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Abstract

Composite grid problems arise in important application areas, e.g., reactor simulation. Related physical
phenomena are inherently parallel and their simulations are computationally intensive. Unfortunately, parallel
languages, e.g., High Performance Fortran, provide little explicit support for these problems. We illustrate
topological connections via a coupling statement and develop an algorithm that automatically determines
distributions for composite grid problems with meshes that are small relative to the number of processors. Our
algorithm’s alignment and distribution specifications are input to the transformed High Performance Fortran
program which applies the mapping for execution of the simulation code. Precompiler transformations, such as
cloning for alignment specification, are described. Excerpts from a High Performance Fortran program before
and after transformation illustrate user programming style and transformation issues. Some advantages of
this approach are: transformations are applied before compilation, and allow communication optimization,
and the distribution may be determined for any number of problems without recompilation; user determined
distribution for parallelization is unnecessary; and portability is improved. We validate the algorithm using
a number of reactor configurations. Two random distribution algorithms provide a basis of comparison with
measures of load balance and communication cost. Experiments show that our algorithm almost always obtains
load balance at least as good as, and often significantly better than, random algorithms while reducing the
total communication per iteration by about 50% or in some cases as much as 90%.



1 Background: Composite Grid Problems

Detailed simulation of complex physical phenomena is computationally intensive. An increasing number of these
computationally intensive problems involve more than one grid where each grid corresponds to a different physical
entity. Here we focus on composite grid problems where all of the grids are either large enough to be distributed
across all processors or small enough to fit on a single processor. Two important application areas for composite
grid approaches are electric circuit analysis and nuclear reactor simulation. In nuclear reactor simulations, different
grids are used for each of the reactor vessels, pipes, pumps, etc. [1]. Applications of this type are called multiblock,
composite grid or irregularly coupled regular mesh (ICRM) problems. To provide an indication of the complexity
of the topology(dimensionality, size, and connectivity) of these problems, Figures 1-5 show five of the diagrams
from the Westinghouse AP600 advanced reactor design'. The AP600 design has two loops, with one hot leg, one
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Figure 1: Plan view of AP600 model.

steam generator, two reactor pumps, and two cold legs in each loop. Figure 1 shows the overall plan of the reactor
cooling system, automatic depressurization system and the passive safety injection system. Figure 2 illustrates the
relationship of the components in the reactor vessel model. Figure 3 shows the relationship of the heat structures
to the rest of the components in the reactor vessel model. Figure 4 illustrates the relationship of the components
in the first coolant loop of the AP600 model. Figure 5 illustrates the relationship of the components in the safety
systems of the model. This configuration has a total of 173 hydrodynamic components (with 10603 — D cells and
8651 — d cells) and 47 heat structures. The complexity of the AP600 topology illustrates the need for automatic
distribution. The AP600 is used as the final test problem for our algorithm.

Many composite grid problems require the use of the fastest computers available, even for simplified simulations.
For the solution of the grand challenge simulations in these problems, it is clear that parallelization will be
necessary. For example, to verify the design criterion of the AP600 that it be capable of unsupervised operation

1 These figures and the topology specifications for this problem were provided by Jim F. Lime who developed this TRAC model for
the AP600 at Los Alamos National Laboratories with support from the Nuclear Regulatory Commission’s Office of Nuclear Regulatory
Research. Preliminary large-break loss-of-coolant accident results performed with TRAC-PF1/MOD2 [10].
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Figure 2: Isometric view of AP600 reactor vessel model.

for three days, simulations of many scenarios need to be run. Since simulation of the AP600 reactor currently
takes approximately 40 times as long as real time using two communicating workstations (one running RELAP-5
and the other running Contain), each scenario takes about 120 days to run. Fortunately, the physical phenomena
being simulated are inherently parallel. Unfortunately, their simulation is not necessarily easy to parallelize. Even
with inherently parallel algorithms for composite grid problems, the generation of a parallel program with all of
the clones of compute and coupling update routines to allow input of alignment and distribution specification is
at best tedious and error prone. Further support of clones in programs makes code development more tedious and
error prone as well. To make rewriting of applications codes such as TRAC and RELAP-5 for parallel processors
practical, the resulting program must be portable, easy to develop, and easy to support [6]. For this reason we



Upper Head 31 heat structures total

Core Support
Columns

I Upper Head Mounting Flange

Upper Core Support Flange
Upper Support Plate

Thick Vessel Wall

Upper Core Plate

Core
Barrel

Downcomer Annulus

Vessel Wall

Reflector Block

Lower Core Support Plate

I Lower Head Level 2

[ Lower Head Level 1

Secondary Core Support
and Energy Absorber

Figure 3: AP600 reactor vessel heat structure model.

discuss not only the automatic generation of alignment and distribution specifications, but also the automatic
transformation of High Performance Fortran (HPF) programs to support the generation of clones and the use of
alignment and distribution specifications. This means that future code development occurs on a single version
of each compute and coupling update routines and is followed by rerunning the transformation process on the
modified subroutine(s).

As a result of this discussion we have a set of computationally intensive simulation problems, which are difficult
to parallelize efficiently, coming from inherently parallel physical phenomena. None of the current parallelization
approaches for these problems, e.g., PARTI [2], save the programmer from having to decipher the grid assembly
and determine data distributions. Since the description of the grid assembly is normally part of the input, this
implies user intervention for data distribution for every new grid assembly input.

Since each grid is regular but the coupling between the grids is not necessarily regular, we call these problems
partially regular. Parallel efficiency is significantly impaired in these partially regular problems when irregular
distributions of data are used. Irregular data distributions tend to impair the use of regular communication opti-
mization techniques, e.g., they may inhibit parallel communication generation and increase network contention.
We are working to make parallelization of these applications easier for the user as well as efficient and applicable
across a large class of architectures. Therefore, we must develop an approach that achieves more of the compu-
tational efficiency of a regular approach. To do this we exploit not only the regularity inside of each mesh, but
also the topology of the connections between meshes to automatically determine distribution of data structures.
We use an extension of Fortran D [3], coupling specification, to illustrate the information that must be extracted
from the input file for automatic distribution. For nuclear reactor applications, mesh and coupling descriptions
can be be obtained by translating the grid specifications found in the input file for simulators such as TRAC [1].
Therefore the coupling specifications presented here indicate what information must be extracted from the input.
A portable style of programming in High Performance Fortran is introduced that allows analysis of these appli-
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Figure 4: AP600 reactor coolant loop 1 model.

cations codes to determine the amount and type of computation and communication associated with each mesh
and coupling. Next an algorithm for automatic distribution of small meshes is presented. Then excerpts from an
abstracted application are used to illustrate HPF programming style and transformation. Finally we validate our
work with measures of communication and computational load balance on four nuclear reactor configurations.

2 Topology Specification and Programming Style

Here we introduce a version of the coupling statement to illustrate the type of topology information that must
be extractable from the runtime constant input. By the topology of a problem we mean the dimensionality, size
and connectivity of the grids in the problem. A programming style is then developed to facilitate extraction of
runtime constant input and analysis of computation and communication for automatic distribution.

2.1 Specification of Topological Connectivity

We illustrate the specification of topological connectivity via a statement that describes the connections between
coupled grids. In the grid illustrations, dashed lines represent couplings and solid lines represent the boundaries
of the grids.

As an example, consider two meshes, A and B, each of which are 40x40x40 with one coupled face. These
meshes and the coupling between them are illustrated in Figure 6. This problem was used by J. Saltz [2] to show
the feasibility of the PARTI multiblock runtime system for parallelization of composite grid problems. Here we
need to couple the face of A where the second dimension index is 40 to the face of B where the second dimension
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Figure 6: Simple Coupling Example. Dashed lines represent couplings; Solid lines represent grid boundaries.

index is 1. To express this in a COUPLE statement we would declare
couprLE A[(1,1:40),(2,40:40),(3,1:40)] wite B[(1,1:40),(2,1:1),(3,1:40)]

where each entry of the form (d, s : f) is specifying the range of elements (s to f) to be coupled in dimension d. We
need to specify the dimensions to be able to express couplings between different dimensions of the decompositions.
To illustrate this point, our second example involves a computation associated with the trio of coupled two
dimensional grids illustrated in Figure 7. The couplings in this problem would be declared as follows.
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Figure 7: Cross Dimensional Coupling Example. Figure 8: Negative Stride Coupling Example.

couPLE C[(1,640 :640),(2,1:320)] wite D[(2,1:1),(1,1: 320)]
coUPLE E[(1,640 : 640), (2,310 : 320)] wita D[(1,1: 1),(2,630 : 640)]
coupLE (1,10 :10),(2,320:320)] wiTH E[(1,10:10),(2,1:1)]

This simple form of the COUPLE statement does not support negative or non-unit strides. With this restrictive
form it would take ten COUPLE statements to express the coupling in Figure 8. Hence with the addition of an
optional stride we can declare:

couPLE F'[(1,1:10),(2,5:5)] withH G[(1,10:1:-1),(2,1:1)]
The form for a fairly general coupling specifications would therefore be:

COUPLE  A[(dimay, startay : endas : strideas), (dimas, start 4o : endaa : stridegs), ...]
WITH B[(dimpi, startp; : endp; : stridep: ), (dimpa, startps : endps : strideps), ...]

This couples decomposition A’s elements, in dimension dim4; of A, in the range starts; to enda; starting in
position start4; with stride stridea; to B’s elements, in dimension dimp; of B, in the range startp; to endp;
starting in position startp; with stride stridep;. The coupling for the subscript 2 elements is similar. Specifying
the dimensions for each range of elements allows fairly arbitrary coupling between different dimensions. The
stride is optional and has a default value of 1.

This illustrates that the coupling information that must be extracted from the input file for these applications
includes: the meshes being coupled, the dimensions being coupled, the range of elements being coupled and the
stride of the coupling.

2.2 Programming Style Recommendations

Here we attempt to outline a programming style that is natural to composite grid applications, such as nuclear
reactor simulation, but does not inhibit dependence analysis. The style should also make development and support
more efficient in terms of programmer effort [12]. This includes the amount of time that a new researcher must
study the code before being able to make contributions to the application development [6]. Further, programs
written in this style should achieve good performance when compiled by a good compiler. We will describe this
style in the context of HPF [7].

Two of the most important language features, for the current discussion, are dynamic memory allocation and
user-defined data types. The user-defined data types allow all of the arrays and scalars for a given mesh to be
grouped into one data structure with the actual storage for the arrays being allocatable at runtime according
to the input. Further, an allocatable array of such structures can be used to represent all of the meshes of a
given type, i.e., all meshes that have the same dimensionality and the same basic computation. For example, in



a reactor simulation code, there could be an allocatable array of structures for all of the pumps, another for all
of the pipes, another for all of the vessels, et cetera. This implies that the program has one allocatable array of
structures for each type of mesh. Alternatively, the user-defined data type may include a type specification and
have only one array of structures for each dimensionality (this is the version we illustrate). The basic ideas for
data structure creation are:

e arrays for each component are dynamically allocated;

e all arrays and scalars for each component type are grouped into a user-defined data structure;
e arrays of user-defined data structures are allocated dynamically;

e there is an array of user-defined data structures for each type of component.

Associated with each type of mesh there is also a compute routine that is called with each structure on every
time step. In addition there must be a routine for internal boundary data exchange for each pair of mesh types.
These routines need to be written using a structured programming style, e.g., via the use of select case, not
computed gotos. Further, the recommended organization is shown in Figure 9. Given a program written in this

module composite

C -— user defined data types go here
-- global declarations go here
contains
subroutine main

C -- non-runtime-constant input goes here
C -— initialization goes here
C -— all computation goes here
C -— output goes here
contains
C all subroutines except runtime constant input and storage allocation go here
end subroutine main
C runtime constant input routines go here
C storage allocation routines go here
end module composite
program icrm
use module composite
C -- calls to runtime constant input routines go here
C -- calls to allocation routines go here

call main()
end program icrm

Figure 9: Recommended organization for composite grid HPF programs.

style and an understanding of how the input file relates to the allocation of these structures, the analysis necessary
for execution of the automatic distribution algorithm is similar to the interprocedural analysis performed by Rice
University’s Fortran D compiler [4].



3 Awutomatic Distribution Algorithm

Minimally, for the algorithm we are about to describe, we need, in addition to the information in coupling
specifications, measures of:

e the amount of computation per element in each mesh,
e the amount of communication in each dimension of each large mesh, and
e the amount of communication between each coupled pair of elements in each coupling between meshes.

The coupling specifications are used to determine which meshes must communicate. The amount of computation
for each element of each mesh is used to attempt to balance the computational load. The amount of communication
in each dimension of each large mesh is used to attempt to minimize the cost of communication for distribution of
the large mesh. The amount of communication for each coupling is used to prioritize the order in which coupled
meshes get mapped and to determine the placement of coupled meshes. In nuclear reactor simulations these
measures may vary by component type, but the nature of the computation carried out for each mesh of the same
type is similar. The computation can also vary by cell according to the material in the cell and the phase of the
material.
For this work, we restrict ourselves to consideration of composite grid applications in which

o all of the meshes are either large enough to be efficiently distributed over all processors or small enough to
be assigned to a single processor and

e computations inside of each mesh are regular (this implies regular internal communication for each mesh
for each distribution generated by our algorithms).

Further, we are currently targeting a torus-based communications topology. This seems reasonable as many
available machines either are tori or can have them efficiently embedded in the machine topology.

We are, at last, ready to present our automatic distribution algorithms. We will begin with descriptions of
both of the random distribution algorithms and the topology-based small mesh distribution algorithm. Then we
will illustrate the suggested user programming style and precompiler transformations with HPF excerpts. Finally,
this section contains a discussion of the limitations and advantages of the topology-based small mesh distribution
approach.

For efficient parallelization of composite grid applications, we would like to distribute each mesh according to
its dimensionality [9]. Hence, we will distribute all of the large meshes over all of the processors in the same
dimensionality [8]. During the mapping of the large meshes, a processor configuration is selected for distribution
of the entire problem. When there are no large meshes in the problem we select the m dimensional processor
topology closest to being “square”, where m is the dimensionality of the largest dimensionality mesh of the
specified size on the host architecture.

3.1 Random Algorithm

For each mesh a pseudorandom number is used to select the processor which will own the mesh. Note that we
place no restriction on assignment of meshes to processors. This approach has been advocated by applications
developers. This algorithm takes O(M) time to generate a distribution specification, where M is the number of
small meshes.

3.2 Load-Balanced Random Algorithm

With this algorithm the meshes are randomly distributed, as above, but they are distributed in highest compu-
tation cost first order. Further there is an upper bound on the amount of computation that may be allocated to



a processor which is overridden only after a number of failures to allocate. The number of failures is set to be on
the order of the number of processors. Therefore, to map the largest unmapped mesh, a processor is randomly
selected. If the processor can accommodate the mesh’s computation then map the mesh to the processor, other-
wise try again up to some set number of times. If no processor with enough room is found, then assign it to a
processor because, even if the load balance is poor, the problem must be solved. This approach produces better
worst-case load balance than the random algorithm but is more expensive. This algorithm takes O(P M log(M))
time due to the sorting of the meshes by computational cost and the possible number of failures, where M is the
number of small meshes and P is the number of processors.

3.3 Topology-based Small Mesh Algorithm

Here we present a brief description of our topology-based small mesh distribution algorithm and the associated
data structures, and then outline the steps in the algorithm in Figures 10 and 11.

It is assumed that before this algorithm is started any large meshes have been mapped. As a result of this
mapping a processor configuration is chosen. Further all communicationsinvolving large size meshes are scheduled.
If there are no large meshes, the largest dimensionality nearly square processor configuration possible is chosen
and the highest computation cost small mesh is mapped to an arbitrary processor. All communications to this
mapped small mesh are scheduled.

The basic idea used in this algorithm is that we want to map meshes which communicate to the same processor
or at least as near as possible. If we simply mapped to the processor with the greatest coupling cost we would
end up with very few processors with small meshes allocated to them. The number of processors used in that
case would be bounded by the number of couplings between large and small meshes (one in the case of a single
premapped small mesh). Therefore we use a load-balance measure to determine when a processor has too much
computation already allocated to accommodate the work associated with an unmapped mesh. When this happens,
we try to allocate it to a neighbor processor. If all of the neighbors are too full we find the closest processor with
no work allocated. If this also fails we save the mesh as a “fill” element to be used after all other meshes are
mapped. These “fill” elements are then used in a final load balancing step by assigning them to under-utilized
processors.

We begin small mesh distribution by determining the amount of computation, for the small meshes only, that
should be assigned to each processor for perfect small mesh load balance. We will statically distribute small
meshes by trying to obtain load balance within te of perfect balance. If the large meshes are not perfectly load
balanced, then we could add their computation to this consideration to improve the overall load balance. We
are not currently doing this but will in future work. Note that this algorithm could also be used at runtime
for dynamic load balancing if computation/communication statistics are collected in the program and the new
alignment /distribution specifications are used for data redistribution. This may be useful for problems where the
amount of computation per cell changes dramatically over time.

Two types of heaps are used in this mapping algorithm. The mesh heap contains all of the unmapped meshes
with scheduled communication. Communication is scheduled, between a mapped mesh, M, and each coupled
unmapped mesh, N, by adding the coupling communication cost to N’s communication for the processor to which
M is mapped (see Figure 10). This introduces the second type of heap. A processor heap is associated with each
mesh in the mesh heap. Each entry in a processor heap gives the current coupling cost of the associated mesh to
that specific processor. From this two level structure we get the mesh with the maximum communication scheduled
to a single processor (from the mesh heap) and the associated processor (from the mesh’s processor heap). In
the final cleanup stage of the algorithm two heaps are also used, one being a maximum heap of meshes sorted
according to the amount of computation in the mesh and the other being a minimum heap of processors sorted
according to the amount of computation assigned to the processor.

For each mapped large mesh, all communications to small meshes are scheduled initially. Alternatively the
small mesh with the most computation may be mapped to a processor and all communication to other small

10



add M’s computation to P’s computation
delete M’s processor heap
For each unscheduled coupling involving the mapped mesh, M, and an unmapped mesh, N, with weight W
If N is not in the mesh heap
create a processor heap with one entry for P having weight W
add N to the mesh heap with weight W
else
if there is not entry for P in N’s processor heap
create an entry for P with weight W and add it to N’s processor heap
add W to N’s weight in the mesh heap and bubble N’s entry up
else
add W to P’s weight in N’s processor heap and bubble P’s entry up
add W to N’s weight in the mesh heap and bubble N’s entry up
endif
endif

Figure 10: Pseudocode for mapping mesh M onto processor P

meshes are scheduled. Now we are ready for the details of the topology-based algorithm. In Figure 10, an outline
of the steps needed to map or assign a mesh to a processor is given. In Figure 11, an outline of the steps in the
topology-based small mesh distribution algorithm is given. One point we need to mention is that from studying
the types of coupling communication that occur in our test problems we learned that there are often many
couplings with the same communication cost. This led us to explore further ordering options in the mesh heap.
In the end we used a combination of maximum coupling cost to a processor and the computation cost associated
with the mesh to select the next mesh to map. The coupling cost is still the primary selection criteria with the
higher computation cost only used to make the selection when communication cost ties occur.
The runtime of this algorithm is

O(M log(M) C log(C) P log(P))

where M is the number of small meshes, C' is the maximum number of couplings involving a single mesh, and P
is the number of processors. The P log(P) term comes from sometimes finding the nearest empty processor. To
give an idea of how expensive this algorithm is on a real problem, for the AP600 data set there are 220 meshes
to be distributed, 366 couplings, and at most 64 processors.

3.4 Transformation of High Performance Fortran Programs

Here we begin by showing an example of the use of the coding style that we recommend. Then we will discuss
the interprocedural transformations that would be performed by a preprocessor. The coding of the routines
sketched in this example depends on the application programmer having developed a parallel algorithm for the
physical phenomenon simulation. One note about the large mesh update routines: the loops over large meshes
are sequential, but the loops inside of the large mesh routines are forall loops. Also note that we assume that
all of the couplings are independent. If there are overlapping couplings then the loop over couplings can not
be a forall. Finally, we present some of the transformed HPF routines?. For an example of the coding needed
for the large multi-dimensional meshes that are distributed across all processors, see [8]. This code shows how
the automatically generated distribution to a three-dimensional mesh of processors would be used in an HPF
program.

2In all of the HPF code segments, every line that is continued should have an & in column 73.
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maz distance = one half of the diameter of selected processor configuration
search distance = 1
While there are unconsidered meshes
proc = null
delete the maximum entry, M, from the mesh heap
best proc = processor in the maximum entry of M’s processor heap
While ((proc is null) && (processor heap is not empty))
delete the maximum entry, P, from M’s processor heap
If P has room for M

proc = P

else if there is any neighbor of P, P’, within search distance with room for M
proc = P’

endwhile

if (proc is null) reset M’s processor heap
While ((proc is null) && (processor heap is not empty))
delete the maximum entry, P, from M’s processor heap
if there is any neighbor of P, P’, within maz distance with room for M
proc = P’
endwhile
if ((proc is null) && (there is an empty processor))
proc = empty processor nearest best proc
mark M considered
if (proc is null)
save M for filler
else
map M onto P (see Figure 10)
endwhile
create a minimum (by computation allocated) heap of processors
create a maximum (by computation to perform) heap of filler meshes
while there are filler meshes in the max heap
delete maximum mesh from max heap
delete minimum proc from min heap
map M onto P
insert P with new computation cost into the minimum processor heap
endwhile

Figure 11: Topology-based Distribution Algorithm for Small Meshes

Figure 12 shows the use of a user-defined data type, mesh_1d, including the allocation of variable size arrays.
Note that in the user program all of the information for a single grid is passed as one parameter into all of the
subroutines.

Figure 13 shows the declaration of user defined data types in module mesh_module. The only subroutine
declarations that are allowed in the mesh_module are for main_routine and the routines to read the runtime
constant input. Only these routines may be called by mesh_module. Before entry into main_routine all runtime
constants must have been read in. All of the actual work including input of non-runtime constant input and
initialization occurs in matn_routine as is shown in Figure 14. All meshes are updated according to their type
for a given timestep before coupling communication is performed.

Figure 15 shows how coupling ranges are read in according to the dimensionality of the meshes involved.
Further, coupling update routines are based on the dimensionality of both of the meshes involved in the coupling.

12



subroutine read_meshes_1d(num_before) subroutine allocate_all_meshes()

read(*,*) Hum_1d_meshes do i = 1, Num_1d_meshes
allocate(Meshes_1d(Hum_1d_meshes)) call allocate_1d(Meshes_1d(i))
do i = 1, Num_1d_meshes end do

dims (i+num_before) = 1 do i = 1, Num_3d_meshes

read (*,*) Meshes_1d(i)%size, Meshes_1d(i)%type call allocate_3d(Meshes_3d(i))
end do end do
end subroutine read_meshes_1d end subroutine allocate_all_meshes
subroutine allocate_1d(Mesh_info) subroutine update_mesh_pipe(Mesh_info)
type (mesh_1d) Mesh_info type (mesh_1id) Mesh_info
real, pointer :: all_array(:) use physics
allocate(all_array(i_size)) c ... updates for arrays associated with current mesh
Mesh_info%p => all_array end subroutine update_mesh_pipe

nullify(all_array)
C ... similar allocation for q, u, v, zm, x, y, z
end subroutine allocate_1d

Figure 12: Original HPF input, allocation, and compute routines for 1-d meshes.

module mesh_module C module mesh_module continued
type mesh_1d

integer size, type type (mesh_1d),allocatable,dimension(:)::Meshes_1d
real,pointer,dimension(:)::p,q,u,v,zZm,x,y,z type (mesh_3d),allocatable,dimension(:)::Meshes_3d
end type mesh_1d contains
type mesh_3d C subroutine main_routine goes here
integer size(3) C input routines go here
real,pointer,dimension(:,:,:)::p,q,u,v,zm,x,y,2 end module mesh_module
end type mesh_3d
type coupling program big_mesh
integer id_A, id_B use mesh_module
integer lo_A(3), hi_A(3), lo_B(3), hi_B(3) read (*,*) Num_Steps, Num_Meshes
end type coupling allocate(dims (Num_Meshes))
integer Num_Steps, Num_Meshes call read_meshes_3d()
integer allocatable, dimension(:)::dims call read_meshes_1d(Num_3d_meshes)
integer Num_1d_meshes, Num_3d_meshes, Num_couplings call read_couplings()
type (coupling),allocatable,dimension(:)::Couplings call main_routine()

end program big_mesh

Figure 13: HPF module example.

In this example, the order of meshes in a coupling specification is determined by the size of the meshes. This
ordering eliminates the need for one case in the main_routine of Figure 14. Note that in the transformed
main_routine we used “...” to shorten the parameter lists for readability.

Now that we have seen examples of the type of code that the user writes, let’s consider the transformations that
are needed to allow our automatically determined distributions to work with standard HPF compilers. Figure 16
shows how the distribution specifications for each mesh are read from a secondary input file. Further, the routine
that allocates all of the meshes, allocate_all_meshes, must now have a case statement to select the appropriate
large mesh allocation routine according to the mesh’s distribution. All of the distributed meshes must be passed
explicitly as parameters and not as elements of the user-defined data type. This is because HPF does not allow
elements of user-defined data types to appear in align/distribute statements. A sample update routine for small
meshes, e.g., update_mesh_pipe in Figure 16, shows the specification of the processor that the mesh is assigned
to.
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subroutine main_routine() C
forall (i=1, NHum_1d_meshes)
call initial_1d(Meshes_1d(i) ,dthlf,dt)
end forall
do i=1, Num_3d_meshes
call initial_3d_ijk(Meshes_3d(i),dthlf,dt)
end do

call system_clock(is_count,is_count_rate,
& is_count_max)
do i=1, Num_Steps
forall (i=1, NHum_1d_meshes)
select case (Meshes_1d(i)%type)

subroutine main_routine continued

else if (dims(id_A) .eq. 3) then

id_A = Couplings(i)%id_A

id_B = Couplings(i)%id_B

call update_couplings_3d(
&Meshes_3d(id_A),Couplings(i)%lo_A(1),
&Couplings(i)%lo_A(2) ,Couplings(i)%lo_A(3),
&Couplings(i)%hi_A(1) ,Couplings(i)%hi_A(2),
&Couplings(i)%hi_A(3) ,Meshes_3d(id_B),
&Couplings(i)%lo_B(1) ,Couplings(i)%lo_B(2),
&Couplings(i)%1lo_B(3) ,Couplings(i)%hi_B(1),
&Couplings(i)%hi_B(2) ,Couplings(i)%hi_B(3) ,dthlf,dt)

case (pipe) else
call update_mesh_pipe(Meshes_1d(i),dthlf,dt) id_A = Couplings(i)%id_A - Num_3d_meshes
c ... similar case for each mesh type id_B = Couplings(i)%id_B
end select call update_couplings_1d_3d(
end forall &Meshes_1d(id_A) ,Couplings_1d_3d(i)%lo_A,

do i=1, Num_3d_meshes
call update_mesh_3d_ijk(Meshes_3d(i),dthlf,dt)

&Couplings_1d_3d(i)%hi_A ,Meshes_3d(id_B),
&Couplings_1d_3d(i)%1lo_B(1),Couplings_1d_3d(i)%lo_B(2),

end do &Couplings_1d_3d(i)%1lo_B(3),Couplings_1d_3d(i)%hi_B(1),
&Couplings_1d_3d(i)%hi_B(2),Couplings_1d_3d(i)%hi_B(3),
forall (i=1, Num_couplings) &dthlf,dt)
C Note: larger mesh is in B end if
if (dims(id_B) .eq. 1) then end forall
id_A = Couplings(i)%id_A - Hum_3d_meshes end do

id_B = Couplings(i)%id_B - Hum_3d_meshes call system_clock(ie_count,ie_count_rate,ie_count_max)
call update_couplings_1d(Meshes_1d(id_A), C
&Couplings(i)%lo_A,Couplings(i)%hi_A,Meshes_1d(id_B),

&Couplings(i)%lo_B,Couplings(i)%hi_B,dthlf,dt) C

. print results, etc.
contains
all subroutines except input routines go here
end subroutine main_routine

Figure 14: Original HPF main_routine example.

A note about the structure of the user-defined data structures, e.g., mesh_1d, and the associated storage
allocation: Since HPF does not currently allow elements of user-defined data structures to appear in distribution
statements, a pointer is used to allocate and distribute the arrays and then the structure’s array is set to point to
the correct memory. In order to specify the incoming distributions for the user-defined data structure arrays in
subroutines, the arrays in the structures are passed individually rather than just passing the structure. Finally,
the parameters to the HPF specifications must be constant upon entry to subprogram level. This is the reason
we required the routine main_routine to do everything except for the input which is done in the main program
before calling main_routine. This structure allows us to read in the number of processors to use and the processor
assignment for each mesh. Note that the input of couplings is not modified in the transformation process.

In mesh_module, (see Figure 17) the processor that a small mesh is assigned to is added to the user-defined
data type mesh_ld and the distribution order, the decomposition size, and offset is added to the user-defined
data type mesh_3d. Further the number of processors to use in each dimension is declared and input in the
mesh_module so that they are constant upon entry to main_routine. This allows the processors declaration that
appears in Figure 18. Further, we add the code to select the appropriate clone for each routine that is called with
meshes having different distributions.

Since the end result of our work is to be a standard HPF program and HPF does not require the compiler
to perform interprocedural analysis to obtain distribution specifications, we must perform cloning of all routines
where meshes with different types of distribution can be passed to the same parameter. The types of distribution
for these programs are mappings to a single processor or distributions across all processors with any dimension
permutation. For example, the coupling routine, update_couplings_1d_3d, shown in Figure 15, is cloned with a
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subroutine read_couplings() C subroutine update_couplings_1d continued
read(*,*) Num_couplings

allocate(Couplings_(Num_couplings)) c ... update all of the ‘‘A’’ variables
do i = 1, Num_couplings Mesh_BY%q(i_B_lo:i_B_hi) = Mesh_B%q(i_B_lo:i_B_hi)
read(*,*) Couplings(i)%id_A,Couplings(i)%id_B & * frac + q_tmp * (1.0 - frac)
if (dims(Couplings(i)%id_A).eq.1) then c ... update all of the ‘‘B’’ variables
read(*,*) Couplings(i)%lo_A(1), end subroutine update_couplings_1id
& Couplings(i)%hi_A(1)
else subroutine update_couplings_1d_3d(Mesh_A,
read(*,*) Couplings(i)%lo_A, & i_A_lo,i_A_hi,Mesh_B,i_B_lo,j_B_lo,k_B_lo,
& Couplings (i)%hi_A & i_B_hi,j_B_hi,k_B_hi,dthlf,dt)
end if type (mesh_1d) Mesh_A
if (dims(Couplings(i)%id_B).eq.1) then type (mesh_3d) Mesh_B
read(*,*) Couplings(i)%lo_B(1), real dt,dthlf
& Couplings(i)%hi_B(1) real p_tmp(i_A_hi-i_A_lo+1),v_tmp(i_A_hi-i_A_lo+1)
else real q_tmp(i_A_hi-i_A_lo+1),u_tmp(i_A_hi-i_A_lo+1)
read(*,*) Couplings(i)%lo_B, real zm_tmp(i_A_hi-i_A_lo+1),x_tmp(i_A_hi-i_A_lo+1)
& Couplings(i)%hi_B real y_tmp(i_A_hi-i_A_lo+1),z_tmp(i_A_hi-i_A_lo+1)
end if p_tmp(1:i_A_hi-i_A_lo+1) = Mesh_A%p(i_A_lo:i_A_hi)
end do C ... save all the temporaries
end subroutine read_couplings Mesh_A%q(i_A_lo:i_A_hi) = Mesh_A%q(i_A_lo:i_A_hi) * frac
& + Mesh_B%q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi)
subroutine update_couplings_1d(Mesh_A,i_A_lo, & * (1.0-frac)
&i_A_hi,Mesh_B,B_x,B_y,B_z,i_B_lo,i_B_hi,dthlf,dt) C ... update all of the ‘‘A’’ variables
type (mesh_1d) Mesh_A, Mesh_B Mesh_B%q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi) =
real dt,dthlf & Mesh_B%q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi)
p_tmp(1:i_A_hi-i_A_lo+1) = Mesh_A%p(i_A_lo:i_A_hi) & * frac
C ... save all the temporaries & + q_tmp * (1.0 - frac)
Mesh_A%q(i_A_lo:i_A_hi) = Mesh_A%q(i_A_lo:i_A_hi) C ... update all of the ‘‘B’’ variables
& * frac + Mesh_B%q(i_B_lo:i_B_hi) * (1.0-frac) end subroutine update_couplings_1d_3d

Figure 15: Original HPF example input and update routines for 1-d couplings.

subroutine read_meshes_1d(num_before) subroutine allocate_all_meshes()
read (*,*) Hum_1d_meshes do i = 1, Num_1d_meshes
allocate(Meshes_1d(Num_1d_meshes)) call allocate_1d(Meshes_1d(i))
do i = 1, Num_1d_meshes end do
dims (i+num_before) = 1 do i = 1, Num_3d_meshes
read(*,*) Meshes_1d(i)%size, Meshes_1d(i)%type select case (Meshes_3d(i)%dist_order)
read(8,*) Meshes_1d(i)%proc case (123)
end do call allocate_3d_ijk(Meshes_3d(i))
end subroutine read_meshes_1d C ... similar cases for other distribution orders

end select

subroutine allocate_1d(Mesh_info) end do
type (mesh_1d) Mesh_info end subroutine allocate_all_meshes
'HPF$ template decomp(Num_Proc_i,Num_Proc_j,Num_Proc_k)
'HPF$ align all_array(*) with decomp(Mesh_info%proc(1), subroutine update_mesh_pipe(i_size,proc_i,
'HPF$& Mesh_info%proc(2),Mesh_info¥%proc(3)) & proc_j,proc_k,p,q,u,v,zm,x,y,z,dthlf,dt)
'HPF$ distribute(block,block,block)onto procs::decomp use physics
real, pointer :: all_array(:) 'HPF$ template decomp(Num_Proc_i,Num_Proc_j,Num_Proc_k)
allocate(all_array(i_size)) 'HPF$ align (#) with decomp(proc_i,proc_j,proc_k)::
Mesh_info%p => all_array 'HPF$& P,9,u,V,ZM,X,y,2
nullify(all_array) 'HPF$ distribute (block,block,block) onto procs :: decomp
C ... similar allocation for q, u, v, zm, x, y, 2 real p(:),u(:),v(:),q(:),zm(:) ,x(:),y(:),z(:),dthlf dt
end subroutine allocate_1d C ... updates for arrays associated with current mesh

end subroutine update_mesh_pipe

Figure 16: Transformed HPF example input, allocation, and compute routines for 1-d meshes.




module mesh_module C module mesh_module continued
type mesh_1d

integer size, type, proc(3) type (mesh_1d),allocatable,dimension(:)::Meshes_1d
real, pointer, dimension(:)::p,q,u,v,zm,x,y,z type (mesh_3d),allocatable,dimension(:)::Meshes_3d
end type mesh_1d type (coupling),allocatable,dimension(:)::Couplings
type mesh_3d contains
integer size(3) C subroutine main_routine goes here
integer decomp_size(3), offset(3), dist_order c input routines go here
real, pointer, dimension(:,:,:)::p,q,u,v,zm,x,y,z end module mesh_module
end type mesh_3d
type coupling program big_mesh
integer id_A, id_B use mesh_module
integer lo_A(3), hi_A(3), lo_B(3), hi_B(3) read (*,*) Num_Steps, Num_Meshes
end type coupling open(unit=8,file=’dist.large’)
integer Num_Steps, Num_Meshes read(8,*) Num_Proc_i, Num_Proc_j, Num_Proc_k
integer allocatable, dimension(:)::dims allocate(dims (Num_Meshes))
integer Num_1d_meshes, Num_3d_meshes, Num_couplings call read_meshes_3d()
integer Num_Proc_i, NHum_Proc_j, Num_Proc_k call read_meshes_1d(Num_3d_meshes)

call read_couplings()
call main_routine()
end program big_mesh

Figure 17: Transformed HPF module example.

version for each dimension permutation. One cloned and transformed coupling update routine’s name ends with
“ijk” as shown in Figure 20 and has similar clones with names ending in “jik”, “kij”, “ikj”, “jki”, and “kji”. The
version of this routine shown in Figure 15 is written by the user, the version in Figure 20 and all of the other
clones would be generated automatically from the user’s version. This cloning implies that separate compilation
may provide a significant advantage for these problems. A case structure is used in the main routine to ensure
that the correct version of the cloned routine is called (see Figure 18). Rice University’s Fortran D compiler uses
cloning in a similar manner to optimize communication.

Since the end product of this is a standard HPF program, there are no further compiler enhancements necessary
for correct code generation (for either a MIMD or SIMD machine). However, with all of the clones automatically
generated, the HPF compiler can apply all of the communication optimizations developed for regular mesh
problems with regular distributions on these programs for partially regular problems. One area where HPF
compilers could further benefit from the use of coupling information is in coupling communication generation.
The coupling specifications could be used as an upper bound on the communication that must be performed for
coupling. If this is done then the coupling specification is elevated to an error status similar to that of a forall
loop; if the user specification is incorrect then the program results will be incorrect. This is very reasonable as
the user’s results will probably be incorrect anyway since the simulation program uses the coupling information
explicitly.

3.5 Limitations vs. Advantages

This approach to ICRM parallelization is limited to those problems in which it makes sense to distribute every
mesh either over all processors or place it on just one. This limits the use of the approach for some problems.
For example, this approach does not work when there are too many elements in some meshes to allow them to fit
on a single processor, but too few to distribute over all processors. We are currently exploring other approaches
for automatic distribution of such problems.

The most important advantage to this approach is that the parallelization burden to the developer of such codes
as TRAC is greatly reduced while the applicable communication optimization technology is increased (regular
distribution optimizations can be applied). In particular, the developer does not have to explicitly parallelize
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subroutine main_routine() C
'HPF$ Processors procs(Hum_Proc_i,Num_Proc_j,Num_Proc_k)
forall (i=1, NHum_1d_meshes)
call initial_1d(Meshes_1d(i)%size,
g&Meshes_1d(i)%proc(1) ,Meshes_1d(i)%proc(2),
g&Meshes_1d(i)%proc(3) ,Meshes_1d(i1)%p, ...,
&Meshes_1d(i)%z,dthlf,dt)
end forall
do i=1, Num_3d_meshes
select case (Meshes_3d(i)%dist_order)
case (123)
call initial_3d_ijk(
g&Meshes_3d(i)%decomp_size(1),...,
g&Meshes_3d(i)Y%decomp_size(3) ,Meshes_3d(i)%offset (1),
&...,,Meshes_3d(i)%offset(3),Meshes_3d(i)%p,
&...,Meshes_3d(i)%z,dthlf,dt)
C ... similar case for each distribution order
end do
call system_clock(is_count,is_count_rate,
g is_count_max) [
do i=1, Num_Steps
forall (i=1, Num_1d_meshes)
select case (Meshes_1d(i)%type)
case (pipe)
call update_mesh_pipe(Meshes_1d(i)%size,
g&Meshes_1d(i)%proc(1),...,Meshes_1d(i)%proc(3),
g&Meshes_1d(i)%p,. .., ,Meshes_1d(i)%z,dthlf,dt)
C similar case for other small mesh types
end select
end forall
do i=1, Num_3d_meshes
select case (Meshes_3d(i)%dist_order)
case (123)
call update_mesh_3d_ijk(
g&Meshes_3d(i)%decomp_size(1),...,
g&Meshes_3d(i)%decomp_size(3) ,Meshes_3d(i)%offset (1),
&...,Meshes_3d(i)%offset(3) ,Meshes_3d(i)%p,..., C
&Meshes_3d(i)%z,dthlf,dt)
C ... similar case for each distribution order
end do
forall (i=1, Num_couplings)
C Note: larger mesh is in B
if (dims(id_B) .eq. 1) then c
id_A = Couplings(i)%id_A - Hum_3d_meshes
id_B = Couplings(i)%id_B - Num_3d_meshes C
call update_couplings_1d(
g&Meshes_1d(id_A)%size,Meshes_1d(id_A)%proc(l),...,
g&Meshes_1d(id_A)%proc(3) ,Meshes_1d(id_M)%p, ...,
&Meshes_1d(id_A)%z,Couplings(i)%lo_A,
&Couplings(i)%hi_A,Meshes_1d(id_B)¥%size,
g&Meshes_1d(id_B)%proc(1),...,Meshes_1d(id_B)%proc(3),
g&Meshes_1d(id_B)%p, . ..,Meshes_1d(id_B)%z,
&Couplings(i)%lo_B,Couplings(i)%hi_B,dthlf,dt)

subroutine main_routine continued

else if (dims(id_A) .eq. 3) then
id_A = Couplings(i)%id_A
id_B = Couplings(i)%id_B
if ((Meshes_3d(id_A)%dist_order .eq. 123).and.
(Meshes_3d(id_B)%dist_order .eq. 123))
call update_couplings_3d_ijk_ijk(
g&Meshes_3d(id_A)%decomp_size(1),...,
g&Meshes_3d(id_A)%decomp_size(3) ,Meshes_3d(id_A)%offset (1),
&...,Meshes_3d(id_A)%offset(3),Meshes_3d(id_A)%p,...,
&Meshes_3d(id_A)%z,Couplings(i)%lo_A(1), ...,
&Couplings(i)%1lo_A(3) ,Couplings(i)%hi_A(1),...,
&Couplings(i)%hi_A(3) ,Meshes_3d(id_B)%decomp_size(1),...,
g&Meshes_3d(id_B)%decomp_size(3) ,Meshes_3d(id_B)%offset (1),
&...,Meshes_3d(id_B)%offset(3),Meshes_3d(id_B)%p, ...,
&Meshes_3d(id_B)Y%z,Couplings(i)%lo_B(1), ...,
&Couplings(i)%1lo_B(3) ,Couplings(i)%hi_B(1),...,
&Couplings(i)%hi_B(3) ,dthlf,dt)
. similar case for each pair of orders
else
id_A = Couplings(i)%id_A - Num_3d_meshes
id_B = Couplings(i)%id_B
select case (Meshes_3d(id_B)%dist_order)
case (123)
call update_couplings_1d_3d_ijk(
g&Meshes_1d(id_A)%size(1) ,Meshes_1d(id_A)%proc(l),...,
g&Meshes_1d(id_A)%proc(3) ,Meshes_1d(id_M)%p, ...,
&Meshes_1d(id_A)Y%z,Couplings_1d_3d(i)%lo_A,
&Couplings_1d_3d(i)%hi_A ,Meshes_3d(id_B)¥%size(1),...,
&Meshes_3d(id_B)Y%size(3) ,Meshes_3d(id_B)%align_offset(1),
&...,Meshes_3d(id_B)%align_offset(3),
g&Meshes_3d(id_B)%p, .. .,Meshes_3d(id_B)%z,

&Couplings_1d_3d(i)%lo_B(1),...,Couplings_1d_3d(i)%lo_B(3),
&Couplings_1d_3d(i)%hi_B(1),...,Couplings_1d_3d(i)%hi_B(3),
&dthlf,dt)

. similar case for each distribution order
end select
end if
end forall
end do
call system_clock(ie_count,ie_count_rate,ie_count_max)
. print results, etc.
contains
all subroutines except input routines go here
end subroutine main_routine

Figure 18: Transformed HPF main routine example.
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subroutine update_couplings_1d(i_A_size, C subroutine update_couplings_1d continued
&i_A_proc,j_A_proc,k_A_proc,A_p,A_q,A_u,A_v,

&A_zm,A_x,A_y,A_z,i_A_lo,i_A_hi,i_B_size, real q_tmp(i_A_hi-i_A_lo+1) ,u_tmp(i_A_hi-i_A_lo+1)
&i_B_proc,j_B_proc,k_B_proc,B_p,B_q,B_u,B_v,B_zm, real zm_tmp(i_A_hi-i_A_lo+1),x_tmp(i_A_hi-i_A_lo+1)
&B_x,B_y,B_z,i_B_lo,i_B_hi,dthlf,dt) real y_tmp(i_A_hi-i_A_lo+1),z_tmp(i_A_hi-i_A_lo+1)
'HPF$ template decomp(Num_Proc_i,Num_Proc_j,Num_Proc_k) p_tmp(1:i_A_hi-i_A_lo+1) = A_p(i_A_lo:i_A_hi)
'HPF$ align (*) with *decomp(i_A_proc,j_A_proc,k_A_proc) C ... save all the temporaries
'HPF$& ::A_p,A_q,A_u,A_v,A zm,A x,A_y,A z A_q(i_A_lo:i_A_hi) = A_q(i_A_lo:i_A_hi) * frac
'HPF$ align (*) with *decomp(i_B_proc,j_B_proc,k_B_proc) & + B_q(i_B_lo:i_B_hi) * (1.0-frac)
'HPF$& ::B_p,B_q,B_u,B_v,B_zm,B_x,B_y,B_z [ ... update all of the ‘‘A’’ variables
'HPF$ distribute (block,block,block) onto procs::decomp B_q(i_B_lo:i_B_hi) = B_q(i_B_lo:i_B_hi) * frac
real A_p(:),A_u(:),A_v(:),A_q(:),A_zm(:) ,A_x(:) & + q_tmp * (1.0 - frac)
real A_y(:),A_z(:),B_p(:),B_u(:),B_v(:),B_q(:) C ... update all of the ‘‘B’’ variables
real B_zm(:),B_x(:),B_y(:),B_z(:),dt,dthlf end subroutine update_couplings_1id

real p_tmp(i_A_hi-i_A_lo+1),v_tmp(i_A_hi-i_A_lo+1)

Figure 19: Transformed HPF input and update routines for 1-d couplings.

subroutine update_couplings_1d_3d_ijk(i_A_size, C subroutine update_couplings_1d_3d_ijk continued
& 1i_A_proc,j_A_proc,k_A_proc,A_p,A_q,A_u,A_v,A_zm,
& A x,Ay,A z,i A lo,i_A hi,i B_size,j_B_size, real B_y(:,:,:),B_z(:,:,:),dt,dthlf
& k_B_size,i_B_off,j_B_off,k_B_off,B_p,B_q,B_u,B_v, real p_tmp(i_A_hi-i_A_lo+1),v_tmp(i_A_hi-i_A_lo+1)
& B_zm,B_x,B_y,B_z,i_B_lo,j_B_lo,k_B_lo,i_B_hi, real q_tmp(i_A_hi-i_A_lo+1) ,u_tmp(i_A_hi-i_A_lo+1)
& j_B_hi,k_B_hi,dthlf,dt) real zm_tmp(i_A_hi-i_A_lo+1),x_tmp(i_A_hi-i_A_lo+1)
'HPF$ template decompA(Num_Proc_i,Num_Proc_j,Num_Proc_k) real y_tmp(i_A_hi-i_A_lo+1),z_tmp(i_A_hi-i_A_lo+1)
'HPF$ template decompB(2*i_B_size,2*j_B_size,2*k_B_size) p_tmp(1:i_A_hi-i_A_lo+1) = A_p(i_A_lo:i_A_hi)
'HPF$ align (#) with *decomp(i_A_proc,j_A_proc,k_A_proc) C ... save all the temporaries
'HPF$& ::A_p,A_q,A_u,A_v,A_zm,A_x,A_y,A_z A_q(i_A_lo:i_A_hi) = A_q(i_A_lo:i_A_hi) #* frac
'HPF$ align (i, j,k)with *decompB(i+i_B_off, j+j_B_off, & + B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi)
'HPF$& k+k_B_off)::B_p,B_q,B_u,B_v,B_zm,B_x,B_y,B_z & * (1.0-frac)
'HPF$ distribute (block,block,block)onto procs::decomp C ... update all of the ‘‘A’’ variables
'HPF$ distribute *(cyclic(i_B_size/Num_Proc_i), B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi) =
'HPF$& cyclic(j_B_size/Num_Proc_j), & B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi,k_B_lo:k_B_hi)
'HPF$& cyclic(k_B_size/Num_Proc_k))onto procs::decompB & * frac
real A_p(:),A_u(:),A_v(:),A_q(:),A_zm(:) A _x(:) & + gq_tmp * (1.0 - frac)
real A_y(:),A_z(:),B_p(:,:,:),B_u(:,:,:) C ... update all of the ‘‘B’’ variables
real B_v(:,:,:),B_q(:,:,:),B_zm(:,:,:),B_x(:,:,:) end subroutine update_couplings_1d_3d_ijk

Figure 20: Transformed HPF input and update routines for mixed couplings.

for a specific machine. Further, the code is not parallelized for a specific input set (reactor configuration). This
is particularly important for codes such as TRAC, where many users do not work on code development and
many code developers do not work on reactor model development. Finally, for the scientist trying to analyze
the properties of a specific reactor, the parallelization is specific to their reactor design and hence should run
significantly faster than a parallelization that is only code and not configuration specific.

4 Algorithm Validation

The two primary goals of this research are: 1) reduce the programmer burden for parallelization of composite
grid problems, and 2) take advantage of the partial regularity of composite grid problems to provide acceptable
performance in the resulting parallelization. The first goal is achieved via the automatic distribution algorithm,
which removes the burden of grid mapping from the user. The second goal is achieved through our cloning and
transformation process, which allows the use of regular distribution optimizations such as parallel and blocked
communication.

Since the applications we are focusing on in this work are not written in a form that we can work with directly,
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we present measures of load balance and communication in place of timing results. The measure of load balance
that we present is the total number of floating point additions, multiplications, and divisions. We compare the
load balance measure for the processor with the most work (Comppay) and the processor with the least work
(Compumin). We also present this number for the highest computation small mesh in each problem. None of these
algorithms can produce a mapping with less computation on every processor than that of the highest computation
small mesh. Consideration of this fact provides a practical upper bound on the number of processors for a problem
when using any of these algorithms. The following measures of communication will be presented:

e maximum distance between any pair of communicating neighbors (distance);
e maximum number of communicating neighbors for any processor (neighbors);
e maximum amount of communication for a processor (Commpqag, );

e maximum communication between any pair of processors (Commypqg,); and
e total communication for the simulation (Commyotar).

With these measures of load balance and communication we will compare the results of the three distribution
algorithms on three different problems. In the tables of results, the selected processor configuration is shown
below the number of processors.

There are thirteen different types of components associated with reactor simulations: ACCUM, BREAK, FILL,
PIPE, PLENUM, PRIZER, PUMP, ROD(or SLAB), STGEN, TEE, TURB, VALVE and VESSEL. Table 1 shows
the approximate number of additions/multiplications, and divisions® for each element of one-dimensional, two-
dimensional(ROD), and three-dimensional (VESSEL) components [5].

Component Type || # Add/Mults | # Divides
1-d 11,798 704
2-d 64,427 888
3-d 117,057 1073

Table 1: Operation counts for all component types.

For each test problem, we ran the two random algorithms three times. In the sections that follow, we show
complete results for all runs to provide insight into the range of results.

4.1 LOFT Reactor Model

The LOFT model is a small model that has been used to illustrate concepts in the Los Alamos TRAC manuals.
The LOFT reactor model nodalization came from the TRAC manual [11]. There are two versions of this model.
The difference between the two versions is that the second version replaces the 3-d reactor vessel with a set of
1-d components and changes the heat structures.

The 3-d version of this model has 28 components (192 3-d cells and 128 1-d cells) and 11 heat structures. Table 2
shows the number of each type of component and the total number of elements for each type of component. The
validation results for the 3-d LOFT reactor model are shown in Table 3. There are 1,567,560 floating point
computations for each cycle associated with the largest mesh in the 3-d LOFT reactor model used as input for
this experiment. This implies that at most 5 processors can be used and still achieve near load balance.

3These operation counts were obtained from information collected by Susan Woodruff using the CRAY Hardware Performance
Monitor using data sets generated by Jim Lime at Los Alamos National Laboratories.
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Component Type || # Components | # Elements
BREAK 1 1
FILL 2 2
PIPE 4 9
PRIZER 2 8
PUMP 2 4
SLABS 11 88
STGEN 1 23
TEE 11 68
VALVE 4 13
VESSEL 1 192

Table 2: Component and element counts for 3-d LOFT reactor model.

Num. Validation Balanced | Balanced | Balanced || Topology-
Procs Measure Random | Random | Random Random | Random | Random based
2 distance 1 1 1 1 1 1 1
neighbors 1 1 1 1 1 1 1
Commpae, 642,723 474,765 811,388 733,294 530,110 412,076 258,817
Commypac, 642,723 474,765 811,388 733,294 530,110 412,076 258,817
Commyotar 642,723 474,765 811,388 733,294 530,110 412,076 258,817
Comppac 4,520,278 | 5,044,080 | 4,620,294 || 3,799,008 | 4,070,206 | 3,807,664 || 3,801,572
Comppmin 3,076,456 | 2,552,604 | 2,976,440 || 3,797,726 | 3,526,528 | 3,789,070 || 3,795,162
4 distance 2 2 2 2 2 2 2
4) neighbors 3 3 3 3 3 3 2
Commpmag, 424,061 502,350 617,605 577,780 524,199 449,010 227,991
Commpmag, 221,165 283,693 259,068 315,624 333,877 305,599 165,800
Commyotar 692,559 991,885 | 1,017,226 889,352 889,289 760,743 315,573
Comppmae 3,288,990 | 4,268,956 | 2,801,412 || 2,090,080 | 3,135,120 | 2,612,600 1,917,616
Compmin 833,788 312,550 275,044 || 1,670,140 362,558 | 1,137,682 1,880,110
8 distance 3 3 3 3 3 3 2
(2x2x2) | neighbors 7 5 6 4 5 4 3
Commupag, 358,652 543,085 311,919 205,838 437,136 383,674 205,838
Commypac, 155,850 209,023 143,656 143,272 131,078 131,078 143,272
Commyotar 1,067,086 976,498 833,685 || 1,156,150 | 1,042,058 | 1,107,449 579,418
Compp e 2,826,416 | 4,007,696 | 2,216,382 || 1,567,560 | 1,567,560 | 1,567,560 1,567,560
Compmin 175,028 87,514 250,040 311,268 436,288 511,300 311,268
16 distance 4 4 4 4 4 4 3
(2x2x4) | neighbors 7 10 7 5 6 5 3
Commypae, 233,743 308,623 233,743 373,982 308,946 233,739 168,288
Commmag, 90,407 130,822 90,407 102,762 155,909 90,534 90,407
Commyoiar 1,014,221 | 1,079,588 | 1,014,221 || 1,042,060 | 1,054,731 | 1,054,560 551,581
Comppae 1,828,820 | 2,713,898 | 1,828,820 || 1,567,560 | 1,567,560 | 1,567,560 1,567,560
Comppmn 62,510 12,502 62,510 0 37,506 0 0

Table 3: Validation results for the 3-d LOFT reactor model.
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In the 3-d LOFT results we see that the maximum computation for a processor can not be reduced by using
more than 8 processors for the topology-based algorithm. The random distribution never achieves optimal load
balance, reguardless of the number of processors. The balanced random algorithm sometimes achieves optimal
load balance, but generates nearly twice as much total communication as the topology-based algorithm does.
These results illustrate our earlier point that the cost of the total small mesh computation divided by the cost of
the highest computation small mesh bounds the number of processors that can be used effectively. It is perhaps
interesting to note that using more processors than this bound can reduce the communication as in the case of
going from 8 to 16 processors for the 3-d LOFT data set, but it does not effectively utilize the extra processors.
Therefore, in the rest of the validation results we will only present results for up to the next power of two number
of processors past that indicated by the bound imposed by the highest computation small mesh.

The 1-d version of this model has 40 components (169 1-d cells) and 1 heat structure. Table 4 shows the

Component Type || # Components | # Elements
BREAK 1 1
FILL 3 3
PIPE 5 12
PUMP 2 4
PRIZER 2 8
SLAB 1 4
STGEN 1 23
TEE 22 105
VALVE 4 13

Table 4: Component and element counts for the 1-d LOFT reactor model.

number of each type of component and the number of elements for each type of component. The validation
results for the 1-d LOFT reactor model are shown in Figure 5. There are 287,546 floating point computations for
each cycle associated with the largest mesh in the 1-d LOFT reactor model used as input for this experiment.
This implies that at most 8 processors can be used and still achieve near load balance.

We again see in the 1-d LOFT results that the topology-based distribution algorithm produces the best load
balance. Further, both random algorithmsinduce nearly twice as much total communication as the topology-based
algorithm does.

4.2 H.B. Robinson Reactor Model

Like the LOFT model, the H.B. Robinson model is a small model that has been used to illustrate concepts in the
Los Alamos TRAC manuals. The H.B. Robinson reactor model nodalization came from the TRAC manual [1].
This model has 100 components (144 3-d cells and 433 1-d cells) and 21 heat structures. Table 6 shows the number
of each type of component and the total number of elements for each type of component. The validation results
for the H.B. Robinson reactor model are shown in Figure 7. There are 979,725 floating point computations for
each cycle associated with the largest mesh in the H.B. Robinson reactor model used as input for this experiment.
This implies that at most 13 processors can be used and still achieve near load balance.

We again see in the H.B. Robinson results that the topology-based distribution algorithm produces good load
balance until the maximum number of processors is used. The random algorithms induce from three to ten times
as much total communication as the topology-based algorithm does.
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Num. | Validation Balanced | Balanced | Balanced || Topology-
Procs Measure Random | Random | Random Random | Random | Random based
2 distance 1 1 1 1 1 1 1
netghbors 1 1 1 1 1 1 1
Commumpaz, 237,711 499,033 455,996 729,804 468,518 561,100 174,604
Commpmaz, 237,711 499,033 455,996 729,804 468,518 561,100 174,604
Commyotal 237,711 499,033 455,996 729,804 468,518 561,100 174,604
Compmax 1,623,982 | 1,423,950 | 1,373,942 || 1,236,420 | 1,237,698 | 1,225,196 1,187,690
Compmin 75,012 950,152 | 1,000,160 || 1,137,682 | 1,136,404 | 1,148,906 1,186,412
4 distance 2 2 2 2 2 2 2
(2x2) | neighbors 2 2 2 2 2 2 2
Commagr, 368,464 393,118 343,223 511,022 468,503 486,557 100,119
Commpmaz, 205,745 267,990 218,095 273,484 230,620 205,751 74,875
Commyotal 518,629 605,768 556,095 673,854 749,326 699,075 199,643
Compmax 887,642 937,650 836,356 898,866 875,140 873,862 600,096
Compmin 200,032 200,032 250,040 337,554 462,574 437,570 587,594
8 distance 3 3 3 3 3 3 3
(2x4) | neighbors 6 7 6 6 7 6 4
Commmaz, 386,487 398,720 268,442 492,068 391,968 391,968 112,236
Commypae, 155,684 130,656 155,693 143,170 143,170 143,170 37,543
Commyotar 761,809 773,979 656,226 929,672 879,960 892,474 299,786
Compmax 623,822 562,590 486,300 573,814 450,072 562,590 312,550
Compmin 112,518 37,506 75,012 112,518 162,526 100,016 275,044

Table 5: Validation results for the 1-d LOFT reactor model.

4.3 Westinghouse AP600 Reactor Model

The Westinghouse AP600 reactor model nodalization was developed by Jim Lime at Los Alamos National Lab-
oratories with support from the Nuclear Regulatory Commission [10]. This model has 173 hydro components
(1060 3-d cells and 865 1-d cells) and 47 heat structures. Table 8 shows the number of each type of component
and the total number of elements for each type of component.

The validation results for the Westinghouse AP600 reactor model are shown in Figure 9. There are 3,396,380
floating point computations for each cycle associated with the largest mesh in the AP600 reactor model used as
input for this experiment. This implies that at most 20 processors can be used and still achieve near load balance.

In the AP600 results we find the only case where the balanced random produces a better load balance than
the topology-based algorithm (for 8 processors). In this particular case the total communication is more than
a factor of two better for the topology-based algorithm and there is one less neighbor for the topology-based
algorithm. This is also the first case where we find some of the communication measures to be better for the
random algorithms, e.g., see neighbors for 32 processors. From these results we conclude that the topology-based
algorithm would probably outperform the balanced random algorithm, but this is a case that we will return to
at some point in the future to try to learn how to improve the topology-based algorithm. Even for this test
problem, both random algorithms induce from one and a half to five times as much total communication as the
topology-based algorithm does.

5 Conclusions

We now have an algorithm which automatically finds a distribution of data in ICRM problems given a well-
structured HPF program and topological connection specifications. Along with the algorithm to determine distri-
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Component Type || # Components | # Elements
ACCUM 3 12
BREAK 1 1
FILL 27 27
PIPE 17 142
PLENUM 2 8
PUMP 2 6
SLAB 21 126
TEE 32 188
VALVE 15 49
VESSEL 1 144

Table 6: Component and element counts for H.B. Robinson reactor model.

Num. Validation Balanced | Balanced | Balanced || Topology-
Procs Measure Random | Random | Random Random | Random | Random based

2 distance 1 1 1 1 1 1 1

neighbors 1 1 1 1 1 1 1

Commupag, || 1,925,037 | 1,594,031 | 2,070,846 || 1,695,802 | 1,752,610 | 1,769,099 175,212
Commmagz, || 1,925,037 | 1,594,031 | 2,070,846 || 1,695,802 | 1,752,610 | 1,769,099 175,212
Commy,ial 1,925,037 | 1,594,031 | 2,070,846 || 1,695,802 | 1,752,610 | 1,769,099 175,212
Compmax 7,448,792 | 8,170,062 | 8,619,334 || 6,826,979 | 6,878,269 | 6,827,779 || 6,822,410
Compmin 6,194,264 | 5,472,994 | 5,023,722 || 6,816,077 | 6,764,787 | 6,815,277 || 6,820,646

4 distance 2 2 2 2 2 2 2
(2x2) | neighbors 3 3 3 3 3 3 3
Commpmag, || 1,385,452 | 1,684,366 | 1,715,044 || 1,980,719 | 1,926,480 | 1,682,133 340,767
Commyn e, 836,066 856,983 751,173 885,810 888,699 584,231 253,157
Commysar || 2,539,938 | 2,645,116 | 2,399,371 || 2,748,397 | 2,734,669 | 2,505,357 453,393
Compmaz 4,346,050 | 6,607,312 | 5,459,451 || 3,440,296 | 3,591,843 | 3,441,578 || 3,423,225
Compmin 3,026,207 | 2,012,022 | 2,234,253 || 3,381,632 | 3,174,467 | 3,374,499 || 3,393,334

8 distance 3 3 3 3 3 3 3
(2x4) | neighbors 6 6 7 7 7 7 3
Commupag, || 1,315,890 | 1,571,388 | 1,182,595 || 1,074,040 | 1,300,735 | 1,079,338 256,026
Commyyaq, 439,537 348,954 339,441 268,420 261,532 243,456 168,424
Commysar || 3,069,682 | 3,082,156 | 3,057,056 || 2,876,610 | 3,094,870 | 2,926,450 757,014
Compmax 2,765,188 | 2,973,635 | 3,615,806 || 1,863,039 | 1,835,471 | 1,804,857 || 1,723,994

Compmin 671,021 773,842 887,642 || 1,446,145 | 1,471,149 | 1,607,389 || 1,699,231
16 distance 4 4 4 4 4 4 4
(2x2x4) | neighbors 12 11 11 9 12 13 5

Commumas, || 1,122,450 | 1,290,502 | 107,817 || 966,800 | 979,010 | 1,062,721 268,424
Commumas, || 168,332 | 208,707 | 208,603 || 143,304 | 168,204 | 143,352 130,662
Commyorar || 3,076,498 | 3,141,973 | 3,363,202 || 3,275,604 | 3,300,632 | 3,250,504 || 1,013,236
Compmaes || 1,887,002 | 2,306,701 | 3,419,861 || 979,725 | 979,725 | 979,725 979,725
Compmin 175,028 | 125,020 | 162,526 || 487,578 | 687,610 | 737,618 594,727

Table 7: Validation results for H.B. Robinson reactor model.
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Component Type || # Components | # Elements
ACCUM 2 10
BREAK 10 10
FILL 11 11
PIPE 70 385
PLENUM 3 3
PUMP 4 20
SLAB 47 917
TEE 41 256
VALVE 29 170
VESSEL 3 1060

Table 8: Component and element counts for Westinghouse AP600 reactor model.

bution, we have shown the form of HPF program that a user would write for input to the automatic distribution
system. We have also shown how, with the use of interprocedural analysis, we can reduce the programming effort
involved in development and support by automatically cloning the routines that require distribution specifica-
tion for the meshes and adding the statements needed for reading and processing distribution specification in a
special input file. Although the use of this automatic distribution procedure requires interprocedural analysis
to perform the cloning operations, it does not require recompilation of the source when the data set changes as
the distribution specifications are read in by the HPF program with the mesh and coupling specifications. Our
experiments show that we almost always obtain load balance as good as, and often significantly better than,
random algorithms while reducing the total communication per iteration by about 50% or in some cases as much
as 90%.

We are currently working on another algorithm for automatic distribution of these problems in which we pack
the meshes that are too large for a single processor together and distribute the packed group over all processors.
This will increase the number of processors that we can make practical use of for these problems. This approach
will also extend the set of applications that we can automatically determine distributions for.
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Num. Validation Balanced Balanced Balanced Topology-
Procs Measure Random Random Random Random Random Random based
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