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Abstract

Irregularly coupled regular mesh problems arise in important application areas, e.g., fluid flow simulation and
aerodynamic simulation. Such simulations are computationally intensive and inherently parallel. Unfortunately,
parallel programming languages such as High Performance Fortran provide little explicit support for these prob-
lems. It is essential that these applications be automatically parallelized when the mesh configurations are gener-
ated automatically. Here we develop an algorithm that automatically determines, at compile time, distributions
for a class of irregularly coupled regular mesh problems. The input for the algorithm is a well-structured modern
Fortran program, a description of the regular meshs, and a description of the topological connections between
the regular meshs. We illustrate the description of topological connections by extending Fortran D specifications
with a statement that allows the user to specify connectivity between meshs. In addition, the user specifies the
target architecture and the number of processors, P. A standard processor configuration is an n-dimensional
processor mesh with at most the same number of dimensions as the target architecture and exactly P processors.
The algorithm begins by finding an optimal (according to a model) mapping of array dimensions onto processor
dimensions for each mesh and standard processor configuration. Next, the standard processor configuration and
associated mapping that minimizes the total computation and internal (to the meshs) communication is selected.
Finally, the meshs are aligned with respect to each other in order to reduce coupling communication cost in the
selected mapping. This results in full distribution and alignment specifications. These specifications are used as
input to a High Performance Fortran program that applies the selected mapping (distribution and alignment)
for the execution of the simulation code. Excerpts from such a High Performance Fortran program are presented
to illustrate style and compilation issues. Some of the advantages to this automatic approach are that it is
applicable for run-time or compile-time analysis and communication generation; conforms to a uniform memory
model; is applicable even when automatic verification of parallelism over meshs is not possible; is applicable for
SIMD architectures; and is easily applicable to Fortran D or High Performance Fortran compilation. A sample
High Performance Fortran code was used with three real-world irregularly coupled regular mesh configurations
to validate this algorithm.

1 Background: Irregularly Coupled Regular Mesh Problems

Detailed simulation of complex physical phenomena is computationally intensive. An increasing number of phys-
ical phenomena simulations involve more than one grid. Each grid in these problems corresponds to a different
physical entity. A simple example of this type of problem is the simulation of the material flow through an elbow
with two parallel vanes inside. Hugh Thornburg at Mississippi State University generated coupled meshs for this
simulation, which are shown in Figure 1.

Perhaps one of the best known application areas for multiple grid approachs is aerodynamics. In aerodynamic
simulations, different grids are used to resolve flow in the space surrounding the fuselage, wings, foreplane, pylons,
etc. [22, 5, 18]. Two examples of grids for such aerodynamic simulations are shown in Figure 2 and Figure 3.
The grid descriptions for both of these examples were provided by Paul Craft who works with Dr. Brahat Soni at
Mississippi State University. These examples are used for validation of our algorithms in this paper. Applications
of this type are called multiblock, composite grid or irregularly coupled regular mesh(ICRM) problems.

Many ICRM problems require the use of the fastest computers available, even for simplified simulations.
For the solution of the grand challenge simulations in these problems, it is clear that parallelization will be
necessary. For example, HOPE [22] is a winged vehicle for space transportation called the H-IT Orbiting Plane
planned by the National Space Development Agency of Japan. To make accurate simulation of re-entry feasible,
hypersonic aerodynamics and aerothermodynamic characteristics must be precisely evaluated. Simulation of one
model of a HOPE vehicle provides an indication of the number of grid points used in such computations. In one
unsymmetrical calculation of the HOPE 63 model, a total of approximately 9,000,000 grid points were used in
the three-dimensional grids.

Fortunately, these problems are inherently parallel. Unfortunately, they are not necessarily easy to parallelize.
From Smith and Eriksson [17], we see that along with the computational complexity there is added complexity
due to the need for multiple coupled grids:

Generating structured grids about complex geometries that map into a single rectangular computational
block is, for all practical purposes impossible. Considering this dilemma, there are two directions that
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Figure 1: Automatically Generated Grids for Flow through an Elbow

can be taken for creating multiple block structured grids. They are:

1. create multiple grids that adjoin each other, or

2. create multiple grids that overlap each other.

In recent years, it has become possible to automatically generate the grids used in some ICRM problems[15, 19,
14,1, 17, 20, 16]. Shaw and Weatherill [15] provide an introduction to the problem of automatic grid generation
and the difficulty encountered when generating grids for multiblock problems:

The fundamental problem that is encountered in the construction of structured, body-conforming
meshs for general aerodynamic configurations is that each component of the configuration has its own
natural type of grid topology and that these topologies are usually incompatible with each other. In
other words, in attempting to discretize the flow domain around an arbitrary set of two-dimensional
shapes, or some complex three-dimensional shape, a direct conflict arises between the maintenance of
a globally structured grid and the preservation of a grid which naturally aligns itself with the local
geometric features of a configuration.

This inconsistency has motivated the development of a general category of mesh construction tech-
niques know as multiblock or composite grid generation. Here, the single set of curvilinear coordinates,
inherent to a globally structured grid, is replaced by an arbitrary number of coordinate sets that inter-
face node to node with each other at notional boundaries within the physical domain. Returning to the
mapping concept, the approach can be viewed as the decomposition of the flow domain into subregions,
which are referred to as blocks, each of which is transformed into its own unit cube in computational
space. Global structure within a grid is sacrificed, but the concept proves the flexibility of connections
required to construct a grid whose topological structure, local to each component of a complex config-
uration, is compatible with the particular geometric characteristics of the component. All points which
are connected by a common coordinate system can be directly referenced with respect to each other,
but bear no direct structured relationship to any of the grid points that lie in coordinate-sets in other
blocks.

Thus, the multiblock technique necessitates information to be defined describing how the blocks
connect together...
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Figure 2: F15e Volume Grid Configuration for Fuselage-Inlet-Nozzle

When grids are generated automatically, it is particularly important that distribution is done automatically.
The applications programmer must not be required to decipher the automatically generated grid assembly and
parallelize the simulation code for a specific configuration by hand.

As a result we have a set of computationally intensive problems that are inherently parallel but difficult to
parallelize efficiently. None of the approaches to parallelization of these problems save the programmer from
having to decipher the grid assembly and determine the data distributions. The one type of ICRM problem for
which automatic distribution has been explored is multigrid. Thuné has been working on automatic distribution
of data structures for multigrid computations[21].

We are working to make parallelization of these applications easier for the user as well as efficient and applicable
to a large class of architectures. To this end, we must develop an approach that achieves more of the computational
efficiency of a regular approach. We exploit not only the regularity inside of each mesh, but also the topology
of the connections between meshs to automatically determine distribution of data structures. We illustrate the
topological information that must be extracted via an extension of Fortran D (coupling specifications). We extend
compiler technology to illustrate automatic parallelization of large mesh ICRM codes. This research is based on
an understanding of problem topology. Here we target applications with automatically generated meshs where
the “annotations” are part of the input. This work provides an important first step in automatic parallelization
of large mesh ICRM applications. To use this preliminary version of the approach, a programmer would have to:

1. Write a High Performance Fortran program of the type described herein.

2. Specify the mesh and topological connectivity information in a “standard” form.
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Figure 3: F15e Volume Grid Configuration for Full Aircraft

Note that in the applications under consideration all data structures are aligned to the decompositions in the
same way. Our methods determine how to map the decompositions to the specified processor array. When grids
are generated automatically, the necessary information could be obtained by translating the grid specifications
that are part of the input file. In this case the specifications presented here indicate what information must be
extracted from the input.

The example grids for aerodynamic simulations shown in Figures 2 and 3 were automatically generated using
GENIE++, as were the grids for the elbow in Figure 1.

2 Language Support for ICRM Problems

For illustrative purposes, we introduce an extension of Fortran D for the specification of mesh coupling. We
could have extended other data parallel languages, e.g. Vienna Fortran or HPF, in an analogous manner. Our
validation results are obtained by generating an HPF code and compiling it on Digital Equipment Corporation’s
HPF compiler.
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2.1 Specification of Topological Connectivity

We illustrate the specification of topological connectivity via an extension to Fortran D[6, 9] that describes the
connections between coupled decompositions. We first introduce two problems that will be used to illustrate
the algorithms presented in this paper. In the grid illustrations, dashed lines represent couplings and solid lines
represent the boundaries of the grids.

/ —==f--===- C(640,320) E(640,320)
—————— --- T
1 1 1
1 [ 1
1
__________ 1 D(220,640)
1
A (40,40,40) B (40,40,40) Lo ____
Figure 4: 3D CFD Multiblock Configuration. Figure 5: 2D-Multiblock Configuration.

The first example problem is a multiblock CFD problem. The problem is to analyze transonic flow over 3-d
configurations by solving the unsteady thin-layer Navier-Stokes equations. The problem was used by J. Saltz [3]
to show the feasibility of the PARTI multiblock approach to parallelization of ICRM problems. This problem
consists of two meshs, A and B, each of which are 40x40x40 with one coupled face. These meshs are illustrated
in Figure 4. We refer to this as the 3D-CFD problem.

A second example for algorithm illustration involves a computation associated with the trio of coupled two
dimensional grids illustrated in Figure 5. This problem illustrates some features of the distribution algorithm
that are not evident with the first example. We will refer to this as the 2D-Multiblock problem.

Consider our 3D-CFD example. We need to couple two faces: the face of A where the second dimension index
is 40 to the face of B where the second dimension index is 1. To express this in a COUPLE statement we could

declare
couprLE A[(1,1:40),(2,40:40),(3,1:40)] wite B[(1,1:40),(2,1:1),(3,1:40)]

where each entry of the form (d,s:f) is specifying the range of elements (s to f) to be coupled in dimension d. We
need to specify the dimensions to be able to express couplings between different dimensions of the decompositions.
For example, the couplings in our 2D-Multiblock example would be declared as follows.

couPLE C[(1,640: 640),(2,1:320)] witH D[(2,1:1),(1,1: 320)]
CoUPLE E[(1,640 : 640), (2,310 : 320)] wiTh D[(1,1: 1), (2,630 : 640)]
couPLE C[(1,10:10),(2,320:320)] witH E[(1,10: 10),(2,1: 1)]

This form does not support negative or non-unit strides. With this restrictive form it would take ten COUPLE
statements to express the coupling in Figure 6. Hence we add an optional stride and we can declare:

coUPLE F'[(1,1:10),(2,5:5)] witH G[(1,10:1:-1),(2,1:1)]
The form for this coupling specification is:

COUPLE A[(dima1, starta; : endas : stridea), (dimasz, startas : endas : stridess))
WITH B[(dimp, startp; : endp; : stridepy), (dimpa, startps : endps : strideps)]

This couples decomposition A’s elements, in dimension dim4; of A, in the range starts; to endy; starting in
position start 41 with stride stridea; to B’s elements, in dimension dimp; of B, in the range startp; to endp;
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Figure 6: Negative Stride Coupling Example.

starting in position startp; with stride stridep;. The coupling for the subscript 2 elements is similar. Specifying
the dimensions for each range of elements allows arbitrary coupling between different dimensions. The stride is
optional and has a default value of 1.

This illustrates the type of coupling information that must be extractable from the input file for these appli-
cations. For a more general form of coupling specification see[10].

2.2 Programming Style Recommendations

Here we attempt to outline a programming style that is natural to ICRM applications such as aerodynamic
simulations, but does not inhibit dependence analysis. The style should also make development and support more
efficient in terms of programmer effort. Further, programs written in this style should achieve good performance
when compiled by a good compiler. We will describe this style in terms of HPF[7].

Two of the most important features of a modern language, for the current discussion, are dynamic memory
allocation and user-defined data types. The user-defined data types allow all of the arrays and scalars for a given
mesh to be grouped into one data structure with the actual storage for the arrays being allocatable at runtime
according to the input. Further, an allocatable array of such structures can be used to represent all of the meshs
of a given type, i.e., all meshs with the same basic computation. For example, in many aerodynamics simulations
there would be one allocatable array of structures for all of the meshs surrounding the aircraft as the same basic
computation is performed for each mesh. This implies that the program has one allocatable array of structures
for each type of mesh. The basic ideas for data structure creation are:

e arrays for each component are dynamically allocated;

e all arrays and scalars for each component type are grouped into a user defined data structure;
e arrays of user defined structures are allocated dynamically;

e there is an array of user defined data structures for each type of component.

There is also a compute routine associated with each type of mesh which is called with each structure on every
time step. In addition there must be a routine for internal boundary data exchange for each pair of mesh types.

Given a program written in this style and an understanding of how the input file relates to the allocation of these
structures, the analysis necessary for execution of the automatic distribution algorithm should be manageable.

3 Automatic Distribution Algorithm

Minimally, for the algorithm we will describe shortly to be used, we need, in addition to the coupling specifications,
measures of:

e the amount of computation per element in each mesh,

e the amount of communication in each dimension of each large mesh, and
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e the amount of communication between each coupled pair of elements in each coupling between meshs.

Note that for most large mesh applications the nature of the computation is the same on all meshs; the nature
of the communication is the same in each dimension; and the coupling cost is the same for each pair of coupled
elements. An estimate of these statistics could be provided by the user, but that alone does not eliminate the
communication analysis needed in a Fortran D or HPF compiler or a runtime system such as PARTI. We want
to save the user as much work as possible, so we would like to move as much of the analysis into the compiler as
we can.

For this work, we restrict ourselves to consideration of ICRM applications in which:

¢ all meshs are large enough to be efficiently distributed over all processors; and

e computations inside of each mesh are regular (this implies regular internal communication for each mesh
after distribution).

We are currently targeting a torus based communications topology. This does not seem unreasonable as most
available machines either are meshs or can have them efficiently embedded in the machine topology.

In our preliminary experiments all analysis was performed by hand, although a preliminary implementation of
the analysis is in progress.

We now begin with an overview of our automatic distribution algorithm and then consider each step of the
algorithm in more detail. Details of code generation and sample compiler support will follow next. This section
will conclude with a discussion of the limitations and advantages of this approach.

For efficient parallelization of ICRM applications, we would like to distribute each mesh according to its
dimensionality [12]. On the other hand, the resulting code should have uniform memory allocation. Let n be the
dimensionality of the mesh with the fewest number of dimensions. Then we will distribute all of the meshs over all
of the processors in an n-dimensional processor topology. Some of the dimensions of higher dimensional meshs will
be serialized. In this manner we attempt to balance the tradeoffs between the computation to communication ratio
considerations relating to using the natural topology parallelization for every mesh and the memory allocation
issues in SPMD Fortran codes.

The user provides mesh and coupling specifications along with how many processors to use on the target
machine. These may be runtime input, but we are assuming we have runtime constants available to the algorithm.

Our automatic distribution algorithm must take into consideration the user provided information, the program
and the topology of the target machine. Since we are given the number of processors to use on the target
machine, there are only a fixed number of possible m-dimensional processor configurations that can be used,
where 1 < m < mazimum processor dimensionality. We limit this set to only those configurations with at
most n dimensions (recall n is the number of dimensions in the mesh with fewest dimensions) and call this set
the “standard processor configurations”. The final mapping of decompositions will be to the standard processor
configuration with the fastest total predicted runtime.

The basic idea of the automatic distribution algorithm is to perform the following steps.

1. Analysis: the program is analyzed to determine the approximate computation associated with each decom-
position, the approximate communication associated with each dimension of each decomposition and the
approximate communication associated with each pair of coupled decompositions. Alternatively this could
be user input as for these problems this a single set of numbers.

2. Table Generation: the best mapping and predicted runtime for each decomposition on each standard processor
configuration is found independently, ignoring coupling communication cost. Basically, we do an exhaustive
search of mappings to find the best mapping to each standard processor configuration. Alternatively, we can
use heuristics to limit the search space.

3. Global Minimization: the standard processor configuration that produces the minimum total runtime for
all decompositions is found, ignoring coupling communication cost. This requires a sum for each standard
processor configuration over all decompositions and selecting the one with the minimum runtime.

4. Coupling Communication Reduction: the decompositions are distributed across the standard processor con-
figuration to reduce coupling communication cost (via transposing and/or shifting or folding around the
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Decomposition A Decomposition B
SpC Time Map SPC Time Map
(32,1,1) | 3483.3 | ( ) (32,1,1) | 3483.3 | ( )
(16,2,1) | 2570.7 | ( ) (16,2,1) | 2570.7 | ( )
(8,4,1) | 2128.0 | (2,3,1) (8,4,1) | 2128.0 | (2,3,1)
(2,1,3) (2,1,3)
(23,1) (23,1)

(8,2,2) | 2118.8 (8,2,2) | 2118.8
(4,4.2) | 21127 (4,42) | 21127

Figure 7: 3D-CFD Tables

torus). The heuristic we use is to reduce the maximum coupling communication cost for each decomposition.
This is done by aligning the coupled subsections of coupled dimensions of different decompositions.

The distribution decision procedure for selecting a data distribution uses the computational model presented in
[8]. The model provides expected runtimes based on application and machine parameters as well as the selected
data distribution. Any model could be used which will predict approximate runtimes of different mappings on
the target machine.

For the presentation of algorithmic details, we will denote variables associated with a particular decomposition
using a “decomposition name” dot “variable name” notation, e.g., A.size[i] is the number of elements in the i'"
dimension of decomposition A.

3.1 Table Generation

In this first stage, for each standard processor configuration, we can evaluate the model for all mappings of the
decompositions dimensions onto the dimensions of each standard processor configuration. This is an exhaustive
search for the best mapping of a decomposition onto each standard processor configuration.

A table of entries is built with one entry per standard processor configuration. Each entry consists of an
assignment of decomposition dimensions to processor dimensions and a predicted runtime. Note that only one
decomposition dimension may be assigned to any processor dimension and that all unassigned dimensions are
sequentialized.

For each standard processor configuration, all assignments of decomposition dimensions to processor dimensions
are tried and one with the best predicted runtime is stored. When two mappings produce the same predicted
time, one is selected arbitrarily.

In the worst case, for each standard processor configuration, we are looking at all partitions of the decompo-
sition’s dimensions, d4, into the processor’s dimensions, pg. There are ﬁ such partitions.

Since Fortran allows at most seven dimensions in arrays, dg and pg are less than or equal to seven. From this,
for ALL problems there are most at 7! partitions for any standard processor configuration. More typically, dgy < 4
and pg < 3 so that the number of partitions is less than or equal to 24.

The total number of standard processor configurations with pg or fewer dimensions is:

Upd(f) = Upd—l(f) + Upd(f - Pd)
npd(o) =1
m(f) =1

where 2/ is the number of processors. This is the same as the number of partitions of an integer, f, into pg or
fewer summands [4, 13].

Consider a machine with 2!* processors configurable in up to seven dimensions. For such a machine, there would
be 105 standard processor configurations. As a more realistic example, consider a machine with 2'* processors
that can be configured with one, two or three dimensions then the number of standard processor configurations

1s 24. For this machine there are
3 3 3
1*<1>+7*<2)—|—16*<3)_40
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Decomposition C Decomposition D Decomposition E
SPC Time | Map SPC Time | Map SPC Time | Map
(32,1) | 7143.6 | (1,2) (32,1) | 7143.6 | (2,1) (32,1) | 7143.6 | (1,2)
(16,2) | 7126.4 | (1,2) (16,2) | 7126.4 | (2,1) (16,2) | 7126.4 | (1,2)
(8,4) | 7124.0 | (1,2) (8,4) | 7124.0 | (2,1) (8,4) | 7124.0 | (1,2)

Figure 8: 2D-Multiblock Tables

evaluations of the model for each three dimensional decomposition. Hence, even when all possible mappings are
evaluated, there is a constant upper bound on the number of evaluations to be done for each mesh.

The tables generated for the 3D-CFD and 2D-Multiblock examples are shown in Figures 7 and 8 for the case
when 32 processors are used. In the tables, a standard processor configuration is specified by the number of
elements in each dimension. The mapping specifies which dimension of the decomposition is mapped to the
corresponding dimension of the standard processor configuration. For example, (2,1) specifies that the second
dimension of the decomposition is mapped to the first processor dimension and vice versa. In the 3D-CFD problem
the number of bytes of communication is higher in the first dimensions than in the other two. This makes it more
favorable to use fewer processors in the first dimension than in the others. This leads to a heuristic for reducing
the number of mappings that are considered.

Heuristic 1 When one dimension of a decomposition has more communication than the other dimensions, if the
standard processor configuration has fewer processors in one dimension than the other dimensions, then map the
decomposition dimension having greater communication to the processor dimension with fewer processors.

In the 2D-Multiblock problem the number of bytes of communication is the same in each dimension of each mesh.
This makes the number of elements to be communicated be the only communication factor that influences the
choice of mapping. Surface to volume effects[12] imply we want to have each communication “edge” be the same
length. This leads to our second heuristic for reducing the number of evaluations of the model.

Heuristic 2 When every dimension of a decomposition has the same amount of communication, if the stan-
dard processor configuration has fewer processors in one dimension than the other dimensions, then map the
decomposition dimension having the fewest elements to the processor dimension with the fewest processors.

Finally consider the case when two dimensions of a mesh are the same size and have the same amount of
communication, e.g., the second and third dimension in the 3D-CFD example. This consideration leads to our
final heuristic.

Heuristic 3 When two dimensions of a mesh have the same size and communication, for each pair of mappings
with these dimensions interchanged only one of the mappings needs to be evaluated. We record pairs of equivalent
dimensions for possible use during coupling communication reduction.

In practice we only apply the heuristics when the number of elements in each dimension of the decomposition is
divisible by the number of processors in each dimension. With this qualification, we have found that the heuristics
usually produce the same results as the exhaustive search. The only exception to this is caused by the use of the
last heuristic, where the heuristic provides better performance as it allows interchange while the exhaustive does
not.

3.2 Global Minimization

In the global minimization step, we want to select the standard processor configuration that will produce the best
runtime for all of the meshs combined. To do this, we sum over the decomposition tables to find the standard
processor configuration with minimum total predicted runtime. At this point we would have the optimal mapping
(according to the model) if there was no communication between the different decompositions.

We begin by creating a new standard processor configuration table with each entry initialized to zero. Iterating
over all of the standard processor configurations, for each decomposition’s table we add the decomposition’s
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predicted runtime to the total runtime for the standard processor configuration. The minimum value in the total
runtime table is indexed by the standard processor configuration which we want to choose as the “best” one.
This stage of the algorithm takes time on the order of the number of standard processor configurations times
the number of decompositions. This step of the procedure puts the greatest accuracy requirements on the model
as we add predicted runtimes.
For the 3D-CFD problem the best standard processor configuration using 32 processors is (4,4,2) and for the
2D-Multiblock problem it is (8,4).

3.3 Coupling Communication Reduction

The purpose of coupling communication reduction is to use the knowledge of topology to reduce communication
costs associated with coupling. The heuristic used attempts to minimize the maximum cost coupling communi-
cation for each decomposition subject to the dimension mapping already selected. This is done by aligning the
centers of the coupled subranges of dimensions and setting directions (increasing or decreasing) to be the same
for each processor dimension. Further, if interchanging two equivalent dimensions will reduce coupling cost, the
interchange is performed.

For each dimension of every decomposition we will select a starting processor index and a direction. The
processor index, (between 1 and the number of processors in the processor dimension that the decomposition’s
dimension is mapped to), specifies which processor contains the first block of elements for the given dimension
of the decomposition. The direction, (+1 or -1), specifies whether the elements in the decomposition’s dimension
will be mapped in increasing or decreasing order.

Begin by selecting the decomposition with the single highest coupling communication cost and call it D;.
We set the processor index for D; to 1 and the direction to increasing in every parallel dimension. D; is now
completely mapped to the best standard processor configuration. Make D; the only element in the set MAPPED.
Create a max heap of all couplings involving D; with order determined by the coupling costs.

Now we repeat the following steps until all decompositions are in the set MAPPED.

1. Delete the maximum element from the coupling heap.

2. If both decompositions in the coupling are MAPPED then return to step 1. Otherwise, call the unmapped
decomposition in the coupling D, and call the mapped decomposition D,,.

3. If interchanging equivalent dimensions of D,, decreases coupling cost then do it.

4. Consider each pair of dimensions, where dimension D,,.7 is the dimension of D,, coupled to dimension ¢
D, and the dimensions are both mapped to the same processor dimension. From the coupling specification
for the dimension of D,, we get D,,.start, Dy,.end, and D,,.stride and for the dimension of D, we get
Dy .start, D, .end, and D, .stride. Since D,, is already mapped we have the D,, .direction and D,,.start_proc
for each dimension. To map dimension ¢ of D,, we must find the direction and the starting processor.

e The direction for D, is the same as that of D,, if the stride for the coupling for each decomposition is
either increasing or decreasing. If one decomposition’s stride is increasing and the other decomposition’s
stride is decreasing then the direction for D, is minus the direction for D,,.

e Determine the offset of the processor which owns the middle entry of the coupling in the given dimension
of D,,, call it D,,.Poffset.

e Determine the offset of the processor which owns the middle entry of the coupling in the given dimension
of Dy, call it D,.Poffset (as if D, was mapped beginning in processor 1).

e Determine the processor which should own the first element of the current dimension of D,. It is
D, .start_proc[Dyy,.i] + Dy, .Poffset - D,.Poffset.

5. For each pair of coupled dimensions that are not mapped to the same processor dimension we find the
direction and starting processor for D, as follows.

e The direction for D, in the dimension is positive (this is arbitrary).

e Find the dimension of D, that is mapped to the same processor dimension as the current dimension of
Dy, label it Dy, .i.
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e Let k be the index in the coupling specification that involves dimension D,,.i of D,,.

e Determine the offset of the processor which owns the middle element of the k' coupling entry for D,,,
call it D,,.Poffset.

e Determine the offset of the processor which owns the middle entry of the coupling in the current
dimension of Dy, call it D,.Poffset (as if D, was mapped beginning in processor 1).

e Determine the processor which should own the first element of the current dimension of D,. It is
D, .start_proc|[ Dy, .i] + Dy, .Poffset - D,.Poffset.

6. For each coupling involving D, which has not already been put into the heap, insert it.

7. Add D, to the set MAPPED.

Decomposition | Direction | Starting Processor
A (1,1,1) (1,1,1)
B (1,1,1) (1,1,1)

Figure 9: 3D-CFD Directions and Starting Processors

Decomposition | Direction | Starting Processor
C (1,1,1) (8,1,1)
D (1,1,1) (1,1,1)
E (1,1,1) (1,1,4)

Figure 10: 2D-Multiblock Directions and Starting Processors

The time for this stage of the algorithm is bounded by the number of distributed dimensions multiplied by
¢ log ¢, where ¢ is the number of couplings in the system (¢ > number of meshs — 1).

Figures 9 and 10 show the directions and starting processors for the 3D-CFD and 2D-Multiblock problems
respectively that result from the application of coupling communication reduction.

3.4 Support for High Performance Fortran Programs

To eliminate the need for the programmer to perform tedious and highly error prone portions of the parallelization
process, we here specify the program form that we will accept for transformation, what transformations will be
performed and what the resulting code will look like. The input program form specifies: the levels of “contains”
used; the beginning form of the input file; the basic data structure declarations; the high level structure of the
main program and main subroutine; and the parameter passing assumptions. We will point out different options
for the user in appropriate portions of the code. We of course, assume that the program must avoid difficult to
analyze constructs, such as arbitrary use of pointers and computed gotos. The transformations we will discuss
include: additions to the user defined data structures; additions to the input routine; additions to all routines
called by the main subroutine that have meshs passed in (TEMPLATE, ALIGN, and DISTRIBUTE statements); and
subroutine cloning for each possible alignment order. Finally, we will present the High Performance Fortran
program that results from these transformations and discuss some important points that are illustrated by the
programs form. Note that the user could write their application in this form and then just use the distribution
algorithm for generating distributions for all of the meshs.

3.4.1 Original High Performance Fortran Program

Here we show an example of the coding style that we are advocating. In the HPF code segments, shown in
Figures 11 - 13, every line that is continued should have an & in column 73. With this exception, the code is
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the same as the one that the user should generate for the problem in our validation experiments. The guiding
principles in the determining the programming style that should be used for these applications are:

e the programming style should be natural for the application to reduce development and support costs;

e the programming style should be relatively easy to analyze to reduce the cost of compilation and increase
the the level of performance the compiler can provide;

e the program structure that the programmer uses should be similar to the program structure that precompiler
generates to better support debugging;

e the precompilation should be machine independent to allow its use with the machine dependent compiler for
any parallel processor.

subroutine read_meshs_3d() subroutine allocate_all_meshs()

read (*,*) Hum_3d_meshs do i = 1, Num_3d_meshs
allocate(Meshs_3d(Hum_3d_meshs)) call allocate_3d(Meshs_3d(i))

do i = 1, Num_3d_meshs end do

read (*,*) Meshs_3d(i)%size end subroutine allocate_all_meshs
end do
end subroutine read_meshs_3d subroutine update_mesh_3d(Mesh_info,dthlf,dt)
use physics

subroutine allocate_3d(Mesh_info) type (mesh_3d) Mesh_info

type (mesh_3d) Mesh_info real dthlf, dt

real, pointer :: all_array(:,:,:) C ... updates for arrays associated with current mesh
allocate(all_array(Mesh_info¥%size(1), end subroutine update_mesh_3d
3 Mesh_info%size(2),
g Mesh_info%size(3)))

Mesh_info%p => all_array
nullify(all_array)

C ... repeat allocation for q, u, v, zm, x, y, 2z
end subroutine allocate_3d

Figure 11: Original HPF example input and compute routines for 3D meshs.

Figures 11 - 13 outline the form of the code that is to be hand-written by the application programmer. The
input/allocation structure shown in Figure 11 could be simplified to into a single routine that reads and allocates,
which would then have to be split by the compiler to produce a correct HPF code. We suggest this form instead
as then the basic structure of the resulting code that is compiled and run will be similar and hence easier to
debug.

A note about the structure of the user defined data structure mesh_module and the associated storage al-
location. Since HPF does not currently allow distribution of elements of user defined data structures, we have
the programmer use a pointer to allocate the arrays and then the structure array is set to point to the correct
memory. We can allow the program to use allocatable arrays in the user defined data structure as well, but note
that these arrays must be allocatable because the sizes are not available until runtime. Hence we can use the
input and allocation as flags to notify the precompiler that these are to be distributed data structures. Here we
have the user pass the entire structure for each mesh that is passed to any subroutine. We could allow the user to
pass the elements of the structure instaed, but that requires more work from the user, and the compiler, without
providing significant advantages.

Finally, the parameters to the HPF specifications must be constant upon entry to subprogram level. Hence
the programmer writes a routine, main_routine, that does everything except for the input which is done in the
main program before calling main_routine. The calls to the system clock are only for timing and hence are not
required to be part of the program.

Next, consider the coupling specifications and updates. The couplings are read into a user defined data structure
that is classified according to the dimensionality of the meshs being used, see Figure 13. If this approach leads to
having too many user defined types of couplings, then we could extend the approach to allow the user to have one

Page 12



module mesh_module c subroutine main_routine continued
type mesh_3d

real, pointer, dimension(:,:,:) :: p, q, u, v, zm do i=1, Num_3d_couplings
real, pointer, dimension(:,:,:) :: x, y, 2 id_A = Couplings_3d(i)%id_A
end type mesh_3d id_B = Couplings_3d(i)%id_B
type coupling_3d call update_couplings_3d(Meshs_3d(id_4),
integer id_A, id_B & Couplings_3d (i) ,Meshs_3d(id_B),dthlf,dt)
integer lo_A(3), hi_A(3), lo_B(3), hi_B(3) end do
end type coupling_3d end do
type (mesh_3d),allocatable,dimension(:)::Meshs_3d call system_clock(ie_count,ie_count_rate,ie_count_max)
integer Num_3d_meshs ,Num_3d_couplings C ... print results, etc.
type (coupling_3d),allocatable,
& dimension(:)::Couplings_3d C all subroutines except read_meshs_3d & read_couplings_3d
contains end subroutine main_routine
subroutine main_routine C subroutines read_meshs_3d and read_couplings_3d go here
call allocate_all_meshs
do i=1, Num_3d_meshs end module mesh_module
call initial_3d(Meshs_3d(i),dthlf,dt)
end do program big_mesh
call system_clock(is_count,is_count_rate, use mesh_module
& is_count_max) C The computation/communication reflect the CFD codes
do i_step = 1, Num_steps C at Mississippi State for aerodynamic simulations.
do i=1, Num_3d_meshs read (*,*) Num_steps
call update_mesh_3d(Meshs_3d(i),dthlf,dt) call read_meshs_3d()
end do call read_couplings_3d()

call main_routine()
end program big_mesh

Figure 12: Original HPF module, main subroutine and main program.

type and dynamically allocate and read the hi and lo arrays in the structure according to the dimensionality of
the mesh being coupled to. The coupling update routine illustrates the use of dynamic temporaries in the update
of the coupled sections of the two input meshs. In this example we have used a simple linear weighting of the
coupled sections to update the coupled regions, but there is such restriction intended in user programs. Further
it is possible that the user program may have couplings that involve more that two meshs. These cases can be
handled in essentially the same way as the two mesh case.

3.4.2 Transformation and Final High Performance Fortran Program

Here we discuss how the example from the previous section is transformed and show what the resulting code
looks like. In the HPF code segments, shown in Figures 14 - 16, every line that is continued should have an & in
column 73. With this exception, the code is the same as we would generate in a precompiler. Further this is the
same as the one that we originally generated by hand for our validation experiments. The reason that we want a
precompiler here is that the HPF language definition does not explicitly require the interprocedural analysis that
is needed to perform the transformations that we will discuss. For example, interprocedural analysis is needed
when specific arrays are passed instead of user defined data structures to verify that all of the arrays are from
the same structure. If they are not then they may have a different distribution and that requires more cloning.
With the use of a precompiler, which is completely machine independent, we can use any HPF compiler that is
available for the machine that the user is interested in running on.

In Figure 14 the results of the following transformations can be found. The input routine(read_mesh_3d)
is modified to read the existing data distribution information from a specific file. The array allocation
routine(allocate_3d) has templates, alignment and distribution information added. It is then cloned for each
possible alignment dimension order. Note that if the programmer had declared all of the arrays in the data
structure to be allocatable, but not pointers, then the tranformation would require that they be changed to
pointers and the pointers be generated as in the figure. This form is necessary, as HPF does not currently allow
distribution of elements of user defined data structures. The routine to allocate all of the meshs in all of the user
defined data structures(allocated_all_meshs) has a case structure added to select the correct cloned allocation
routine for each mesh according to the distribution order read from the input file. The routine to perform mesh
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subroutine read_couplings_3d() C subroutine update_couplings_3d continued
read(*,*) Num_3d_couplings

allocate(Couplings_3d(Num_3d_couplings)) real y_tmp(Couple%hi_A(1)-Couple¥%lo_A(1)+1,
do i = 1, Num_3d_couplings & Couple%hi_A(2)-Couple%lo_A(2)+1,
read(*,*) Couplings_3d(i)%id_A, & Couple’hi_A(3)-Couple%lo_A(3)+1)
& Couplings_3d(i)%id_B real z_tmp(Couple%hi_A(1)-Couple¥%lo_A(1)+1,
read(*,*) Couplings_3d(i)%lo_A, & Couplehi_A(2)-Couple¥lo_A(2)+1,
& Couplings_3d(i)%hi_A, & Couple¥hi_A(3)-Couple%lo_A(3)+1)
& Couplings_3d(i)%lo_B, p_tmp(1:Couple%hi_A(1)-Couple¥lo_A(1)+1,
& Couplings_3d(i)%hi_B & 1:Couple%hi_A(2)-Couple%lo_A(2)+1,
end do & 1:Couple%hi_A(3)-Couple’lo_A(3)+1)
end subroutine read_couplings_3d & = Mesh_A%p(Couple%lo_A(1):Couple¥hi_A(1),
& Couple%lo_A(2):Couple?hi_A(2),
subroutine update_couplings_3d(Mesh_4,Couple, & Couple%lo_A(3):Couplefhi_A(3))
& Mesh_B,dthlf,dt) C ... save all the temporaries
type (mesh_3d) Mesh_A, Mesh_B Mesh_A%p(Couple%lo_A(1) :Couple%hi_A(1),
type (coupling_3d) Couple & Couple%lo_A(2) :Couple¥%hi_A(2),
real dthlf,dt & Couple%lo_A(3) :Couple¥%hi_A(3))
real p_tmp(Couple%hi_A(1)-Coupleflo_A(1)+1, & = Mesh_BYp(Couple%lo_B(1):Couple¥hi_B(1),
& Couple%hi_A(2)-Couple%lo_A(2)+1, & Couple%lo_B(2):Couple%hi_B(2),
& Couple%hi_A(3)-Couple%lo_A(3)+1) & Couple%lo_B(3):Couple%hi_B(3)) * alpha
real q_tmp(Couple%hi_A(1)-Couplello_A(1)+1, & + Mesh_A%p(Couple¥lo_A(1):Couple¥hi_A(1),
& Couple%hi_A(2)-Couple%lo_A(2)+1, & Couple%lo_A(2):Couple%hi_A(2),
& Couple?%hi_A(3)-Couple%lo_A(3)+1) & Couple%lo_A(3):Couple%hi_A(3)) * (1-alpha)
real u_tmp(Couple%hi_A(1)-Coupleflo_A(1)+1, C ... update all of the ‘‘A’’ variables
& Couple%hi_A(2)-Couple%lo_A(2)+1, Mesh_BY%p(Couple’lo_B(1):Couple%hi_B(1),
& Couple?%hi_A(3)-Couple¥lo_A(3)+1) & Couple¥lo_B(2):Couple%hi_B(2),
real v_tmp(Couple%hi_A(1)-Couplello_A(1)+1, & Couple%lo_B(3) :Couple%hi_B(3))
& Couple%hi_A(2)-Couple%lo_A(2)+1, & = p_tmp(Couple%lo_A(1):Couplefhi_A(1),
& Couple?%hi_A(3)-Couple¥lo_A(3)+1) & Couple¥lo_A(2):Couple%hi_A(2),
real zm_tmp(Couplefhi_A(1)-Couple%lo_A(1)+1, & Couple%lo_A(3):Couple%hi_A(3)) * alpha
& Couple?%hi_A(2)-Couple¥lo_A(2)+1, & + Mesh_BY%p(Couple¥lo_B(1):Couple%hi_B(1),
& Couple?%hi_A(3)-Couple¥lo_A(3)+1) & Couple%lo_B(2):Couple%hi_B(2),
real x_tmp(Couple%hi_A(1)-Coupleflo_A(1)+1, & Couple%lo_B(3):Couple%hi_B(3)) * (1-alpha)
& Couple%hi_A(2)-Couple%lo_A(2)+1, C ... update all of the ‘‘B’’ variables
& Couple%hi_A(3)-Couple%lo_A(3)+1) end subroutine update_couplings_3d

Figure 13: Original HPF example input and update routines for couplings.

updates(update_mesh_3d) has parameters added for the sizes of the meshs, and the alignment offsets. These
values are used in the HPF statements and must therefore be constants at the subroutine entry. Further, if
the user defined structure was passed, then the arrays must be passed explicitly and all of their uses must be
modified to explicit array use rather than structure use. This is again a result of the fact that HPF does not
allow distribution of elements of user defined types.

In Figure 15 we see that alignment and distribution specifications are added to the user defined data structure
and that the number of processors in each dimension are declared globally. Other changes are similar to those
already discussed: addition of case statements surrounding calls to ensure that the right alignment and distribution
are provided to the compiler and addition of paramenters to routines with distributed meshs. The “contain”
approach is necessary to ensure that the number of processors and mesh sizes are constant at the level that
alignment and distribution takes place. This is a requirement of the HPF language. By using this two level
approach we eliminate the need for recompilation based on the input and only require recompilation when changes
are made. Further, this allows the precompiler to be machine independent. The only thing that must be done when
the input changes is run the distribution algorithm on the new data set to generate the distribution information
in the supplementary input file.

Figure 16 illustrates the coupling update routine(update_couplings_3d) after it has had: the necessary param-
eters added to eliminate user defined data structure references, alignment and distribution specifications added;
and cloning performed to ensure correct specification to the HPF compiler.

This section has shown how we transform the user program into a machine independent form that is not
dependent on the specific problem topology. The resulting code reads in alignment and distribution specifications
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subroutine read_meshs_3d() subroutine allocate_all_meshs()

open(unit=8,file=’dist.file’) do i = 1, Num_3d_meshs
read(8,*) Num_Proc_i, Num_Proc_j, Num_Proc_k select case (Meshs_3d(i)%dist_order)
read(*,*) Num_3d_meshs case (123)
allocate(Meshs_3d(Num_3d_meshs)) call allocate_3d_ijk(Meshs_3d(i))
do i = 1, Num_3d_meshs case (213)
read(*,*) Meshs_3d(i)¥%size call allocate_3d_jik(Meshs_3d(i))
read (*,*) Meshs_3d(8)%dist_order C L.
read(*,*) Meshs_3d(8)%align_offset end select
end do end do
end subroutine read_meshs_3d end subroutine allocate_all_meshs
subroutine allocate_3d_ijk(Mesh_info) subroutine update_mesh_3d_ijk(i_size,j_size,
type (mesh_3d) Mesh_info & k_size,i_off,j_off,k_off,p,q,u,v,zm,x,y,z,dthlf,dt)
'HPF$ template decomp(2*Mesh_info¥%size(1), use physics
'HPF$&  2*Mesh_info¥%size(2),2*Mesh_info%size(3)) 'HPF$ template decomp(2*i_size,2*j_size,2*k_size)
'HPF$ align all_array(i,j,k) with decomp( 'HPF$ align (i,j,k) with *decomp(i+i_off,j+j_off ,k+k_off)::
'HPFY, it+Mesh_info%align_offset(1), 'HPF$& P,q,u,V,ZM,X,y,Z
'HPF$ jtMesh_info%align_offset(2), 'HPF$ distribute (cyclic(2*i_size/Num_Proc_i),
'HPF$ k+Mesh_info%align_offset(3)) 'HPF$& cyclic(2*j_size/Num_Proc_j),
'HPF$ distribute(cyclic(2*Mesh_info%size(1)/Num_Proc_i), !'HPF$& cyclic(2*k_size/Hum_Proc_k)) onto procs :: decomp
'HPF$& cyclic(2*Mesh_info%size(2)/Num_Proc_j), real p(:,:,:),uC:,:, ) ,v(:,:,:),9C:,:,:),zm(:,:,:)
'HPF$& cyclic(2*Mesh_info%size(3)/Num_Proc_k)) real x(:,:,:),yC,:,0),2C:,:,:)
'HPF$& onto procs::decomp real dthlf, dt
real, pointer :: all_array(:,:,:)
allocate(all_array(Mesh_info¥size(1), C ... updates for arrays associated with current mesh
& Mesh_info¥%size(2), end subroutine update_mesh_3d_ijk
& Mesh_info%size(3)))

Mesh_info%p => all_array
nullify(all_array)

C ... repeat allocation for q, u, v, zm, x, y, 2z
end subroutine allocate_3d_ijk

Figure 14: Transformed HPF example input and compute routines for 3D meshs.

along with the user input. Hence, when the input changes the user only needs to run the distribution algorithm
to generate the input alignment and distribution specifications. The code does not have to be recompiled.

3.5 Compiler Support

Given the form of the program that is output by the precompiler, as described in the previous section on HPF
program tranformation, we now consider how the program is compiled by an HPF compiler. In order to allow all
distributions, the allocation, mesh update and coupling update routines were cloned for each possible ordering
of dimensions. A case structure is used in the main routine to ensure that the correct version of the cloned
routine is called. The Rice Fortran D compiler uses cloning in a similar manner to optimize communication.
Since HPF compilers are not required to do interprocedural analysis and cloning for communication, this cloning
procedure is necessary to provide complete alignment and distribution to the HPF compiler in every subroutine
with distributed data structures.

Since the end product of the transformations in the precompiler is a standard HPF program, there are no
further compiler enhancements necessary for correct code generation (for either a MIMD or SIMD machine).
There are two areas where special attention in the compiler may improve performance. These concerns are
related to the boundary data exchange associated with the coupling of the regular meshs.

Boundary iterations are those iterations of loops that perform updates to the boundary elements of a mesh. If
these iterations are peeled from a loop then the communication associated with coupling can be moved outside of
the loop. This implies that there should not be as much time spent waiting to get values from other processors.
This same approach is seen in hand parallelized material dynamics calculations. Unfortunately, the recognition
of this interaction crosses subroutine boundaries. The compiler must recognize that the iterations for boundaries
should be peeled in the routine to update meshs and that the send portion of the coupling communication updates
should be lifted out of the coupling update routines and set down in the mesh update routine. Another option
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module mesh_module
type mesh_3d
integer dist_order,size(3),align_offset(3)

real, pointer, dimension(:,:,:) :: p, q, u, v, zm

real, pointer, dimension(:,:,:) :: x, y, 2z
end type mesh_3d
type coupling_3d
integer id_A, id_B
integer lo_A(3), hi_A(3), 1lo_B(3), hi_B(3)
end type coupling_3d
integer Num_Proc_i,Num_Proc_j,Num_Proc_k
type (mesh_3d),allocatable,dimension(:)::Meshs_3d
integer Num_3d_meshs ,Num_3d_couplings
type (coupling_3d),allocatable,
& dimension(:)::Couplings_3d
contains
subroutine main_routine
'HPF$ Processors procs(Num_Proc_i,Num_Proc_j,Num_Proc_k)
call allocate_all_meshs
do i=1, Num_3d_meshs
select case (Meshs_3d(i)%distribution_order)
case (123)
call initial_3d_ijk(i,Meshs_3d(i)%size(1),
&Meshs_3d(i)Y%size(2) ,Meshs_3d(i)¥%size(3),
&Meshs_3d(i)%align_offset(1),
&Meshs_3d(i)%align_offset(2),
&Meshs_3d(i)%align_offset(3),Meshs_3d(i)%p,
g&Meshs_3d(i)%q,Meshs_3d(i)%u,Meshs_3d(i)%v,
&Meshs_3d(i)%zm,
g&Meshs_3d(i)%x,Meshs_3d(i)%y,Meshs_3d(i)%z,
gdthlf,dt)
C ... similar case for each distribution order
end select
end do
call system_clock(is_count,is_count_rate,
g is_count_max)
do i_step = 1, Num_steps
do i=1, Num_3d_meshs
select case (Meshs_3d(i)%distribution_order)
case (123)
call update_mesh_3d_ijk(
&Meshs_3d(i)Y%size(1) ,Meshs_3d(i)¥%size(2),
&Meshs_3d(i)%size(3) ,Meshs_3d(i)%align_offset(1l),
&Meshs_3d(i)%align_offset(2),
&Meshs_3d(i)%align_offset(3),Meshs_3d(i)%p,
g&Meshs_3d(i)%u,Meshs_3d(i)%p,Meshs_3d(i)%v,
g&Meshs_3d(i)%zm,Meshs_3d(i)%x,Meshs_3d(i)%y,
g&Meshs_3d(i)%z,dthlf,dt)
C ... similar case for each distribution order
end select
end do

subroutine main_routine continued
do i=1, Num_3d_couplings
id_A = Couplings_3d(i)%id_A
id_B = Couplings_3d(i)%id_B
if ((Meshs_3d(id_A)%distribution_order.eq.123).and.
& (Meshs_3d(id_B)%distribution_order.eq.123))then
call update_couplings_3d_ijk_ijk(
&Meshs_3d(id_A)Y%size(1) ,Meshs_3d(id_A)Y%size(2),
&Meshs_3d(id_A)%size(3) ,Meshs_3d(id_A)%align_offset(1),
&Meshs_3d(id_A)%align_offset(2),
&Meshs_3d(id_A)%align_offset(3) ,Meshs_3d(id_A)%p,
&Meshs_3d (id_A)%q,Meshs_3d(id_A)%u,Meshs_3d(id_A)%v,
&Meshs_3d(id_A)%zm,Meshs_3d(id_A)%x,
&Meshs_3d(id_A)%y,Meshs_3d(id_A)Y%z,
&Couplings_3d(i)%lo_A(1) ,Couplings_3d(i)%lo_A(2),
&Couplings_3d(i)%1lo_A(3) ,Couplings_3d(i)%hi_A(1),
&Couplings_3d(i)%hi_A(2) ,Couplings_3d(i)%hi_A(3),
&Meshs_3d(id_B)%size(1) ,Meshs_3d(id_B)Y%size(2),
&Meshs_3d(id_B)%size(3) ,Meshs_3d(id_B)%align_offset(1),
&Meshs_3d(id_B)%align_offset(2),
&Meshs_3d(id_B)%align_offset(3) ,Meshs_3d(id_B)Y%p,
g&Meshs_3d(id_B)%u,Meshs_3d(id_B)%p,Meshs_3d(id_B)%v,
g&Meshs_3d(id_B)Y%zm,Meshs_3d(id_B)%x,Meshs_3d(id_B)%y,
&Meshs_3d (id_B)%z,Couplings_3d(i)%lo_B(1),
&Couplings_3d(i)%1lo_B(2) ,Couplings_3d(i)%lo_B(3),
&Couplings_3d(i)%hi_B(1) ,Couplings_3d(i)%hi_B(2),
&Couplings_3d(i)%hi_B(3) ,dthlf,dt)
repeated for each pair of distribution orders
endif
end do
end do
call system_clock(ie_count,ie_count_rate,ie_count_max)
. print results, etc.

all subroutines except read_meshs_3d & read_couplings_3d

end subroutine main_routine
read_meshs_3d and read_couplings_3d go here
end module mesh_module

program big_mesh

use mesh_module

The computation/communication reflect the CFD codes
at Mississippi State for aerodynamic simulations.
read(*,*) Hum_steps

call read_meshs_3d()

call read_couplings_3d()

call main_routine()

end program big_mesh

Figure 15: Transformed HPF module, main subroutine and main program.

would be a form of optimistic communication. In this case you could use the coupling specifications to insert
communication of the coupled elements every time they are updated and then just verify reception of messages

in the coupling update routine.

The coupling specification may also be used as explicit an upper bound on the necessary communication by
compilers that can not determine more precise communication bounds. This use of the coupling directive is
analogous to the use of the independent specification for loops in High Performance Fortran. Although it is not
an executable statement, it allows optimization that would be incorrect if the specification is incorrect.
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subroutine read_couplings_3d() c
read(*,*) Num_3d_couplings

subroutine update_couplings_3d_ijk_ijk continued

allocate(Couplings_3d(Num_3d_couplings)) 'HPF$ distribute (cyclic(2*i_B_size/Num_Proc_i),
do i = 1, Num_3d_couplings 'HPF$& cyclic(2*j_B_size/Num_Proc_j),
read(*,*) Couplings_3d(i)%id_A, '"HPF$& cyclic(2*k_B_size/Num_Proc_k)) onto procs::decompB
% Couplings_3d(i)%id_B real A_p(C:,:,:) A uC:,:, ) A v(:,:,:) A qC:,:,0),
read(*,*) Couplings_3d(i)%lo_A, real A_zm(:,:,:)A_xC:,:, ) A y(:,:,0) A 2C:, )
3 Couplings_3d(i)%hi_A, real B_p(:,:,:),B_u(:,:,:),B_v(:,:,:),B_q(:,:,:),
& Couplings_3d(i)%lo_B, real B_zm(:,:,:)B_x(:,:,:),B_y(:,:,:),B_z(:,:,:),dthlf,dt
& Couplings_3d(i)%hi_B real p_tmp(i_A_hi-i_A_lo+1,j_A_hi-j_A_lo+1,k_A_hi-k_A_lo+1)
end do real v_tmp(i_A_hi-i_A_lo+1,j_A_hi-j_A_lo+1,k_A_hi-k_A_lo+1)
end subroutine read_couplings_3d real q_tmp(i_A_hi-i_A_lo+1,j_A_hi-j_A_lo+1,k_A_hi-k_A_lo+1)
real u_tmp(i_A_hi-i_A_lo+1,j_A_hi-j_A_lo+1,k_A_hi-k_A_lo+1)
subroutine update_couplings_3d_ijk_ijk(i_A_size, real zm_tmp(i_A_hi-i_A_lo+1,j_A_hi-j_A_lo+1,k_A_hi-k_A_lo+1)
& j_A_size,k_A_size,i_A_off,j_A_off ,k_A_off,A_p, real x_tmp(i_A_hi-i_A_lo+1,j_A_hi-j_A_lo+1,k_A_hi-k_A_lo+1)
& A_q,A u,A_v,A zZm,A x,A_y,A _z,i_A_lo,j_A_lo, real y_tmp(i_A_hi-i_A_lo+1,j_A_hi-j_A_lo+1,k_A_hi-k_A_lo+1)
& k_A_lo,i_A_hi,j_A_hi,k_A_hi,i_B_size,j_B_size, real z_tmp(i_A_hi-i_A_lo+1,j_A_hi-j_A_lo+1,k_A_hi-k_A_lo+1)
& k_B_size,i_B_off,j_B_off,k_B_off,B_p,B_q,B_u, p_tmp(1:i_A_hi-i_A_lo+1,1:j_A_hi-j_A_lo+1,1:k_A_hi-k_A_lo+1)
& B_v,B_zm,B_x,B_y,B_z,i_B_lo,j_B_lo,k_B_lo, & = A_p(i_A_lo:i_A_hi,j_A_lo:j_A_hi,k_A_lo:k_A_hi)
& i_B_hi,j_B_hi,k_B_hi,dthlf,dt) C ... save all the temporaries
'HPF$ template decompA(2*i_A_size,2*j_A_size,2*k_A_size) A_q(i_A_lo:i_A_hi,j_A_lo:j_A_hi,k_A_lo:k_A_hi) =
'HPF$ template decompB(2*i_B_size,2*j_B_size,2*k_B_size) &A_q(i_A_lo:i_A_hi,j_A_lo:j_A_hi,k_A_lo:k_A_hi)*frac
'HPF$ align (i,j,k) with *decompA(i+i_A_off,j+j_A_off, &+B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi)*(1.0-frac)
'HPF$& k+k_A_off)::A_p,A_q,A_u,A_v,A zm,A_x,A_ y,A_z C ... update all of the ‘‘A’’ variables
'HPF$ align (i,j,k) with *decompB(i+i_B_off,j+j_B_off, B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi) =
'HPF$& k+k_B_off)::B_p,B_q,B_u,B_v,B_zm,B_x,B_y,B_z &B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi)*frac
'HPF$ distribute (cyclic(2*i_A_size/Num_Proc_i), &+ q_tmp*(1.0-frac)
'HPF$& cyclic(2*j_A_size/Num_Proc_j), C ... update all of the ‘‘B’’ variables
'HPF$& cyclic(2*k_A_size/Num_Proc_k))onto procs::decompd end subroutine update_couplings_3d_ijk_ijk

Figure 16: Transformed HPF example input and update routines for couplings.

3.6 Limitations -vs- Advantages

This approach to ICRM parallelization is limited to those problems in which it makes sense to distribute every
mesh over all processors. This limits the use of this approach for some problems. For example, in many Nuclear
Reactor Simulations[2] many of the meshs have few elements (~ 10 — 100) and hence cannot reasonably be
distributed over many processors. Further, if enough processors are used even large meshs can not be distributed
over all processors. We are currently exploring other approaches for automatic distribution of such problems.

This limitation does not say that every mesh must have many more elements than processors. The real
requirement is that for every processor the computation outweighs the communication. Hence, this approach
may work even when some of the meshs have about the same number of elements as the number of processors.

Offsetting these limitations are a number of advantages to using this approach. Unlike other currently available
approaches, all analysis and communication generation may be performed at compile-time. To do this, we require
runtime constant data (coupling information). Compile-time analysis and communication generation may provide
a significant savings in time when the same mesh/coupling configuration is used with different initial data sets.
For example, the same multiblock representation of an aircraft may be used for simulation of the flow over the
aircraft with many different initial conditions. Furthermore, once cloning has been done and the HPF program
is generated and compiled, the algorithm can be applied to different configurations without recompilation.

Not only does this approach result in a program that fits the SPMD model, but the code also fits a uniform
memory model. Each processor uses (approximately) the same amount of memory for each array and the decla-
rations for each processor are identical. When different decompositions are assigned to different processors, the
memory allocation and access are much more complicated. This uniform memory model conformance implies
that the approach is applicable on SIMD architectures such as the SNAP-32!

1Robert Means, Bret Wallach, David Busby, and Robert Lengel Jr. won the 1993 Gordon Bell Prize for price/performance using a
SIMD Numerical Array Processor (SNAP) with 32 processors. The price/performance index was 7,554 flops per dollar. This indicates
that SIMD machines probably still have a future with some applications.
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In some application codes, it may be difficult or even impossible to automatically verify that the computations
associated with all of the different meshs can be executed in parallel. In this case even if the decompositions are
assigned to different processors their computations will be executed sequentially. The approach presented here
does not rely on being able to prove this high level parallelism, but instead relies on the parallelism inside each
mesh.

Finally, compiling these ICRM applications with a standard HPF compiler is very straight forward. The
only extension needed in a good HPF compiler is careful communication analysis for communication associated
with couplings. With the use of the cloning technique described above, the communication analysis is further
simplified.

The final and most important advantage is that for the first time the distribution can be found automatically
for this class of complex topology problems.

3.7 Fortran D Modification/Generation

In this section we assume that a Fortran D program was provided by the user which included DECOMPOSITION
and ALIGN statements for each mesh. This section therefore applies only when there is a fixed topology encoded
in the program and not when the topology is part of the input. This limitation is due primarily to the fact
that Fortran D does not currently support the contains statement and without this statement we can not get
the processor, alignment, and distribution specification in the input to be constant on entry to the subroutine
entry level. Hence we limit ourselves here to programs with statically encoded topology. Here we discuss the
modification of DECOMPOSITION and ALIGN statements and the generation of DISTRIBUTE statements. The final
output of these modification/generation steps will be a standard Fortran D program. Since the Fortran D compiler
does perform the cloning procedure automatically, we do not need to perform cloning in the precompiler when
working with Fortran D. We just modify decomposition and alignment specifications at the levels given by the
programmer and add distribution specifications at the same levels. However, since we will be explicitly encoding
the alignments and distributions for a particular input, the precompilation must be performed for each new data
set. At some point the Fortran D language will probably be extended to include “contains” to eliminate this
inefficiency.

3.7.1 Decomposition Modification

We replace the original DECOMPOSITION statements with new ones that reflect the intended mapping of data to
processors. To reflect this, we reorder the dimensions according to the mapping. Hence, for each decomposition
D the specification

DECOMPOSITION Df(sizey, sizeq, sizes, ..., SIZ€D dimensions)

becomes
DECOMPOSITION D(8i2€p,ap-1(1), $12€map=1(2), ---512€map=-1(D dimensions))

where map~? is the inverse of D.mapping[SPC] — map.

For the 3D-CFD problem the decomposition declarations that result are:
DECOMPOSITION A(40,40,40), B(40,40,40)
For the 2D-Multiblock problem the decomposition declarations that result are:
DECOMPOSITION (640, 320), D(640,320), E(640, 320),

3.7.2 Alignment Modification

Next we transform ALIGN statements according to the mapping to processors, alignment to processors and the
original alignment offsets. For each ALIGN statement associated with a decomposition D

ALIGN X(11;IZ;IS;I4a ~-~aIDAdimensions)
WITH D(I; + offsety, Is + offsets, I» + offsety, I + offsety, ..., ID dimensions + 0ffS€t p gimensions)
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becomes

ALIGN X(WrAP((1 — D.direction[1])  (—%) x D.size[l] + D.direction[1] x (I1)),
WRAP((1 — D.direction[2]) * (—%) x D.size[2] + D.direction[2] % (I2)), ..
WRAP((1 — D.direction[D.dimensions]) * (—1) * D.size[D. dzmenswns]

+D.direction|D.dimensions] * (Ipldlmmswns)))
WITH D(Inyap-1(1) + D-elt_per_proclmap™ L(D)] * (start_procimap=1(1)] — 1) + C tof fset,,, p-1(1)s
map—1(3) + D.elt_per_proc[map™ 1( )] * (start_proc[map=1(3)] — 1) + offset,,, p—1(3);

Lap-1(2) + D.elt_per_proc[map™ L(2)] * (start_proc[map=1(2)] — 1) + offset,,, p=1(2);
Lyap=-1(a) + D.elt_per_proc[map™ L(4)] * (start_proc[map=1(4)] — 1) + offset,,, p=1(4)) -0

Lap=1(D.dimensions) T D.elt_per_proc[map=t(D.dimensions)]
*(start_proc[map='(D.dimensions)] — 1) + offset,,,

For the 3D-CFD problem the alignment that results is:

ALIGN wa(wrap(t), wrap(j), wrap(k)) wiTH A(j, k, %)
ALIGN za(wrap(i), wrap(j), wrap(k)) wiTH A(j, k, 0)
ALIGN ya(wrap(i), wrap(j), wrap(k)) wiTH A(j, k, %)
ALIGN za(wrap(i), wrap(j), wrap(k)) WiTH A(J, k, 1)
ALIGN wb(wrap(t), wrap(j), wrap(k)) WiTH B(j, k, 1)
ALIGN zb(wrap(i), wrap(j), wrap(k)) wiTH B(j, k, 1)
ALIGN yb(wrap(i), wrap(j), wrap(k)) wiTH B(j, k, )
ALIGN zb(wrap(i), wrap(j), wrap(k)) wiTH B(j, k, 1)

For the 2D-Multiblock problem the alignment that results is:

~—

wITH C(i + 807, 5)
wiITH C(j,1+ 80 7)

ALIGN ve(wrap(i), wrap(j)
ALIGN we(wrap(t), wrap(j
ALIGN zc(wrap(i), wrap(j
ALIGN ye(wrap(i), wrap(j
ALIGN zce(wrap(i), wrap(j
ALIGN vd(wrap(i), wrap(j
ALIGN wd(wrap(i), wrap(j
ALIGN zd(wrap(?), wrap(j
yd(wrap(i), wrap(j
zd(wrap(i), wrap(j
( p(J

“s

\_/\_/\_/
,\_/\_/\_/\-’

WITH D(j,1)
) WITH D(j,1)
) WITH D(j, 1)
WITH D(j, 1)
WITH D(j,1)
WITH E(4,j 4+ 80 3)
WITH E(i,j 4+ 80 % 3)
WITH E(i,j 4+ 80 3)
WITH E(4,j 4+ 80 % 3)
WITH E(4,j + 80 % 3)

\_/

\_/

ALIGN
ALIGN
ALIGN

),
)

3

\_/\_/\_/

)

)
ve(wrap(i), wrap(j)
ALIGN we(wrap(i), wrap(j)
ALIGN ze(wrap(i), wrap(j)
ALIGN ye(wrap(i), wrap(j)
ALIGN ze(wrap(i), wrap(j)

~—

g

~—

p—l(D,dimensions))

wITH C(i +80%7—1,j—1)
wITH C(i +80%7—1,j+1)
wITH C(i 4+ 807+ 1,5+ 1)

Note that in HPF the alignments must be shifted as HPF does not support wrap alignment.

3.7.3 Distribution Generation

Finally, we generate distributions for each decomposition D of the form
DISTRIBUTE D(BLOCK(SPC procs[l]),BLOCK(SPC .procs[2]), ..

where SPC .procsli] is set to one for i > SPC.dimensions.
For the 3D-CFD problem the distribution that results is:

DISTRIBUTE A(BLOCK(4),BLOCK(4), BLOCK(2))
DISTRIBUTE B(BLOCK(4),BLOCK(4), BLOCK(2))

.BLOCK(SPC .procs[D.dimensions]))
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For the 2D-Multiblock problem the distribution that results is:

DISTRIBUTE C(BLOCK(8), BLOCK(4))
DISTRIBUTE D(BLOCK(8),BLOCK(4))
DISTRIBUTE E(BLOCK(8), BLOCK(4))

4 Validation Results

The two primary goals that we are trying to achieve are: 1) reduce the programmer burden for parallelization of
ICRM problems; and 2) provide acceptable performance in the resulting parallelization.
Our test problems are the three problems used at the beginning of the paper to illustrate our application area.

Num. Procs. || runtime | speedup || efficiency
1
2
4
8
16
32

Table 1: Results from flow through an elbow with 2 vanes.

The Elbow problem, shown in Figure 1, has five three-dimensional meshs with a total of 275,356 three-
dimensional cells. The results of timing experiments for this problem are shown in Table 12.

Num. Procs. || runtime | speedup || efficiency
1
2
4
8
16
32

Table 2: Results from F15e Fuselage-Inlet-Nozzle aerodynamic simulation.

The Fuselage-Inlet-Nozzle aerodynamic simulation, shown in Figure 2, has ten three-dimensional meshs with a
total of 713,766 three-dimensional cells. The results of timing experiments for this problem are shown in Table 23.

The full F15e aerodynamic simulation, shown in Figure 3, has 32 three-dimensional meshs with a total of
1,269,845 three-dimensional cells. The results of timing experiments for this problem are shown in Table 3*. Our
timing results will all be done using the HPF compiler under development at Digital Equipment Corporation.
The compiler is currently in pre-release (release is scheduled for 30 June 1994) and hence timings can not yet be
released. It appears that the first version of the Digital HPF compiler will require modification of the code shown
in our figures. Any significant changes will be documented in the final version of this paper.

5 Conclusions

We now have an algorithm which automatically finds a distribution of data in ICRM problems given a well-
structured HPF program and topological connection specifications. Along with the algorithm to determine

2Note that this table can not be filled in until the Digital HPF compiler release date(June 30).
2Note that this table can not be filled in until the Digital HPF compiler release date(June 30).
“Note that this table can not be filled in until the Digital HPF compiler release date(June 30).
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Num. Procs. || runtime | speedup || efficiency
1

2

4

8

16

32

Table 3: Results from full F15e aerodynamic simulation.

distribution, we have described and illustrated a programming style that enhances analyzability. We have also
shown how the use of interprocedural analysis can further reduce the programming effort involved in development
and support by automatically cloning the routines that require distribution specification for the meshs. This
results in a standard HPF program which can be compiled by any complete HPF compiler. Although the use
of this automatic distribution procedure requires interprocedural analysis to perform the cloning operations, it
does not require recompilation of the source when the data set changes as the distribution specifications are read
in by the HPF program with the mesh and coupling specifications. When meshs are generated automatically,
automatic distribution of large-mesh ICRM problems is critical. This research provides an important first step.

Related work includes development of an algorithm to map ICRM problems in which the meshs must be
grouped together for mapping onto parallel processors[11]. Two examples of problems of this type are nuclear
reactor simulations and electric circuit simulations.

Future work will include an investigation of how to map ICRM problems in which some or all of the meshs
must be mapped to a subset of the processors.

A Coupling Communication Reduction Illustration

To illustrate the coupling communication reduction algorithm let’s step through how the directions and starting
processors are found in our examples.

In the 3D-CFD computation we first select DECOMPOSITION A (arbitrarily) as D;. Set the starting processor
index to one and the direction to increasing for each dimensions of A. Insert the coupling between A and B into
the heap. In step 1, delete the maximum entry from the heap, which is the coupling between A and B. In step
2, D, = B and D,, = A. Since the first coupled pair of dimensions is mapped to the same parallel dimension,
we proceed via step 3. The strides are both positive so the direction for the first dimension of D, (B) is the same
as the coupled dimension of Dy, (A) which is increasing. Dimension one of D, is coupled to dimension one of Dy,
and both are mapped to processor dimension three. Therefore

Dpi=1, Dyi=1

and
D,,.Poffset =2, D,.Poffset = 2.

Therefore the starting processor for the first dimension of D, (B) is:
D, .start_proc[l] = 1.

For the second couple pair of dimensions, we again find they are mapped to the same processor dimension and
proceed again with step 3. The strides are both positive so the direction for the first dimension of D, (B) is the
same as the coupled dimension of D,,(A) which is increasing.

D,i=2, Dyi=2
and

D,,.Poffset =4, D,.Poffset = 4.
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Therefore the starting processor for the second dimension of Dy (B) is:
D, .start_proc[l] = 1.

For the second couple pair of dimensions, we again find they are mapped to the same processor dimension and
proceed again with step 3. The strides are both positive so the direction for the first dimension of Dy, (B) is the
same as the coupled dimension of D, (A) which is increasing.

Dpi=2, Dyi=2

and
D, . Poffset =4, D,.Poffset = 4.

Therefore the starting processor for the second dimension of Dy (B) is:
D, .start_proc[l] = 1.

The process is exactly the same for dimension three as for dimension two. There are no new couplings to insert
in the heap for B and we find that all decompositions are now fully mapped. This illustrates the simplest case
for this algorithm. Next let’s consider the slightly more complicated case of the 2D-Multiblock computation..

In the 2D-Multiblock computation, we begin by selecting D as D;. We set the direction to be increasing and
the starting processor to be one for each dimension of D;(D). Next, insert both couplings involving D; into
the heap. Deletion of the maximum cost entry (step 1) from the heap yields the coupling between D and C.
Therefore, in step 2, D, = C and D,, = D. For the first dimension of C' we find that it is coupled with the
second dimension of D and that they are both mapped to the first processor dimension. Since D.direction[1] is
increasing and the stride (by default) is plus one, the C.direction[1] is set to increasing. Therefore

Dpi=2, Dyi=1;

and
Dy, Poffset =1, D, .Poffset = 8.

Hence the starting processor for the first dimension of Dy (C) is:
D, .start_proc[l] = 8.

For the second dimension of Dy, since D, .direction[2] is increasing and the stride (by default) is plus one, the
D, direction[2] is set to increasing. Therefore

Dpi=1, Dyi=2;

and

D,,.Poffset =3, D,.Poffset = 3.

Hence the starting processor for the second dimension of D, (C) is:
D, .start_proc[l] = 1.

Decomposition C is now fully mapped and aligned. The coupling between C and F is inserted into the heap.
Now we return to step 1. Deletion of the maximum cost entry from the heap yields the coupling between D and
E. Therefore, in step 2, D, = E and D,, = D. Then for the first coupling entry

Dpi=1 and Dya=1.

We find that the first dimension of D, is coupled with the first dimension of D,, and that they are not both
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mapped to the same processor dimension. Therefore D, .direction[1] is set to increasing. Then

D,i1=2 and k=2

so that

Dy, .Poffset =8 and D,.Poffset = 8.

Hence the starting processor for the first dimension of Dy (E) is:

D, .start_proc[l] = 1.

For the second coupling entry

Dy,i=2 and D,.1=.

The second dimension of D, is coupled with the second dimension of D,,, but they are not both mapped to the
same processor dimension. Therefore D, .direction[l] is set to increasing. Then

D,i=1 and k=1

so that

Dy, . Poffset =1 and D, .Poffset = 4.

Hence the starting processor for the second dimension of D, (E) is:

D, .start_proc[l] = 4.

Decomposition D, is now fully mapped and aligned and is added to MAPPED. There are no new couplings to
insert in the heap for E. Further, when we return to the top of the loop we find that all of the decompositions
are in the set MAPPED and we are done.
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