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Abstract

CHARMM (Chemistry at Harvard Macromolecular Mechanics) is a program that is widely used to model
and simulate macromolecular systems. CHARMM has been parallelized by using the CHAOS runtime
support library on distributed memory architectures. This implementation distributes both data and
computations over processors. This data-parallel strategy should make it possible to simulate very large
molecules on large numbers of processors.

In order to minimize communication among processors and to balance computational load, a variety
of partitioning approaches are employed to distribute the atoms and computations over processors. In
this implementation, atoms are partitioned based on geometrical positions and computational load by
using unweighted or weighted recursive coordinate bisection. The experimental results reveal that
taking computational load into account is essential. The performance of two iteration partitioning
algorithms, atom decomposition and force decomposition, is also compared. A new irregular force
decomposition algorithm is introduced and implemented.

The CHAOS library is designed to facilitate parallelization of irregular applications. This library (1)
couples partitioners to the application programs, (2) remaps data and partitions work among processors,
and (3) optimizes interprocessor communications. This paper presents an application of CHAOS that
can be used to support efficient execution of irregular problems on distributed memory machines.

±
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1 Introduction

Molecular dynamics (MD) simulation programs, such as CHARMM [1], GROMOS [2], and AMBER [3],

are useful to study the structural, equilibrium, and dynamic properties of molecules. These programs are

very complicated and computationally intensive. Implementing them on massively parallel processing

systems not only reduces execution times but also allows users to solve larger problems. In the past,

a number of algorithms have been designed and implemented for MIMD architectures [4]. However,

certain difficulties arise when trying to achieve high performance with large numbers of processors, due

to the irregular computational structure of MD programs. This paper presents an implementation of the

CHARMM program that scales well on MIMD distributed memory machines. This program is parallelized

using a set of efficient runtime primitives called the CHAOS runtime support library [5].

Several parallel MD algorithms use the replicated approach, i.e. the entire system’s coordinates and

forces are stored at each processor [4]. The replicated approach eliminates the overhead in maintaining

the data distributions, but it would require more memory space. This prohibits users from simulating

larger systems. Furthermore, the method is not scalable for large numbers of processors because each

processor has to communicate all coordinates and forces to all other processors in order to make them

consistent at the end of each time step. In this paper, spatial domain decomposition algorithms have

been applied to distribute data and computations over processors based on the coordinates of atoms in

the system. This approach provides better locality, load balance, and scalability.

Molecular dynamics simulates the local and global motion of atoms in molecules. Each of the N

atoms in the simulation is treated as a point mass. Simulations involve the iterative computation of

the total potential energy, forces, and coordinates for each atom in the system in each time step. The

potential energy includes bonded energy, which consists of bond energy, angle energy, and dihedral

angle energy, and non-bonded energy, which includes van der Waals and electrostatic potential. The

bonded force calculations consume only a small part of computation time because each atom has few

numbers of chemical bonds with other atoms, whereas the non-bonded force calculations consume most

of MD simulation time since each atom interacts with all other atoms in the system. In this paper, two

approaches, data decomposition and force decomposition [6], have been employed to parallelize the

non-bonded force calculations. Although the regular force decomposition algorithm partitions atoms

evenly over processors, the non-bonded list is distributed unevenly and hence severe load imbalance

occurs. This paper presents an irregular force decomposition algorithm that maintains good load balance

and achieves good performance.

The CHAOS library is designed to facilitate parallelization of irregular applications on distributed

memory multiprocessor systems. It is a superset of the PARTI library [7]. This library (1) couples

1



partitioners to the application programs, (2) remaps data and partitions work among processors, and

(3) optimizes interprocessor communications. This implementation of parallel CHARMM presents an

application of CHAOS that can be used to support efficient execution of irregular problems on distributed

memory machines.

In the next section, a brief description of molecular dynamics simulations is given. In Section 3, the

design philosophy and functionality of the Maryland CHAOS library is described. Section 4 presents the

parallelization approaches and optimizations. The performance of the parallel CHARMM is presented in

Section 5. Section 6 briefly describes related work. Conclusions are presented in Section 7.

2 Molecular Dynamics (CHARMM)

CHARMM is a program which calculates empirical energy functions to model macromolecular systems.

The purpose of CHARMM is to derive structural and dynamic properties of molecules using the first and

second order derivative techniques [1].

The computationally intensive part of CHARMM is the molecular dynamics simulation. This cal-

culation is usually performed when the molecular structure reaches a local stable state (low energy)

through energy minimization. It simulates the dynamic interactions among all atoms in the system for

a period of time. For each time step, the simulation calculates the forces between atoms, the energy of

the whole structure, and the movements of atoms by integrating Newton’s equations of motion² 2 ³µ´²J¶
2 ·8¸

¹!º¼» ³
´b½
¾ ´ ¿

It then updates the coordinates of the atoms. The positions of the atoms are fixed during the energy

calculation; however, they are updated when spatial displacements due to forces are calculated.

The loop structure of molecular dynamics simulation is shown in Figure 1. The physical values

associated with atoms, such as velocity, force and displacement, are accessed using indirection arrays

(IB, JB, IT, JT, KT, JNB). IB and JB list all the bonds in the system; IB(I) and JB(I) are the atoms

connected by bond À . IT, JT, and KT represent all the angles; IT(I), JT(I), and KT(I) are the atoms that

construct angle À . JNB is the array that stores the non-bonded lists of all atoms. The energy calculation

in the molecular dynamics simulation comprises two types of interactions – bonded and non-bonded.

Bonded forces exist between atoms connected by chemical bonds. CHARMM calculates four types

of bonded forces – bond potential, bond angle potential, dihedral angle (torsion) potential, and improper

torsion. These forces are short-range, i.e. forces existing between atoms that lie close to each other in

space. Bonded interactions remain unchanged during the entire simulation process because the chemical

bonds of structures do not change. The time complexity of bonded forces calculations is linear to the

number of atoms because each atom has a finite number of bonds with other atoms.
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L1: DO N = 1, nsteps
Regenerate non-bonded list if required
...

C Bonded Force Calculations
L2: DO I = 1, NBONDS

Calculate bond energy between atoms IB(I) and JB(I)
END DO

L3: DO I = 1, NANGLES
Calculate angle energy of atoms IT(I), JT(I), and KT(I)

END DO
...

C Non-Bonded Force Calculation
L4: DO I = 1, NATOMS

DO J = INBLO(I)+1, INBLO(I+1)
Calculate non-bonded force between atoms I and JNB(J)

END DO
END DO
...
Integrate Newton’s Equations and Update Atom Coordinates

END DO

Figure 1: Dynamics Simulation Code from CHARMM

Non-bonded forces are due to the van der Waals interactions and electrostatic potential between all

pairs of atoms. The time complexity of non-bonded forces calculations is Á »�Â 2 ½ because each atom

interacts with all other atoms in the system. When simulating large molecular structures, CHARMM

approximates this calculation by ignoring all interactions beyond a certain cutoff range. This approx-

imation is done by generating a non-bonded list, array JNB, which contains all pairs of interactions

within the cutoff range. The non-bonded list determines the pattern of data accesses in the non-bonded

force calculation loop. The spatial positions of the atoms change after each time step, consequently, the

same set of atoms may not be included in subsequent time steps. Hence, a new non-bonded list must

be generated. However, in CHARMM, users have control over non-bonded list regeneration frequency.

If users do not specify the non-bonded list regeneration frequency, CHARMM contains a heuristics test

that can be used to decide when it is necessary to regenerate the list.

3 CHAOS Runtime Library

The CHAOS library is a set of software primitives that are designed to efficiently handle irregular

problems on distributed memory systems. It is a superset of the PARTI library [7]. These primitives have

been designed to ease the implementation of computational problems on parallel architecture machines
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by relieving users of low-level machine specific issues. The design philosophy has been to leave the

original (sequential) source codes essentially unaltered, with the exception of the introduction of various

calls to the CHAOS primitives which are embedded in the codes at the appropriate locations. These

primitives allow the distribution and retrieval of data from the numerous processor local memories.

In distributed memory systems, arrays can be partitioned among local memories of processors.

These partitioned arrays are called distributed arrays. Users can either partition arrays regularly, e.g.

in block or cyclic, or specify irregular mapping of arrays to processors. The distributions of data arrays

have significant impact on performance because they determine the patterns of communication between

processors. It is frequently advantageous to partition arrays in appropriate irregular distributions.

CHAOS provides primitives to map arrays onto processors and uses translation tables to describe the

distributions of distributed arrays.

CHAOS also provides a set of primitives that carry out optimizations at runtime to reduce both the

number of messages and the volume of interprocessor communication. The runtime primitives examine

the data accesses made by each processor, calculate what off-processor data have to be fetched and

where the data will be stored, and then generate communication schedules to specify the patterns of

communication for exchanging data. Once the communication schedules are ready, efficient gather and

scatter routines can be used to exchange data between processors.

4 Parallelization

In distributed memory machines the data and the computational work must be partitioned among

individual processors. The criteria for this partitioning is to reduce the volume of interprocessor

data communication and also to ensure good load balance. This corresponds to partitioning data

and iterations, such as atoms, bonded force calculations, and non-bonded force calculations, and then

assigning them to processors. Therefore, the parallelization efforts consist of four parts:

Ã Data Partition – partitioning atoms over processors,

Ã Iteration Partition – partitioning bonded and non-bonded force calculations,

Ã Loop Preprocessing – translating indexes from global to local and generating communication

schedules, and

Ã Communication Optimization – reducing both the number and volume of interprocessor commu-

nication messages.

4



(a) BLOCK Distribution (b) Irregular Distribution

Figure 2: Distributions of Hydrated Carboxy-Myoglobin (MbCO) on 4 Processors

4.1 Data Partition

The way in which the atoms are numbered frequently does not have a useful correspondence to the

interaction pattern of the molecules. Naive data distributions such as BLOCK or CYCLIC may result in

a high volume of communication and poor load balance. In molecular dynamics programs, bonded

interactions occur only between atoms in close proximity to each other and non-bonded interactions

are excluded beyond a certain cutoff range. Therefore, it is reasonable to assign atoms that are close

to each other to the same processor. Additionally, the amount of computation associated with an atom

depends on the number of atoms with which it interacts. Hence, data partitioners such as recursive

coordinate bisection (RCB) and recursive inertial bisection (RIB), which use spatial information as well

as computational load, are good candidates to partition atoms over processors. Figure 2 depicts two

distributions of hydrated carboxy-myoglobin (MbCO) on 4 processors: (a) a BLOCK distribution and

(b) an irregular distribution generated by a RCB partitioner.

Bonded force calculations consume about 1% of the total execution time of energy calculation,

while non-bonded calculations consume over 90%. Hence, balancing the computational load due to

non-bonded calculations is of primary concern. The computation work of non-bonded force calculation

for each atom is proportional to the size of the non-bonded list for the atom. Therefore, the size of

the non-bonded list for each atom is a good estimate of workload. Partitioners examine the position

and the estimated workload of each atom and distribute atoms onto processors so that interprocessor
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Figure 3: Decomposition of Non-Bonded Force Matrix Ä
communication is minimal and load is balanced. Once the distribution of atoms is determined, all data

arrays that are associated with atoms are distributed identically.

4.2 Iteration Partition

Once atoms are partitioned, the distribution is used to decide how loop iterations of energy calculation

are partitioned over processors. Each loop index of bonded force calculations is assigned to the processor

that owns the majority of data array elements accessed in that iteration. If the choice of processor is

not unique, the processor with the lowest computational load is chosen to maintain load balance. The

partitioning of loop interactions for bonded force calculations does not impact performance much, but

the partitioning for non-bonded force calculations impacts significantly.

Since non-bonded forces are the interactions between all pairs of atoms, the interactions can be

represented by an
ÂÆÅÇÂ

force matrix Ä , where
Â

is the number of atoms in the system. Every

non-zero element Ä ´ÉÈ of the force matrix represents the force on atom Ê due to atom Ë . This matrix Ä is

skew-symmetric due to Newton’s third law, Ä ´ÉÈ ·8¸ Ä È�´ . Therefore, only the upper triangular matrix is

required to calculate the non-bonded forces. Since the non-bonded force calculations can be represented

by force matrix Ä , partitioning iterations of non-bonded force calculations is equivalent to partitioning

force matrix Ä . Currently, two different iteration partitioning approaches, atom decomposition and

force decomposition, have been implemented.
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4.2.1 Atom Decomposition

In the force matrix Ä , row Ê represents the list of atoms that interact with atom Ê , i.e. row Ê is the

non-bonded list of atom Ê . Hence, one straightforward way to partition iterations of non-bonded force

calculations is to assign the non-bonded list of each atom to the processor that owns the atom. That is,

each row Ä ´ of the force matrix Ä is assigned to the processor that owns atom Ê . This is equivalent to

distributing the rows of Ä onto processors. Figure 3(a) shows the partitioning of force matrix Ä . Row

Ä ´ is assigned to processor Ì that owns atom Í ´ . Processor Ì requires the coordinates of atom Í ´ and

atoms Í ´ÏÎ 1 to Í!Ð to compute the non-bonded force Ñ ´ .
Each processor has

Â%ÒWÓ
atoms where

Â
is the number of atoms and

Ó
is the number of processors.

Since the non-bonded forces are long-range interactions, each atom interacts with all other
Â ¸ 1

atoms. Hence, each process has to access close to
Â ¸ Â%ÒWÓ off-processor atoms, i.e. the order of

the communication cost for each processor is Á »�Â ½ . Therefore, this row-based decomposition will

cause Á »�ÓÔÅÇÂ ½ off-processor accesses. The communication overhead increases when the number

of processors increases. A better decomposition scheme is required to reduce the communication

overheads.

4.2.2 Force Decomposition

Force decomposition is a block-wise decomposition of the non-bonded force matrix rather than a row-

wise decomposition as used in the atom decomposition scheme. The communication cost for each

processor reduces from Á »�Â ½ to Á »�ÂtÒWÕ Ó ½ . The assignment of sub-blocks of force matrix Ä to

processors is depicted in Figure 3(b). The sub-block Ä{Ö.× of Ä is assigned to one processor, say
Ó Ö.× ,

where Í5Ö and Í!× are subsets of atoms in the system. Processor
Ó Ö.× will require coordinates of

atoms Í%Ö and Í!× to calculate the partial non-bonded force Ñ.Ö.× . The non-bonded force ÑWÖ can then be

calculated by combining the partial forces ÑWÖ ´ , where Ê = 1, number of sub-blocks in row Ø .

Figure 3(b) presents a regular force decomposition of force matrix Ä . Even numbers of atoms are

assigned to processors. This regular decomposition will cause load imbalance, since some processors

have only half of the computations and some are idle. In order to improve load balance, an irregular

force decomposition algorithm is implemented in two steps.

Step 1 Processors are divided into groups and a spatial partitioner is applied to distribute atoms irregu-

larly to the processor groups so that interprocessor communication is minimized and computation

load is balanced. This step is equivalent to applying the atom decomposition algorithm to partition

force matrix Ä over processor groups.

Step 2 Each subset of the force matrix is then partitioned evenly over processors in the same group.

7



Table 1: Regular vs. Irregular Force Decomposition

Regular Irregular
Processors 16 32 64 128 16 32 64 128
Non-Bonded Max. 1203882 1003341 704616 473341 420214 210490 106916 54344
List Avg. 418801 209400 104700 52350 418801 209400 104700 52350
Idle Processors 6 12 28 56 0 0 0 0

Table 1 compares the partitioning results of regular and irregular force decomposition schemes for the

benchmark case, MbCO + 3830 water molecules (total 14026 atoms), that will be used in Section 5.

The size of the non-bonded list is 6700818 at the beginning of simulation. Table 1 lists the maximum

and average sizes of non-bonded lists assigned to processors and the number of idle processors.

Figure 4 depicts an irregular force decomposition of matrix Ä of 16 atoms over four processors. At

step 1, processors are divided to two groups, processor 1 and 2 in group
Ó

12 and processors 3 and 4

in
Ó

34. The force matrix Ä in Figure 4(a) is partitioned irregularly to two sub-matrices, Ä 12 and Ä 34.

Then sub-matrix Ä 12 is assigned to processor group
Ó

12, and Ä 34 to
Ó

34, as shown in Figure 4(b). Step 2

further partitions sub-matrices Ä 12 and Ä 34 and assigns them to processors. Figure 4(c) shows the final

result of the irregular force decomposition.

4.3 Loop Preprocessing

Since arrays are distributed over processors, preprocessing has to be carried out to calculate what off-

processor elements need to be fetched and where the elements will be stored once they are received. The

preprocessing (1) examines the indirection arrays of both bonded and non-bonded force calculations, (2)

translates the indexes from global to local, and (3) generates a communication schedule for gathering

and scattering off-processor data.

Indirection arrays for bonded force calculation loops remain unchanged while the non-bonded list

adapts during computation. Hence, preprocessing for bonded force calculation loops need not be

repeated, whereas it must be repeated for non-bonded force calculation loops whenever the non-bonded

list changes. CHAOS provides hash tables and stamps to handle codes with adaptive indirection arrays.

While building schedules, each indirection array is hashed with a unique time stamp. The hash table

is used to remove any duplicate off-processor references. When the non-bonded list is regenerated,

non-bonded list entries in the hash table are cleared with the corresponding stamp. Then the stamp can

be reused and the new non-bonded list entries are hashed with the reused stamp.
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Figure 4: Irregular Force Decomposition

4.4 Communication Optimization

In CHARMM the same data are accessed by several consecutive loops. The coordinates of atoms are

used in both bonded and non-bonded force calculation loops. The atom coordinates are only updated

at the end of each time step. Hence, all of the off-processor coordinates needed for the calculation can

be obtained at the beginning of the time step. This makes it advantageous to perform computations

without reading the same data more than once.

The CHAOS primitives can be used to track and reuse off-processor data copies. The primitives

use hash tables to omit duplicate off-processor data references. In this implementation, one single

communication schedule was generated for the loops in the dynamic energy calculation routine based

on the content of the hash table. This schedule was used to gather off-processor data at the beginning

and scatter the results at the end of each time step of energy calculation.
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Table 2: Communication Overheads

Number of Processors 16 32 64 128
BLOCK –1 – 293.9 309.9
CYCLIC 324.4 363.5 365.5 396.4
Weighted BLOCK 425.8 436.3 497.5 572.6
RCB – 155.2 166.8 198.8
Weighted RCB 147.1 159.8 181.1 219.2

5 Experiments and Results

This section describes the experiments performed and presents the corresponding results. A number of

different experiments were performed for data and iteration partitioning. The results are presented to

show how the performance scales from small to large numbers of processors. All the timing results,

except the load balance index, are presented in seconds.

The performance of molecular dynamics simulations was studied with a benchmark case, MbCO

+ 3830 water molecules (total 14026 atoms), on the Intel iPSC/860. It ran for 1000 steps with 40

non-bonded list updates. The cutoff for non-bonded list generation was 14 Å. The non-bonded list was

regenerated 40 times during the simulation. The recursive coordinate bisection (RCB) partitioner was

used to partition atoms.

5.1 Performance

In this section, the impact on performance of different data and iteration partitioning approaches is

presented.

Communication Overheads

Distribution of data arrays has significant impact on performance because it determines the patterns

of communication between processors and, possibly, load balance. Several regular and irregular data

partitioning methods have been implemented to compare the communication overheads. Table 2 presents

average communication times of different data partitioning methods from 16 to 128 processors. Atom

decomposition was used as the iteration partitioning algorithm.

Both BLOCK and CYCLIC are regular distributions and partition arrays evenly over processors.

BLOCK divides an array into contiguous chunks of size
Â%ÒWÓ

and assigns one block to each processor,

whereas CYCLIC specifies a round-robin division of an array and assigns every
ÓEÚnÛ

element to the

same processor. Table 2 shows that both BLOCK and CYCLIC do not exploit locality and, therefore,

1Not available due to memory limitation of iPSC/860
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Table 3: Load Balance Indexes

Number of Processors 16 32 64 128
BLOCK – – 3.13 3.08
CYCLIC 1.08 1.12 1.21 1.28
Weigh. BLOCK 1.05 1.07 1.10 1.12
RCB – 1.66 2.35 2.38
Weigh. RCB 1.01 1.04 1.06 1.08

cause higher communication overheads. Weighted BLOCK divides an array into contiguous chunks

with different sizes so that each chunk would have the same amount of computational work. The

communication cost of weighted BLOCK is higher than that of BLOCK distribution, but weighted BLOCK

distribution has better load balance. RCB and weighted RCB are irregular distributions that partition

atoms based on coordinates. Both distributions exploit the locality of data accesses, and hence have

lower communication costs.

Load Balance

Table 3 presents the load balance indexes of different data partitioning algorithms. The load balance

index (LBI) is calculated as

Ü�Ý À ·
»
max Þ´Ïß 1 à^á ¾ Ì
â ¶�ã�¶ Ê á.ä ¶ Ê ¾iå á ÑdÌ
æ á.à åfç)ç á æEÊ ½ Å�» ä â ¾iè^å æ á ÑdÌJæ á.à å)çfç á æ ç ä ½é Þ´oß 1 à^á ¾ Ì
â ¶�ã1¶ Ê áWä ¶ Ê ¾iå á Ñ�Ì
æ á.à åfç)ç á æêÊ

Both BLOCK and CYCLIC distributions do not consider computation load of each element when dis-

tributing data arrays over processors, and hence both cause severe load imbalance. Weighted BLOCK

divides arrays into different sizes of blocks based on the computation load of each element so that good

load balance is obtained. The irregular distribution generated by weighted RCB achieves good load

balance because the weighted version of RCB assigns nearly the same amount of computation load to

each processor.

Performance

Table 4 and Table 5 present the performance of CHARMM when atom decomposition and force

decomposition algorithms are applied for iteration partitioning, respectively. The execution time in-

cludes the energy calculation time and communication time of each processor. The computation time

is the average of the computation time of dynamics simulations over processors; the communication

time is the average communication time. As predicated in Section 4.2, force decomposition has lower

communication overheads than atom decomposition. The results also show that CHARMM scales well

and that good load balance is maintained up to 128 processors.
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Table 4: Performance of Parallel CHARMM (Atom Decomposition)

Number of Processors 1 16 32 64 128
Execution Time 74595.52 4356.0 2293.8 1261.4 781.8
Computation Time 74595.5 4099.4 2026.8 1011.2 507.6
Communication Time 0 147.1 159.8 181.1 219.2
Load Balance Index 1.00 1.03 1.05 1.06 1.08

Table 5: Performance of Parallel CHARMM (Force Decomposition)

Number of Processors 1 16 32 64 128
Execution Time 74595.5 4433.6 2296.7 1239.0 750.4
Computation Time 74595.5 4240.0 2096.8 1039.8 518.9
Communication Time 0 134.8 122.3 137.5 188.1
Load Balance Index 1.00 1.01 1.04 1.06 1.08

5.2 Preprocessing Overheads

Data and iterations partitioning, remapping, and loop preprocessing, must be done at runtime. Prepro-

cessing overheads of the simulation are shown in Table 6. The data partition time is the execution time

of RCB. All arrays associated with atoms have to remapped and redistributed when the new distribution

of atoms is known. The remapping and preprocessing time shows the overhead. After partitioning

atoms, the non-bonded list is regenerated. This non-bonded list regeneration was performed because

atoms were redistributed over processors and it was done before dynamics simulation occurred. In

table 6, the regeneration time is shown as non-bonded list update time.

During simulation, non-bonded list was regenerate periodically. When the non-bonded list was

updated, the schedule must be regenerated. The schedule regeneration time in Table 6 gives the

total schedules regeneration time for 40 non-bonded list updates. This overhead was included in the

computation times in Table 4 and Table 5. By Comparing these numbers to those in Table 5, it can be

observed that the preprocessing overhead is relatively small compared to the total execution time.

5.3 Scalability

The scalability of the parallel CHARMM was tested on Intel Delta. Table 7 shows the performance

of CHARMM from 64 to 512 processors. The execution times and load balance indexes in the table

demonstrate that CHARMM can achieve high performance on large numbers of processors and maintain

good load balance.

2Estimate (based on model systems due to memory limitations with 1 node) [4]
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Table 6: Preprocessing Overheads

Number of Processors 16 32 64 128
Data Partition 0.27 0.47 0.83 1.63
Non-bonded List Update 7.18 3.85 2.16 1.22
Remapping and Preprocessing 0.03 0.03 0.02 0.02
Schedule Generation 1.31 0.80 0.64 0.42
Schedule Regeneration (

Å
40) 43.51 23.36 13.18 8.92

Table 7: Performance on Intel Delta

Atom Decomposition Force Decomposition
Number of Processors 64 128 256 512 64 128 256 512
Execution Time 1226.2 712.3 504.6 458.3 1187.8 687.3 460.7 397.4
Load Balance Index 1.08 1.11 1.20 1.48 1.05 1.07 1.09 1.15

Table 7 also demonstrates that the irregular force decomposition outperforms the atom decomposition

by an increasing margin as the number of processors increases. Force decomposition is 3 percent faster

than the atom decomposition on 64 processors, whereas force decomposition is 15 percent faster than

atom decomposition on 512 processors.

5.4 Portability

The CHAOS library has been ported to several distributed memory systems, such as Cray T3D, IBM

SP-2, and Intel Paragon, etc. Using these libraries, the parallel CHARMM code has been executed on the

Cray T3D, IBM SP-2, and Intel Paragon. The performance results of (irregular force decomposition)

CHARMM on Cray T3D, IBM SP-2, and Intel Paragon are presented in the Table 8, Table 9, and Table 10,

respectively. For communication, Cray T3D uses the Parallel Virtual Machine (PVM) library, IBM SP-2

uses the Message Passing Library (MPL), and Intel Paragon uses the Paragon OSF/1 Message-Passing

System Calls. The computation time on IBM SP-2 is only about half of the computation times on

Table 8: Performance on Cray T3D (PVM)

Number of Processors 16 32 64 128
Execution Time 2973.1 1572.3 790.6 544.5
Computation Time 2882.8 1449.5 637.6 318.6
Communication Time 52.6 69.6 113.4 204.3
Load Balance Index 1.01 1.04 1.06 1.06
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Table 9: Performance on IBM SP-2 (MPL)

Number of Processors 16 32 64 128
Execution Time 1414.13 759.4 413.1 338.1
Computation Time 1332.6 674.8 312.2 165.3
Communication Time 48.4 51.4 76.3 146.9
Load Balance Index 1.02 1.05 1.08 1.16

Table 10: Performance on Intel Paragon (Massage-Passing System Calls)

Number of Processors 16 32 64 128
Execution Time 3472.2 1863.4 972.5 579.1
Computation Time 3229.4 1629.2 778.9 391.1
Communication Time 180.3 165.4 154.5 165.6
Load Balance Index 1.02 1.04 1.05 1.06

Intel Paragon and Cray T3D. In addition, the communication costs on Intel Paragon and Cray T3D are

slightly worse than that on IBM SP-2 for comparable numbers of processors. The net effect is that IBM

SP-2 is substantially faster when compared to the execution times on Intel Paragon and Cray T3D.

CHAOS can also be ported to distributed shared memory systems. For instance, a subset of the

CHAOS runtime library has been ported to Cray T3D by using the SHMEM shared memory library4. Data

on remote processors can be referenced directly via support circuitry on each node and interconnect

network. The latency of each remote access is 1 to 2 microseconds. The performance of CHARMM on

Cray T3D using SHMEM library is shown in Table 11. The low latency of remote access makes Cray T3D

scale very well. The communication overhead goes down when the number of processors increases,

since each processor accesses fewer remote data. Furthermore, the communication overhead on (shared-

memory) Cray T3D is dramatically small when compared to the overheads on message-passing systems,

which usually have large message startup latencies.

3Timings were measured on the SP-2 with Power1 nodes (located at Argonne National Laboratory)
4A shared memory access library released by Cray Research, Inc. as part of the CRAFT compiler environment
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Table 11: Performance on Cray T3D (SHMEM Library)

Number of Processors 16 32 64 128
Execution Time 2647.7 1357.8 698.4 353.0
Computation Time 2591.1 1297.2 647.0 321.9
Communication Time 21.0 14.3 10.9 8.8
Load Balance Index 1.01 1.04 1.06 1.07

6 Related Work

There has been considerable effort by researchers to exploit parallelism of molecular dynamics computa-

tions on various parallel architectures. Several parallel algorithms have been proposed and implemented

on MIMD systems [4]. It has also been observed that spatial domain decomposition algorithms can be

applied to achieve good load balance [8]. More recently there have been scalable algorithms created

for large MIMD multiprocessor systems [6, 9].

Several widely used MD programs have been parallelized on MIMD computers. Clark et al. [9]

applied spatial decomposition algorithms to develop EULERGROMOS, a parallelization of the GROMOS

MD program. Brooks and Hodošček implemented a parallel version of CHARMM using the replicated

data approach [4]. The parallelization effort of CHARMM done by Das and Saltz [10] was based on the

data-distributed approach. All data arrays associated with atoms were partitioned over processors in

BLOCK distribution. This implementation did not achieve good performance and scalability because

BLOCK distribution did not exploit locality.

Plimpton proposed the regular force decomposition algorithm for parallel short-range MD compu-

tation [6]. The algorithm was adapted in this paper to decompose force matrices irregularly in order to

achieve good load balance.

CHAOS has been used to parallelize irregular scientific computation application programs, such as

computational chemistry and computational fluid dynamics (CFD). CHAOS has also been used by several

parallel compilers to handle irregular computations on distributed memory systems [11, 12].

7 Conclusions

This paper presented an implementation of the CHARMM program that scaled well on MIMD distributed

memory machines. This implementation was done by using a set of efficient runtime primitives called

the CHAOS runtime support library. Both the data decomposition and force decomposition algorithms

were implemented and compared.

Although the original force decomposition algorithm partitioned atoms regularly over processors,
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the non-bonded list was distributed unevenly and hence severe load imbalance occurred. An irregular

force decomposition algorithm was introduced and implemented in this paper. Processors were divided

into groups and the atom decomposition algorithm was applied to distributed force matrix Ä onto

processor groups. Each subset of the force matrix was then partitioned evenly over processors in the

same group. This paper showed that the irregular force decomposition algorithm could achieve good

performance and load balance.

The performance results showed that the irregular force decomposition algorithm had lower com-

munication overheads and better load balance on large numbers of processors. The irregular force

decomposition outperformed the atom decomposition by an increasing margin as the number of proces-

sors increased. Force decomposition is 3 percent faster than the atom decomposition on 64 processors,

whereas force decomposition is 15 percent faster than atom decomposition on 512 processors. The

load balance indexes of the irregular force decomposition and atom decomposition algorithms on 512

processors were 1.15 and 1.48, respectively.

Data partitioning is important for parallelization because it determines the patterns of communication

among processors and load balance. Appropriate data partitioning schemes can exploit the data locality

and reduce interprocessor communication overheads.

The CHAOS library provides a set of runtime primitives that (1) couples partitioners to the application

programs, (2) remaps data and partitions work among processors, and (3) optimizes interprocessor

communications. The runtime primitives can efficiently handle both regular and irregular distributions

of data and iterations. The implementation of the atom decomposition and irregular force decomposition

algorithms was straightforward – simply embedding CHAOS runtime primitives in the original code at

the appropriate locations. This implementation of parallel CHARMM presented an application of CHAOS

that can be used to support efficient execution of irregular problems on distributed memory machines.
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