kScript User Manual

Philip Keenan

CRPC-TRY94537
November 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

kScript User Manual®

Philip T. Keenan'

November 11, 1994

Contents

1 Introduction 1

2 kScript Fundamentals 2
2.1 Commands e e 2
2.2 Argument Types L 6
2.3 Arithmetic and String Variables 6

3 Examples 8
3.1 A Simple Scripto 8
3.2 Physical Units for Scientific Applications 9
3.3 Extending the kScript Programming Language 10

1 Introduction

This manual is an introduction to kScript, a flexible application scripting language.
The kScript user interface was created with cmdGen, one of Phil Keenan’s C++
code generation tools. It builds on the Keenan C++ Foundation Class Library. This
manual describes version 1.0 of kScript, which corresponds to version 4.3 of cmdGen
and version 2.3 of the KFCL.

kScript is a complete programming language with comments, numeric and string
variables, looping, branching and user defined commands. It includes predefined
commands for online help, include file handling, arithmetic calculations and string

*This research was supported in part by the Department of Energy, the State of Texas Governor’s
Energy Office, and project grants from the National Science Foundation. The author was also
supported in part by an NSF Postdoctoral Fellowship.

'Department of Computational and Applied Mathematics, Rice University, P.O. Box 1892, Hous-
ton, TX 77251-1892.

concatenation, and communication with the UNIX shell. Applications can define
additional commands, types and objects which enrich the vocabulary and power of
kScript. This manual discusses those commands and objects defined by the core
kScript language and hence available in all applications which support kScript.

kScript represents the most recent form of a user interface language I started
developing back in 1989 as a C interpreter. Later I decided C syntax was too re-
strictive to force onto the user, as well as too complex for a user interface language,
so I switched to a command driven style which I’ve successfully used for several
years in programs such as kplot and RUF. Interestingly enough, several other people
have been pursuing similar ideas. Microsoft’s Visual Basic for Applications, Apple
Computer’s AppleScript, and the TCL/Tk package for UNIX machines are all ex-
amples of similar application scripting languages developed independently over the
last couple years. Unlike most of these, however, kScript is flexible enough to allow
users to define new data types, each with their own syntax, as well as new control
structures; this enhances its potential for use in new applications. kSecript also has
”?cmdGen”, a program which writes most of the necessary C++ code for you when
you want to add new kScript commands to an application.

For a complete and up-to-date lists of all commands and objects known to a
particular application, run the program and access on-line help. Type

help

to get started.

2 kScript Fundamentals

2.1 Commands

This section describes the standard commands available for writing scripts in kScript.
Applications which support kScript can be given such commands interactively or can
read them from an input file.

Fach command’s name is followed by a list of arguments. Most arguments consist
of a type name and a descriptive formal argument name, grouped as a pair in angled
brackets. These represent required arguments to the command; the actual supplied
argument will be parsed according to the syntax rules for the specified type.

Arguments enclosed in single square brackets are optional prepositions. They
can be used to create English sentence-like scripts which are easy to read, or they
can be omitted with no change in the meaning of the script. Sometimes several
alternatives are listed, separated by a vertical bar. For example, the following three
uses of the set command are equivalent: they all store 5 in the numeric variable z.

set x 5

set x =5
set x to 5

Whether you use prepositions or not is a matter of taste.

Arguments enclosed in double square brackets are optional keywords which do
change the meaning of the script if they are supplied. Arguments enclosed in triple
square brackets are lists of alternative keywords, one (and only one) of which must
be chosen in any given situation. Occasionally, the triple square brackets notation is
generalized to contain type names rather than literal keywords. For example, the set
command determines the type of the destination variable (numeric or string) and ex-
pects the value argument to be of the corresponding type (mathExpr or stringExpr,
respectively).

In kScript, a pound sign (#) comments out the rest of the line on which it occurs.

Detailed syntax for various common types is presented in Section 2.2. FEach
argument type is parsed according to its own rules, but in general arguments are
delimited by white space (spaces, tabs, line breaks, and so on). For instance, math-
ematical expressions must be written with no internal spaces. String expressions
must either have no internal spaces or be enclosed in curly braces.

help
Provide an overview of the on-line help facilities.

describe [[[commands|objects|types|stringExpr(name)]]]
Provide online descriptions of commands, objects, or types.

symbolTable [show|print|dump]
[[[all|variables|constants|strings]]]
List ‘all’ objects by name and value, or just ‘variables’, ‘constants’ or
‘strings’.

quit
Ignore the rest of the current input file.

include [file] <stringExpr filename>
Include a file of commands.

changeIncDir [to] <stringExpr pathName>
Change the directory path used with include files.

echoIncDir
Echo the current include file directory path.

saveAndChangeIncDir [to] <stringExpr pathName>
Change the directory path used with include files, saving the old one.

restorelncDir
Restore the directory path used with include files, as saved by the previous
‘saveAndChangelncDir’ command.

define [[stringl] [[constant]] <stringExpr name> [as|=]:=]
[[[mathExpr|stringExpr]]]
Define a new variable or constant.

set <stringExpr name> [=|to|:=] [[[mathExpr|stringExpr]]]
Change the value of a variable.

beginComment
Begin an extended comment, which lasts until a matching ‘endComment’.
Comments may be nested.

echo <stringExpr expr>
Print the value of a string expression on the standard output stream.

error <stringExpr expr>
Print the value of a string expression on the standard error stream.

shellCmd <stringExpr expr>
Have the shell evaluate the expanded string. The shell’s result code is
returned in the ‘theResult’ numeric variable, and it’s standard output is
returned in the ‘theStringResult’ string variable.

eval <stringExpr expr>
Evaluate the expanded string as if reading commands from an include file.

if <mathExpr expr> [then] <stringExpr thenCommands> <else
stringExpr> <elseCommands [endif]>
Branching command: if the math expression evaluates to a non-zero value,
execute the commands in the string expression following ‘then’; otherwise
execute the commands in the string expression following ‘else’, if an else-
clause is present. At least one of ‘else’ or ‘endif’ must be used.

repeat <mathExpr repititions> [times] <stringExpr commandList>
[endrepeat]
Simple Looping command: repeat the commands in the string expression
‘repititions’ times.

while <mathExpr condition> [do|repeat] <stringExpr commandList>
[endwhile]
General Looping command: repeat the commands in the string expression
as long as the condition is non-zero.

for [each] <stringExpr x> [in] <stringExpr wordlistX> <and
[each]> <stringExpr y> [in] <stringExpr wordlistY> [do]
<stringExpr commands> [endfor]
Loop over each word in the list, assigning each in turn to the string variable
x and executing the commands. If ‘and’ if used, a second variable y is
assigned from a second list of the same length, in conjunction.

push <stringExpr varName>
Save the value of an object on the stack.

pop <stringExpr varName>
Restore the value of an object from the stack.

defineCmd <stringExpr cmdName> [[...formal.argument.names...]]

<stringExpr taskDescription> <stringExpr commandList> [enddefn]
Define a new command. Formal arguments are numeric variables unless
their name begins with a percent-sign. Square brackets in the formal
argument list enclose an optional preposition. The task description must
use the curly brace syntax for string expressions.

alias [[[command|object]]] <stringExpr oldName> [as]|to]
<stringExpr newName>
Define an abbreviation or alternative name for a command or object.

seed <mathExpr seed>
Set the random number generator seed. The seed should be a positive
integer.

strLen <stringExpr str>
Sets theResult to the length of the string.

strCmp <stringExpr strl> <stringExpr str2>
Sets theResult to -1, 0, 1 as strl precedes, equals, or follows str2 alpha-
betically.

getChars <mathExpr first> <mathExpr last> <stringExpr
sourceString>
Puts the indicated range of characters (counted from 1) into theStringRe-
sult.

local <stringExpr localnames>
Within a defineCmd, this declares local variable names. The argument
string is a list of names; begin string variable names with two percent
signs.

2.2 Argument Types

The formal argument types in command descriptions generally correspond to C++
classes. The actual argument must be in the correct format for the specified
type. For an explanation of the syntax for a particular type X, use the command
describe type X. The command

describe all types

will list all of the type names for which on-line help is available.

The types int, float, and double represent integers, single and double precision
floating point numbers. The type chat* represents a space delimited string, that is,
a single word. Applications can define new C+4 types and use them as arguments
by defining a text representation and providing an

cmdInterpreter& operator>>(cmdInterpreter&, <type>&);

function. The cmdGen kScript user interface generator assumes such an operator is
defined for all argument types it encounters.

2.3 Arithmetic and String Variables

Many commands take arithmetic or string expressions as arguments. Math expres-
sions can mix numbers, arithmetic and logical operators, and symbolic names. Math
operators are listed in Table 1. Logical operators return 1 for true and 0 for false.
The if command treats 0 as false and non-zero as true. Parentheses override the
standard operator precedences. In addition, many standard mathematical functions
can be called, as listed in Table 2. The last three take two arguments (z, y) instead
of one. They return z¥, a random number in the range [z, y], and a normal variate
with mean z and variance y. The underlying random number generator can be re-
seeded with the seed command. The msec function takes no arguments and returns
the value of an internal timer, in milliseconds.

String expressions can be a single space delimited word, or arbitrary text enclosed
in curly braces. When curly braces are used, internal white space is not ignored
(unless the final right brace if followed by a *). Curly braces may be nested. Within
the top level of curly braces, one can expand references to other string or numeric
variables by preceding their names with a percent sign. Several other combinations
are recognized as well, as shown in Table 3.

If a variable name to be expanded is followed by white space, the first such white
space character is suppressed.

Symbolic names can represent constant or variable values. Predefined ones are
listed below; users can define additional ones using the define and set commands.

Operator Interpretation

+ addition

- subtraction
multiplication
division

- exponentiation

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

== is equal to

! is not

& and

| or

Table 1: Math Expression Operators

abs round sqrt exp log
sin cos tan atan msec

pow random normal

Table 2: Mathematical Functions

Construction Expansion

hh h

W { without counting toward nesting
hr } without counting toward nesting
wnX n repititions of character X

\n newline

Mt tab

% followed by newline the newline is suppressed

Table 3: String Expression Expansions

hincDir
If an include file is not found in the current directory, the ”include” com-
mand looks next in this directory. This string variable is initially set to
the value of the shell environment variable KSCRIPT INC_DIR.

theResult
A numeric variable which is intended for use as a return value holder for
commands that need to return a numeric value.

htheStringResult
A string variable which is intended for use as a return value holder for
commands that need to return a numeric value.

3 Examples

3.1 A Simple Script

The following script can be run by any program which supports kSeript. It simply
illustrates some of the generic programming language features of kScript. More
interesting scripts can be written for specific applications using application defined
commands and objects.

a sample script
define x 1+exp(2)

while x>4 {
echo {x = %x}
set x = x-1

define string case {}

define string cmd {}

for each case in {first second third} do {
set cmd {run the ‘Y%case’ command}
echo {)cmd}

}
defineCmd sum x y {sets ‘theResult’ to be x+y}
{
set theResult to x+y
}

sum 4.5 6.7
echo {The sum is %theResult}

When run, this script produces the following output:

x = 8.3890561

x = 7.3890561

x = 6.3890561

x = 5.3890561

x = 4.3890561

run the ‘first’ command
run the ‘second’ command
run the ‘third’ command
The sum is 11.2

Such a script is very similar to a UNIX shell script; indeed the shellCmd com-
mand and the eval command combine to let kScript interact with the UNIX shell
in very general ways, thereby enabling powerful extended features like interactive
inter-application communication across networks. Yet the full power of kScript only
becomes apparent when applications define additional commands and objects which
enrich the language with concepts and actions specific to the application domain.

For example, my kplot graphics program extends kScript by defining additional
commands for plotting lines, triangles, rectangles and polygons. It uses objects to
represent color and font palettes, and to control the coordinate system. Moreover,
since kScript lets users write their own subroutines and functions, it can even be
extended with commands to create custom axis tic mark patterns and labels, without
any knowledge of the internals of the program or any need to recompile it.

As another example, the Rice Unstructured Flow code (RUF') solves elliptic par-
tial differential equation on general geometries. It extends kScript with commands
for specifying the computational grid, defining coefficients, and taking one or more
time steps. Other scientific computing applications might define objects such as the
time step or an error measurement. In this case, kScript would allow the user to
implement an adaptive time step selection algorithm, and experiment with modifi-
cations of it, all without need to understand or even access the source code for the
application.

3.2 Physical Units for Scientific Applications

One very nice application of math expressions is to implement systems of physical
units in scientific applications. Users can create include files containing definitions
for the units of interest to them, after selecting a set of consistent base units in which

output will be displayed. For instance, one can define CGS units with a script such
as the following:

define constant cm 1
define constant m 100%*cm
define constant km 107 3*m
define constant gm 1
define constant kg 107 3*gm
define constant s 1
define constant min 60%*s
define constant hr 60*min
define constant day 24*hr

An application which defined a time step and a domain volume could then be
controlled by statements such as

set theTimeStep to 4*days+2*hours
set theDomainVolume to (4.5%km) "3

which are much easier to read and understand than the input files of many scientific
applications!

3.3 Extending the kScript Programming Language

kScript is designed to be very easy to extend. To begin with, at the scripting level,
user defined commands are very flexible. The eval command allows evaluating
data (a string) as code (commands), much like in LISP and related languages. This
means users can design new control structures directly in kScript, without access to
the C++ implementation.

Programmers can extend kScript by defining new C++4 classes with >> text
input operators. For instance, the Keenan C++ Foundation Class Library defines
a doubleArray class (an array of numbers). It also defines an input operator, so
doubleArrays can be used by cmdGen. While none of the built-in commands in
kScript take array arguments, it is trivial to define application commands which do.
For instance, RUF, the Rice Unstructured Flow code, which uses kScript for its user
interface, does allow users to input arrays in several situations. Since commands
parse their own arguments by calling >>, the syntax for new types can be whatever
the programmer wishes. In KFCL, array objects can be input in any of 6 different
styles including one which reads the data of the array from a separate file, and one
which uses curly brace notation much like a string expression.

This example highlights the fact that kScript is a context sensitive language.
Unlike traditional context-free languages, argument parsing is under the control

10

of individual commands. This makes left context sensitivity easy to implement;
moreover, the command interpreter class can handle one object look-ahead, mak-
ing limited right context sensitivity also straightforward to use. cmdGen takes the
place of a traditional parser generator (like yacc or bison), allowing programmers
to quickly and easily define and implement new commands, complete with automat-
ically generated on-line help.

References

[1] Keenan, P. T., C++ and FORTRAN Timing Comparisons, Dept. of Computa-
tional and Applied Mathematics Tech. Report #93-03, Rice University, 1993.

[2] Keenan, P. T., RUF 1.0 User Manual: The Rice Unstructured Flow Code,
Dept. of Computational and Applied Mathematics Tech. Report #94-30, Rice
University, 1994.

11

