Static and Runtime Algorithms
for All-to-Many Personalized
Communication on Permutation
Networks

Sanjay Ranka
Jhy-Chun Wang
Geoffrey For

CRPC-TR94501
June, 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Static and Runtime Algorithms for All-to-Many
Personalized Communication on Permutation

Networks?

Sanjay Ranka, Jhy-Chun Wang and Geoffrey Fox
4-116 Center for Science and Technology
School of Computer and Information Science

Syracuse University

Syracuse, NY 13244

!This work was supported in part by NSF under CCR-9110812 and in part by DARPA under
contract #DABT63-91-C-0028. The contents do not necessarily reflect the position or the policy

of the United States government and no official endorsement should be inferred.

Abstract

With the advent of new routing methods, the distance to which a message is sent is becoming
relatively less and less important. Thus, assuming no link contention, permutation seems
to be an efficient collective communication primitive. In this paper we present several algo-
rithms for decomposing all-to-many personalized communication into a set of disjoint partial
permutations. We discuss several algorithms and study their effectiveness from the view of
static scheduling as well as runtime scheduling. An approximate analysis shows that with
n processors and assuming that every processor sends and receives d messages to random
destinations, our algorithm can perform the scheduling in O(dn In d) time on an average, and
use an expected number of d + log d partial permutations to carry out the communication.

We present experimental results of our algorithms on the CM-5.

Index Terms: Loosely synchronous communication, permutation networks, personalized

communications, runtime scheduling, SPMD, static scheduling.

1 Introduction

In parallel computing, it is important to map the program such that the total execution
time is minimized. FExperience with parallel computing has shown that a “good” mapping
is a critical part of executing a program on such computers. This mapping can typically be
performed statically or dynamically. For most regular and synchronous problems [10], this
mapping can be performed at the time of compilation by giving directives in the language
to decompose the data and its corresponding computations (based on the owner computes
rule where each processor computes only values of data it owns [5, 17, 21]). This ordinarily
results in regular collective communication between processors. Many such primitives have
been developed in [1, 16]. Load balancing and reduction of communication are two important
issues for achieving a good mapping. The directives of Fortran D [6] can be used to provide
such a mapping for a large class of regular and synchronous problems.

For some other classes of problems [3, 19, 20] that are irregular in nature, achieving a good
mapping is considerably more difficult [7]. Further, the nature of this irregularity may not be
known at the time of compilation and can be ascertained only at runtime. The handling of
irregular problems requires the use of runtime information to optimize communication and
load balancing [9, 13, 14]. These packages derive necessary communication information based
on the data required for performing local computations and data partitioning. Typically,
the same schedule is used a large number of times. Communication optimization is therefore
very important and affects the performance of applications on a parallel machine.

In this paper we develop and analyze several simple methods of scheduling communi-
cation. These methods are efficient enough that they can be used statically as well as at
runtime. Assuming a system with n processors, our algorithms take as input an n x n com-
munication matrix COM. COM(,7) is equal to 1 if processor P; needs to send a message
to P;, 0 < 2,5 <n—1. Our algorithms decompose the communication matrix COM into
a set of disjoint partial permutations, pmq, pma,-- -, pmy, such that it COM(¢,5) = 1, then
there exists a unique k, 1 < k <[, that pmy(:) = .

With the advent of new routing methods [8, 15, 18], the distance to which a message is
sent is becoming relatively less and less important [2]. Thus, assuming no link contention,
permutation is an efficient collective communication primitive. Permutation also has the
useful property that every processor both sends and receives at most one message. For an
architecture like the CM-5, the data transfer rate seems to be bounded by the speed at which
data can be sent or received by any processor [4]. Thus, if a particular processor receives

more than one message or has to send out more than one message in one phase, then the

time will be lower bounded by the time required to remove messages from the network by
the processor receiving the maximum amount of data.

Assuming that each of the n processors sends out at most d messages and receives at most
d messages, we perform an approximate probabilistic analysis and show that the complexity
of the algorithm is O(ndlnd) on an average. Assuming that the cost of completing one
permutation is of O(7 4+ M), where 7 is the communication set up time and ¢ is the
transmission time per byte, the minimum time required for communication is of the O(d(7 +
M¢)). Thus the cost of the scheduling algorithm as compared to the cost of communication
is negligible if M > nlnd. If the number of times the same communication schedule is
used is large (which happens for a large class of problems [6]), the fractional cost of the
scheduling algorithm is quite small. Further, the average number of permutations generated
is approximately d+log d. Thus, on an average, the fraction of extra permutations generated
is not very high. Compared to a naive algorithm for communication of messages for a sparse
communication matrix that takes time proportional to n permutations, this algorithm has
significant speedup. On a 32-node CM-5, our experimental results show that the cost of
scheduling is no more than the cost of communication for small messages (16 bytes). For
large messages (4K bytes or larger sizes), the cost is less than one-quarter of the total time
for communication. For many applications, the same schedule is utilized repeatedly [6], thus
our algorithms would also be useful for many applications for which the communication
structure can be derived only at runtime.

The rest of this paper is organized as follows. Notations and assumptions are given
in Section 2. Section 3 presents scheduling algorithms and their time complexity analysis.
Section 4 provides an improved version of our algorithm and its time complexity analysis.

Section 5 presents the experimental results. Finally, conclusions are given in Section 6.

2 Preliminary

The communication matrix COM is an n X n matrix where n is the number of processors.
COM(t,7) is equal to 1 if processor P, needs to send a message to P;, otherwise COM (1, j) =
0,0 <12,5 <n. Thus, row ¢ of COM represents the sending vector, sendl;, of processor P,
which contains information about the destination processors of outgoing messages. Column
© of COM represents the receiving vector, recvl;, of processor P;, which contains information
about the source processors of incoming messages. The entry sendl;(j) (recvl;(j)) represents
the 7' entry in the vector sendl; (recvl;). Assuming COM(i,j) = 1, then sendl;(j) =

recvl;(1) = 1. We will use sendl and recvl to represent each processor’s sending vector and

receiving vector when there is no ambiguity.

2.1

Notations and Assumptions

We categorize the routing algorithms in several different categories:

1.

Uniformity of message—Uniform messages mean all messages are of equal size. In this

paper we assume that all messages are approximately of the same size.

. Density of communication matriz—If the communication matrix is dense, then all

processors send data to all other processors. If the communication matrix is sparse,

then every processor sends to only a few processors.

Static or runtime scheduling—Communication scheduling must be performed statically

or dynamically.

We make the following assumptions for the complexity analysis.

1.

All permutations can be completed in (7+ M) time, where 7 is the communication set
up time, M is the maximum size of any message sent, and ¢ represents the transmission

time per byte (i.e., 1/ is the bandwidth of the communication channels).

. Each processor can send only one message and receive only one message at a time.

In case communication is sparse, all nodes send and receive an approximately equal
number of messages; if the density of sparseness is d, then at least d permutations are

required to send all the messages.

2.2 Cost of Random Permutations on CM-5

The algorithms described in this paper do not take link contention into account. Principally

because the routing is randomized on the CM-5 and it is not possible to statically schedule

messages in such a fashion that link contention can be avoided, although randomization

alleviates that problem to a large extent. On a 32-node CM-5, we generated 5000 random

permutations in which each processor sends and receives a message of 1K bytes. Over 99.5%

(4979 out of 5000) of the permutations were within 5% of the average cost (the average

communication cost over these 5000 random permutations is 0.543 milliseconds) (Figure 1).

Thus, the variation of time required for different random permutations (in which each node

sends a data to a random, but different node) is very small on a 32-node CM-5. Observations

4000
dist32 —

3000

samples 2000

1000

0 | | 111, | |
04 06 08 1 1.2 14 1.6

comm
comm_ave

Figure 1: Communication cost distribution for 5000 permutation samples with message of

length 1K bytes on a 32-node CM-5.

reveal that the performance of our algorithms, which use permutation as the underlying
communication scheme, are not significantly affected by a given sequence of permutation
instances. The bandwidth achieved for these permutations is approximately 4M bytes/sec,
which is close to the peak bandwidth of 5M bytes/sec provided by the underlying hardware

for long distance messages.

3 Scheduling Algorithms

In this paper we assume that each processor has an identical communication matrix COM.
The communication matrix COM is a sparse matrix, i.e., each processor will send and
receive d messages (in a system with n processors, d < n). In case only the vector sendl
is available at every node, the communication matrix COM can be generated by using a
concatenate operation. For architectures like the CM-5, performing a concatenate operation
is efficient and can be completed in O(dn) amount of time [4]. These operations have efficient
implementation on other architectures such as hypercubes and meshes.

The communication patterns considered in this paper are all-to-many personalized com-
munication (all-to-all personalized communication is a special case of all-to-many personal-
ized communication). In personalized communication, one processor sends a unique message
to other processors [12]. We also assume that COM is a uniform communication pattern,
i.e., all messages are of equal size. We are currently developing methods for the case when

messages are non-uniform.

Asynchronous_Send_Receive()

For all processors P;, 0 <t < n — 1, in parallel do
1. Allocate buffers and post requests for incoming messages;
2. Send out all outgoing messages to other processors;

3. Check and confirm incoming messages from other processors.

Figure 2: Asynchronous Communication Algorithm.

We propose several scheduling algorithms, and the analysis of their time complexity in
following subsections. All the algorithms proposed in this paper are executed in SPMD
(single-program multi-data) mode, i.e., every processor has the same copy of a program, but

each processor runs its program in an asynchronous pattern.

3.1 Asynchronous Communication (AC)

The most straightforward approach is to use asynchronous communication. The algorithm

is divided into three phases:

1. Each processor first posts requests for expected incoming messages (this operation will

pre-allocate buffers for those messages).
2. Each processor sends all of its outgoing messages to other processors.

3. Each processor checks and confirms incoming messages (some of which may already

have arrived at their receiving buffer(s)) from other processors.

During the send-receive process the sending processor need not wait for a completion
signal from the receiving processor, but can keep sending outgoing messages until they are
all done. This naive approach is expected to perform well when density d is small. The
asynchronous algorithm is given in Figure 2. Similar schemes were proposed in several
parallel compiler projects [11, 13].

In the worst case the time complexity of this algorithm is difficult to analyze, as it will
depend on the network congestion and contention on which it is performed. Further, each
processor may have only limited space of message buffer. When the buffer is fully occu-

pied by unconsumed messages, further messages will be blocked at the sending processors’

Linear_Permutation()

For all processors P;, 0 <t < n — 1, in parallel do
for k=1 to n—1 do

J=1Dk
if COM(i,j) >0 then P;sends a message to Pj;
if COM(j,7) >0 then P; receives a message from P;;

endfor

Figure 3: Linear permutation algorithm.

side. The overflow will block processors from doing further processing (including receiving
messages) because processors are waiting for other processors to consume and empty their
buffers to receive new incoming messages. This situation may never resolve and a deadlock
may occur among processors. In order to avoid a deadlock, one needs to monitor the pro-
duction/consumption rate very carefully to guarantee the completion of communication. In
case the system buffer is too small to hold all messages at one time, one needs to introduce
a strip mining scheme [11] to perform sends and receives alternately such that there are a
smaller number of unreceived messages accumulated in the buffer and an overflow will not

occur.

3.2 Linear Permutation (LP)

In this algorithm (Figure 3), each processor P; sends a message to processor Pgr)' and
receives a message from Pgp), where 0 < k < n. When COM(z,j) = 0, processor F; will
not send a message to processor P; (but will receive a message from P; ift COM(y,¢) > 0).
The entire communication uses pairwise exchange (j =1 Gk < 1=7 k).

The overhead of this algorithm is O(n), regardless of the number of messages each pro-
cessor actually sends/receives. This scheme is typically useful when each processor needs to
send a message to a large subset of all the processors involved in the communication. The
algorithm in Figure 3 assumes that the number of processors, n, is a power of 2; it can easily

be extended to the case where n is not a power of 2.

1@ represents bitwise exclusive OR operator.

Global_Masking()
For all processors P;, 0 < < n — 1, in parallel do
Repeat

1. Set all entries of vectors sendl and recvl to —1;
2. x = random(0..n — 1);
3. for k=1tondo

(a) Along row z of COM, try to find an entry COM(z,y) = 1 that satisfies
recvl(y) = —1. If such a y exists, then set sendl(z) = y and recvl(y) = =z,
also set COM (z,y) = 0.;

(b) & = (x4 1) mod n;
endfor

4. if sendl(z) > 0 then P;sends a message to Pspnqi(i);

if recvl(i) >0 then P receives a message from Pecy(s);

Until all messages are sent/received.

Figure 4: Global Masking Algorithm.

3.3 Global Masking (GM)

A high-level description of this algorithm is given in Figure 4. At each iteration we first set
all entries of vectors sendl and recvl to —1. Then within each row z of COM,0 <z <n-—1,
we try to find a column y, 0 <y < n —1, with COM(z,y) = 1 and recvl(y) = —1, if such
a y exists, then set sendl(z) = y and recvl(y) = x. Processors then send/receive messages
according to vectors sendl and recvl. This procedure is repeated until all messages are
sent /received.

As mentioned in the previous section, we assume the communication matrix COM is a
sparse matrix and each processor sends out d messages to d different processors. Further, we
assume that each processor receives approximately d messages. Clearly, the number of per-
mutations would be lower bounded by the maximum number of messages received by any pro-

cessor. In this algorithm, the number of iterations, ¢, needed to complete the message routing

for 1=0to n—1 do
k=0
for 7=0to n—1 do
if COM(i,j)=1 then

CCOM(t, k) = y;
k=k+1,;
endif
endfor
pri(i) =k — 1,
Random_Swap(CCOM(2,0..k — 1));
endfor

Figure 5: Compressing procedure.

is bounded by d < ¢ < U, where U = max{the number of messages received by each processor}.
Because each iteration will take O(n*+ 7+ @ M) time to complete, the total time complexity
of this algorithm is O(£(nr* + 7 + @ M)).

As compared to the permutation algorithm presented in the previous subsection, the
global masking algorithm takes fewer iterations to complete the message routing, but it
takes extra time to schedule communication. If n? < 7 + @M, i.e., the message size is large
compared to the number of processors, the global masking algorithm may outperform the

linear permutation algorithm.

4 Enhanced Scheduling Algorithm

In the global masking algorithm described in the previous section, when looking for an entry
with COM(7,j) = 1 along row i, we may first visit several entries with COM(¢,k) = 0,
where 0 < k < j, before reaching column j. The visits to useless entries should be avoided to
minimize unnecessary computation overhead. Having this in mind, we present an enhanced
version of the global masking algorithm—compact global masking algorithm (CGM). The
scheme can be used to eliminate undesired computations by copying all useful COM entries
to an n x d matrix CCOM (Figure 5).

The vector prt is used as a pointer whose elements point to the maximum number of posi-

tive columns in each row of CCOM. Also, the reason for performing Random_Swap(CCOM)

is to perturb the sorted order in each row so that the expected number of collisions (i.e.,
within one iteration, the entries along a column k are repeatedly chosen and tested, but
eventually only one entry is selected and other tests are fruitless) can be reduced. If we
perform this compression statically, the time complexity will be O(n(n + d)) = O(n?). Fur-
ther, this operation can be performed at runtime: each processor compacts one row, and
then all processors participate in a concatenate operation that will combine all rows into an
n x d matrix. The cost of this parallel scheme is O(n 4+ d + dn) = O(dn), assuming that the
concatenate can be completed in O(dn) time, which was shown to be true for CM-5 [4].

We assume that CCOM(i,5) = —1 if this entry doesn’t contain active information.
After the copy procedure, the first d columns of each row will contain active entries. When
searching for an available entry along row ¢, the first column j with CCOM(z,7) = k and
recvl(k) = —1 will be chosen. We then set sendl(i) = k and recvl(k) = ¢. In order to avoid
any unnecessary travel through useless holes (entries), we will move entry CCOM(z,1) to
CCOM(i,7) and reset CCOM (i,1) = —1, where [= prt(z). With this “compact” approach,
the first several columns in each row contain no useless entries and one will eliminate any
unnecessary visits to inactive entries in following iterations. The worst case time complexity
to form a routing schedule in this algorithm is O(dn), comparing to O(rn?) in the GM
algorithm. The compact global masking algorithm is described in Figure 6.

Step 1 takes O(n*) time to complete in a sequential program, but we can parallelize
this step: each processor creates one row of CCOM, then all processors participate in
concatenating the result together. The time complexity of this parallel version is O(n) +
O(dn) = O(dn). Steps 2a, 2b, and 2d take O(n) time, O(1) time, and O(7 + M) time,
respectively. We are interested in evaluating the average time complexity of Step 2c and the
average number of iterations to complete Step 2.

We make the following assumptions to get an insight of the average complexity of the

CGM algorithm. Wherever possible, we support these assumptions by simulation results.

1. At the beginning of each outer loop (Step 2 of Figure 6), the number of active entries,
d, in each row of CCOM is approximately equal and the destinations to which each

node will send data are random (between Fy and P,_;).

2. Different stages are assumed to act independently of each other. Each stage starts with
the number of messages in each node equal to the average number of messages left in

each node by the previous stage.
Assuming at Step 2c, the probability, Probg, of finding a available entry in row £ is

Proby = i
n

Compact_Global _Masking()
1. Use the n x n matrix COM to create an n x d matrix CCOM, also generate a vector
pri;
2. For all processors P;, 0 < <n —1, in parallel do

Repeat

(a) Set all entries of vectors sendl and recvl to —1;
(b) & = random(0..n — 1);
(¢) for k=1 to n do

i. Along row z of CCOM, try to find an entry CCOM ((xz, z) = y that satisfies
y > —1 and recvl(y) = —1.

ii. If such a z exists, then set sendl(z) = y and recvl(y) = z. Also set
CCOM(z,z) = CCOM (z,prt(z)), CCOM(z,prt(z)) = —1, and prt(z) =
pri(z) — 1.

iii. = (x+1) mod n;

endfor

(d) if sendl(i) >0 then P;sends a message to Pyenai);

if recvl(i) >0 then P; receives a message from Pc.pii);

Until all messages are sent/received.

Figure 6: Compact Global Masking Algorithm.

10

Prob, =
n
—k
Prob, = n
n
1
Prob, | = —
n

and the expected tries to find a available entry in each row is: Ty = E(%), Th = E(:%), -+~

Ty = B(E), o T = B(D),

1
Thus the total expected tries in one iteration are

T = min?*(Ty,d) + min(Ty,d) + - - - + min(7},_1, d)

:1—|—n_1—|—---—|—%—|—d—|—---—|—d,Where%:d
1 1 1 1
(S it YA kd
S il e S e T
LN A |
=n(Q=—-2) +n
=1 =1

Since

"1 1
H, zzlenn—l—’y—{—O(—)%lnn—{—’y
Pl n
where v is the Euler’s constant. Thus
T=n(H,— H)+n

~n(lnn+y—Ink—~)+n

n
=nln—4+n

k
=nlnd+n.

Thus the expected computation cost of one iteration is O(nlnd + n). We are also inter-

ested in the number of entries CCOM (1, j) being consumed in one iteration, i.e., the number

of entries CCOM/(i,7) being reset to —1 in one iteration. In the case when each row has d

active entries, the first d rows would always find an available entry, the probability of success

?The maximum number of tries in one row should be less than or equal to d, the number of messages

that will be sent to other processors.

11

in finding an available entry in the (d + l)th row is 1 — (%)d (there are d active entries in

each row). The probability of success in finding an available entry in each row is
d d+1 —1
S=ldld- L1 - () + (1= () 4+ (1= ()

n n n
d

£y

d+r1 T dr1

Thus the expected number of entries CCOM(z, j) consumed in one iteration is at least
n— 79
If we denote d* as the average number of active entries in each row after one iteration of

scheduling (assume the original number of entries in each row be d), then

)

1 n
d*"=—(nd —(n—
n((n d+1

1
A1 2
Tar (2)

It is difficult to analyze the number of messages in each row at the next step. We use
d* as the new value of d at the next step. This assumption is made for all future steps.

Assuming Y; is the number of useful entries remained at each row after one iteration. Then

1
Ym—l ‘I’ 1 .
When we sum all of these statements together, we have

1 1 1
Y, =d— T
S v S A I

Ym:Ym—l_l‘l’

)

12

Y, +1

Y?—(d—m—1)Y, —d<0

(d—m—1)+/(d—m—1)2+4d
5 .

Let m be the number of iterations required to reduce the average value of d to % using the

Yin <

above equation:

v o< (d—m—1)+\/;d—m—1)2+4d
(d=m—1)+/(d—m—12+4d <d

d
< Z
-2

d—2m +2<0
d
m > 3 +1. (3)
Thus the number of iterations used to reduce Y,, from d to d/2 is upper bounded by % + 1.

The number of iterations needed to complete the entire message routing is given by

Ernr@E ey vyt

2 4
d d

=G+ttt tlogd+1
=(d—1)+1logd+1

= d+logd . (4)

With the analysis presented above we find the following about the average time complex-

ity of the compact global masking algorithm:

e Time for compressing COM into CCOM: O(n?) in sequential program and O(dnr) in

parallelized version.

e Time for performing the scheduling: O(d+log d)-O(nlnd+n), which is approximately
O(dnlnd).

e Time for performing the communication: O(d + logd) - O(7 + ¢ M), which is approxi-
mately O(d(7 4+ ¢M)).

13

for 1=0 to d—1 do
k=1
for 7=0ton—1 do
COM(y3,k)=1; k=(k+1) mod n;
endfor
endfor

for 1 =0 to ManyTimes do
locl = random() mod n; loc2 = random() mod n;
switch row locl with row loc2;

(and/or switch column loc! with column loc2);

endfor

Figure 7: COM random generator.

5 Experimental Results

We have implemented our algorithms on the CM-5. The experiments are focused on evalu-
ating three parameters: (1) the number of permutations to complete the communication; (2)
the cost to execute the communication scheduling algorithms; and (3) the cost to carry out
the communication. The first two parts have been implemented in a machine-independent
fashion, so that the experiments are not restricted by the actual number of processors avail-
able. The third part is executed on a 32-node CM-5.

Most of the algorithms we present in this paper are executed in a loosely synchronous
fashion. We did not explicitly use global synchronization to enforce synchronization between
communication phases in any of the algorithms proposed in this paper.

In our experiments the number of processors, n, ranges from 32 to 1024, and every proces-
sor will send and receive d different messages, where 1 < d < n. For each (d,n) combination,
we sample 300 different communication matrices COM and record each category’s maxi-
mum, minimum, and average values. In order to guarantee that in COM every row and
every column has approximately d active entries, COM is generated by the algorithm given
in Figure 7.

In order to prove that the communication cost on the CM-5 is not sensitive to different
permutations, we randomly generate 1000 different permutations and record their communi-

cation cost (Table 1). The results show that the maximum and minimum values are within

14

16~ 64 256 1K 4K | 16K 64K | 256K
ave 0.211 | 0.220 | 0.258 | 0.422 | 1.046 | 3.608 | 14.013 | 55.833
max 0.223 | 0.231 | 0.265 | 0.448 | 1.116 | 3.951 | 15.565 | 62.792
max/ave | 1.056 | 1.046 | 1.026 | 1.063 | 1.067 | 1.095 | 1.111 | 1.125
min 0.208 | 0.217 | 0.252 | 0.403 | 0.973 | 3.337 | 12.900 | 51.648
min/ave | 0.983 | 0.983 | 0.977 | 0.955 | 0.930 | 0.925 | 0.921 | 0.925

*: message size, in bytes.

Table 1: Communication cost for one permutation on a 32-node CM-5.

+10% of average value for most cases. Thus the performance of our algorithms is not signifi-
cantly affected by a given permutation instance (i.e., the CM-5 can complete all permutations
in nearly the same amount of time).

Tables 2 and 3 give the performance of our algorithms. The results reveal that the GM
and CGM algorithms have a superior performance compared to other schemes (but GM
employs a much higher scheduling cost). The comparisons in Figure 8 do not include the
cost of scheduling, which is negligible compared to the total cost if the sizes of messages
are large or the same schedule is used many times. The tables also show the number of
permutations generated by each algorithm and their corresponding cost, and they reveal
that the CGM algorithm generates the smallest number of permutations in most cases.

Figure 9 shows the fraction of scheduling overhead, scheduling cost/communication cost,
of the LP, GM, and CGM algorithms. These observations reveal that the LP algorithm has
a very small scheduling overhead (but its overall performance is not good enough, especially
when d is small). The GM algorithm has a communication cost similar to that of the CGM
algorithm, but it has a relatively high scheduling overhead. The CGM algorithm shows a
moderate scheduling overhead, and the fraction decreases as the message size increases (as-
suming the same communication schedule is utilized only once). The cost of scheduling is
thus at most equal to the cost of communication for small messages (16 bytes) and negli-
gible for large messages (less than 0.25 for messages of size 4K). In most applications the
same schedule will be utilized many times, hence the fractional cost would be considerably
lower (inversely proportional to the number of times the same schedule is used). Thus, our
algorithm is also suitable for runtime scheduling.

Table 4 shows the performance of the CGM algorithm. The standard deviations of these

results are small (in fact, the maximum and minimum values are within £10% of the average

15

value in most cases), which indicates that this algorithm is very stable for a large class of
communication patterns. Figure 10 shows the scheduling time/n versus dlnd (for dln d less
than 150). The experimental results confirm our theoretical analysis of scheduling time
complexity (i.e., O(dnlInd)).

5.1 Discussion

From the previous section it is clear that CGM is a better choice than GM. Thus, for the
rest of this section, we will compare only the performances of LP and CGM, and discuss
their use for different ranges of d and n. In Section 3 we showed that the time complexity
for the LP algorithm is O(n(7 + M)), but in this algorithm many permutations are in fact
sending no message. Based on our experimental results a better modeling on the CM-5 is
nt + C1dMe, where (; is a constant. Also, the time complexity for CGM can be rewritten
as Cadnlnd + Csd(7 + My), where Cy and C3 are some constants. We are interested in

finding the break-even points for different message sizes where CGM can outperform LP.
Cednlnd + Csd(t + My) < nt 4+ CidMyp

Cydnlind < (n — Csd)r + (C1 — C3)dMe
(n — Csd)r N (Chy — C3)dMy

Csyn Con ’

We first investigate the case where the message size M is small. When M is small, the
second term in RHS can be eliminated. Also, the first term in RHS can be reduced to 7/C5
when d is small. Thus CGM will outperform the LP algorithm when

dlnd <

i
dind < — .
nd < - (5)

2

When the message size M is large, the effect of 7 becomes less significant than M, thus
Codnlnd + Csd(t + My) < nt 4+ C1dMy

ngn Ind S (Cl — Cg)dMSO
Ci=Cy My

2 n

Ind <

(6)

The above discussion is based on the assumption that the same schedule is used only
once. When the number of times the same schedule is utilized increases, the CGM algorithm

would be better for a large range of d.

16

6 Conclusions

In this paper we have developed algorithms to perform message routing for all-to-many
personalized communication. The linear permutation algorithm is very straightforward.
It introduces very small computation overhead. The worst case complexity of this algo-
rithm is O(n(7 + ¢M)) (the experimental results for a 32-node CM-5 show a complexity of
O(nt+C1dM), where every node sends d messages). The second algorithm, GM, eliminates
unnecessary communication at the cost of significant computation overhead. The complexity
of this algorithm is O({(nr* + 7 + ¢ M)). When M is relatively large and n and d are small,
this algorithm outperforms LP.

The performance of the asynchronous communication algorithm depends on the conges-
tion and contention of the network on which it is performed. This algorithm is machine-
dependent and its complexity may vary from machine to machine.

We also present an enhanced version of the GM algorithm—CGM algorithm. In this
algorithm we use the information of COM(,7) to create an n x d matrix CCOM such that
all useful entries appear at the first several columns, and useless entries (CCOM(¢,5) = —1)
are moved to the bottom of each row. We show that with this approach, the time complexity
to complete one iteration is O((nlnd + n) + (7 + ¢M)), and we need only at most d + log d
iterations to complete the whole message routing.

Another advantage of our algorithm as compared to the other algorithms is that once
the schedule is completed, communication can potentially be overlapped with computation,
i.e., computation on a packet received in a previous phase can be carried out while the
communication of the current phase is being carried. It is also worth noting that due to the
compaction, nearly all processors receive data packets, and the load is nearly balanced on
every node. Clearly, the number of computation phases would increase by logd (from d to
d + log d). Thus, using overlap of communication and computation would only be useful if
the overlap is more than the extra computation overhead.

This paper assumes that each node sends d messages and receive d messages. These
algorithms can be extended to the case when the number of messages to be sent by each
processor are not equal. Clearly, if d is the maximum number of messages to be sent, our
CGM algorithm should produce no more than an expected number of d+log d permutations.
In such case, we believe that our algorithm, on an average, would produce lower than d+log d
permutations. Since the number of permutations cannot be lower than d, our algorithm
would produce a near optimal number of permutations.

Our paper also assumes that all messages are approximately of the same size. For many

17

applications, this is not the case. We are currently investigating methods that are useful

when the message sizes are not equal.

References

(1]

2]

3]

[4]

[5]

[6]

(7]

[8]

[9]

[. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concurrent Processors,
volume 2. Prentice Hall, Englewood Cliffs, NJ, 1990.

M. Barnett, D.G. Payne, and R. Geijn. Optimal Broadcasting in Mesh-Connected

Architectures. Technical report, University of Texas at Austin, December 1991.

D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley. An Experimental Study
of Methods for Parallel Preconditioned Krylov Methods. In Proceedings of the 1988
Hypercube Multiprocessor Conference, pages pp. 1698-1711, Pasadena, CA, January

1988.

Zeki Bozkus, Sanjay Ranka, and Geoffrey C. Fox. Benchmarking the CM-5 Multi-
computer. In Proceedings of the Frontiers of Massively Parallel Computation, pages

pp- 100-107, McLean, VA, October 19-21 1992.

D. Callahan and K. Kennedy. Compiling Programs for Distributed-Memory Multipro-
cessors. Journal of Supercomputing, 2:pp. 151-169, October 1988.

Alok Choudhary, Geoffrey C. Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel,
Sanjay Ranka, and Chau-Wen Tseng. Compiling Fortran 77D and 90D for MIMD
Distributed-Memory Machines. In Proceedings of the Frontiers of Massively Parallel
Computation, pages pp. 4-11, McLean, VA, October 19-21 1992.

Alok Choudhary, Geoffrey C. Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel,
Sanjay Ranka, and Joel Saltz. Software Support for Irregular and Loosely Synchronous
Problems. Journal of Computing Systems in Engineering, 3:pp. 43-52, 1993.

Willian J. Dally and Chuck L. Seitz. Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks. IEEE Trans. on Computers, 36(5):pp. 547-553, May 1987.

R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Distributed Memory Compiler Meth-
ods for Irregular Problems—Data Copy Reuse and Runtime Partitioning. In J. Saltz
and P. Mehrotra, editors, Compilers and Runtime Software for Scalable Multiprocessors.
Elsevier, Amsterdam, The Netherlands, 1991.

18

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Geoffrey C. Fox. The Architecture of Problems and Portable Parallel Software Systems.
Technical Report Revised SCCS-78b, Syracuse University, July 1991.

Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiler Support for
Machine-Independent Parallel Programming in Fortran D. Technical Report Rice
COMP TR91-149, Rice University, March 1991.

S. Lennart Johnsson and Ching-Tien Ho. Optimum Broadcasting and Personalized
Communication in Hypercubes. [EEE Trans. on Computers, 38(9):pp. 1249-1268,
September 1989.

Charles Koelbel and Piyush Mehrotra. Compiling Global Name-Space Parallel Loops for
Distributed Execution. IEEE Trans. on Parallel and Distributed Systems, 2(4):pp. 440
451, October 1991.

R. Mirchandaney, J.H. Saltz, R.M. Smith, D.M. Nicol, and Kay Crowley. Principles of
Runtime Support for Parallel Processors. In Proceedings of the 19588 ACM International
Conference on Supercomputing, pages pp. 140-152, St. Malo, France, July 1988.

Lionel M. Ni and Philip K. McKinley. A Survey of Wormhole Routing Techniques in
Direct Networks. IEEE Computer, 26(2):pp. 62-76, February 1993.

Sanjay Ranka and Sartaj Sahni. Hypercube Algorithms with Applications to Image
Processing and Pattern Recognition. Springer-Verlag, 1990.

A. Rogers and K. Pingali. Process Decomposition Through Locality of Reference. In
Proceedings of the SIGPLAN 89 Conference on Programming Language Design and
Implementation, pages pp. 69-80, Portland, OR, June 1989.

Thinking Machines Corporation, Cambridge, MA. The Connection Machine CM-5
Reference Manual, 1992.

D.W. Walker. Characterizing the Parallel Performance of a Large-Scale, Particle-in-Cell
Plasma Simulation Code. Concurrency: Practice and Fzperience, pages pp. 257288,
1990.

D.L. Whitaker, D.C. Slack, and R.W. Walters. Solution Algorithms for the Two-
dimensional Euler Equations on Unstructured Meshes. In Proceedings AIAA 25th
Aerospace Sciences Meeting, Reno, Nevada, January 1990.

19

[21] Hans P. Zima, Heinz-J. Bast, and Michael Gerndt. SUPERB: A Tool for Semi-
Automatic MIMD /SIMD Parallelization. Parallel Computing, 6:pp. 1-18, 1988.

20

msg_size AC LP GM CGM
comm™
16 2.110 3.593 1.836 1.855
32 2.224 3.659 1.853 1.861
128 2.364 3.829 1.970 1.989
256 2.729 4.095 2.123 2.141
1024 4.656 5.734 3.137 3.122
2048 7.101 7.920 4.346 4.324
8192 | 21.936 | 21.505 | 11.889 | 11.863
16384 | 41.437 | 40.364 | 22.498 | 22.413
32768 | 79.102 | 76.538 | 43.742 | 43.498
65536 | 151.997 | 146.295 | 84.883 | 84.523
comp! 0| 0.116 | 14608 | 1.570
perm* - | 31000 | 5.640 | 5.540
comm
16 3.392 5.902 3.420 3.452
32 3.577 5.989 3.502 3.495
128 4.202 6.299 3.737 3.729
256 5.165 6.733 4.041 4.068
1024 9.573 9.613 5.949 5.897
2048 | 15.379 | 13.275 8.199 8.182
8192 | 50.294 | 36.758 | 22.377 | 22.337
16384 | 95.294 | 69.690 | 42.342 | 42.106
32768 | 179.563 | 133.827 | 82.534 | 82.035
65536 | 324.347 | 260.924 | 160.129 | 159.560
comp 0 0.121 | 22.062 3.050
perm - | 31.000 | 10.260 | 10.100

*: Communication cost, in milliseconds.

7: Scheduling cost, in milliseconds.
+
+

: Number of communication phases needed.

Table 2: Experimental results for different message sizes on a 32-node CM-5.

21

d | msg_size AC LP GM CGM
comm”™
16 6.304 8.361 6.415 6.551

32 6.813 8.526 6.540 6.636

128 8.771 9.038 6.989 7.085

256 10.927 9.662 7.591 7.720

16 1024 21.427 | 14.181 | 11.153 | 11.197
2048 34.634 | 19.641 | 15.404 | 15.504
8192 | 111.244 | 56.812 | 42.092 | 42.301
16384 | 205.605 | 109.885 | 79.431 | 79.733
32768 | 402.905 | 214.635 | 155.073 | 155.541
65536 | 1233.859 | 426.224 | 301.124 | 302.868

comp 0 0.126 | 32.984 6.348
perm - | 31.000 | 18.580 | 18.560
comm

16 10.201 9.617 9.289 9.465
32 11.085 9.715 9.477 9.596
128 14.929 | 10.331 | 10.163 | 10.300
256 18.638 | 11.081 | 11.035 | 11.204
24 1024 35.360 | 16.569 | 16.206 | 16.206
2048 55.855 | 23.160 | 22.316 | 22.431
8192 | 174.728 | 69.231 | 60.896 | 61.182
16384 | 304.736 | 135.531 | 115.038 | 115.108
32768 | 676.008 | 266.979 | 224.753 | 224.882
65536 | 2362.268 | 842.655 | 438.658 | 435.817
comp 0 0.131 | 42.007 9.547
perm - | 31.000 | 26.560 | 26.600

Table 3: Experimental results for different message sizes on a 32-node CM-5.

22

160

120 n AC ©—
- LP —+—
Time

(msec) 80 7 GM =

40 n

(S =
0 16384 32768 49152 65536
Msg_size (bytes)
(density d = 4)

320 n
240 n AC <—
Time LP +
(msec) 160 - N GM =

80 n

0 | | | |
0 16384 32768 49152 65536
Msg_size (bytes)
(density d = 8)

. AC <—
Time LP —+—
(msec) 7] GM =—

0 16384 32768 49152 65536

Msg_size (bytes)

(density d = 24)
Figure 8: Communication cost for different message sizes on a 32-node CM-5.

23

0.036

0.027 d=4 <—
Fraction g oy | e
(comp/comm) d=24 X -

0.009

0
Msg_size (2% bytes)
(LP algorithm)
d=4 —
Fraction d_: & 4=
(comp/comm) d=16 &=
d 24 .X -
Msg_size (2% bytes)
(GM algorithm)

1 —
0.75 - d=4 $—
Fraction _ d=8 —+—
(comp/comm) 0.5 d=16 =—
d=24 X~

0.25

0

Msg_size (2% bytes)

(CGM algorithm)

Figure 9: Computation overhead of scheduling algorithms in terms of communication cost

on a 32-node CM-5.

24

d|d+logd 32 PEs 128 PEs 512 PEs
perm | comp || perm | comp || perm | comp
1 1.0 0.6 1.0 2.8 1.0 11.0
2 3.0 1.4 3.0 6.0 3.0 24.1
4 5.6 2.6 6.0 11.6 6.1 47.3
8 11 10.2 5.0 10.7 | 224 11.1 92.3
16 20 18.5 9.9 19.5 | 44.2 20.0 | 183.3
24 28.6 26.5 | 14.9 - - - -
31 36 3421 199 - - - -
32 37 - - 36.3 | 91.0 37.1 | 377.5
64 70 - - 68.8 | 190.0 70.3 | 813.6
96 102.6 - - || 100.7 | 291.7 - -
127 134 - -1 1324 | 394.9 - -
128 135 - - - - || 135.4 | 1786.0
256 264 - - - - || 263.7 | 3892.9
384 392.6 - - - - || 391.2 | 6068.9
511 520 - - - - || 519.0 | 8306.7

Table 4: The number of permutations generated and scheduling cost (on the CM-5) for

different densities (d) and number of processors (n).

1

0.75 32 PEs <—
128 PEs +—
Time/nodes 0.5 512 PEs H—
0.25
&2
0 40 80 120 160
d*Ind

Figure 10: CGM scheduling cost divided by number of nodes versus dInd.

25

