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Abstract

To support the transition from programming languages in which parallelism and communication are
explicit to high-level languages that rely on compilers to infer such details from data decomposition
directives, tools for performance analysis require increased sophistication and integration with other
components in the programming system. We explore integration of performance tools with compilers for
data parallel languages by integrating the Rice Fortran 77D compiler and the Illinois Pablo Environment.
This integration permits analysis and correlation of the compiler-generated code’s dynamic behavior and
performance with the original data parallel source code. We expect that our strategy can serve as a
model for integration of other data parallel compilers and performance tools.

1 Introduction

High-level, data parallel languages such as High Performance Fortran and Fortran D [4] have attracted
considerable attention because they offer a simple and portable programming model for parallel; scientific
programs. In such languages, programmers specify parallelism abstractly using data layout directives; a com-
piler uses these directives as the basis for synthesizing a program with explicit parallelism and interprocessor
communication.

Although these languages offer a convenient model for parallel program development, the primary motiva-
tion for parallel processing is high performance. Constructing a high-performance parallel program requires
a cycle of experimentation and refinement in which one first identifies the program components responsible
for the bulk of the execution time and then modifies the program in the hope of improving its performance.
For this cycle to be effective and unobtrusive to practicing scientists, not only must performance data be
accurate, it must be directly related to the source program.

The adoption of high-level, data parallel languages and sophisticated parallelizing compilers means that
an application software developer’s mental model of a program and the actual code that executes on a
particular parallel system are quite different, and the relation between execution dynamics and data parallel
source code is often unclear. The advantages of a high-level programming model will be fully realized only
if both compilers and performance analysis tools seamlessly support the cycle of code development and

performance tuning by explaining performance at the level of the abstract, high-level source program.

*Supported in part by ARPA contracts DAVT63-91-C-0029, DABT63-93-C-0040 and DABT63-92-C-0038, and by NSF grant
ASC92-12369 and NSF Cooperative Agreement Number CCR-9120008.



Unfortunately, current performance analysis and visualization tools, are targeted at the collection and
presentation of program performance data when the parallelism and interprocessor communication are ex-
plicit (e.g. in message-passing codes). For high-level parallel languages, such tools would capture and present
dynamic performance data in terms of primitive operations (e.g. communication library calls) in the compiler-
generated code; clearly, this falls short of the ideal. Likewise, current data parallel compilers provide minimal
information about the translation from data parallel source to explicitly parallel output, and it is rarely clear
if poor performance is due to compiler limitations or to limited data parallelism.

To support source-level performance tuning of programs in high-level parallel languages, compilers and
analysis tools must cooperate to integrate information about the program’s dynamic behavior with compiler
knowledge about the mapping from the high-level source to the low-level, explicitly parallel code. Further-
more, performance analysis tools can use other types of compiler knowledge (e.g., the impact of source code
constructs like array layouts and data dependences on the parallelism and communication in the synthesized
code) to provide more sophisticated explanatory feedback to the programmer. The D System group at Rice
University and the Pablo group at the University of Illinois are jointly developing an integrated compilation
and performance analysis system based on the Rice Fortran 77D compiler and the Illinois’ Pablo performance
environment.

The Fortran 77D compiler translates a Fortran 77 program annotated with data layout directives into
an explicitly parallel single-program multiple data (SPMD) message-passing node program for a distributed
memory machine. The compiler performs a number of complex optimizing transformations, including hoist-
ing communication out of loops, aggregating messages between the same pair of processors, moving message
sends above preceding code blocks that do not modify the data being sent, and introducing collective com-
munication such as broadcasts or reductions when required. When data dependences prevent full parallelism,
the compiler often can achieve partial parallelism by pipelining the computation.

The Pablo environment’s principal components are an extensible data capture library [10], a data meta-
format [3] for describing the structure of performance data records without constraining their contents, and
a user-extensible graphical data analysis toolkit [8]. The data capture library can trace, count, or time code
fragments as well as capture entry to and exit from procedures, loops, and message-passing library calls.
A group of library extension interfaces allows instrumentation software developers to incrementally extend
the library’s functionality. The key source of the flexibility in Pablo’s components is a flexible performance
data meta-format that separates data semantics from data structure. The Pablo self-defining data format
(SDDF) is a data description language that specifies both the structure of data records and data record
instances. SDDF provides the ability to define and process new performance data records as needed.

This paper describes our approach in developing an integrated environment based on the Fortran 77D
compiler and Pablo, and preliminary experiences from the integration. The paper first motivates the need
for compiler support for performance analysis and outlines the limitations of current data parallel compilers
and performance analysis tools. We then describe the design and initial implementation of the integrated
environment which uses SDDF as an interchange format for sharing information between the Fortran D
compiler and the Pablo performance analysis software. Finally, we describe preliminary experiments that
illustrate the advantages of the integration, compare with related work, and conclude with a brief discussion

and directions for future research.



2 Performance Correlation Example

The need for integrated compilation systems and performance tools is best illustrated by considering the steps
needed to analyze the performance of a simple Fortran D code using decoupled compilation and performance
analysis tools. As an example, we use the Erlebacher code, an 800 line, ten procedure benchmark written
by Thomas Eidson at ICASE. Erlebacher performs 3-D vectorized tridiagonal solves using Alternating-
Direction-Implicit (ADI) integration to solve partial differential equations. Figure 1 shows a portion of the
Fortran D data declarations and one loop of the source code.

The Rice Fortran D compiler translates the code fragments in Figure 1 into the parallel, message-passing
code for the Intel iPSC/860 shown in Figure 3. The compiler distributes the third dimension of array duz
in equal blocks, and adds overlap areas to hold off-processor values (z = 0 and z = 9) in order to simplify
the generated code. It then distributes the iterations of the k loop across the processors using the owner-
computes rule: processor P (0 < P < 7) executes iterations 8P + 1 < k < 8P + 8. Communication is then
required to satisfy references to non-local sections of the array, as depicted in Figure 2. To achieve partial
parallelism without excessive communication overhead, the compiler strip-mines the i loop in blocks of 8
iterations and then generates code to send and receive blocks of 8 elements at a time at the left boundary
XY planes of each processor’s local partition. It also inserts a broadcast to satisfy the source reference
duz(i,j,64), and hoists the broadcast outside the 7 and j loops.

Comparing Figure 1 to Figure 3 highlights the difficulty of the performance analysis task faced by a
Fortran D application developer. There is a large semantic gap between the data parallel, global name
space, programming model of Figure 1 and the SPMD, message-passing model of Figure 3. Because the
goal of data-parallel languages is to insulate software developers from the idiosyncrasies of message passing,
performance tuning should not require them to understand the details of the compiler-generated code.

Unfortunately, current performance instrumentation and analysis tools [9, 8, 6, 11] for distributed memory
parallel systems only capture and present performance data from the generated Fortran 77 code of Figure 3.
For example, Pablo performance displays for this program (shown in Figure 4) clearly show the performance
characteristics of the message-passing program, including the volume of communication traffic, processor
utilizations, and the staircase communication pattern arising from nearest neighbor communication. While
these displays are useful, they fail to help the programmer understand how these performance characteristics
relate to the original Fortran D source and the underlying causes of these performance characteristics.
Without this understanding, the programmer will be unable to improve the program’s performance without
laboriously attempting to match compiler output to data parallel source code.

Many of the problems described above can be attributed to an unnecessary separation of compilation and
performance analysis. Integrating the two has many advantages. First, the compiler can emit instrumented
code, and can potentially use its extensive knowledge of parallelism and communication in the SPMD program
to make the instrumentation less intrusive and less voluminous. Second, and most important, the compiler
can provide extensive information to the performance tool about the mapping between source and SPMD
code, as well as semantic analysis results about the impact of source code constructs on parallelism and
communication. Finally, the compiler can exploit dynamic performance data to generate more efficient code,

as described elsewhere [1].



3 Integrating Compilation and Performance Analysis

As illustrated in §2, a simple composition of compiler and performance tools is insufficient to support high-
level performance analysis and software tuning of Fortran D programs. An integrated approach can provide
two types of information not normally available to either traditional, stand-alone performance tools or com-
pilers: (1) the mappping information describing how to assign measured performance costs to high-level
source code objects such as data references, arrays, decompositions, loops and procedures; and (2) semantic
information describing the impact of source code constructs such as array layouts and data dependences on
parallelism and communication. The first is essential for presenting performance data to the programmer in
terms of the data parallel source code, as do standard performance tools for sequential and explicitly parallel
languages. The second can be used to provide more sophisticated, explanatory feedback to the program-
mer, describing the causes of performance bottlenecks in the program at a semantic level. Furthermore, as
discussed elsewhere, in an integrated system a data parallel compiler could exploit dynamic performance mea-
surements to optimize future compilations [1]. The remainder of this section describes the integration of the
Rice Fortran D compiler and the Illinois’ Pablo performance environment to form a prototype programming
environment that supports performance analysis of regular, data parallel programs written in Fortran D.
After an overview of the system organization, the section describes the two major aspects of the integration:
instrumentation of the explicitly parallel compiled code, and correlation of the instrumented information with
the Fortran D source program. Preliminary examples of performance feedback and visualization provided in

the tool are described in §4.

3.1 System Organization

Figure 5 shows an overview of the current integration. The system uses the Fortran D compiler to instrument
the compiled code and to emit data on compiler analysis and transformations, uses Pablo SDDF as a flexible
medium of data interchange between the compiler and Pablo, the Pablo instrumentation software’s extension
interfaces for capturing dynamic performance data, and a new software toolkit to combine the static and
dynamic performance data and relate it to the Fortran D source.

To integrate compile-time and runtime performance information, three classes of information are recorded
in SDDF data records: static, dynamic, and symbolic. The static data consists of information recorded by
the Fortran D compiler during program compilation. The dynamic data is data known only during execution,
such as the durations of procedure invocations and message-passing calls. Each dynamic record includes the
tag of a static data record; this is a starting point for correlating the dynamic data with static information.
Finally, the symbolic data is data that may be known either at compile-time or runtime (depending on the
source code), e.g., the size of a message, or the distribution of an array in a phase of the program. If such
a value is known at compile-time, the corresponding symbolic record is preserved in the static SDDF file;
otherwise it is emitted at runtime. A common interface provides uniform access to this information regardless

of where individual symbolic records are stored.



3.2 Program Instrumentation

The Pablo instrumentation library [10] can count or trace dynamic events and time intervals; specialized
instrumentation supports tracing of procedure calls, loops, and message passing library calls. The library
has been augmented, via its extension interfaces, to support integration with the Fortran D compiler. Key
changes made to the library include: (1) information that may be available statically or symbolically (e.g.,
message size) is no longer captured during execution, (2) each dynamic record includes the tag of a static
record that provides information for data correlation, and (3) a new dynamic record type is introduced to
record symbolic values. In addition to tracing individual message passing events, the Pablo instrumentation
can also generate a statistical summary of message passing activity within a selected code fragment, by
analyzing the communication trace events as they are generated. Summarization is most commonly used
to reduce instrumentation data volume when the compiler was unable to hoist message passing calls from a
loop.

For each type of communication primitive (i.e., send, receive, or collective communication), the summary
data includes the minimum, maximum, mean, sum, and standard deviation for message sizes and communi-
cation durations, as well as a histogram of these quantities. Compared with ordinary message tracing where
one pair of records is generated for each call to the message passing library, summaries dramatically reduce
the volume of captured performance data, albeit with some loss of information on dynamic behavior.

The Fortran D compiler decides where instrumentation must be inserted in the synthesized message-
passing code, and inserts calls to the appropriate Pablo instrumentation routines. Instrumentation currently
supported by the compiler includes tracing entry/exit events for procedure calls, loop nests, message library
calls, and symbolic values unknown at compile-time. Summary tracing for messages is not yet invoked by

the compiler.

3.3 Data Correlation

In addition to instrumenting the synthesized code, the Fortran D compiler records both mapping and se-
mantic information relevant to performance analysis in a static SDDF file. Below, we describe the static
information in more detail and show how it is combined with information in dynamic records to correlate

dynamic performance data with the Fortran D source code.

3.3.1 Mapping Information

The mapping information in the static SDDF file specifies how the procedures, procedure calls, source loops,
data distribution statements, data references, and data declarations in the source file relate to one another
and to the corresponding constructs in the compiler-synthesized SPMD code.

For procedures, the static SDDF file describes the locations of procedure call sites in the source program,
and the locations of the corresponding procedures. Separate static records are generated for each call site and
each procedure, as illustrated in Figure 6. The dynamic records generated during an instrumented procedure
call point to the corresponding call site record. Thus, the measured procedure call lifetimes can be attributed
to individual call sites, averaged across all the processors, and also aggregated for the individual procedures

across all its call sites, as typically provided by profiling tools for sequential programs.



For messages, the static SDDF records provide a variety of mapping information including (a) the set
of non-local data references satisfied by each message, and the reverse mapping as well; (b) the data layout
(decomposition, alignment and distribution) of each distributed array communicated by each message; and

1 Dynamic records for each

(c) the messages generated for each dynamic redistribution or realignment.
message send point to the corresponding static record for that message send, as shown in Figure 6. In
general, one static record is generated for each message library call in the SPMD code, and the static
records for receive and message-wait operations each point to the corresponding static message send record.
Collectively, the static message records identify the source references, arrays, and layout directives that are
responsible for the corresponding communication overhead in the parallel program.

The loop information in the static SDDF file describes the source loop (or loop nests) that are associated
with a particular loop (or loop nest) in the SPMD program. The current design includes static records for
loop nests as well as individual loops (at the source and SPMD level) because some transformations such
as loop distribution and loop fusion operate on (pairs of) individual loops, while others such as iteration

partitioning, loop interchange or fine- or coarse-grain pipelining operate on entire loop nests. The design of

this portion of the static file is preliminary, however, and is yet to be implemented in the compiler.

3.3.2 Semantic Information

Perhaps the most important semantic information available with compiler support is information about
the pattern of access to remote data in the program. The static message send records include tags for
symbolic records that specify the lower bound, upper bound, and step for each dimension of each array
section communicated in the associated message. If any of these symbolic values is unknown at compile-
time, the compiler inserts instrumentation code to record it each time it changes during program execution.
By correlating the static, symbolic, and dynamic records for each message, it is possible to compute the
exact array sections communicated, along with the dynamic frequencies of communication.

The compiler also records the set of cross-processor dependences that cause each communication event.
Again, the static message send record includes tags pointing to individual dependence records, each giving the
locations of the source and sink data references of the dependence, as illustrated in Figure 6. This information
about the data flow in the program (as determined by the compiler) is fundamental in understanding the
causes of communication in an environment where the compiler transforms and optimizes the program based
on its analysis of data dependences.

The static file also includes provisions to identify the additional calls to runtime buffering and unbuffering
routines synthesized by the compiler for each message send and receive, such as in Figure 3. For this purpose,
the static message send record includes two fields to point to the procedure call records for the corresponding
calls to the buffering routines, as illustrated in Figure 6 for the buffering call. This information can allow
the performance tool to present a more accurate picture of the overall overhead due to communication.

Finally, the static SDDF records provide support to determine the distribution or alignment of an array
that is active in any interval of execution, in the presence of dynamic redistribution and realignment. In the

future, this information will be used to compute the frequency and cost of array redistributions.

1 The Fortran D compiler does not currently support ynamic redistribution or realignment, but a provision for this information
is included in the static records for future use.



4 Preliminary Experiences

In §3 we described the mechanisms for data correlation but not the results of that correlation. Below, we
describe our experiences combining compile-time data on program transformations with dynamic data on

program execution dynamics.

4.1 Performance Data Correlation and Presentation

Our current data correlation software calculates many performance metrics for an execution of a Fortran D
program. The specificity of these metrics ranges from aggregate (i.e., whole program) through procedure,
procedure call site, and individual source code line and include both execution times and array reference
data.

For each procedure call site and loop nest, the performance metrics include the inclusive and exclusive
procedure and loop lifetimes (i.e., including and excluding descendent procedures and nested loops) and the
inclusive and exclusive message passing overhead. For each metric, the statistics include the duration on
each processor and the maximum, minimum, mean, and standard deviation across the processors. Using
the measured communication costs, we map compiler-synthesized message passing back to array references
in the original data parallel source code, showing the volume and cost of remote data references, and the
overhead for message packing and unpacking.

Currently, our system support visualization of only a small subset of the performance information com-
puted. Our preliminary efforts have focused on integrating static and dynamic performance data with the
Rice D editor; however, performance information could be presented instead with a stand alone Each of these
approaches has potential advantages and disadvantages. Below, we describe our experiences so far with our
integration of performance information in the D editor; in §6 we describe integration plans for the Pablo
performance environment.

Figure 7 shows the D Editor, which forms the primary user interface to the D System. The D Editor is
a structured editor for Fortran that provides users feedback about the parallelism and communication in a
program.? The Overview pane at the top of the figure shows a “compressed” view of the Erlebacher source
code, with only the subroutines and loop nests shown. The other panes are used to show the dependences,
communication and array layouts for the selected loop (the same as the loop shown in Figure 1). Not shown
is a second window that displays the source code, highlights non-local references, and uses arrows to display
cross-processor, loop-carried data dependences (or optionally other types of dependences).

One of the simplest and most useful displays of dynamic performance data is a profile of where time is
spent during program execution. The overview pane in Figure 7 uses colored bars (shown here in black-and-
white) to present the computation and communication cost of the individual procedures and loops, relative
to the full program. The bars in the left column show procedure invocation lifetimes, where the light bars
represent the inclusive procedure lifetime (i.e., including this procedure and other procedures it may call),
and dark bars represent the exclusive procedure lifetime. The bars are normalized relative to the program’s

total computation time. The bars in the right column show similar metrics for the communication overhead

2The dynamic information in the editor is obtained and correlated with source code exclusively using the static mapping file
and the dynamic trace files, exactly as would be done in an off-line tool.



due to compiler-synthesized message passing. In addition to this dynamic information, the editor also shows
the nature and location of communication due to the selected loop, the dependences causing communication,
the layouts of the key arrays in the loop, as well as the specific references that require the communication
(the latter is shown by highlighting the references in the source window, not included in the figure).

Even with the limited correlation of static and dynamic data represented by the visualization of Figure 7,
the system is able to convey to the programmer the location, relative impact, and causes of communication
overhead, all in terms of the source program most familiar to the programmer. The system uses a subset
of the mapping between messages and source references described in the static SDDF file to attribute the
communication overhead to specific statements and (by aggregating these) to specific loops and procedures
at the source level.

Using the static information from the compiler, the editor also directly shows the specific loop-carried,
cross-processor dependence that inhibited parallelism and required the pipelined communication. In addition,
it also shows the pattern of communication associated with that loop (in this case, the pipelined shift
described in §2), the array sections involved in the communication, and the fraction of total execution time
and of total communication time spent in this communication.

In addition to visualizing performance information in the D editor, we have used external visualization
tools from NCSA to display array access locality patterns. Our system communicates with these tools by

exporting remote array reference counts and costs in NCSA’s HDF data format.

4.2 Data Correlation Overhead

By definition, software instrumentation perturbs program execution; one must insure that compiler-synthesized
instrumentation does not so perturb nominal application behavior that salient behavioral features are lost.
To quantify the overhead for our dynamic instrumentation and to assess the potential advantages of compiler
support for instrumentation, we conducted a series of experiments with the Erlebacher benchmark with and
without symbolic information and message summarization.

Analysis of the results showed that execution overhead for dynamic instrumentation, excluding symbolic
records and excluding buffer extraction costs, ranged from about 35 percent on 4 processors to 140 percent on
32 processors of an Intel iPSC/860. The absolute magnitude of the overhead can in large part be attributed
to the fine-grain pipelining (i.e., frequent, small messages) synthesized by the Fortran D compiler. However,
because the Pablo data capture library records the cost of each type of instrumentation and the overhead
for performance buffer extraction, in many, though not all, cases it is possible to recover relative event times
even when the absolute instrumentation perturbation is large.

Ameliorating the effects of large numbers of dynamic records is the goal of message summarization. On
32 processors, message summarization reduced the instrumentation overhead by over 300 percent (from 225K
records to TK records). Moreover, by carefully applying message summarization to particular message library
call sites, little information is lost.

Our instrumentation approach also enables us to collect rich information about remote data access pat-
terns using symbolic records describing the bounds of array sections communicated in each message. However,
naive collection of this information comes at a high run-time cost. For example, symbolic records for the

loop-varying array section bounds associated with messages in Erlebacher’s pipelined loop nests accounted



for an additional 101K records. The added value of this symbolic information is nevertheless important;
we are exploring approaches based on compile time and/or run time summarization to reduce the cost of

collecting such array locality information.

5 Related Work

Few tools for dynamic performance analysis of parallel programs support abstract parallel languages, and few
compilers export the requisite information needed to correlate dynamic performance data with the program
source code. Notable exceptions include include Prism [12] and NV [5] for CM-Fortran, Forge90 [2] for
Fortran 90 and HPF, and the MPP-Apprentice performance tool, which supports C, Fortran and Fortran 90
on the Cray T3D [7]. The CM Fortran compiler lacks aggressive inter-statement optimization, making the
mapping of dynamic performance data to source lines for Prism and data objects for NV straightforward.
Forge90 supports performance analysis at the level of compiler-generated SPMD code; its performance
annotations show the cost of invocations of their communication library. MPP Apprentice is the most
similar to our work as it uses compiler support to track the effect of complex optimizations and maintains
a mapping of basic blocks in the source to basic blocks in the optimized code. The fundamental difference
between the MPP Apprentice and our work is that the MPP Apprentice focuses on tracking scalar rather

than parallel optimizations.

6 Observations and Future Directions

With high-level, data parallel languages and sophisticated parallelizing compilers, the compiled code that
executes on a parallel system is usually quite different from the original, data parallel program. Because cur-
rent performance evaluation tools capture performance data from the executing code and current compilers
hide the details of source code transformations, relating dynamic performance data to high-level source code
is extremely difficult.

In this paper we discussed the integration of the University of Illinois’ Pablo performance environment and
Rice University Fortran D compiler. The D compiler generates instrumented code and emits information on
code transformations and compiler analyses in the Pablo performance data meta-format. During execution,
the instrumented program generates dynamic performance data that is captured and reduced by the Pablo
performance analysis software. The resulting dynamic data can be correlated with the original Fortran D
code using the mapping information previously recorded at compile time.

To date, several key aspects of the integrated environment have been implemented, though much work
remains. The mapping information relates dynamic performance data to high-level source code, providing
the analog of detailed procedure and loop profiles, both for execution time and communication overhead
incurred in the corresponding regions of the source code. By correlating interprocessor communication with
array sections, the pattern of remote array references and their costs can be related to specific Fortran D
code regions.

Integrating mapping support with the Fortran D compiler has proved instructive. The most basic and

perhaps obvious lesson from our experience is that it is extremely important to consider performance support



requirements throughout the design and development of the compiler. The performance support requires
information from virtually all phases of the compiler and at many different levels. A pervasive difficulty
we have encountered is that the lifetime of data needed for compiling is often different from that needed
for performance analysis, thus necessitating new mechanisms to retrieve or preserve the data. Another
difficulty is that the analysis or implementation of a single logical transformations is sometimes divided
among different parts of the program, significantly complicating the task of recording the transformation
and the corresponding mapping.

The current visualization support in the environment is extremely preliminary, and a comprehensive
performance data browser is under development. The browser will exploit the Pablo environment’s graphics
displays to show performance metrics over user-specified execution intervals, support performance queries on
the program, and in the future, handle queries about the performance of hypothetical program executions
via performance prediction. Another priority in our future work is to implement the remaining static SDDF
records within the compiler. These include correlation of buffer copying calls with the corresponding message
calls, and the static records for describing mapping information between source and SPMD loops. We also
are exploring techniques for further reduction of the dynamic instrumentation overhead for recording rapidly
varying array section bounds inside loop nests.

The infrastructure integrating Pablo and the D compiler has been designed to be as independent of
performance tool and compiler specifics as possible. We believe it is possible to transfer the integration

infrastructure to other compilers or performance tools with modest effort.
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50

parameter (n$proc = 8)

real duz(64, 64, 64)
decomposition d(64,64,64)
align duz with d
distribute d(:,:,block)

<CODE ELIDED>

do 50 j=1,64
do 50 i=1,64
do 50 k=64-2,1,-1
duz(i,j,k) = duz(i,j,k)
- c(k) * duz(i,j,k+1)
- e(k) * duz(i,j,64)
continue

Figure 1: Erlebacher source code fragment

Figure 2: Array partitions and communication

Z dimension

phase 1:

broadcast

aaaaaaQ

QQ

real
-—<<
1b$1
ub$1
ub$2
off$
<COD

if

els

end
PHA

do
do

en
end

duz(64, 64, 0:9)

Fortran D initializations >>--
= max((my$p * 8) + 1, 2) - (my$p * 8)
= min((my$p + 1) * 8, 64 - 2) - (my$p * 8)

= min((my$p + 1) * 8, 64 - 1) - (my$p * 8)
0 =my$p * 8

E ELIDED>

(my$p .eq. 7) then

<CODE FROM PREVIOUS LOOP NEST ELIDED>
PHASE ONE

-<< Broadcast duz(1:64, 1:64, 8) >>--

call buf3D$r(f, 1, 64, 1, 64, 0, 9, 1, 64, 1,

1, 64, 1, 8, 8, 1, r$bufi(1))
call csend(113, r$bufl, 4096 * 4,
e
--<< Recv duz(1:64, 1:64, 64) >>--
call crecv(113, r$bufl, 4096 * 4)
if

SE TWO

j=1, 64
i$ =1, 64, 8
ifup = i$ + 7
--<< Recv duz(i$:i$up, j, 9) >>--
if (my$p .1t. 7) then
call crecv(112, duz(i$,j,9), 8%4)
endif
do i = i$, i$up
do k = ub$1, 1, -1
k$glo = k + off$0
duz(i, j, k) = duz(i,j,k)
- c(k$glo) * duz(i,j,k+1)

- e(k$glo) * r$bufi(j*64 + i - 64)

enddo
enddo
--<< Send duz(i$:i$up, j, 1) >>--
if (my$p .gt. O) then
call csend(112, duz(i$,j,1), 84,
log2phys (my$p-1), my$pid)
endif
ddo
do

Figure 3: Generated Fortran 77 fragment
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— ] subroutine prntout
1 141 subroutine dz3idep(dz)
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