k) =r/|lr]]
end if
ifk=1

5=0

p=r

rtr. =< r,r >
else

B8 = rtr./rtr,

p=r+pp
end if
ap = Ap

ptap =< p,ap >

if ptap < tol
break

end if

a. = rtr./ptap
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r=zr+ a.p
T =7 —Qap
if eigenvalue flag = true

ifk=1
T(k,k)=1/a,
T(k,k—1)=0
Tk —1,k)=T(k, k—-1)
else

T(k, k) =rtro/(rtrpop) + 1/,
T(k,k—1)=—\/rtr./rtr,/a,
Tk —-1,k)=T(k,k—-1)
end if
Call LAPACK routine SSTEQR to get eigenvalues/vectors (Z) of T.
Compute error in approximate eigenvalue for normal operator.
end if
rtr, = rir.
rtr. =< r,r >
ap = o
if \/rtr. < tol
break
end if
if eigenvector flag = true
Q7 =X
end if
end

4 Implementation Details of the Conjugate Gradient Al-
gorithm in DSO

When the DSO package was first designed, it was written in Fortran 77 to ensure portability.
Unfortunately, Fortran 77 does not allow the user to define data structures. Since we need to be
able to store data with different geometric information depending on the type of experiment or
physical model, the code was designed to mimic more modern object-oriented languages such as C.
At the highest level, DSO programs manipulate strings of filenames called macrofiles. The data is
stored out-of-core in files containing all dimensional and other information necessary to interpret
the data arrays themselves. The filenames serve as pointers to the data. The conjugate gradient
algorithm works entirely within this macrofile environment. Each mathematical instruction must
be performed using a hierarchy of routines. For instance, suppose the inner state parameters to be
inverted for are stored in two separate files which we will call filel and file2. The residual vector
in the solution of the normal system will be split between two files as well. One residual will
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correspond to the portion of solution stored in filel and the remainder of the residual will come
from solution file2. To compute the dot product of the residual with itself, one first sends the
macrofile with the two filenames to a parsing routine. The next level works with only one file at a
time. The third level is structured to handle one record of this single file. Finally, the fourth (and
lowest level) will perform the dot product of the data in that record with itself.

To accommodate the conjugate gradient routines, the DSO job deck now requires the user to
include two flags which indicate whether the conjugate gradient code should estimate the extreme
eigenvalues and eigenvectors of the normal operator. The user has three options. He may choose not
to estimate the eigenvalues and eigenvectors. He may choose to estimate only the eigenvalues, or he
may choose to estimate both the eigenvalues and eigenvectors of the normal operator. The range
of choices provided is necessary because the user should take care in requesting the eigenvectors
of the normal operator. The eigenvectors require storage equal to the length of the estimated
parameters times the number of conjugate gradient iterations performed. Currently no more than
100 iterations of the conjugate gradient algorithm may be performed, but this number may be
increased in the future if necessary.

The job deck also requires the user to include a section containing output filenames where the
eigenvalues and eigenvectors are to be stored upon completion of the inversion. Only one file is
required to store the eigenvalues. This file will contain only one record and one trace, and the
number of data samples will equal the number of iterations of the conjugate gradient algorithm
performed. The number of output files necessary to store the eigenvectors, however, is the same as
the number of inner state parameters sought in the inversion. For instance, if the user requests three
reflectivity files be estimated, then three output files for the corresponding estimated eigenvectors
will also be required.

The extreme eigenvalues of the the tridiagonal matrix 7" approximate those of the original
matrix A. However, the corresponding eigenvectors of the matrix 7" must be transformed via
multiplication by the Lanczos matrix @ to correspond to the eigenvectors of the original matrix
A. Thus, at each iteration of the conjugate gradient algorithm, if the eigenvectors have been
requested, the normalized residual vector must be stored. Separate routines store the Lanczos
vectors and change bases from T to A. Each of these routines is also written at the macrofile
level. Unfortunately, at the point in the algorithm when the new Lanczos vector is being stored in
the Lanczos matrix, the algorithm is unaware of the total number of conjugate gradient iterations
which will be performed. Each vector is stored as a column in the matrix (record in the data file).
Thus, at iteration j, records 1,...,j — 1 are retrieved. The header information which indicates the
total number of records in the file is incremented, and the updated records 1, ..., 7— 1 are rewritten
to the file before record j is added.

The eigenvalues and eigenvectors of the tridiagonal matrix are estimated using the LAPACK
routine SSTEQR [ANDERSON et al., 1992]. This routine computes all of the eigenvalues and, op-
tionally, the eigenvectors of a symmetric tridiagonal matrix using the implicit QL or QR method.
The eigenvalues are ordered according to size from smallest to largest on exit from this package.
This routine was chosen for the accuracy that the QR method provides. The LAPACK routine
called may later be changed to accommodate computation of only selected eigenvalues and eigen-
vectors of T'. We note, however, that the matrix T' is quite small. At the jth iteration of the
conjugate gradient algorithm, TeR?*J. (A typical size for the matrix 7' might be a matrix with
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fifteen rows and fifteen columns.)

The LAPACK routine returns a data array (in unformatted Fortran) containing the eigenvalues
and an unformatted Fortran matrix Z containing the eigenvectors (if requested) of the tridiagonal
matrix. The Lanczos matrix ) is stored in formatted files. The output eigenvectors X of A also
must be stored as formatted files. In order to write the records of the output matrix X only once
and thus save on total i/o, we used the Gaxpy version of the matrix-matrix product. The Gaxpy

algorithm can be found in [GOLUB and LOAN, 1989] and is repeated here.

Algorithm: (Matrix Multiplication Gaxpy Version) If the matrices AeR™*" and BeR™*"
are given then the following algorithm computes C' = AB.

function:C'=matmat.jki(A, B)
m=rows(A); n = cols(B); r=cols(A)
C(l:m,1:n)=0
forj=1:n

fork=1:r
fori=1:m
Cliv ) = C(i,§) + Ali, k) B(k, j)
end
end
end
end matmat.jki

Finally, for each approximate eigenvalue we include an upper bound on the distance between
this number and the closest eigenvalue of the normal matrix. The bound is easy to compute
and depends on the last off-diagonal entry in the tridiagonal matrix 7" and the last entry in the
corresponding eigenvector of 7.

5 Numerical Examples

The experiment discussed in this section was designed to test the conjugate gradient algorithm’s
ability to solve the normal system as well as to estimate the extreme eigenvalues and eigenvectors of
the normal operator. The synthetic data was generated from Gulf of Mexico data we received from
Exxon Production Research Company. Starting with one 48-trace common-midpoint data gather
from a survey done of this area, we performed an inversion to determine a realistic reflectivity
for this data. The background velocity used was a smoothed version of the well-log (Figure 2).
We had been given an estimate of the anisotropic air gun energy source in the form of a 31-term
Legendre expansion in slowness. We chose the first trace of this source estimate as our target
isotropic source. This source has a peak frequency of 15 Hz and is centered at 110ms.
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Once we had determined the parameters which described our synthetic experiment (isotropic
source, reflectivity, and background velocity), we generated the synthetic data which we would
attempt to match in the inversion. The data (shown in Figure 1) consists of 13 plane-wave traces
with slowness values ranging from p,,;, = 1158 ms/m to pras = 36468 ms/m. The seismogram
contained 3s worth of data.

The experiment we describe here (determination of the source and reflectivity) was done using
a method known as alternation. Alternation dictates that the source parameters be fixed, and the
reflectivity estimated by output least squares inversion. Then the reflectivity is updated and held
fixed and the source estimated by output least squares inversion. The source is updated and this
cycle is repeated until convergence.

The initial estimate of the reflectivity used for the inversions was » = 0. For the initial source
estimate, we chose a Ricker wavelet also with peak frequency of 15 Hz but which had its peak
centered in time at 0 ms (Figure 3). We were interested to see if the data contained sufficient
information to move the source to its correct location in time during the course of the inversions.
Each inversion round included an estimation of the source and an estimation of the reflectivity. In
all, 26 rounds of inversions were performed to reduce the root mean square error to 5% of the data
norm.

In this experiment the stopping criterion for the conjugate gradient algorithm was that the
normal system be solved with a relative residual tolerance not more than 5% of the original residual.
Figure 4 shows the target source (dashed line) plotted against the final inversion-estimated source
(solid line). Figure 5 gives the same comparison for the final inversion-estimated reflectivity. The
source was moved from its initial location of Oms to the true location (110ms) during the course
of the inversions, and the shape of both the source and reflectivity functions was recovered. The
estimated source and reflectivity functions were scaled to correspond to the targets. When both
the source and reflectivity are being estimated using the convolutional model, a scale ambiguity
exists between these two parameters. For example, the source may be scaled up by a constant «
and the reflectivity scaled down by 1/« and the data fit just as well.

Figures 6-9 indicate how well our conjugate gradient algorithm estimated the eigenvalues and
eigenvectors of the normal operator. In these experiments we reduced the relative residual tolerance
to 1% and reran two of the inversions (namely alternation round 4 of the total 26 rounds). The
graphs compare the vector Az to the vector Az for the smallest and largest eigenvalue/eigenvector
pairs for both the reflectivity and source experiments. The largest eigenvalue/eigenvector pair is
the best approximation in the spectrum.

For the source inversion, fourteen conjugate gradient iterations were performed before conver-
gence occurred. The eigenvalues ranged from A;=1.186129E+01 to A,=1.819164E-01. Twelve
conjugate gradient steps were taken in the reflectivity inversion in order for the relative resid-
ual to be reduced to 1% of the data norm. The eigenvalues ranged from A;=3.902964E-05 to
An=1.183508E-06.

The theoretical bound described at the end of the last section, indicates that the largest eigen-
value/vector pair is the best approximate pair and the smallest the next best. In the case of the
source inversion, the largest eigenvalue /eigenvector pair was seen to satisfy the eigenvalue equa-
tion (via this theoretical bound) with error = 6.53134E-04. The smallest eigenvalue/eigenvector
pair for the source inversion satisfied the eigenvalue equation with error = 0.392509. In this case
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other eigenvalues towards the top of the spectrum actually had smaller error in relation to the
normal operator spectrum than did the smallest. For the reflectivity inversion, the largest eigen-
value/eigenvector pair satisfied the eigenvalue equation with error = 2.36527E-07. The smallest

had error = 6.18076E-07.

6 Conclusion

In DSO inversion the parameters in the model are estimated in two steps. In the first step, param-
eters which affect the data linearly (the inner state) are estimated via solution of a normal system.
This large normal matrix system is best solved via iterative methods. The conjugate gradient al-
gorithm implemented here is advantageous because it allows us to simultaneously generate a small,
square tridiagonal matrix (with size the number of conjugate gradient iterations) whose extreme
eigenvalues approximate those of the normal matrix. The conjugate gradient code (being part of
the generic section of DSO modules) may be applied to different types of problems. Estimates
of the extreme eigenvalues of the normal operator will allow us to understand how well various
parameters in the problem are determined as well as the condition of the overall problem. The
algorithm is implemented to be consistent with the DSO macrofile environment. The user may
chose not to estimate the eigenvalues and eigenvectors of the normal operator. He may choose only
the eigenvalues be estimated, or both the eigenvalues and eigenvectors can be approximated. One
should keep in mind that storage requirements for estimating the eigenvectors may be large if the
parameters estimated are large. We provide an error bound as well which indicates how close each
approximate eigenvalue is to an element of the spectrum of the normal operator. The approximate
eigenvalues improve as the residual tolerance for solving the normal system is reduced, and the
largest eigenvalue most closely approximates an element of the spectrum.
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seismic data

F1GURE 1: Synthetic common midpoint data used in the inversion experiments. The seismogram
contains 13 traces of 3s worth of data. The vertical axis is time (in ms). The horizontal axis is
slowness (in ms/m).
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FiGURE 2: Background velocity used to generate the seismic data. The background velocity is
held fixed in these inversion experiments.
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FIGURE 3: Initial guess for the seismic source (a 15Hz Ricker wavelet with peak at Oms).
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FI1GURE 4: Final source inversion results. The Solid line is the estimated source (scaled) resulting
from using the conjugate gradient algorithm for the inversions. The Dashed line is the target
isotropic source.

14



Implementation of the Conjugate Gradient Algorithm in DSO Trip 94

ESTIMATED REFLECTIVITY VS. TARGET
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F1GURE 5: Final reflectivity inversion results. The Solid line is the reflectivity estimate (scaled)
resulting from using the conjugate gradient algorithm for the inversions. The Dashed line is the
target reflectivity for this synthetic experiment.
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F1GURE 6: Plot of the degree to which the eigenvalue equation Az = Az is satisfied by an approxi-
mate eigenpair of the normal matrix from the conjugate gradient/Lanczos algorithm. The normal
matrix A corresponds to the fourth round of alternation for the reflectivity. Solid line: Az where
A is an approximation to the largest eigenvalue (A;=3.902964E-05) of the normal operator (and z
the corresponding eigenvector). Dashed line: Ax.
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F1GURE 7: Plot of the degree to which the eigenvalue equation Az = Az is satisfied by an approxi-
mate eigenpair of the normal matrix from the conjugate gradient/Lanczos algorithm. The normal
matrix A corresponds to the fourth round of alternation for the reflectivity. Solid line: Az where
A is an approximation to the smallest eigenvalue (A, =1.183508E-06) of the normal operator (and
z the corresponding eigenvector). Dashed line: Az.
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F1GURE 8: Plot of the degree to which the eigenvalue equation Az = Az is satisfied by an approxi-
mate eigenpair of the normal matrix from the conjugate gradient/Lanczos algorithm. The normal
matrix A corresponds to the fourth round of alternation for the source. Solid line: Az where A
is an approximation to the largest eigenvalue (A;=11.86129) of the normal operator (and x the
corresponding eigenvector). Dashed line: Az.
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F1GURE 9: Plot of the degree to which the eigenvalue equation Az = Az is satisfied by an approxi-
mate eigenpair of the normal matrix from the conjugate gradient/Lanczos algorithm. The normal
matrix A corresponds to the fourth round of alternation for the source. Solid line: Az where A
is an approximation to the smallest eigenvalue (A,=.1819164) of the normal operator (and z the
corresponding eigenvector). Dashed line: Az.
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