Compiler Support for Out-of-Core
Arrays on Parallel Machines

Michael Paleczny
Ken Kennedy
Charles Koelbel

CRPC-TR94509-S
December, 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Compiler Support for Out-of-Core Arrays on Parallel Machines *

Michael Paleczny

Ken Kennedy

Charles Koelbel

Rice University, Department of Computer Science

Houston, TX 77005-1892

Abstract

Many computational methods are currently limited
by the size of physical memory, the latency of disk
storage, and the difficulty of writing an efficient out-
of-core version of the application.

We are investigating a compiler-based approach to
the above problem. In general, our compiler techniques
attempt to choreograph 1/0O for an application based
on high-level programmer annotations similar to For-
tran D’s DECOMPOSITION, ALIGN, and DIS-
TRIBUTE statements. The central problem is to
generate “deferred routines” which delay computations
until all the data they require have been read into main
memory. We present the results for two applications,
LU factorization and red-black relazation, on 1 to 32
nodes of an Intel Paragon after hand application of
these compiler techniques.

1 Introduction

Improvements in processor performance have out-
paced developments in both memory and disk I/0O
speed. As a result, out-of-core applications, which re-
quire significantly more data than will fit into RAM,
are likely to suffer from a bottleneck between memory
and disk. Tiling the program’s use of data is a com-
mon approach to improving data locality which must
be applied by hand today. In addition, increasing the
size of a data set typically increases the amount of
computation. This makes parallel machines attractive
for out-of-core problems. Unfortunately, parallel pro-
gramming is also complex on current machines. Work
at Sandia National Lab [13] on parallel out-of-core pro-
grams shows that low-level I/O optimization is also
important, but requires significant programmer effort.
Our experience suggests that much of this low-level
work can be done by the compiler.

*This research was supported by The Center for Research on
Parallel Computation (CRPC) at Rice University, under NF'S
Cooperative Agreement Number CCR-9120008.

Our approach is to develop compiler techniques
that choreograph 1/O for an application, specifically,
the temporary storage and retrieval of out-of-core data
during execution. A programmer will declare the de-
sired organization of input and output with state-
ments similar to Fortran D’s DECOMPOSITION,
ALIGN, and DISTRIBUTE [7]. These annotations
allow a high-level description of the relationship be-
tween an array and its use in the computation. The
compiler will use this information and static program
analysis to segment the computation, construct ap-
propriate I/O statements, and insert them in the pro-
gram. Since only part of the data set is in memory
at one time, computations which require nonresident
data are deferred until the data is resident. We call
these groupings of computations “deferred routines.”
By making data accesses explicit, the compiler can
also perform additional optimizations which include
overlapping I/O with computation.

The similarity between the I/O annotations and
those used to express data-parallel computation in
Fortran D presents a consistent framework to the pro-
grammer. Providing separate annotations for out-of-
core computation allows the programmer to consider
the problem the problem of parallelism and 1/O sep-
arately when desired. This paper describes a hand
experiment using disjoint I/O and data-parallel anno-
tations to guide the transformation to an out-of-core
parallel program. This level of compiler support can
reduce the programming effort spent on developing
out-of-core applications and lead to the efficient exe-
cution of those programs.

The next two sections introduce our high-level I/O
model and the language directives available to the
programmer. Section 4 presents compiler methods to
transform the program and choreograph I/0. This sec-
tion also comments on some of the more interesting
compiler issues that arose in our hand application of
these methods. Section 5 describes aspects of the pro-
cess relevant to each one of our applications separately.
Section 6 presents the experimental results from run-

ning these programs on an Intel Paragon. Related
work is discussed in Section 7 and our conclusions are
presented in Section 8.

2 1I/0 system

Our model of the I/O subsystem pairs each pro-
cessor with a disk as was done in [13]. A processor
can access its local disk directly; remote disks require
cooperation from their owning processor. We imple-
ment this on the Paragon by creating a separate file
for each processor within a parallel file system. This
file system 1is striped onto one RAID device and ac-
cessed through one I/O node. Additional details of
this implementation and its effects on the results are
presented in Section 6.

3 Programmer directives

The programmer provides source directives simi-
lar to the data distribution directives in Fortran Dto
describe block-cyclic distributions of the data. The
I/O and data-parallel directives used in our test cases
are included in the untransformed source code for
our sample applications at the beginning of Figures 5
and 6. The block size, specified by the programmer,
refers to the size of an in-core data tile on one pro-
cessor. When more processors are used, the compiler
can keep additional tiles in-core until all the data is
kept in memory. Input and output of these tiles is
choreographed by the compiler. Initial and final data
accesses can be remapped if necessary using either
run-time routines [3] or compiler-generated I/O if the
external distribution is known.

4 Compiling for out-of-core execution

Our strategy for out-of-core compilation consists of
three phases: program analysis, I/O insertion and op-
timization, and parallelization and communication op-
timization. This design allows us to use components of
the FortranD system at Rice University in our planned
implementation of an out-of-core compiler. We apply
the I/O and parallel distribution directives consecu-
tively as the available Fortran D implementation only
accepts one-dimensional distributions. This also sim-
plifies the compilation of both an I/O and a data-
parallel distribution in the same dimension. As we
discuss in Section 5, we have not fully implemented
this strategy but have simulated it by hand.

4.1 Program analysis

The program analysis phase uses traditional and
new compiler techniques to discover patterns of data
use within the program. Interprocedural data-flow
analysis propagates the user I/O annotations in the
same way as the Fortran D data mapping directives
are handled. Code sections that access out-of-core
data are identified as the sections that use the an-
notated arrays, and their data use is summarized us-
ing Regular Section Descriptors (RSDs) [6]. Again,
this analysis is similar to the communications analy-
sis performed by the Fortran D compiler. In addition,
data and control dependences are needed to determine
when data reuse and overlapping I/O and computa-
tion are legal.

4.2 1/0 insertion and optimization

The I/0 insertion phase uses the analysis results to
partition the computation among tiles and to deter-
mine for each tile which section of data is needed and
which should be stored to disk. The techniques used
are similar to Fortran D’s owner-computes rule, which
assigns computation to the processor owning a partic-
ular datum. In the I/O arena, computation (often
in the form of loop iterations) is split into code sec-
tions that process individual out-of-core tiles. These
code sections are called “data-deferred routines” since
their computation must often be deferred until data
is read from disk. Generally, the compiler must insert
I/0 statements to read the appropriate out-of-core tile
into memory and write modified data to disk when fin-
ished. USE analysis in the deferred routine determines
if data may be required from other out-of-core tiles, in
which case additional I/O statements and control-flow
are inserted.

Next, the compiler inserts the control flow to pro-
cess out-of-core tiles. In general, inter-tile depen-
dences determine the ordering of tile computations.
If the tiles are independent, any order can be used;
initially, we use the execution order of the original pro-
gram. We implemented this by adding a loop around
the deferred-routines to iterate through the out-of-core
tiles. More complex orderings, which might be more
efficient, may require a more general methodology.

For example, the red and black computation rou-
tines in red-black relaxation exemplify the different
effect of global operations on in-core data-parallel vs.
out-of-core compilation. On a distributed memory
machine, with all data in-core, it is reasonable to com-
pute all the red points then compute the interspersed

black points. For an out-of-core problem, this ap-
proach requires two complete scans of the entire data
set. When transforming red-black relaxation we align
the loop which accesses out-of-core tiles for the black
computation, with respect to that for the red, to al-
low the black computation for tile N to execute after
the red computation for tile N 4 1. This requires that
sufficient memory is available in-core for two tiles. If
insufficient memory is available for a profitable trans-
formation the compiler can provide feedback to the
programmer. This transformation is similar to align-
ment of vector operations to allow reuse [2].

Next, the compiler can optimize the inserted 1/O
statements. Dependence analysis results can deter-
mine when it is safe to overlap computation and I/0O.
A cost model must also be applied to determine that
this is profitable, as the overlapping may require more
main memory. Another optimization involves detect-
ing that data from one tile might be needed for the
next tile. We believe that intersecting the summary
RSDs is sufficient to produce this information.

When the initial or final data is not compatible
with the temporary storage distribution, or the pro-
grammer requests a redistribution during execution,
the data must be remapped. This can be done with
run-time routines extended for out-of-core data [3] or
by explicit I/O interleaved with computation when the
source and destination distribution are known at com-
pile time.

4.3 Parallelization and communication
optimization

Finally, the parallelization phase compiles the
transformed program for parallel machines. This uses
the regular Fortran D compilation process, with ex-
tensions to allow access to the disk. In particular, we
assume each processor has a private disk. When par-
allelizing the out-of-core I/O, each processor restricts
the I/O statements to the values it “owns.” Reflect-
ing this in the implementation, each processor opens
a separate file and does its reads and writes to that
file. When a processor needs data it does not own,
the owner performs the I/O and sends the data in a
message.

One important interaction of this phase with the
I/0 insertion concerns the in-core overlap regions gen-
erated by the compiler. These may be interleaved in
memory with the addresses available to hold an out-
of-core tile. Although we use the simplest solution—
each processor reads and writes the boundary data
along with the original—a better solution would be
to reorder the computation to isolate accesses to the

border area and store the border in a separate buffer.
This preserves the connectedness of the out-of-core tile
and allows some overlap of the computation with 1/O
for the border.

5 Compilation examples

Each application is hand-compiled using the meth-
ods descibed in Section 4. The principal stages are
summarized here: First, translate the I/O distribu-
tion information to Fortran D annotations and use the
Rice Fortran D compiler to generate a tiled computa-
tion. These are converted by hand into deferred rou-
tines. Second, transform (by hand) the communica-
tion statements into I/O requests and hand-optimize
the inter-tile I/O. Third, use the Fortran D compiler to
generate a distributed memory node program. Finally,
we manually modify the I/O operations to access only
local data and resolve the interactions between data-
parallel and out-of-core tiling. Before each use of the
compiler, the code is simplified to satisfy restrictions
in the implementation such as constant loop bounds,
etc.; these changes are reversed after output. We use
simple block distributions for both I/O and parallelism
with the I/O distribution in the last dimension of the
arrays.

5.1 Transforming red-black relaxation

Our first test case is red-black relaxation on a
320 x 320 x 320 Cartesian mesh. This is representative

Out-of-Core Tiles "

""‘F?[pcr o]

[y

Processor

In-Core
_Processor 14

i Processor 15

Figure 1: Omne out-of-core tile distributed to
processors for red-black relaxation.

of many scientific algorithms on large 3-dimensional
domains. The program is shown in Figure 5.

The out-of-core annotations used in this program
are the I/O-DECOMPOSITION, I/O-ALIGN, and
I/O-DISTRIBUTE directives. The intuitive mean-
ing is that one tile (on one processor) is a 320x320x 10
block. When two processors are used, the tile in core
at any time is 20 elements wide, and so on. This
keeps memory filled on all processors. Orthogonal to
the I/O distribution, the Fortran D directives specify
blocking among parallel processors in the second di-
mension. The combined I/O and parallel distribution
of data for one in-core plane of the array is illustrated
in Figure 1.

In this application, each tile required extra commu-
nication only at the boundaries. (This is handled by
small overlap regions, well-known from data-parallel
compilers.) Inter-tile dependence edges show that the
deferred black computation for tile N depends upon
the red computation for tiles N — 1, N, and N + 1.
Skewing the tiling loop for the black computation by
one iteration, plus peeling the first iteration from the
front of the red loop and the last iteration from the
black loop, allows the two loops to be fused.

The boundary data also affects a read of the next
tile, as the first plane of the next tile is already in-
core. We identify this by intersecting the summary
RSD, representing data in-core for computation on the
current tile, with the RSD for data used by the next
tile. This shows that the two planes of data adjacent
to the next tile will be reused. Both are kept in mem-
ory and the I/O request for the next tile is reduced
in size. After these optimizations are performed, no
duplicate I/O occurs within an iteration of red-black
relaxation.

We discovered several bugs in the Fortran D com-
piler apparently related to the loop stride of 2 (rather
than 1), and modified the output by hand when it af-
fected correctness. One significant bug was the com-
piler’s inability to partition the loop bounds; instead,
it inserted guards on all the assignment statements.
As this produced correct but slow code, we did not
rewrite it. This decision reduces the speedup of com-
putation which affects the execution times we report
later.

5.2 Transforming LU factorization

The second test case is LU factorization with piv-
oting, a method for solving dense linear systems. Our
program is based on one provided by David Womble
at Sandia National Laboratory [13, 14]. Since his pro-
gram is out-of-core and parallel, we started by serial-

izing the computation then used the compiler to re-
discover the original implementation. The sequential
code is shown in Figure 6.

In this case, the out-of-core annotations specify
blocks of columns, while the parallel annotations spec-
ify blocks of rows, giving the combined I/O and paral-
lel distribution of data shown in Figure 2. Again, the
compilation follows the outline of Section 4. Since an
in-core tile consists of a group of columns,; a pivot op-
eration spans all tiles to the right of the one containing
the current diagonal element. The pivot operation is
split into computation on the data currently in mem-
ory, and deferred pivots which apply to tiles to the
right. The outer-product operation is likewise divided
into current and deferred computations. The deferred
pivot and outer-product operations execute in their
original order when a tile is brought into memory. The
deferred code is essentially a node program from which
operations performing computations owned by other
tiles are elided or deferred.

The inter-tile communication, for the outer-
product, is more complex than in red-black relax-
ation requiring data from all previously computed
tiles. Since not all these tiles can fit in memory at
once, a loop must stage data into memory. Overlap-
ping this I/O with the execution of deferred opera-
tions produces significant savings for LU factorization.
Overlapping the I/O necessary for the outer loop does
not, as it requires too much buffer space. Decreas-
ing the size of deferred tiles by one half approximately

Processor 0

Processor 1

Processor 2

Processor 3

Out-of-Core Tiles

Figure 2: Interaction of data-parallel and I/0
distribution for LU factorization

doubles the amount of /0.

6 Results

Each of the applications was executed on the In-
tel Paragon located at Rice University under OSF/1
release 1.0.4 version 1.2.3. This release supports asyn-
chronous file I/O. All of the file-I/O results were
obtained performing I/O to one parallel file system
(PFS) using two I/O nodes and two RAID disk sys-
tems, each connected using a SCSI-1 interface. The
RAIDs are configured with 64K disk blocks and mem-
ory is divided into 8K pages. Results using virtual
memory on more than 1 node paged to two RAID
systems. The performance graphs relate total execu-
tion time to the number of processors and compare
synchronous file I/O with asynchronous I/O. These
results are also compared to the performance of the
application using virtual memory (when that version
completed execution). The distribution of initial data
into files matches the distribution of the array. The
timings include reading initial data from files and the
final writing of results.

6.1 Red-black relaxation

The red-black relaxation code was run on nodes
with 32 MB of main memory. Our results for vir-
tual memory, synchronous I1/0, and overlapped I/0O

10°

N
or\:

o)

Q

2

g Virtual Memory

£

5 % Synchronous 1/0, Small Tiles

3

§ © Asynchronous I/0, Small Tiles

[NY

10+ 7

— = Synchronous /O, Large Tiles

— -© Asynchronous I/O, Large Tiles

0 I

10* 10
Number of Processors

10
10

Figure 3: Execution time for red-black relax-
ation

with computation are shown in Figure 3. In addition,
two different tiling strategies are compared. The solid
line shows the virtual memory performance for 1 to
32 nodes. The performance improvement at 16 nodes
occurs when all the data is retained in memory. The
large tile version (shown as dashed lines) uses a tile
size of 10 as explained in Section 5.1. Although this
version kept all data in memory when using 16 pro-
cessors, the large interprocessor messages crashed the
application. This should be fixed within the paral-
lelization pass of the compiler. The small tile version
(shown as dotted lines) keeps exactly two tiles of the
matrix in memory at any given time, each small tile
holds two planes of data. This does not make full
use of available memory, but is useful as a comparison
to the large-tile version. The small size of the tiles
avoided the large message problem described above.

Comparing the virtual memory performance to syn-
chronous 1/0O shows that even at 8 processors, when
more than half of the data fits in memory, our ap-
proach for compiler management of I/O is more than
two times faster than virtual memory. We believe this
result will still hold for larger out-of-core problems run
on larger numbers of processors. Testing using differ-
ent I/O request sizes indicates that much of this im-
provement is due to the larger requests made by the
explicit I/O calls. Increasing the system’s page size
should significantly improve the performance of the
virtual memory system on the large sequential accesses
in our applications. However, this could adversely
affect the performance of applications with different
paging requirements.

As shown in Table 6.1, overlapping I/O and compu-
tation in red-black relaxation further improves perfor-
mance an average of 17.4% for small tiles, and 14.9%
for large tiles, on 1 to 8 processors. This behavior
does not scale to larger numbers of processors for the
small-tile version due to a reduction in computation
at each node and I/O contention. A modified pro-
gram that performs only I/O shows similar increases

Tile Number of Processors

Size 1 | 2 | 4 | 8
Small Tiles || 12.3% | 20.3% | 27.0% | 10.1%
Large Tiles || 7.4% | 19.4% | 16.2% | 16.7%

Table 1: Percent improvement in execution
time between synchronous and asynchronous
I/0 for red-black relaxation.

in execution time. This is consistent with Intel’s rec-
ommendation [8]: “In general, the recommendation is
to have one I/O node for every ten compute nodes.”

6.2 LU factorization

Our results for LU factorization are shown in Fig-
ure 4. One set of results is from nodes containing 16
MB of memory, the other from nodes with 32 MB of
memory. The memory available for program text and
data on each node is approximately 5 MB and 21 MB
respectively. The graph compares the performance us-
ing synchronous file I/O operations (o data points)
with the performance using asynchronous file I/O (x
data points) for a 6400 x 6400 matrix using either 16
MB nodes or 32 MB nodes. Table 2 shows a consis-
tent improvement obtained by overlapping I/O with
computation while varying the number of processors.

The virtual memory version of this program did not
complete execution at this problem size. The results of
previous tests with a smaller data set are summarized
in Table 3. The “Initial Program” “Virtual Memory”
time used a version of the program with very poor
locality. We transformed that program so that oper-
ations were performed in the same order as for our
hand-compiled tests. This tiling gives a factor of 200

10
- -© Synchronous I/0, 16 MB
- > Asynchronous /0, 16 MB
—>o Synchronous 1/0, 32 MB
R —* Asynchronous 1/0, 32 MB
SIS
~10 |
6]
Q
)
(0]
£
'_
=
0
5
o
Q
0, s
10 1
102 0 ‘l 2
10 10 10

Number of Processors

Figure 4: Execution times for LU factorization

speedup from improved locality at the memory to disk
interface. Further improvements occur from using file
I/0 instead of virtual memory, and from overlapping
I/O and computation.

6.3 Discussion

Synchronous file I/O performs better than virtual
memory on our system, and much of this improve-
ment derives from the compiler’s requests for large
blocks of data and the large block-size of the RAID
I/0O devices. Overlapping I/O with computation pro-
vides further improvements which are possible because
the I/0 is visible to the compiler. In this sense, the
original insertion is an enabling transformation, allow-
ing the compiler to generate code which utilizes the
parallelism both within the I/O system and between
it and computation.

One traditional advantage of virtual memory sys-
tems is the automatic use of additional memory. We
took advantage of the additional memory available on
multiple processors by scaling the size of in-core tiles.
This works very well for LU factorization and should
allow our large-tile version of red-black relaxation to
avoid I/O when all tiles fit into memory.

One additional benefit is the separation of data into
distinct files by the compiler. This makes it simple to
distribute data used by different processors onto the
available I/O devices.

An important question is whether these applica-
tions will exhibit similar performance characteristics
when scaled to larger data sets, more processors, and
additional I/O nodes. In red-black relaxation, the
amount of both computation and I1/O scale linearly
with the number of data points. Executing a program
ten times larger on a system which has been scaled by
a factor of ten, processors and I/O nodes, will produce
similar results. This is not the case for LU factoriza-
tion. Computation and I/O increase faster than the
size of the data set. Although scaling problem size,
processors, and I/O nodes by a factor of ten will re-
sult in significantly longer execution times than for
our example, the improvements from overlapping I/0
and computation should remain similar as they de-
pend upon the ratio of problem size to available mem-
ory. This ratio determines the amount of I/O which
will be performed, but does not affect the amount of
computation.

7 Related work

Hiranandani, Kennedy and Tseng [7] described a
compilation method for Fortran D programs based

Memory Number of Processors

Size 1 | 2 | 4 | 8 [16 | 32
16 MB || 24.4% | 22.4% | 23.8% | 24.4% | 19.3% | 13.4%
32 MB 109% | 7.5% | 7.4% | 5.8% | 10.0% *

Table 2: Percent improvement in execution time between synchronous and asynchronous I/0 for
LU factorization. (* result unavailable)

Matrix Total Execution Time (sec)
Size Initial Program Tiled Program, after I/O distribution
Virtual Memory || Virtual Memory | Synchronous I/0 | Overlapped 1/0
100x100] 0.08 I 0.09	0.11	0.14				
800x800		33.3 I 33.3	214	20.5		
1200x1200		2270		178	120	98.4
1600x1600		82587		399	268	234

Table 3: Comparison of explicit I/O to virtual memory for small problem sizes on 1 processor with

16 MB memory

upon programmer-supplied directives for data align-
ment and distribution. We are extending this method
to support the automatic construction of out-of-core
parallel programs with compiler overlapped 1/O and
computation.

Bordawekar, del Rosario, and Choudhary [3] de-
signed a library of user-accessible primitives which are
configured at runtime to the desired memory and disk
distributions of the data. We believe such an I/0O li-
brary can be used effectively by our approach.

Thakur, Bordawekar and Choudhary [10] are work-
ing on compiler methods for out-of-core HPF pro-
grams. This has many similarities to our work, how-
ever, we believe our use of programmer I/O directives
provides useful information to the compiler, the dis-
covery of which is still a significant research problem.
This allows our work to focus on efficient deferred rou-
tines and I/O optimization.

Previous compiler-related work has focused on
transformations to improve virtual memory perfor-
mance. Abu-Sufah [1] examined the application of
loop distribution followed by loop fusion to improve
locality. Trivedi [11] examined the potential benefits
of programmer-inserted prefetching directives for ma-
trix multiplication on the STAR computer and com-
piler support for demand prepaging on sequential ma-
chines [12]. A growing body of work [4, 9] examines
similar concerns for cache memories.

Cormen [5] developed efficient out-of-core permuta-
tion algorithms and examined their I/O requirements
within a data-parallel virtual memory system (VM-
DP). He also recommended the development of lan-
guage and compiler techniques for parallel out-of-core

1/0.
8 Conclusions

Currently, applications that require more data than
can be stored in main memory are difficult to write. In
large part, this is because of the lack of language and
system support. We have presented a preliminary de-
sign for attacking these problems in a compiler-based
system. Using a few high-level directives like those in
data-parallel languages, the compiler will insert and
optimize input and output statements to convert the
program into out-of-core form. The techniques for do-
ing this are based on previous work on the Fortran
D compiler. To evaluate the effectiveness and feasi-
bility of this approach, we have hand-compiled a few
test cases. The results, while certainly not as good as
in-core performance, are encouraging.

We are now beginning an implementation of these
ideas as an extension of the Fortran D compiler. The
new compiler will allow us to more thoroughly evalu-
ate the effectiveness and applicability of our methods.
A successful compiler will allow the easy conversion of

standard algorithms to out-of-core form. The benefits
of this for solving problems requiring large memory
should be obvious.

Much work, however, remains to be done. Some
of our analysis requires more formalization, and our
transformations are not fully general yet. It is an open
question whether regular section descriptors are suffi-
ciently precise for our purposes. Perhaps most inter-
esting is the question of optimizing tile size. An au-
tomatic system must balance considerations of avail-
able memory, disk contention, and parallel execution
to choose optimal parameters for the I/O process. We
see the area of out-of-core computations as an excel-
lent new direction for research with practical applica-
tions.

References

[1] Walid Abu-Sufah. Improving the Performance of Virtual
Memory Computers. PhD thesis, Dept. of Computer Sci-
ence, University of Illinois at Urbana-Champaign, 1979.

[2] J. R. Allen and K. Kennedy. Vector register allocation.
IEEE Transactions on Computers, 41(10):1290-1317, Oc-
tober 1992.

[3] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok
Choudhary. Design and evaluation of primitives for parallel
1/0. In Proceedings of Supercomputing 93, pages 452-461,
Portland, November 1993.

[4] Steve Carr and Ken Kennedy. Compiler blockability of
numerical algorithms. In Proceedings of Supercomputing
’92, Minneapolis, MN, November 1992.

[5] T. H. Cormen. Virtual memory for data-parallel comput-
ing. PhD thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,
1992.

[6] P. Havlak and K. Kennedy. An implementation of inter-
procedural bounded regular section analysis. IEEE Trans-
actions on Parallel and Distributed Systems, 2(3):350-360,
July 1991.

[7] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng.
Compiling Fortran D for MIMD distributed-memory ma-
chines. Communications of the ACM, 35(8):66-80, August
1992.

[8] Ed Optimizing 1/0
performance for the Paragon (tm) supercomputer. Intel
On-Line, http://abacus.training.ssd.intel.com/InfoSelect/
bulletin VOIN02.html, 1(2), August 1994.

[9] Todd C. Mowry. Tolerating Latency Through Software-
Controlled Data Prefetching. PhD thesis, Department of
Electrical Engineering, Stanford University, March 1994.

[10] Rajeev Thakur, Rajesh Bordawekar, and Alok Choudhary.
Compiler and runtime support for out-of-core HPF pro-
grams. In Proceedings of the 1994 ACM International
Conference on Supercomputing, pages 382-391, Manch-
ester, July 1994.

Kushner.

[11] Kishor S. Trivedi. Prepaging and applications to the
STAR-100 computer. In Proceedings of the Symposium on
High Speed Computer and Algorithm Organization, pages
435446, April 1977.

C 3k 3k 3 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k ok 3k ok 3k ok ok ok ok ok ok ok ok ok ok ok 3k ok 3k sk ok ok ok sk ok ok %k ok 3k ok ok ok ok ok ok k ok

Q

Three-dimensional red-black relaxation

sk ok ok ok ok sk o ok ok ok ok ok ok ook o ok ok sk ok sk ok ok ok ok ok ko sk koo ok ok
double precision a(0:319,0:319,0:319)

parameter (n$proc = 16)

I/0-decomposition iod(320, 320, 320)

I/0-align a with iod
I/0-distribute iodd(: ,

Q

, block(10))

decomposition d(320, 320, 320)
align a with d
distribute d(, block, :)

QaaoaaoaaaaaQ

Q

Open the file and read data from disk
C ®xxxxxx*** iterate red-black computation. *¥kkkkkkk*
do n =1,5
C Compute red points
do k =2, 316, 2
do j =2, 316, 2
do i =2, 316, 2

a(i,j,k) = (a(i+1,j,k) + a(i-1,j,k)
* + a(i,j+1,k) + a(i,j-1,k)
* + a(i,j,k+1) + a(i,j,k-1))/6
a(i+1l,j+1,k)= (a(i+2,j+1,k) + a(i,j+1,k)
* + a(i+1,j+2,k) + a(i+1l,j,k)

+ a(i+l,j+1,k+1) + a(i+1,j+1,k-1))/6
a(i,j+1,k+1)= (a(i+1l,j+1,k+1) + a(i-1,j+1,k+1)

* + a(i,j+2,k+1) + a(i,j,k+1)
* + a(i,j+1,k+2) + a(i,j+1,k))/6
a(i+1l,j,k+1)= (a(i+2,j,k+1) + a(i,j,k+1)
* + a(i+1,j+1,k+1) + a(i+1l,j-1,k+1)
+ a(i+1,j,k+2) + a(i+l,j,k))/6
enddo
enddo
enddo

C Compute black points
do k =12, 316, 2

do j =2, 316, 2

do i =2, 316, 2

a(i,j,k+1) = (a(i+1l,j,k+1) + a(i-1,j,k+1)
+ a(i,j+1,k+1) + a(i,j-1,k+1)
* + a(i,j,k+2) + a(i,j,k))/6
a(i+1l,j+1,k+1)= (a(i+2,j+1,k+1) + a(i,j+1,k+1)
* + a(i+1,j+2,k+1) + a(i+l,j,k+1)
* + a(i+1,j+1,k+2) + a(i+1l,j+1,k))/6
a(i,j+1,k) = (a(i+1,j+1,k) + a(i-1,j+1,k)
* + a(i,j+2,k) + a(i,j,k)
* + a(i,j+1,k+1) + a(i,j+1,k-1))/6
a(i+1,j,k) = (a(i+2,j,k) + a(i,j,k)
* + a(i+1,j+1,k) + a(i+1,j-1,k)
* + a(i+1,j,k+1) + a(i+1,j,k-1))/6
enddo
enddo
enddo
enddo

C Write the results out to disk and close file
end

Figure 5: Sequential red-black relaxation pro-
gram

Qoo

aaoaaaaaaaaQ

o ok R KooK S o o R K K oK S o K R R KR K ok S o o K K K oK
LU factorization with pivoting.

Original pivot detection used library routine,

this code assumes data is positive.
s
double precision a(6401,6400),rowl(6400),row2(6400)
parameter (n$proc = 4)

I/0-decomposition iod(6401, 6400)

I/0-align
I/0-distribute iod(

a with iod
, block(40))

decomposition d(6401, 6400)
align a with d
distribute d(block, :)

do j = 1, 6400
pivotEntry = 0.0
Find pivot row
do i = j, 6400
if(a(i,j) .GT. pivotEntry) then
pivotEntry = a(i,j)
pivotRow =1
endif
enddo
a(6401, j) = pivotRow

Scale pivot row
scale = 1.0/pivotEntry
do i = j, 6400
a(i, j) = scale * a(i, j)
enddo
a(pivotRow, j) = pivotEntry

Copy the row containing diagonal
if(j .ne. pivotRow) then
do i = j, 6400
rowl(i) = a(j, i)
enddo
endif

Copy the pivot row
do i = j, 6400

row2(i) = a(pivotRow, i)
enddo

If pivot row is not diagonal, swap rows.
if(pivotRow .NE. j) then
DCOPY ((6400-3)+1,row1(1),1,a(pivotRow, j) ,6400)
do i = j, 6400
a(pivotRow, i) = rowl(i)
enddo
DCOPY ((6400-3j)+1,row2(1),1,a(j,j),6400)
do i = j, 6400
a(j, i) = row2(i)
enddo
endif

Perform outer-product computation
do i = j+1, 6400
DAXPY(6400-j,-row2(i),a(j+1,j),1,a(j+1,i),1)
do k = j+1, 6400
a(k, i) = a(k, i) - row2(i) * a(k, j)
enddo
enddo

enddo
end

Figure 6: Sequential LU factorization program

[12] Kishor S. Trivedi. On the paging performance of array algo-

rithms. IEEE Transactions on Computers, C-26(10):938—
947, October 1977.

[13] David Womble, David Greenberg, Stephen Wheat, and

Rolf Riessen. Beyond core: Making parallel computer I/O
practical. In DAGS93, Hanover, NH, June 1993.

[14] David E. Womble. Sandia National Laboratories, July

1993. Private communication.

