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Abstract. Certain finite difference methods on rectangular grids for second order elliptic equa-
tions are known to yield superconvergent flux approximations. A class of related finite difference
methods have recently been defined for triangular meshes by applying special quadrature rules to an
extended version of a mixed finite element method [1, 2]; the usual hybrid mixed method can also
be applied to meshes of triangular and tetrahedral elements. Unfortunately, the flux vectors from
these methods are only first order accurate. Empirical evidence indicates that a local postprocessing
technique described in [11] recovers second order accurate velocities at special points. In this paper, a
class of local postprocessing techniques generalizing the one in [11] are presented and analyzed. These
postprocessors are shown to recover second order accurate velocity fields on three lines meshes. Nu-
merical experiments illustrate these results and investigate more general situations, including meshes
of tetrahedral elements.
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1. Introduction. In this paper we discuss techniques for extracting additional
information from numerical solutions to elliptic partial differential equations of the
form

(1) -V (K(x)Vp(x)) = f(x), xe,

where Q is a polygonal domain in R? or R?, and K (x) is a positive definite matrix.
Let the flux associated with (1) be

(2) u=-KVp,
and assume boundary conditions of the form
(3) u(x) - (x) = g(x), x €00,

where 11 is the unit outward normal to 9. In the context of flow in porous media
the flux is called the Darcy velocity when p is the pressure and K is the permeability
tensor; we will use the words flux and velocity interchangeably to describe u.

Cell centered finite difference methods on rectangular grids are well known to yield
superconvergent flux approximations [14, 15, 3, 4]. A class of finite difference methods
have recently been defined for triangular meshes by applying special quadrature rules
to an extended version of a mixed finite element method [1, 2]; the usual hybrid mixed
method can also be applied to meshes of triangular and tetrahedral elements. Unfor-
tunately, on triangles and tetrahedra, the resulting velocity vectors are only first order
accurate. Empirical evidence indicates that a local postprocessing technique described
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2 T. F. DUPONT AND P. T. KEENAN

in [11] recovers second order accurate velocities at special points. In this paper, a class
of local postprocessing techniques generalizing the one in [11] are presented and ana-
lyzed. These postprocessors are shown to recover second order accurate velocity fields
on three lines meshes. Numerical experiments illustrate these results and investigate
the performance of the postprocessors in more general situations, including on meshes
of tetrahedral elements.

The rest of this paper is outlined as follows. In the next section, we give notation
used throughout the paper. In section 3 we state the mixed finite element method. In
section 4 we prove that the flux U computed from the mixed method is super-close to
the 7-projection[13] of the true flux, on three lines triangular meshes. In section 5 we
use that result to prove second order accuracy for all postprocessing methods satisfy-
ing certain conditions. In sections 6 and 7 we give examples of postprocessing schemes
which satisfy those conditions. Finally in section 8 we give experimental results illus-
trating these schemes. In most of the paper we assume that (1) was solved using the
mixed finite element method with lowest-order Raviart-Thomas approximating spaces
(RTy) on triangular elements in two dimensions [13]. We remark on generalizations
to the other methods described in [1, 2] in the final section of the paper.

2. Notation. For R a domain in R? or R® let L?(R) denote the space of real-
valued square-integrable functions. On this space use (-,-)g and || - ||z as the inner
product and norm, respectively. Denote by (-, -}sg the L?(JR) inner product. We also
use the space

(4) H(div; R) = {u= (u',4*) :u € (L*(R))* and V -u € L*(R)},

with norm

(5) sy = [ [luf* +19 - ul?] ax.

Also define Hy(div; R) = {v € H(div;R):v-n=0 on 0Q}. The Sobolev space
(6) H*(R) = {f € L*(R) and |D*f| € L*(R)},

with norm

(7) 1 z2ry = IR+ [1D* /1]E.

is also used. When R = €, we may omit it in the definitions above.

Let T} denote a triangulation of € into triangles or tetrahedra with maximum
diameter h. Associated with Ty, the RTp spaces V, C H(div;Q) and W, C L*(Q)
are characterized as follows. Let Ny denote the number of triangles (or tetrahedra, in
R?) in T, and N, the number of edges (or faces, in R?). Then

Wy, =span{w;,i=1,..., Nt : (w;)|r, = &;5,5 = 1,..., Nt}

Thus W}, is a space of piecewise constant scalar functions. Letting fiy denote one of
the unit vectors normal to edge ¢, denoted by ey,

Vi, = span{vy € H(div;Q), k=1,...,N.:
vilr € (PUT))* @ xP%T) forall T € Ty, and
Vk'ﬁfleg =6y, L= 1,...,1\76},
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where PY(T’) denotes the set of constant functions defined on 7' € T}. Specifically, in
R?, the function vi = (v}, v}) € V}, is given on T by

oy + S,
ot + By,

(vp)lr
2
k

(vp)|r

with the three coefficients determined by the requirements
(8) Vi Tyle, = Ope

Thus vy is nonzero only on the two elements which share edge k. V} is thus a certain

subset of the space of piecewise linear vector fields, which does not contain certain
linear vector fields, such as (y,z)’.

3. A Mixed Method. A mixed method is defined [13] by rewriting (1) as the
pair
(9) u(x) = —K(x)Vp(x),
(10) Veu = f

Multiplying (9)-(10) by appropriate test functions and integrating we obtain

(11) (K~'w,v) = (p,V-v), ve Ho(div;®),
(12) (V ' u7w) = (fvw)7 w € LZ(‘Q)
We define
V7 = {veV,:v-ii=g ondQ},

VP = VN H(div; Q).

In the lowest order case we then seek U € V7 and P € W}, that satisfy

(13) (K~'U,v) (P,V-v), veV
(14) (V-U,w) = (fiw), weW,.

Because we used Neumann boundary conditions the solution P is unique only up
to an additive constant, but adding an additional constraint, such as [, p(x)dx = 0,
makes it unique; the presence of a lower order term in (1) would have the same effect.

For rectangular meshes and K a scalar or diagonal matrix, superconvergence of
order h? of the velocity U and potential P at Gauss points was proven in [12]. These
results were extended in [8] to demonstrate superconvergence of velocities along lines
connecting Gauss points. In [15], these results were shown to hold even for finite
difference methods, which may be viewed as lowest order mixed methods where special
numerical quadrature is used to approximate the integral (K ~'v;,v;). On triangular
meshes, superconvergence of the potential P of order k2 at the centroid of each triangle
was proven in [9, 7]. No superconvergence results for velocity are known to us in
this case. Qur numerical results indicate that the normal fluxes may be pointwise

superconvergent in certain situations, but that in others they are not. In the next
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Fi1G. 1. A three lines mesh

section we prove an [? super-closeness result for the normal fluxes on three-lines meshes
of triangles.

Elements of Vj, are defined by their normal components across edges. However,
the space V}, is not rich enough to approximate all linear vector fields. The analysis
of mixed methods depends on a projection 7 : H(div) — V}, defined by letting 7v be
the element in V}, satisfying

(15) (rv -1y, 1), = (v-1y, 1),

on each edge e; of the triangulation. It follows that

(16) (V-(u—7u),w)=0, we W,.

One can easily show by direct computation that in general, on triangular meshes,
= 7ul| ~ O(h),

even if u is linear, and even in discrete norms. For this reason, even if the computed
normal fluxes were exact (so that U = 7u), the error in the velocity vector field would
still be limited to first order.

4. A Super-closeness result. In this section we restrict K to be the identity
tensor and Tj, to be a three lines mesh. A three lines mesh is a mesh of similar
triangles for which every edge is parallel to one of three designated lines. Figure 1 is
an example of a three lines mesh.

The Theorem in the next section applies whenever a lemma such as this can be
shown. It does not require these restrictions on K and T}, and numerical evidence
suggests that these constraints can be weakened.

LemMA 4.1. If T} is a three-lines mesh and K is the identilty tensor, then the
velocity field U computed by the mixed method is super-close to the w-projection of the
true solution u, in the sense that

U — mul| < CR?[ul| g2,

Jor u e (H*(Q))~
Proof: Subtracting (12) and (14) and using (16) gives

(17) (V-(U—-7mu),w)=0, weW,.
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Since V -v € W), for v € V,
(18) (Php—p,V-V):O, v eV,

where P, is the L? projection into Wj. Subtracting (11) and (13) and using (18)
implies

(19) (K~Y(u-U),v)=(Puwp— P, V-v), veV.
When K is the identity tensor, (17) and (19) imply

(20) (U-u,U—7u)=0.

Hence,

(21) ||U - 7u||* = (u— 7u,U - 7u).

If v; is the basis function associated with an interior edge of the triangulation,
then direct calculation shows that

(w—7w,v;) =0,

for any vector function w linear on the two triangle support of v;. Since Neumann
boundary conditions were used,

U-7u= E Vi,
%

for some constants ¢;, where the sum is taken only over interior edges. Now let w;
be a linear vector field that approximates u well on the parallelogram P; which is the
support of v;. In particular, we require

(22) / lu— wil? + |7(u—w;)| de < Ch4/ |D?ul?.
P; P;
For instance, w; could be the Lagrange interpolant or the L? projection. Then,
/(u—ﬂu) -vidz
= /(u—WZ')'VZ'—I—(WZ'—FWZ')'VZ'—I—?T(WZ'— u)-v;dz,
= /(u—Wi)-VZ'—I—ﬂ'(WZ'— u)-v;de.
Also, there is a # > 0 independent of h, such that if v € VJ* and v = 3, d;v;, then
SY < VI < 5
Thus:
|U — 7ul|?
< Zcihh_l /(u —w;)-vi+71(w; —u)-v;dz,

1/2

(;C?}ﬂ)l/? (EZ: -2 [/(u —wy) Vit (Wi —u) v da;] 2) |

B=12||U = 7ul| (;hﬂ [/(u —w;) v+ m(w; —u)-v; dx] 2) 1/2.

IN

IN
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Thus,
|U — 7ul|?
< oy (/P |V¢|2dx> </P u = w2+ |r(u— Wi)|2dx> .
But
|[Vil[pee < C,
SO

U -ruf<CY </ lu— wil? + |7 (u— Wi)|2dx) .
i B

But by the approximation theory assumption (22) on w;, we have

U= mul? < CHY DRl o),

IN

CHY|| D% 2.

5. On the Accuracy of Postprocessing Schemes. We now give conditions
which ensure that a given postprocessing method R is extra order accurate.
THEOREM 5.1. Let R be a linear funclional satisfying

[lu = R(u)|| < CH?|| D*ul],
Jor allu € H*(Q), and
IR(V)I[ < Cllvll,

for all v € V},. Suppose moreover that R(u) depends only on the normal components
u-fi al the midpoints of edges (or centers of faces, in R?) of Ty. Then in any context
for which the wvelocity field U computed by the mized method is super-close to the
w-projection of the true solution u, in the sense that

10 — mul| < Ch?||ul|g,
Jor u € (H*(Q))?, we have that
IR(U) — uf| < Ch*[[ul]2.

Proof: Directly from the linearity of R and the assumptions, using the triangle
inequality and (15):

[IR(U) — uf| < [[R(U - mu)[[ + [[R(u) - ul|.

COROLLARY 5.2. The same conditions on R suffice for post-processors on quasi-
uniform rectangular meshes. This follows from known superconvergence results on
rectangles. In section 7 a least square fitting method is used to construct a post-
processed velocity field on triangles which is fully linear in each component. On
rectangles or quadrilaterals one could extend this to make the resultant vector field
R(U) a full tensor linear on each element.
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6. Keenan’s PostProcessing Scheme. In this section we analyze the postpro-
cessing scheme defined in [11].

COROLLARY 6.1. The postprocessing scheme defined in [11] is second order accu-
rale on interior triangles of a three lines mesh (when K is the identity), and is O(h'?)
accurate overall.

Proof: For triangles in the interior of a three lines mesh, this scheme constructs
R(U) at the center of the triangle. Each component of R(U) is a weighted average of
normal fluxes U; on edges of nearby triangles, with weights that depend only on the
geometry. Moreover, the reconstruction process is exact on linear velocity fields given
exact values for the normal fluxes. Thus, R satisfies the hypotheses of Theorem 1 and
hence is second order accurate on interior triangles. On boundary triangles the usual
Raviart-Thomas interpolant is used, which is first order. Since there are only O(n)
boundary triangles in a mesh of n? triangular elements, the error in the postprocessed
velocity field will go to zero like O(h!-%), asymptotically.

7. Least Squares Postprocessing Schemes. In this section we construct a
family of postprocessing schemes which satisfy the hypotheses of Theorem 1 and which
are defined on the entire mesh, including on boundary triangles.

For triangles in the interior of the mesh, this class of schemes constructs R as a
vector field over the triangle. We select a functional form for R(z,y) and determine
the parameters by a least squares fit. For a triangle T" with an edge on the boundary of
Q, we retain symmetry by shifting attention to an adjacent triangle 7" in the interior.
The vector field R computed for 77 can then be evaluated at points in 7" as needed,
without changing the order of the approximation.

For example, we can specify that on an interior triangle 7',

ar + by +c )

R(z,y) = ( dot eyt |

We then compute the six coeflicients a, . . ., f by minimizing the quadratic cost function

Cla,....[) =Y (R(mi) - b — U;)?,

7

where the sum is taken over six or more edges ¢ with midpoints m; and preferred
normals n;. To preserve the symmetry of the situation we in fact use nine edges,
namely the three edges of T and the two other edges of each of the three triangles
bordering T'.

Clearly if the computed normal fluxes were exact and the true velocity field was
linear, the least squares fit would recover it. Moreover the components of R(U) are
weighted averages of the U; with weights that depend only on the geometry, so R is a
bounded operator. Thus R satisfies the hypotheses of Theorem 1.

COROLLARY 7.1. Postprocessing schemes based on least squares fits to full linears
(or richer spaces) are second order accurate on three lines meshes (when K is the
identity).

We note that other functional forms can be used. On rectangular or quadrilateral
elements, for instance, one might naturally let R be tensor linear in each component,
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with the eight coeflicients fit using the twelve symmetrically placed edges nearest the
element.

In addition constraints can be incorporated. For instance, on triangles we might
add the constraint that R(U) have the same average divergence over the element as
U had; this reduces the number of parameters to five.

8. Numerical Results. In this section we summarize the results of some nu-
merical experiments using the postprocessing methods defined in the previous two
sections.

Table 1 presents results in cases to which Theorem 1 directly applies, namely ones
with three lines meshes, Neumann boundary conditions and K = I. In addition, a
rectangular mesh example is included for comparison.

Mesh [[U —ulf[;z [[Rx(U) —uffp [|R(U) — uffse ||(U = u) - fffjee

square h? -1.a.- -n.a.- h?

equilateral h pL7o h? h?

right-triangle h R h? h?
TaBLE 1

Measured Convergence Rates

The first column in Table 1 describes the mesh. The second column presents the
measured convergence rate for the error in the vector flux, ||U — u|;2. The discrete {2
norm is computed using the midpoint rule, thus evaluating the error only at the centers
of the elements. Convergence is only first order, as expected, except on rectangles,
where the superconvergence phenomenon increases the accuracy.

The third column presents the convergence rate for the postprocessed fluxes on
the triangular meshes using the postprocessor from [11]. The error measured here is
||IRk(U) — ul|;2, where Ry is the reconstructed vector defined at the element centers.
Convergence is at least O(h'?), and in some cases is close to second order. As noted
above, the accuracy of this procedure is reduced near the boundary of the domain. It
is also primarily suited to three lines meshes, on which the weighted averages have a
simple geometric interpretation.

The fourth column presents the convergence rate for the postprocessed fluxes on
the triangular meshes using the full linear least squares postprocessor from Section
7. The error measured here is ||R;(U) — ul|;~, where R; is the reconstructed vector.
The discrete {* norm dominates the discrete [? norm, so the observation of second
order accuracy here is stronger than what was proved in Theorem 1. The same accu-
racy is obtained when the least squares procedure is constrained to respect the local
divergence.

The fifth and final column presents the discrete max norm of the error in the
normal fluxes, ||[(U — u) - fi]|;, taken at the midpoints of the edges in the mesh. This
is equivalent to ||U — mul||r~ taken over all of . The observation of second order
accuracy here is stronger than what was proved in Lemma 4.1.
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The square mesh was a uniform refinement of the unit square into smaller square
elements. The equilateral mesh consisted of a hexagon cut into equilateral triangles.
The right-triangle mesh was created from the square mesh by cutting each square into
two right triangles by adding a line parallel to the line y = .

In all the cases in Table 1, K = I and Neumann boundary conditions were used.
The Rice Unstructured Flow code[10], a C+4 implementation of various mixed finite
element methods, was used to perform the experiments. Meshes were refined until they
had between 2 x 10° and 10* elements. To improve the reliability of the estimates of
convergence order, the results were compared to a known analytic solution involving
a superposition of many trigonometric waves of various frequencies, rather than to a
quadratic polynomial or to a computed solution on a finer grid. Although the constant
factors in the convergence rates are not shown, they are such that post-processing
does indeed significantly reduce the observed error, even after only moderate mesh
refinement.

Table 2 presents results in cases which violate at least one hypothesis of Lemma
4.1. In many cases, second order accuracy is retained, but in some cases it is lost. We
omit the U—u vector error column, since it is always first order, and the postprocessor
from [11], since it was designed specifically for three lines meshes. In their place, we
provide both /? and [*° convergence rates for the least squares postprocessor and for
the normal fluxes.

Mesh [|R(U) —uflz [[Ry(U) —ulli= [[(U—-u)-dllz [|(U-u)- b}

curvilinear h1® h B2 p1-75
tetrahedra ht-3 h h
Dirichlet h? h2 19

tensor h* h? B2 B2

(E) equilateral h? h? h? h?
(E) right-triangle hl9 p1-8 p15 7,0-9

(E) Dirichlet h? h? L19 h

(E) tensor h19 h p16 h

TABLE 2

Some More General Situations

We first consider the effect of removing the three lines mesh hypothesis. The
curvilinear mesh was created by applying a smooth transformation to the each refine-
ment of the right-triangle mesh. The curvilinear mesh is thus not a three lines mesh,
though locally it is a smooth deformation of one. The tetrahedral mesh is discussed
below. Both of these cases use Neumann boundary conditions and K = I. In both
cases, the second order convergence rate is somewhat reduced.

Next we examine using Dirichlet boundary conditions, or using a more general
tensor. Both of these cases use the equilateral mesh. The other factors are left
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unchanged: K = [ in the Dirichlet case, and Neumann boundary conditions are
used in the tensor case, in which K is a globally constant full tensor, that is, a non-
diagonal matrix. These do not seem to affect second order accuracy, at least in [?;
Dirichlet boundary effects may degrade the [*° rate for the normal fluxes. In such
cases the symmetry of the averaging process in evaluating the postprocessor at the
element centroid probably contributes to the observed second order accuracy in the
postprocessed vector.

These last two cases, as well as the cases in Table 1, are then repeated using the
enhanced mixed method, which may be viewed as a generalization of cell centered
finite differences to triangles, using special (lower order) quadrature rules to simplify
the solution of an extended mixed method formulation as described in [1, 2]. These
cases are labeled with an (E) in Table 2. The normal fluxes are less accurate, but
the averaging effect of the post-processor continues to maintain close to second order
accuracy, at least in /2.

8.1. Tetrahedra. It is a geometric fact of life that regular tetrahedra do not
fill space. Thus there is no easy way to generalize our three-lines mesh result to
three dimensions. Computationally, however, the Least-Squares family of schemes are
easily extended to meshes of tetrahedra, since no geometric regularity in the mesh is
required by their construction. Numerically, we observe O(h!'®) convergence rates in
I, as indicated in Table 2. This indicates that while some form of superconvergence
is present for tetrahedral meshes, and similarly for non-three-lines meshes of triangles,
a more subtle analysis will be required to explain it.
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