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Abstract

This paper presents a new approach that uses neural networks to predict the performance

of a number of dynamic decentralized load balancing strategies. A distributed multicomputer

system using any distributed load balancing strategy is represented by a unified analytical queu-

ing model. A large simulation data set is used to train a neural network using the back–propa-

gation learning algorithm based on gradient descent. The performance model using the predict-

ed data from the neural network produces the average response time of various load balancing

algorithms under various system parameters. The validation and comparison with simulation

data show that the neural network is very effective in predicting the performance of dynamic

load balancing algorithms. Our work leads to interesting techniques for designing load balanc-

ing schemes (for large distributed systems) that are computationally very expensive to simulate.

One of the important findings is that performance is affected least by the number of nodes, and

most by the number of links at each node in a large distributed system.

¿ÁÀzÂÄÃÆÅzÇ�È�ÉÄÊ²ÃlËÆÇÌÂ

Advances in accurate performance models and appropriate measurement tools are driven

by the demands of multicomputer system designs. Conventionally, these models and tools have

been developed using analytical and simulation techniques. Though computationally inexpen-

sive, analytical techniques alone do not always accurately represent the behavior of the system

under diverse conditions. In addition, the behavior of complex systems is difficult to capture

analytically. Simulations, on the other hand, are useful for analyzing complex systems but are

both computationally expensive and time consuming. Neural networks have been successfully

applied for modelling non–linear phenomena [3], [5], [8], [11], [12], [14], [20]. Application of

neural networks for predicting the performance of multicomputer systems is our contribution

to the search for new performance evaluation and prediction techniques.

The performance of multicomputer systems can be measured in terms of throughput, uti-

lization, average task response time or interprocessor communication. The performance meas-

ure in our context is the average task response time which heavily depends on the underlying

scheduling and load balancing mechanisms. In a wide range of environments, scheduling and
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load balancing cannot be done statistically and has to be doneÎAÏ=Ð�ÑÓÒ7ÔlÐÖÕ	× . For example, certain

applications having dynamic structures can result in the creation of tasks at run time [6] which

cannot be determined in advance. Furthermore, tasks initially assigned to processors can spawn

more sub-tasks as computation proceeds [13], [18]. Fox et al. [6] show that on hypercube mul-

ticomputers, dynamic load balancing is useful for a number of problems such as event–driven

simulations, adaptive meshes, many particle dynamics, searching of game trees in parallel

chess programs, or simulation of neural networks with time dependent non–uniform activity.

The response times of tasks can be considerably improved by migrating load from busy proc-

essors to idle processors. Dynamic load balancing is also essential for distributed computing

environments such as workstation–based networks, where regular jobs can be migrated from a

busy workstation to an idle workstation [10], [19]. In a study conducted for cluster of 70 Sun

workstations, it was observed that one third of the workstations were idle, even at the busiest

times of the day [21]. In a real–time environment, where periodically generated tasks need to

be migrated from one node to another in order to meet critical deadlines, dynamic load balanc-

ing can improve the deadline missing probability.

As opposed to static scheduling techniques, dynamic scheduling1strategies do not as-

sume availability of a priori knowledge of tasks. Due to timing constraints, a dynamic schedul-

ing algorithm needs to be fast enough to cope with time dependent fluctuations. The second fea-

ture that distinguishes dynamic task scheduling from static scheduling problems is that the no-

tion of time is taken into consideration, that is, dynamic task scheduling acts according to the

time–dependent state of the system. Dynamic load balancing strategies are centralized [9], de-

centralized [4], [11], [15], [19], or a combination of both [1]. Decentralized load balancing

strategies have been classified into two categories: sender–initiated and receiver–initiated [23].

In a sender–initiated algorithm, the requests to transfer load are originated by heavily loaded

nodes whereas an algorithm is said to be server–initiated if the requests are generated by lightly

loaded nodes. Load balancing schemes can be classified further depending upon the system ar-

chitecture: homogeneous or heterogeneous [17].

 Given the diversity of load balancing strategies proposed in the literature and their de-

1. Dynamic load balancing has also been referred to as equalizing the workload whereas terms such as load sharing
or load distribution, have been used to describe the process of load redistribution. However, in this paper, we use
these terms without distinction. We also use dynamic scheduling and dynamic load balancing interchangeably.
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pendence on a number of parameters, it is difficult to compare their effectiveness on a unified

basis. In a previous study [2], we proposed an approach to predict and compare the performance

(average response time) of different load balancing schemes on a unified basis, using simula-

tion, statistics and analytical models. This paper presents an approach to predict the perform-

ance of different load balancing schemes using a new technique. The proposed approach, which

uses neural networks, takes into account various system parameters such as system load, task

migration time, scheduling overhead and system topology, that can affect performance. We

show that load balancing strategies, belonging to the sender–initiated class, can be modelled by

a central-server queuing network. Through extensive simulation, a large number of values of

the average queue length and the probability associated with task migration have been obtained.

A neural network has been trained using the simulation data to model the relation between the

queuing parameters and the system parameters. We have employed the back–propagation

learning algorithm based on gradient–descent, to train our neural network. The network is then

used to predict the response time of a system with any set of parameters, for a given load bal-

ancing strategy. Using the proposed performance evaluation approach, six load balancing algo-

rithms have been modeled. We have compared the response time predicted by the model with

the response time produced by simulation. The validation and comparison with simulation data

show that the neural network is very effective in predicting the response time for dynamic load

balancing. The neural network is then used to predict the response time for very large systems.

ÙÁÚ ÇÌÈ�Û�ÜlËÆÂ�Ý¤ÞßËÆÃlà.áßÛ�ÉÄÅzâ�Ü áßÛ�ÃlÞßÇÌÅ©ã�ä

Neural networks belong to the class of data–driven approaches, as opposed to model–

driven approaches. The analysis depends on available data, with little rationalization about pos-

sible interactions. Relationships between variables, models, laws and predictions are construct-

ed post–facto after building a machine whose behavior simulates the data being studied. The

process of constructing such a machine based on available data is addressed by certain general–

purpose algorithms such as ‘back–propagation’.

Artificial neural networks are computing systems containing many simple non–linear

computing units or nodes interconnected by links. In a ‘feed-forward’ network, the units can be

partitioned into layers, with links from each unit in thek–th layer being directed (only) to each



�hå��

unit in the(k+1)–th layer. Inputs from the environment enter the first layer, and outputs from

the network are manifested at the last layer. Ad–n–1 network, shown in Figure 1, refers to a

network withd inputs,n units in a single intermediate ‘hidden’ layer, and one unit in the output

layer [24]. As we mention in the subsequent discussion, we train the neural network for learning

an output versus a number of input. For example, if the neural network is trying to learn an out-

put æ , as a function of , then it would have 3 inputs and one output. The number of

hidden nodes to be chosen depends on the application. We have varied them from 3 to 5 and

found that best results are obtained for the number of hidden nodes equal to 4. A weight or ‘con-

nection strength’ is associated with each link, and a network ‘learns’ or is trained by modifying

these weights, thereby modifying the network function which maps inputs to outputs.

We use suchd–n–1 networks to learn and then predict the behavior of dynamic load bal-

ancing algorithms. Each hidden and output node realizes a non–linear function of the form:

where ’s denote real–valued weights of edges leading into the node, denotes the adjustable

‘threshold’ for that node, and m denotes the number of inputs to that node from nodes in the

previous layer.

We use the error back–propagation algorithm of Rumelhartet al. [16], based on gradient–

descent, to train the networks, with the goal of minimizing the mean squared deviation between

the desired target values and network outputs, averaged over all the training inputs. The training

phase can be described as follows. In each step in the training phase, a d–tuple of inputs is pre-

sented to the network. The network is asked to predict the output value. The error between the

value predicted (by the network) and the value actually observed (known data) is then measured

and propagated backwards along the connections. The weights of links between units are mod-

ified by different amounts, using a technique which apportions ‘blame’ for the error to various

nodes and links. A single ‘epoch’ (cycle of presentations of all training inputs) comprises ap-

plying all input patterns once and modifying the weights after each step. If the mean squared

error exceeds some small predetermined value, a new epoch is started after termination of the

current epoch.

x1 x2 x3, ,

f x1 x2 … xm, , ,( ) 1

1 e
wixi Θ+

1 i m≤ ≤
∑−
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Learning is accomplished by the following rule that indicates how the weight of each

connection is modified.

The parameters of the back–propagation algorithm are the ‘learning rate’ and ‘momen-

tum’ , which roughly describe the relative importance given to the current and past error

values in modifying connection strengths. Here,n is the time index,  is the weight from unit

i to unit j, p is an index over the cases (input samples), and is the propagated error signal

seen at unitj in casep, and  is the output of the corresponding unit. For the sigmoid activa-

tion function, where

Figure 1: A d–n–1 feed-forward neural network.

Input Layer

Hidden Layer

Output

1 n

1 d2

∆Wj i n 1+( ) η δpjOpj( ) α∆Wj i n( )+= ,

η( )

α( )

Wj i

δpj

Opj

Opj
1

1 exp Wj iOπ θj−
i

∑−( )+
,=



�hè��

the error signal is given by

for an output unit, and

for a hidden unit where  is the j–th element of the target forp–th input pattern.

éÁê àÄâ�Åzâ�ÊCÃlÛ�ÅzËlë�ËÆÂ�Ý¤ìßËÆäCÃlÅzËpíîÉ�ÃlÛ�È.ïÄÇÌâ�È.ðîâ�ÜÆâ�ÂÄÊCËÆÂ�Ý

We consider multicomputer systems that consist of homogeneous processing nodes con-

nected with each other through a symmetric topology, i.e., each node is linked to the same

number of nodes. The number of links per node,L, is called the degree of the network. We as-

sume that the task arrival process is Poisson and tasks are submitted to each node with an av-

erage arrival rate ofλ tasks per time–unit at each node. When a task arrives at a node, it is either

scheduled to the local execution queue or migrated to one of the neighbors connected with it

via a communication channel. Information gathering and scheduling takes a certain amount of

time, which is assumed to be exponentially distributed with an average of time–units. A

communication server at each link of a node transfers a task from one node to another with an

average of  time–units. The task communication time is also assumed to be exponentially

distributed. At each node, incoming traffic from other nodes joins locally generated traffic, and

all traffic is handled with equal priority. Each node maintains an execution queue in which lo-

cally scheduled tasks are served by a CPU on the FCFS basis. The load of a node is expressed

in terms of the length of the execution queue. Execution time is also assumed to be exponen-

tially distributed with an average of  time–units. Table 1 describes the meanings of a

number of symbols used in this paper.

é�ñ ¿Áï�ÇÌâ�Èòðºâ�Ülâ�Â�ÊCËÆÂÄÝPó�ÃlÅzâ�ÃlÛ�ÝÌËÆÛ�ä

In general, a load balancing strategy consists of three policies [4]: transfer policy, loca-

tion policy and information collection policy. A transfer policy determines whether a task

should be migrated or not. A location policy sets a criterion to select a node if the task is to be

δpj tpj Opj−( ) Opj 1 Opj−( )= ,

δpj Opj 1 Opj−( ) δpkWkj
k
∑= ,

tpj

1 µs⁄

1 µc⁄

1 µE⁄
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migrated. An information policy decides how information exchange among different nodes is

carried out. We have analyzed six sender–initiated distributed load balancing schemes using

different transfer, location and information exchange policies. In the first three load balancing

strategies, information about the load and the status of other nodes is collected at the time a task

is scheduled for execution or migration. In the last three strategies, nodes exchange load infor-

mation with their neighbors after every (fixed) period of time.   The names of strategies are pre-

fixed byF andP, denotingFresh andPeriodic information exchanges, respectively; these strat-

egies are explained below.

• FRandom: In this strategy, the task scheduler calculates the average of the local load

and the load of all neighbors. If the local load exceeds the average, the task is sent to a

randomly selected neighbor.

• FMin: In this strategy, the task scheduler first selects the neighbor with the least load.

The task is transferred to that neighbor if the difference between the local load and load of

   Symbol

λ
µS

µE
µC

ρ
E NE[ ]

Table 1: Symbols and their meanings.

Meaning

External arrival rate at each node

Average task scheduling rate

Average task execution rate

Average task migration rate

Average load on each node

Average execution queue length

Tu Load information update period

P0 Probability of scheduling task locally

E R[ ] Average cumulative task response time

E Rphase1[ ] Average task response time in the first phase

E Rphase2[ ] Average task response time in the second phase

Pj Probability of migration task to j-th neighbor
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that neighbor exceeds a certain threshold (threshold is 1 in our experiments). The local

node is given priority, since migrating a task to a neighbor incurs communication and

scheduling delays.

• FAverage: In this strategy, the task scheduler calculates the average of all neighbors’

load and its own load. If the local load exceeds the average, the task is sent to the neighbor

with the minimum load. Otherwise, the task is sent to the local execution queue.

• PRandom: This strategy is similar toFRandom except that information is exchanged

periodically.

• PMin: This strategy is similar toFMin except that information is exchanged periodically.

• PAverage: This strategy is similar toFAverage except that information exchange is

periodic.

é�ñöÙÁ÷ Â�â�ÜpøÄÃÆËÆÊCâ�Ü Ú ÇÌÈ�Û�ÜlËÆÂ�Ý

First, we show how the class of distributed load balancing strategies described above can

be modeled by an open network central server queuing model. When a task migrates from one

node to another, it enters a statistically identical node. Therefore, the steady–state behavior of

nearest neighbor load balancing can be approximated by the central-server open queuing mod-

el. A distributed multicomputer system consisting of 16–node hypercube topology, with dis-

tributed load balancing, is illustrated in Figure 2. Here, each node of the system can be repre-

sented by a central-server open queuing network. As described in the next section, simulation

results obtained on actual network topologies are very close to the analytical results determined

from this model, validating that the proposed model of Figure 2 indeed represents the task

scheduling and migration process. The model consists of a waiting queue,L communication

queues and an execution queue.

The duration of a task’s residence time in the system consists of two phases. In the first

phase, the task may repeatedly migrate: it waits in the waiting queue, gets service from the

scheduler, waits in the communication queue, and then transfers to another node. At that point,

the same cycle may start all over again. In the first phase, each task can be viewed as occupying

either the task scheduler or one of the communication links. Once the task is scheduled at the
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Figure 2: A multicomputer system connected in a 16–node hypercube topology;
each node is represented by open network central-server queuing model.
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execution queue of a node, the second phase starts, which includes the queuing and service time

at the CPU.   It follows that the open central server model can be solved by the Jacksonian net-

work [22], which has the product form solution; the joint probability of tasks at queuej (j =

0, 1, . . ., L) is given by the product:

where is the probability that  tasks are at thej–th queue, given by:

For thej–th component, the average utilization,, is equal to . The equation im-

plies that the lengths of all queues are mutually independent in a steady state. The average

queue length and the average response time are given by:

and

respectively.

The average number of tasks at a node is the sum of the average number of tasks at each

component of a node and is given by

from which the average response time before the task is scheduled in the execution queue can

be computed as:

where  is replaced by and  is replaced by . Once a task is scheduled

kj

p k1 k2 … kL, , ,( ) pj kj( ) ,
j 0=

L

∏=

pj kj( ) kj

p k( ) 1 ρj−( ) ρj
kj=

ρj λj µj⁄

E Nj[ ]
ρj

1 ρj− ,=

E Rj[ ]
ρj

λj 1 ρj−( ) ,=

E N[ ] E N[ ]
j 0=

L

∑
ρj

1 ρj−
j 0=

L

∑= = ,

E Rphase1[ ] 1
λ

ρj

1 ρj−
j 0=

L

∑
P0µ( ) 1−

1 λ P0µ( ) 1−−

Pj P0µj( ) 1−

1 λPj µjP0
( ) 1−−j 1=

L

∑+= = ,

λ0 λ P0⁄ λ j 1≥( ) λPj P0⁄
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at a local execution queue, the response time is given by:

where  is the average execution queue length. The complete response time, therefore, is:

The above equation implies that, for a given load, ,  and ’s, the re-

sponse time yielded by a load balancing strategy can be calculated if and  are

known. Here, , is the probability with which a load balancing strategy schedules the tasks

locally, and  is the average execution queue length. For clarity, we replace by ,

representing the average task scheduling rate. We also assume that’s for each link are the

same and the average communication rate is represented by.

é�ñöé ó�ËÆú/É�Ülâ�ÃÆËÆÇ�Â.ûÄÂ�üÌËlÅzÇÌÂÄúMÛ�ÂÄÃ

The above mentioned load balancing strategies were simulated. Our simulator, which is

of discrete-event type, takes as input the topology of the network along with, , , ,

length of simulation run, and choice of load balancing strategies and their associated parame-

ters. Simulation can be run by using different sets of random number streams. Initial transients

in the simulation are removed by ignoring the initial outputs until the system enters into a steady

state. Each data point is produced by taking the average of a large number of independent sim-

ulation runs and then by taking their means. The confidence interval for each data point has

been obtained with 99% confidence interval and the width of the interval is within 5% of the

mean values.

 A number of simulations were conducted to obtain 500 data values for and ,

for each strategy. Three different topologies have been selected, including the ring (L = 2), the

16–node hypercube (L = 4) and the 16–node folded hypercube (L = 5) [7]. Points for one par-

ticular strategy are obtained for each topology by fixing one parameter and varying the rest. In

most cases,  is varied from 0.3 to 0.9 tasks per time–unit, and is varied from 8 to 16 task

per time–unit. We assume that the average task execution rate,, is 1 task per time unit. In-

stead of the actual load , this enables us to consider as the parameter represent-

E Rphase2[ ]
E NE[ ]

λ= 1.0,≤

E NE[ ]

E R[ ] E Rphase1[ ] E Rphase2[ ]+=

ρ λ µE⁄=( ) µ0 µj

P0 E NE[ ]

P0

E NE[ ] µ0 µS

µj

µC

λ µS µC µE

P0 E NE[ ]

λ µC

µE

ρ λ µE⁄=( ) λ
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ing load per node. For strategies that require periodic information update, the update time pe-

riod, , is varied from 0.5 to 1.5 time units. The scheduling overhead includes the exchange

of state information and the execution of the scheduling algorithm itself. We have assumed an

average scheduling time, 1/, which in turn, can be normalized with respect to the execution

time, .   In other words, when  is 10 tasks/time–unit and  is 1 task/time–unit, the

average task scheduling time is 1/10 of the execution time. For the simulation data, is varied

from 8 to 16 tasks per time unit. Since we simulated the actual interconnection network topol-

ogies, mentioned above, and not the central server model shown in Figure 2, and

were observed from the simulation data. The probability,, is estimated by dividing the av-

erage number of locally scheduled tasks by the total number of tasks arrived, at each node.

ýÁþ�Û�äCÉÄÜÆÃÆä

 In this section, we present the results showing the average response time predicted by the

analytical model based on the values of and  predicted by the neural network. For

the experiments described in this paper, the learning rate and momentum were varied to train

the network to give small mean squared error. For the modeling of probability, we used a net-

work with no hidden layer. For the estimation of queue length a network with one hidden layer

was used. The number of hidden nodes was varied; the best results were obtained for 4 hidden

nodes. Table 2 gives the root mean square errors in and , between neural network

Tu

µS

1 µE⁄ µS µE

µS

P0 E NE[ ]

P0

P0 E NE[ ]

Strategy

0.4705

0.0654

0.1486

0.1358

0.1354

0.3636

FRandom

FMin

FAverage

PRandom

PMin

PAverage

Table 2: The root mean square error between simulation and
neural network in Modeling  and .P0 E NE[ ]

3.6200

0.9355

0.7733

0.3139

0.5357

0.4053

E NE[ ]P0

P0 E NE[ ]
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results and simulation data. As can be seen the error yielded by the neural network is less than

0.5 for  and less than 0.1, in most cases, for .

Using the values of  and  predicted by the neural network, the average response

time is calculated through the queuing model and is compared with the observed simulation re-

sults. We have divided these results in three parts: training, testing and prediction.

ý ñ ¿ÁÿÌÅzâ�ËlÂ�ËlÂ�Ý

The results presented in this section are those in which the response time predicted by the

neural network is compared with the same simulation cases through which empirical data for

training was obtained. In other words, when we obtained the training data and

through simulation, we also measured the corresponding simulation response times. These sim-

P0 E NE[ ]

P0 E NE[ ]

Simulation Neural Net.

1.243  2.731.277

1.515 1.545  4.40

2.056 2.165 5.35

1.403 1.403 0.03

1.585 1.534 –3.25

1.965 2.083 6.04

1.186 1.193  0.62

1.378 1.348 –2.19

1.802 1.929 7.04

1.239 1.259 –1.61

1.514 1.496 –1.15

2.048 2.085  1.82

1.412 1.480 4.82

1.624 1.598 –1.62

2.080 2.123 2.09

1.214 1.292 6.35

1.475 1.401 –4.97

1.974 1.986 –0.64

FRandom

FMin
FAverage

PRandom

PMin
PAverage

FRandom

FMin

FAverage

PRandom

PMin

PAverage

FRandom

FMin
FAverage

PRandom
PMin

PAverage

Table 3: Average response times obtained by the neural network for the six strategies, at low,
medium, and high loading conditions, on a 16–node hypercube topology.

Load Strategy

 = 0.4λ

 = 0.6λ

 = 0.8λ

(Low)

(Medium)

(High)

Difference%

P0 E NE[ ]
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ulation response times are then compared with those predicted by the neural network. The ob-

jective behind these comparisons is to validate that the average response time can indeed be ex-

pressed in terms of  and , and to demonstrate that the neural network has been accu-

rately trained.

First, we examine the impact of different loading conditions on the response time, as

shown in Table 3. The task scheduling rate,, and the task communication rate,, are both

chosen to be 16 tasks/time–unit. System topology selected for this case is a 16–node hypercube

network and load update period,, is set to 0.5 time–units. For all load balancing strategies,

there is very little difference in the response times computed from the neural network and the

response time observed from simulation. The differences in the results obtained through the

model and simulation are sometimes positive and sometimes negative, implying that the neural

network does not have special statistical bias in any direction. Similar observations can be made

P0 E NE[ ]

1.318 –4.851.254

1.641 1.531 –6.70

2.388 2.577 7.94

1.437 1.375 4.30

1.708 1.685 –1.32

2.276 2.418 6.23

1.263 1.226 –2.96

1.528 1.478 –3.26

2.094 2.229 6.41

1.318 1.366 3.66

1.638 1.658 1.22

2.357 2.270 –3.69

1.452 1.588 9.40

1.752 1.769  0.98

2.382 2.311 2.99

1.290 1.377 6.73

1.576 1.529 –2.97

2.158 2.086 –3.33

FRandom

FMin
FAverage

PRandom

PMin
PAverage

FRandom

FMin
FAverage

PRandom

PMin
PAverage

FRandom

FMin
FAverage

PRandom

PMin
PAverage

Table 4: Average responses time obtained by the neural network for the six load balancing strat-
egies, at low, medium, and high loading conditions, on a 16–node ring topology.

Simulation Neural Net.Load Strategy

 = 0.4λ

 = 0.6λ

 = 0.8λ

(Low)

(Medium)

(High)

Difference%

µS µC

Tu
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about the results in Table 4 and Table 5, with the same set of parameters except that the network

topologies have been changed to a 16–node ring and a 16–node folded hypercube, respectively.

ý ñöÙ ÿÌÛ�äCÃÆËÆÂÄÝ

The validity of the proposed model is more strongly established if we obtain response

time from the neural network and compare it with the independent simulation data. This simu-

lation data was not been used in training. We present these results first for a 32–node hypercube

network, given in Table 6. A system load of 0.7 is selected while is 1.0. To capture the ef-

fects of scheduling and communication overheads, we vary and , but keep the rest of the

parameters fixed. We consider three different conditions associated with communication and

scheduling overheads. First slow communication and fast task scheduling rate(= 4 tasks/

time–units and  = 16 tasks/time–units) are selected. Then we consider fast communication

and fast task scheduling rates ( = 16 tasks/time–units and  = 16 tasks/time–units). Finally,

1.225  5.921.297

1.484 1.437 –3.11

1.994 2.036 2.10

1.396 1.432 2.55

1.561 1.508  3.41

1.906 1.961 2.89

1.174 1.182  0.71

1.342 1.301 –3.01

1.755 1.803 2.97

1.224 1.221 0.29

1.481 1.431 –3.42

1.990 2.002  0.62

1.408 1.441 2.32

1.600 1.529 –4.43

2.040 2.043 0.12

1.202 1.259 4.69

1.464 1.355 –7.46

1.975 1.939 –1.81

FRandom

FMin
FAverage

PRandom

PMin
PAverage

FRandom

FMin
FAverage

PRandom

PMin
PAverage

FRandom

FMin
FAverage

PRandom

PMin
PAverage

Table 5: Average response times obtained by neural network technique for the six load
balancing strategies, at low, medium, and high loading conditions, on a 16–node folded
hypercube topology.

Simulation Neural Net.Load Strategy
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 = 0.6λ

 = 0.8λ
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a combination of fast communication and slow task scheduling rate ( = 16 tasks/time–units

and  = 4 tasks/time–units) is selected. As can be seen from the table, the response time pre-

dicted using the neural network is not affected by the choices of and . The neural network

is shown to predict the average response time, which closely matches the response time pro-

duced by simulation, for any combination of system parameters. One can also notice that task

scheduling rate, , has greater impact on the response time of a task than the task communi-

cation rate, . This can be explained by observing that the scheduler acts as single server that

can become a bottleneck in scheduling a task. On the other hand, there are multiple servers at

the communication links which reduce the network contention. In order to test the neural net-

work for different network topologies, we present two more test cases. These include an 8–node

fully connected network (L = 7) and an 8–node hypercube (L = 3). The results, shown in Table

6 and 7, indicate that the neural network is able to capture the topological differences.

1.806 –1.281.783

1.625 1.586  2.43

1.731 1.697 –2.00

1.646 1.633 –0.80

1.615 1.546 –4.29

1.448 1.451 –0.96

1.686 1.681 –0.29

1.619 1.608 –0.66

1.747 1.721 –1.49

1.715 1.693 –1.26

1.670 1.602 –4.10

1.590 1.530 –3.76

FRandom

FMin
FAverage

PRandom

PMin
PAverage

FRandom

FMin
FAverage

PRandom

PMin
PAverage

2.218 –2.262.168

2.034 1.989 –2.19

2.030 1.898 –6.51

2.262 2.268  0.26
2.144 2.085 –2.77

2.390 2.191 –8.34

FRandom

FMin
FAverage

PRandom

PMin
PAverage

Table 6: Effects of communication and scheduling overheads on the av-
erage response times on a 32–node hypercube topology.

Simulation Neural Net.Strategy Difference%Parameters

 = 4.0µC
 = 16.0µS

Slow
communication
and fast
scheduling rate

 = 16.0µC
 = 16.0µS

Fast
communication
and fast
scheduling rate

 = 16.0µC
 = 4.0µS

Fast
communication
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µS
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Since performance evaluation of distributed load balancing strategies through simulation

is practically not feasible for very large systems, we can use the proposed performance model

to evaluate the impact of system size on the average response time. An important conclusion

reached through our neural network model is that the number of nodes in the system does not

have great impact on the performance, given that the average load () on each node is the same.

Instead, the number of communication links incident on each node significantly influences the

performance of a nearest neighbor load balancing strategy. In other words, different network

topologies with the same degree,L, may yield close performance. For instance, a hypercube

network with 128–node yields the same performance as a 8–node fully connected network

(sinceL for both networks is equal to 7).

The results presented in this section show how the degree of a network,L, can affect the

response time of a load balancing strategy. Figure 3 shows the average response times obtained

with FRandom, FMin and FAvergae.HereL has been varied from 2 to 40, both and  are

equal to 20 tasks per time–unit while λ is 0.7. We notice that the performance ofFRandom strat-

egy is highly dependent on the number of links at a node. The response time decreases if the

number of links is initially increased from two to 10, and then sharply increases if the number

1.586 –2.771.542

1.725 1.740  0.84

1.658 1.561 –5.89

1.790 1.788  –0.16

1.451 1.381 –4.33

1.598 1.614  1.04

1.547 1.466 –5.25

1.656 1.773  8.16

1.747 1.721 –1.49

1.828 1.849  1.19

1.705 1.630 –4.42

1.656 1.672  1.01

FRandom

FMin
FAverage

PRandom

PMin
PAverage

FRandom

FMin
FAverage

PRandom

PMin
PAverage

Table 7: Average response times for two additional test cases.

Simulation Neural Net.Strategy DifferenceParameters

 = 16.0µC
 = 16.0µS

 = 0.7λ

 = 0.5Tu
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 = 16.0µC
 = 16.0µS

 = 0.7λ
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of links is increased beyond 10. This variation in response time is due to the fact that if the

number of links is very small, the scheduler has less number of choices to schedule a task. Con-

sequently, on the other hand, with very large number of links, the scheduler has too many choic-

es which increases the probability of sending a task to an unsuitable node. Sending a task to a

wrong node can result in re-migration of the task. Excessive number of migrations of tasks can

cause the system to enter into a task-thrashing state where more tasks are migrated than are ac-

tually executed. This implies that the minimum response time is obtained when the number of

links is neither very large nor very small. For example, Figure 3 indicates that this minimum

occurs when�  is10 forFRandom. It must be noted that this minimum may change if other pa-

rameters such as, , and  are changed. Figure 3 also shows thatFMin andFAveragein-

itially exhibit a decrease in the response time if the number of links are increased; response time

decreases to a minimum, before increasing again. For example, forFAverage, the minima oc-

curs whenL is12. For values ofL beyond these minima, the response time shows an exponen-

tially increasing behavior. Similarly, the performance ofFMin initially improves, reaching

Links per node

Figure 3: The average task response times versus links per
node for fresh information update strategies.
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minima whenL is 18 through 34, before it starts increasing again.

Although these three strategies exhibit similar behavior, the rate at which average re-

sponse time increases (as we increase the value ofL beyond minima) is rather slow forFMin.

This indicates that even though thrashing can happen if we increaseL, it does not hamper the

performance ofFMin as severely as in the case of the other two strategies. The reason is that

FMin is a very conservative scheme, where the decision to transfer a task to a neighboring node

is made by using precise information in the best possible manner (selecting the least loaded

neighbor). On the other hand, the information averaging method used inFRandom increases

the level of uncertainty and reduces its ability to make the best decision. This is due to the fact

that with the increase in number of neighbors, the amount of state information increases. The

increase in state information, in turn, can make the information less accurate.

The performance of periodic update strategies,PRandom, PMin andPAverage is shown

Links per node

Figure 4: The average task response times versus links per
node for periodic information update strategies.
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in Figure 4. Here we notice that these strategies exhibit the same behavior as non-periodic up-

date strategies. This is due to the same reasons as described above for fresh information update

strategies. The difference is that here an additional parameter,, can also affects the behavior

of the response time curves for periodic information update strategies. If is decreased, the

curves shown in Figure 4 are expected to shift to the right, indicating some improvement in per-

formance. This is due to the fact that smaller values of result in more recent and reliable

information.

The results produced by the neural network and confirmed by the simulation lead to an

interesting design aspect of decentralized load balancing schemes for very large distributed sys-

tems which are computationally very expensive to simulate. We notice from Figures 3 and 4

that for a given set of values of, , , and , we can always find the best value ofL. In

order to find optimal values for the parameters, the minimum value ofE[R] in equation (1)

needs to be re-evaluated, giving an expression that relates other parameters. For example, in the

case of periodic strategies, the average response time will decreases further if and  are

increased, for a given and the best value of� . On the other hand, in the case of fresh strate-

gies, the average response time also depends on.

Conclusions

We presented a new approach to model the performance of several distributed dynamic

load balancing algorithms in a multicomputer environment. The response time predicted by the

neural network closely approximates the response time obtained through simulation. Our per-

formance evaluation methodology accurately determines the variations in performance of all

algorithms with a wide range of system parameters. Generalization ability of the neural net-

works helps in successfully analyzing the performance of very large systems. The neural net-

work model is an effective tool for modeling the performance of dynamic load balancing algo-

rithms. The study has also revealed a number of future research problems. For example, one

can consider the nodes in the system to be heterogeneous instead of homogeneous. Further-

more, one can consider an environment where tasks are initially submitted to a node from�  dif-

ferent links rather than a single queue. However, these assumption will require new analysis of

the central-server queuing model.
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