Random Data Accesses on a
Coarse-grained Parallel Machine
I. One-to-one Mappings

Sanjay Ranka
Ravi Shankar

CRPC-TR94530-S
October 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Random Data Accesses on a Coarse-grained Parallel Machine

I. One-to-one Mappings *

Ravi V. Shankar Sanjay Ranka
School of Computer and Information Science
Syracuse University, Syracuse, NY 13244-4100

e-mail: rshankar, ranka@top.cis.syr.edu

October 1994

Abstract

This paper describes deterministic communication-efficient algorithms for performing dynamic
permutations on a coarse-grained parallel machine. Our analysis shows that the general permuta-
tion operation can be completed in C'un/p (4 lower order terms) time and is optimal and scalable
provided n > O(p®+p?7/p) (n is the size of the permutation or the number of elements distributed
across the p processors, 7 is the start-up overhead and 1/u is the data transfer rate). C is a small
constant typically between 2 and 3 for write permutations, slightly higher for read permutations.
Modifications to exploit locality of access are presented. Special classes of permutations that are
optimal for smaller sizes are also described. The dynamic permutation operation provides the
framework for the communication-efficient simulation of an EREW PRAM on a coarse-grained
distributed memory parallel machine. A companion paper [20] deals with the problem of random

data accesses with hot spots.

* A preliminary version of this paper titled Performing Dynamic Permutations on a Coarse-grained Parallel Machine

is to be presented at the First International Workshop on Parallel Processing, Bangalore, December 1994.

1 Introduction

Let n be the number of elements distributed across p processors. A permutation is an operation
that rearranges data associated with some or all of the n elements. Permutations can also be defined
as follows. Let each element ¢ (0 < ¢ < n) have a pointer (i.e., destination/source number) P(%)
(0 < P(i) < n) and data D(7) associated with it. In a write permutation, each element 7 (0 <7 < n)
sends its data to element P(¢). In a read permutation, each element ¢ gets data from element P(¢). In
both cases, it is imperative that no two elements have the same value of P(7). In High Performance
Fortran (HPF), a forall statement such as

forall (i=0:n-1) Result(P(i)) = D(i)
results in a write permutation, while a statement such as
forall (i=0:n-1) Result(i) = D(P(1))

results in a read permutation, assuming in both cases that P(¢) # P(j) for any ¢ # 7,0 < ¢,7 < n.
Figure 1 illustrates the permutation primitives through examples. The issues involved in the design
of algorithms for read permutations are very similar to those for write permutations. These are

outlined in section 9. The rest of the paper deals with write permutations only.

Element index 0 1 2 3 4 5 6 7
Pointer P . 2 0 7 1 6 3 5
Read Result - D(2) D(0) D(7) D(1) D(6) D(3) D(5)
Write Result D(2) D(4) D(1) D(6) - D(7) D(5) D(3)
Processor # 0 0 1 1 2 2 3 3

Figure 1: Read and Write Permutations

Efficient parallelization of a large number of applications on coarse-grained machines requires min-
imizing off processor accesses. Data structures and the corresponding computations are distributed
such that most of the computations can be performed using local data. Several distributions for ar-
rays have been found to be useful in practice and have been incorporated into data parallel languages
like High Performance Fortran [9]. However, efficient data distribution for one phase of computa-
tion may in general be different from the next phase. In such cases performance improvement can
be achieved by redistribution of data. Redistribution of data elements in HPF can be viewed as
permutations [1].

Sample based sorting algorithms go through several stages [22]. First, a small sample of all the
data elements in each processor is sorted to find approximate partitioners. These partitioners are
used to move local data to appropriate destinations such that the data elements in each processor

are smaller than the data elements in the processor to its right and larger than those in the processor

to its left. The data movement stage can viewed as a permutation. The scalability of sample sort
critically depends on the cost of this permutation [12].

The execution of array assignment statements in HPF requires data movements in which only
a subset of elements of the source are mapped to a subset of the elements of a destination array
(excluding special cases such as the array assignment statement having a scalar as the right hand

side). The permutation primitive can be generalized to deal with such cases of array reformatting.

2 Modeling a Coarse-grained Parallel Machine

We model a coarse-grained parallel machine as follows. A coarse-grained machine consists of several
processors connected by an interconnection network. Rather than making specific assumptions about
the underlying network, we assume a two-level model of computation. The two-level model assumes
a fixed cost for an off-processor access independent of the distance between the communicating
processors. A unit computation local to a processor has a cost of §. Communication between
processors has a start-up overhead of 7, while the data transfer rate is 1/u. The time taken to
send a message from one processor to another is modeled as 7 + pum, where m is the size of the
message. For our complexity analysis we assume that 7 and g are constant, independent of the link
congestion and distance between two nodes. With new techniques such as wormhole routing and
randomized routing [13, 12, 7, 15], the distance between communicating processors seems to be less
of a determining factor on the amount of time needed to complete the communication. Further,
the effect of link contention (due to several messages traversing common links along their routes) is
limited due to presence of virtual channels and the fact that link bandwidths are much larger than
node interface bandwidths. This permits us to use the two-level model and view the underlying
interconnection network as a virtual crosshar network connecting the processors. The logP [6] model
and the postal model [2] are theoretical models, based on the above philosophy, for coarse-grained
machines.

Although our algorithms are analyzed under these assumptions, most of them are architecture

independent and can be efficiently implemented on meshes and hypercubes.

3 The Dynamic Permutation Problem

We are primarily interested in optimal communication-efficient algorithms for performing permuta-
tions. This section presents algorithms for permutations available in the literature and their limita-
tions.

Linear permutation is a simple algorithm for performing all-to-all personalized communication
where the messages exhibit a low variance in size. The algorithm is shown in figure 2. Linear
permutation is deterministic and takes O(sp) time, where s is the upper bound on the sizes of

the messages exchanged. When linear permutation is used for performing dynamic permutations,

Linear Permutation
For all processors P;, 0 < ¢ < p— 1, in parallel do

Generate receive vector recvl from the send vectors sendl in all the processors;
fork=1top—1do

J=i®k;

if sendl’ > 0 then P; sends a message of size sendl’ to P;

if recvl? > 0 then P; receives a message of size recol’ from P;

Barrier synchronize with all processors;

endfor

Figure 2: The Linear Permutation Algorithm

message sizes could vary between 0 and [n/p] and, in the worst case, a dynamic permutation could
take O(n) time and is hence non-optimal.

Sorting all the elements based on the destination element indices is one way of performing a dy-
namic permutation optimally. Such sorting based algorithms are highly communication inefficient,
since the elements are moved around through many intermediate processors during the sort. See
[19] for details. Using sample based sorting algorithms for performing permutations is not an op-
tion since these algorithms themselves require a permutation for data movement. Algorithms using
randomization also have large constants and are not very practical for coarse-grained machines.

Our objective is to design a deterministic algorithm for permutation that eliminates node con-
tention at the destination processors. In other words, all communication needs to scheduled such
that no processor will receive more than one message at any time. This allows us to give a worst-case
analysis of the time taken. The dynamic nature of the problem rules out the use of expensive com-
munication scheduling algorithms to eliminate or reduce node contention. The dynamic permutation
problem has the property that each processor sends out no more than [n/p]| elements and receives no
more than [n/p| elements. Since the outgoing/incoming traffic at any processor is upper-bounded
by [n/p], this is a bounded transportation problem [19]. Underlying each permutation is a many-
to-many personalized communication problem. The communication matrices in figure 3 show the
underlying communication pattern for the permutations in figure 1.

A minimal restriction on the size of the permutations for optimality and communication-efficiency
is derived next. Consider algorithms that perform permutations by transferring data elements di-
rectly to the destination processors. This includes the linear permutation algorithm as well as
non-deterministic asynchronous communication routines that are commonly used in practice. When

every data element is directly transferred to its destination processor, each processor may have to

Row index is sending processor number
Column index is receiving processor number

P P PP PP PP

Q (0] 1 2 3
P, 1 P, 1| 1
R Rt
Pl 1 1 P, 1
P, 1| 1 P, 1| 1

Communication required Additional communication
for write required for read

Figure 3: Communication Patterns for the Permutation Examples

communicate with min(n/p, p) processors, and send out up to [n/p] elements when performing a per-
mutation. This would take gn/p communication time along with a start-up overhead of min(n/p, p)r
time. Local computation in the processors takes at least én/p time. Thus, the total time required
for performing a general permutation is atleast én/p + 7Tmin(n/p,p) + pn/p. In practice n/p
is at least as much as p, that is, min(n/p,p) = p. For an efficient implementation, the start-up

cost should not be allowed to dominate the time required. This implies that un/p > 7p, that is,
n > p?t/p.

4 The Dynamic Permutation Algorithm

The many-to-many personalized communication with possibly high variance in message sizes, that
underlies a dynamic permutation, can be performed in two stages. Each of these stages involves an
all-to-all personalized communication with low variance in message sizes. Each of the p processors
may have up three roles to play in this algorithm: as source processors when they have elements to
be sent out, as intermediate processors, and as destinalion processors when they have elements to be
received.

The n elements taking part in the permutation are distributed across the p processors. Let a;;
(0 < i,j < p) be the number of elements sent from processor P; to processor P;. The number of
elements in each processor before and after the permutation is at most [n/p]. Therefore, Ef:_(} a;; <
[n/p] for 0 < j < p and Ef;é a;j < [n/p] for 0 < i< p.

4.1 Message Splitting

The two-stage algorithm replaces the direct sending of a;; elements from FP; to P; by sending them
through processors Py (0 < k < p) which act as intermediaries. If every a;; is a multiple of p, this
message splitting is trivial, since the a;; elements can be equally divided among the p processors.

The size of a message exchanged between any pair of source and intermediate processors is of size

no more than [n/p*]. The same is true of the size of messages exchanged between intermediate
and destination processors. Thus the permutation can be completed in 2p(t + un/p?) time. The
algorithm is optimal when n > O(p?7/u).

The splitting of messages, which is central to the algorithm, is shown in figure 4 for the general
case where every a;; may not be a multiple of p. The splitting is illustrated by extending the 2-D
communication matrix along a third dimension. This dimension is indexed by k, the number of
the intermediate processor through which the messages are sent (¢ and j represent the source and
destination processor number, respectively). Of the a;; elements sent from source processor P; to des-
tination processor P;, a;; div p elements will be sent through each intermediate processor. The bigger
problem is deciding which of the p intermediate processors get the remaining a;; mod p elements. We
use a round-robin technique for the assignment of these excess elements which are allocated one by
one to each intermediate processor. The allocation is started at the intermediate processor where the
allocation of excess elements from the same source processor (to destination processors with smaller
indices) left off. Figure 4 shows ago = 11 split into (3,3,3,2), apy = 1 into (0,0,0,1), agz = 4 into
(1,1,1,1) and ag3 = 1 into (1,0,0,0). This assignment of excess elements to intermediate processors
can be done in parallel with no communication. If the round-robin assignment of excess elements is
to continue across source processors (as shown in the example in the figure) a global prefix-sum-scan

of the quantity E?;é a;; is needed. This scan, if used, takes 27log p time.

4.2 Communication Time

Figure 4 also shows the original communication matrix, and the communication matrices for the first
and second stages. These were obtained by summation along dimensions k, j, and ¢, respectively.
The entries in the communication matrices for the first and second stages cannot be greater than
[n/p*] and [n/p? + p], respectively.

The round-robin assignment technique ensures that no source processor sends messages of size
more than [n/p?] to any intermediate processor. However, the messages sent from the intermediate
processors to the destination processors could be of size nearly [n/p? + p]. The communication in
the first stage can be completed in pr+ pu(n/p*+ 1) time using linear permutation, while the second

stage could take pr + pu(n/p* + p). The two-stage algorithm takes time 2un/p and is optimal when
n/p > O(p® +pr/p).

4.3 Message Coalescing

The message sent from a source processor to an intermediate processor, or from an intermediate
processor to a destination processor, could have as many as p parts each. Message coalescing is
done to ensure that these parts are sent out as a single message. This implies that no more than p

messages | will be sent out of any source processor in the first stage and no more than p messages

!In reality, this can be no more than p— 1 messages, since one of the messages is sent to the sending processor itself.

This paper, for the sake of simplicity, continues to refer to p as the maximum number of messages being sent out.

“k=Po

3 1)1 il
1|3 211,

1021

2] 2
j k
i R R R R i R AR KRR
Plin| 1|4 | 1|17 Plslal 4la
Pl 2 3 |12 |17 Plal|s| 4|4
Pl3/10]| 3| 1|17 Plala| 5|4
Pl1/6| 7|3]|17 Pl4|4a| 4|5

7 17 17 17
Original Communication Matrix

o0

Ny

R

11

1

1

2
R AR AR
44| 5|4
45| 44
54| 3|5
44| 5|4

Communication Matrices for Stage 1 and Stage 2

Figure 4: Splitting of Messages in the Permutation Algorithm

will be sent out of any intermediate processor in the second stage. Message coalescing can be done
in one of two ways depending upon the size of each element. If each element is small in size, a local
reshuffling (figure 5) is done to arrange all data being sent to the same processor into one contiguous
message. If each element is multiple words long, such reshuffling could get prohibitively expensive.
Instead, each message being sent is described using at most [n/p| pointers and p associated lengths
(figure 6). The actual coalescing is done when the elements are sent out of the processor. Such a send
primitive that avoids local copying by allowing access to data from non-contiguous areas is available
in MPI (Message Passing Interface [14]) and can be easily implemented in low-level software. In
either case, if element ¢ needs to send its data D(¢) to destination P(7), the destination address
needs to be split into a processor address (P(¢) div p) and a local address within that destination

processor (P(i) mod p). This entire computation is local to each processor and takes O(n/p)é time.

5 Unbalanced Dynamic Permutations

The dynamic permutation algorithm can be generalized to deal with unbalanced permutations, where
the number of elements leaving a processor is different from the number of elements entering it. This
occurs, for instance, during array redistributions. If a maximum of z elements leave a processor
and a maximum of y elements enter a processor, the permutation can be done in time (z + y)u +
lower order terms, provided, either > O(pr/u) and y > O(p* + pr/p) or = > O(p* + pr/p) and
y > O(pr/p).

The condition y > O(p*+p7/p) follows from the two-stage algorithm presented in the last section,
since it was only the second stage that required the constraint n/p > O(p*+pr/u) for optimality. An
alternate message splitting scheme can be used to reduce the second stage’s communication time to
pT + u(y + p) while increasing the first stage’s communication time to pr + u(z + p?). For optimality,
this imposes the constraint > O(p? 4+ pr/u). This new message splitting scheme is illustrated in
figure 7.

The new scheme also assigns excess elements from source processors in a round-robin fashion,
one by one to each intermediate processor. The allocation is started at the at the intermediate
processor where the allocation of elements to the same destination processor (from source processors
with smaller indices) left off. Figure 7 shows agp = 11 split into (3,3,3,2), a;g = 2 into (1,0,0,1),
az = 3 into (0,1,1,1) and asp = 1 into (1,0,0,0). This assignment of excess elements to intermediate
processors can be done in parallel upon completion of a global prefix-sum-scan with the vector a;;
(0 < 7 < p) in each processor P;. The vector scan takes 2rlogp + 2up time. If the round-robin
assignment of excess elements is to continue across destination processors (not shown in the example
in the figure) a global prefix-sum-combine of the vector a;; (0 < j < p) would be needed in each
processor P;. The vector combine takes the same amount of time as the vector scan, and the two
can even be done together. This new message splitting scheme ensures that messages exchanged in

the second stage are of size no more than [y/p|, while those in the first stage are of size no more

sourcefintermediate n=30 p=4 After reshuffling
processor PO
0|23 | |do w4
12| |a 0 | d6 |2
2017 d2 2 2 -7 di 4
3| 29 a3 1 3p-7 7 |2 |1
4 4 d4 2 5 m = - = _ d7 2
5/26 | |d5 3 8 P o | 0
Hits per Aftera - d3 6
6] 2 dé procr local scan "~
7|18 q7 “[B |3
intermediate/ data = copied data and
destination Distribution of n e ements local addresses

element indices across p processors

PO has elements 0,...,7
P1 has elements8,...,15

P2 has elements 16,...,22
P3 has elements 23,...,29

Figure 5: Reshuffling for message coalescing

source/intermediate

processor PO
0|23 do | 4 n=30
p=4
1|12 di — 2
2|17 d2 — 4 2
3|29 d3 — 1 1
4| 4 d4 — 2 2
5|26 ds — 0 3
6| 2 dé — 6 Hits per
7118 d7 | 3 processor
; ; data pointers and
intermediate/
destination local addresses

element indices

Figure 6: Message coalescing without reshuffling

k=Ps

2 1
1| 7|3

% 1021

il 22 |1

Figure 7: An Alternate Message Splitting Scheme

than [z/p + p].

The O(p?) terms in the constraints for z, y (n/pin the balanced permutation case) represent worst
case requirements. A probabilistic analysis [19] indicates that these requirements can be brought
down to O(py/pInp) from O(p*). The O(pr/p) terms in the constraints are added to ensure that

start-up overheads do not dominate the time taken.

6 Exploiting Locality of Access

In the last two sections we presented an algorithm that performed dynamic permutations in two
stages. The time taken by the algorithm depended only on the maximum number of elements sent

out/received at every processor. However, the following points need to be noted:

1. If the destination pointers of some source elements point to the same processor in which the

elements reside, such elements need not participate in the two-stage algorithm.

2. If the communication underlying the permutation is nearly uniform, that is, if the messages to
be exchanged between source and destination processors are roughly of the same size, a linear

permutation algorithm can complete this permutation in one stage rather than two.

Exploiting simplicity in the access patterns (asin case 2) and locality of access (as in case 1) improves

the time taken by the permutation algorithm and is important for any practical implementation.

7 Monotonic Dynamic Permutations

Monotonic permutations, or permutations in which the pointers are sorted, can be performed using
the algorithms described earlier in this paper. However, when the underlying architecture is a
virtual crossbhar the constants in the communication time for monotonic permutations can be reduced
further. In fact, a single stage algorithm is suflicient to perform a monotonic permutation optimally
and deterministically with no node contention on a virtual crossbar. In this section we have chosen
to present the monotonic permutation algorithm through two important primitives, concentrate and
distribute [16], where the pointers of the permutation are sorted. These primitives are useful, for
instance, when working with sparse arrays, where the concentrate primitive can be used to convert
the array from a dense representation to a compact representation [21]. After working with the
compact representation, the distribute primitive can be used to convert the array back to the dense

representation.

Concentrate

In the concentrate primitive there are an uneven number of selected elements in each processor and
these have to be reassigned equally to the p processors as follows. Each selected element ¢ has
data D(7) and the number R(7) of selected elements with lower indices. The objective is to to set
Result(R(i)) to D(i). Figure 8 illustrates the concentrate operation. The number of elements sent
out of a processor could exhibit a large variation, but the difference between the number of elements
received by each processor cannot be more than 1. Let s,,4, and s,,;, be the maximum and minimum
number of elements sent out of any processor. Let ¢ be the maximum number of messages sent out
or received at any processor (¢ < p), and let r be the total number of elements sent out from all
the processors. The concentrate primitive results in each processor receiving either [r/p] or [r/p]
elements. An algorithm that can perform this concentrate in time p$,,,, is optimal. To design an
optimal algorithm, we need to ensure that node contention is eliminated.

While performing a concentrate, the destinations R(¢) in all the sending processors are sorted to
begin with. This property is used to divide the elements in the sending processors into segments,
where each segment contains elements being sent to the same processor. Consider a single sending
processor with s elements (Spin < s < Spaz). These s elements could be divided into as many
as ¢ segments. The segments in this processor (see figure 9) are of three kinds: preceding partial
segments that continue from the previous processor, succeeding partial segments that (start in this
processor and) continue into the next processor, and full segments that start and terminate in this
processor. Let a;, 3;, and ; be the number of elements in these three kinds of segments respectively
(a; + Bi + 7 = s) in sending processor P;. Each such processor first sends the 7; elements
in its succeeding partial segment followed by the §; elements in its full segments. To avoid node
contention, this is followed by a wait until other processors sharing the preceding partial segment

send out the their elements from the same segment. Finally, the a; elements in the preceding partial

10

D - b1 - - D(4) D(5) - D(7)
R . 0 . . 1 2 . 3
Result D(1) D(4) D(5) D(7) - - - -

Figure 8: The Concentrate Primitive

| | | |
0 0 o 1o o
| | | |
Rz tRa 'R B Re
_ .. P 1 _
il <= | ! e i+1
. preceding full succeeding
partial segment segments partial segment
of Sze a of tota size B of size y

Figure 9: Segments in a processor during concentrate

segment are sent out. On a virtual crossbar this algorithm takes ¢7 4+ ps,,4, time. The steps in the

concentrate algorithm are outlined in figure 10.

Distribute

The distribute primitive is the inverse of the concentrate primitive. An equal number of elements
from each processor have to be reassigned to the p processors. The distribute primitive is illustrated
in figure 11. While performing a distribute, the destinations R(%) in all the sending processors are
also in sorted order to begin with.

The algorithm for distribute is identical to the concentrate algorithm, although the various quan-
tities used in the complexity analysis now represent different things. The sending processors now
send out r elements, each processor contributing either [r/p] or |r/p| elements. The number of
elements received could exhibit a large variation. Let $,,4, and $,,;, be the maximum and minimum
number of elements received at any processor, and let ¢ be the maximum number of messages sent
out or received at any processor (¢ < p). The algorithm presented avoids node contention and can

perform the distribute optimally on the virtual crossbar in time ¢7 4+ gS;qz-

8 Multiple Permutations

In this section we deal with a special class of permutations where the permutation of n elements can
be decomposed into n/p permutations of p elements, with one element per processor participating
in each permutation. One such permutation is illustrated in figure 12.

If n = p, any permutation of elements falls under this class. The time taken to perform such a

permutation (on the virtual crossbar) is 7 + u m where m is the size of each element. The n = p

11

Concentrate
For all processors P;, 0 < ¢ < p— 1, in parallel do

Determine whether the first and last segments are preceding partial segments and succeeding partial

segments respectively, using right and left shifts by one element

If processor has a succeeding partial segment or a full segment,

then set s_bit to 1 and s_data to y; else set s_bit to 0 and s_data to «;

Perform a segmented +scan (upward, inclusive) using s_bit to indicate the start of scan segments,
and s_data as the element to be scanned. Each processor contributes just one element to the

scan.

A right shift by one gives each preceding partial segment the number of elements r,,.. preceding it

in the same segment (rp,.. < [r/p]).

Send elements in succeeding partial segment as a single message to the appropriate destination

processor. Set traffic_sent to ;.
Send elements from each full segment to appropriate destination processor. Add §; to traffic_sent.
Wait for a period of time corresponding to the sending of a message of size r,,.. — traffic_sent.

Send elements in preceding partial segment as a single message to the appropriate destination

processor.
Figure 10: The Concentrate Algorithm
D D(0) D(1) D(2) D(3) - - - -
R 1 4 5 7 . . .
Result - D(0) - - D(1) D(2) - D(3)

Figure 11: The Distribute Primitive

12

- - R .~ ~

n=24 elementsin Number of elements
p=4 processors per processor n/p =6

o R LU (S N

~ - -~

Figure 12: Multiple permutations example

13

condition is fairly unrealistic for coarse-grained architectures and start-up overheads are likely to
dominate the time taken, unless the size of the elements being permuted is large.

If n # p, the n/p permutations can be performed one at a time. This takes én/p+7n/p+ pmn/p
time. If n/p < p, this is the minimal time needed to complete the permutations. If n/p > p, the
two-stage algorithm that does message coalescing may perform better, since that could reduce the
start-up overhead from 7n/p to 7p. For the two-stage algorithm to perform better than the sequence

of permutations algorithm, the following condition must hold:

n n n
—7+ —pum > pr+2—um
p p p
)
= z pT > z,um
p p
2
= n > _rr
T — um

When comparing architectures, the above constraint implies that the two-stage algorithm is better

if 7 > 2% When comparing problems, the two-stage algorithm is better if the size of each element

(n—p%)7 P27
pn -

m < ,
hS o

or if the size of the permutation n > other conditions remaining the same.

T

9 Read Permutations

In a read permutation, the n pointers give the indices of elements from which data is to be obtained.
In the general case, algorithms for a read permutation go through two times the kind of communi-
cation that a write permutation goes through. The first communication involves the sending of the
requesting elements’ addresses to the source processors containing data. The second communication
involves the sending of the requested elements by the source processors. If the data elements are of
size m and the addresses are of size 1, the first communication takes 2pr +pu(2n/p+p?) time while the
second takes 2pr + pu(2mn/p+ p?) time. Thus the read permutation takes 4pr + 2u((m + 1)n/p+ p?)
time, or 2u(m + 1)n/p time when n > O(p®/m + p*r/um). In comparison, the write permutation
with elements of size m takes 2pr + u(2mn/p + p*) time or 2umn/p time under similar restrictions
on n.

The effects of larger element size m on the time taken for read/write permutations are the

following:

1. The minimal requirement on the size of the permutation n for optimality is scaled down by a

factor of m. That is, the requirement n > O(p?) is reduced to n > O(p®/m).

2. Similarly, the requirement on the size of the permutation to avoid domination by start-up
overheads is also scaled down by the factor m. That is, the requirement n > O(p*r/u) is
reduced to n > O(p*r/um).

14

10 EREW PRAM Simulation

The EREW PRAM is a shared-memory parallel programming model which allows only exclusive
reads and exclusive writes. Simultaneous access of a single memory location by more than one-
processor is not allowed. Dynamic permutations form the basic communication primitives for simu-
lating an EREW PRAM. The algorithms described in this paper can thus be used to simulate an n
processor EREW PRAM on a p processor machine. A wide variety of parallel algorithms have been
described in the literature for the theoretical EREW PRAM model [10]. The PRAM simulation
would provide a transparent method for implementing these algorithms on a real machine. The

EREW PRAM simulation is communication-efficient and optimal provided n > O(p® + p*r/u).

11 Conclusions

In this paper we have presented communication-efficient algorithms for performing dynamic per-
mutations on a coarse-grained parallel machine. Any dynamic permutation of size n such that the
sources and destinations are equally divided can be completed in C'un/p time, when the number
of elements n > O(p® + p*7/p) and C is a small constant. The algorithm was generalized to deal
with the case of unbalanced dynamic permutations. Algorithms for special cases such as monotonic
permutations, concentrate/distribute, and multiple permutations were also presented. Scheduling of
static permutations has been discussed in [17, 18].

The constants in the communication time complexity of the algorithms presented in this paper are
very small. This is a necessary requirement for effective utilization of typical coarse-grained machines.
When message sizes are small, latency becomes a dominating issue. Reduction in latency cost at
the expense of sending the message to the final destination processor through several intermediate
processors has been successfully achieved for all-to-all personalized communication with uniform
messages by using a multiphase approach [4]. These techniques reduce on the latency requirements by
transferring the data through several intermediate processors (where several messages are combined).
These methods are equally applicable to our algorithms.

Although our algorithms were presented for a virtual crossbar model, they are relatively archi-
tecture independent and can be efficiently implemented on wide variety of interconnection networks.
In particular, the dynamic permutation algorithm requires just two phases of all-to-all personal-
ized communication with equal sized messages. Several algorithms for the all-to-all personalized
communication exist, with time requirements proportional to traffic for hypercubes with cut through
routing [3] or multiport communication [11], and with time requirements proportional to cross-section
bandwidth for meshes [8] with cut-through routing.

The algorithms performing dynamic permutations take time proportional to (the maximum of)
the total number of participating elements in a processor instead of p times (the maximum of) the
number of elements that could be exchanged between any two processors. This result is of significance

in the analysis of the time complexity of many algorithms. For instance, the sample sort algorithm’s

15

worst-case time complexity is reduced from O(n) [12, page 246] and matrix transpose (with checker-
board partitioning, i.e., block-block distribution) can be shown to be optimal on hypercubes and
meshes with cut-through routing [12, page 158].

By formalizing one-to-one random data accesses, this paper provides a framework for solving
irregular and unstructured applications such as graph problems in which accesses can be arbi-
trary /irregular and one-to-one. It also provides a framework for runtime support for languages
such as HPF, specifically for data redistributions and array reformatting[l] through assignment
statements. Conversions between any two regular distributions (block, cyclic,block-cyclic) in HPF,
between any two irregular distributions, or between a regular distribution and an irregular distri-
bution can all be viewed as dynamic permutations. Optimizations can be added if the distribution
statements are known at compile time or when the accesses have inherent locality. These issues are

under investigation.

References

[1] Seungjo Bae, Sanjay Ranka, Ravi V. Shankar. The Reformat Primitive - Runtime Support for

Data Redistribution and Array Assignment Statements in HPF, (in preparation).

[2] A. Bar-No. and S. Kipnis. Designing Broadcasting Algorithms for the Postal Model for Message-
Passing Systems, Proc. jth ACM Symp. on Parallel Algorithms and Architeclures, 1992, pp. 13—
22.

[3] Shahid H. Bokhari. Complete Exchange on the iPSC/860, ICASE Technical Report No. 91-4,
NASA Langley Research Center, January 1991.

[4] Shahid H. Bokhari. Muliphase Complete Exchange on a circuit-switched hypercube, Proceedings
of 1991 International Conference on Parallel Processing, pp. 525-529, 1991.

[5] Zeki Bozkus, Sanjay Ranka, Geoffrey C. Fox. Benchmarking the CM-5 Multicomputer, Proceed-
ings of the Frontiers of Massively Parallel Computation, pp. 100-107, October 1992.

[6] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, T. von
Ficken, LogP: Towards a Realistic Model of Parallel Computation, Proceedings of 4th ACM
Symposium on Principles and Practices of Parallel Programming, pp. 1-12, 1993.

[7] Willian J. Dally and Chuck L. Seitz. Deadlock-Free Message Routing in Multiprocessor Inter-
connection Networks, IEEE Trans. on Computers, 36(5):pp. 547-553, May 1987.

[8] S. E. Hambrusch, F. Hameed, and A. A. Khokhar, Communication Operations on Coarse-
Grained Mesh Architectures, Technical Report, Department of Computer Science, Purdue Uni-

versity.

16

[9] High Performance Fortran Forum, High Performance Fortran Language Specification, March
1994.

[10] Joseph Jaja. An Introduction to Parallel Algorithms Addison-Wesley, 1992.

[11] S. L. Johnsson, and C. T. Ho, Optimum broadcasting and personalized communication in hy-
percubes. IEEE Transactions on Computers, 38 (9), pp. 1249-1268, September 1989.

[12] Vipin Kumar, Ananth Grama, Anshul Gupta, George Karypis. Introduction to Parallel Com-
puting: Design and Analysis of Algorithms, Benjamin-Cummings, 1994.

[13] C. Leiserson et al. The Network Architecture of the Connection Machine CM-5, Proc. 4th Annual
ACM Symposium on Parallel Algorithms and Archilectures, San Diego, CA, 1992.

[14] MPI Forum. The Message-Passing Interface Standard, University of Tennessee, Knoxville.

[15] Lionel M. Ni and Philip K. McKinley. A Survey of Wormhole Routing Techniques in Direct
Networks, IEEE Computer, 26(2):62-76, February 1993.

[16] D. Nassimi and S. Sahni. Data Broadcasting in SIMD Computers, IEEFE Transactions on Com-
puters C-30(2):101-107 (1981).

[17] S. Ranka, J. C. Wang, and G. C. Fox. Static and Runtime Scheduling of All-to-Many Per-
sonalized Communication on Permutation Networks, IFEF Trans. on Parallel and Distributed

Systems. To appear.

[18] S. Ranka, J. C. Wang and M. Kumar. All-to-many communication avoiding node contention,

Journal of Parallel and Distributed Computing. To appear.

[19] Ravi V. Shankar, Khaled A. Alsabti, Sanjay Ranka. The Transportation Primitive, CIS Technical
Report, Syracuse University, August 1994.

[20] Ravi V. Shankar, Sanjay Ranka. Random Data Accesses on a Coarse-Grained Parallel Machine
- II. One-to-many and Many-to-one Mappings, October 1994.

[21] Ravi V. Shankar, Sanjay Ranka. Parallel Vision Algorithms Using Sparse Array Representations,
Pattern Recognition, 1993, vol. 26, No. 10, pp. 1511-1519.

[22] H. Shi, J. Schaeffer. Parallel Sorting by Regular Sampling. Journal of Parallel and Distributed
Computing, Vol.14, pp.361-372, 1990.

17

