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1 Introduction

We attempt to model parallel computations that are composed of one or more irregularly coupled regular meshes
(ICRMs). The model will be used to determine whether a distribution of an ICRM problem is a good one.
Further, it will be used to evaluate and improve algorithms for finding distributions of ICRM problems.

2 Assumptions

Assumptions for the model are as follows. First, the simulation problem in the computation must be static. The
amount of computation is the same for each element of each DECOMPOSITION. The computation does not have to
be uniform across all DECOMPOSITIONS, just internally for each individual DECOMPOSITION. We also assume that
all of the various operations can be grouped into at most three groups with all components of each group having
approximately the same runtime. Each pair of “neighbors” in each dimension of a DECOMPOSITION performs the
same set of communications. This does not imply that the communication is the same in rows and columns,
but that the amount of communication in each row is the same as that in every other row and similarly for
the columns. Further, each pair of “neighbors” in a given coupling between any fixed pair of DECOMPOSITIONS
perform the same set of communications. Since we are talking about mapping DECOMPOSITIONSs, which represent
the entire set of data structures for a physical component of a system, index arrays will always be mapped the
same way as the arrays they are used to index if they are used to index intra-DECOMPOSITION variables. This
does not imply that communication will not be necessary for intra-DECOMPOSITION index arrays. If index arrays
are used to index inter-DECOMPOSITION variables, they may be mapped differently than the variables they index
and some communication will definitely be required.

3 Notation

Given a set of coupled DECOMPOSITIONs, D = {D1, D5, ..., Dn}, and a set of processors, P = {Py, P, ..., Py},
the following notation is used in the model.

For each DECOMPOSITION, D;, we have the following quantities. The elements of D; are e;; for 1 < j < |D;|.
The number of computations performed on each element, e;;, of D; is add; + function; + divide;, where add;
is the number of computations in the fastest group, function; is the number of computations in the medium
speed group, divide; is the number of computations in the slowest group. The number of memory cells needed
for storing variables associated with element e;; is |e;;|. The set of communications between neighbors e;; and
e;; in D; is denoted comm;q, where d is the dimension for communication. The set of communications between
neighbors e;; in [); and e;; in Dj is denoted comm;;.

Next we define some terms that will simplify the modeling discussion. Two DECOMPOSITIONSs that are neighbors
in the simulation are defined to be “coupled”. When neighboring elements in coupled DECOMPOSITIONS are located
on different processors, communication will result. The set of elements for which communication is necessary in
such a mapping is defined as follows

Coupling(D;, D;) = {(eir, €j1) | eir € D; & €51 € D; & €1 is coupled to €} .

For each element of each DECOMPOSITION there is one processor, its home processor, on which it is permanently
stored. The home processor of an element performs all computations for that element. The home processor or
owner of an element e;; is defined by:

Map(e;j) = Py = e;»]»s home processor.
Note that we follow the owner-computes rule.

4 The Model
4.1 The Complete Model

The components being modeled are communication, computation, indirection, and the inspector. In all of the
components we are interested in the maximum over all processors so that we get a worst-case upper bound on
the total time of execution. This will allow us to compare different distributions of the same problem and select
the better one.

Communication represents the cost associated with a series of “gets” with communication grouped to reduce
overhead where possible. Note that communication occurs when subblocks of a DECOMPOSITION are mapped to
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different processors and when coupled DECOMPOSITIONS (or coupled subblocks thereof) are mapped to different
processors.

Computation represents the cost of performing all of the computations associated with the elements of decom-
positions mapped to a given processor. This is simplified to use only three types of computations with only three
associated execution times.

Indirection represents the cost of extra communication associated with the use of any index arrays.

The inspector represents the cost of running an inspector to determine what communication is necessary when
compile-time techniques are not sufficient for such determination. When indirection is not used the inspector
should not be needed.

For the complete model, we do a simple sum of the component terms:

Costaroger(Map) = Computation(Map) + Communication(Map) + Indirection(Map)
+ Inspector(Map).

4.2 Communication

Modeling of communication is based on the use of the “get” as opposed to the use of send/receive pairs.

In order to effectively model communication we have a two level approach. At the bottom, fine granularity,
level we model the cost of individual communications. At the top, large granularity, level we model the cost of
the set of communications imposed by a particular distribution.

For communication modeling we will use the following definitions.

e Let hops be the distance, in number of hops, between the source and sink for a communication.
o Let costyeighsor be the cost for communicating between nearest neighbor processors.
o Let hopsgenerar be the number of hops used in general communication between any pair of processors.

o Let costyyse be the cost for communication of one byte between nearest neighbor processors. This is strictly
greater than zero.

e Let bytes be the number of bytes being communicated.

o Let costsiartup constant be the startup constant that is associated with calling the “get” command independent
of what is being gotten or where it is located.

o Let constantiransfer be the constant associated with buffering data on intermediate processors between the
source and destination. This is used, for example, to model the pipelining effect in communication.

All of the constants, including the number of hops between any two processors, are a function of the parallel
processor being used and are greater than or equal to zero.

4.2.1 Modeling Single Communications

A single communication on a given architecture may have a variety of costs associated with it depending on the
size of the value being communicated, the distance between the processors that are the source and sink of the
communication, and the startup cost of communication.

First, the number of hops associated with the distance between the source and sink of the communication is

H(hops) = min(hops, hopsgeneral)-

On most architectures hopsgenerar Will be the maximum distance between any pair of processors. The exceptions
to this rule are machines like the Connection Machine, which have separate networks for reducing this maximum
communication distance.

The total cost for a single communication is modeled as

CT(hOPSJ byt%) = COStstartup constant T (H(hOPS) - 1) * COStneighbor + byt@s * COStbyte (1)
+ bytes x H(hops) * constantyyysering- (2)

where the current mapping in effect, Map, determines the location of the source and sink for communication.
This is composed of the cost of the communication instruction, the cost of the setting up the route for wormhole
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routing, the cost of buffering the message if necessary, and the cost of buffering in intermediate processors between
the source and sink.

4.2.2 Modeling for a Fixed Distribution of Decompositions

Once a set of DECOMPOSITIONS has been mapped to processors, the communication requirements for the simulation
are fixed. Each communication fits into one of two categories: (1) between two neighboring elements of a single
DECOMPOSITION which are assigned in the distribution to different processors or (2) between coupled elements of
two neighboring DECOMPOSITIONs when the elements are assigned to different processors. These two categories
correspond, respectively, to the two terms of the total simulation communication model, which is a function of
the mapping:

Communication(Map) = H})i)(; Cr | #hops(Pz, Py), #bytes E comm; + Z comm;m

y (eljvelk) (eljvemn)

where Map(e;;) = Py, Map(eir) = Py, Map(emn) = Py, and (eij, emn) € Coupling(D;, Dyy,). Here we use #hops
and #bytes as the obvious functions. This assumes that all communication across a boundary that is of the same
type can and will be grouped into a single vector communication. Such an assumption will give a slightly unfair
advantage to random distributions as the extra work to group communications for random distributions will be
ignored.

As an example, the communication timings on the Intel 1860 resulted in the following approximate values for
the timing variables:

Variable Timing (sec.)
CostNeighbor 0.04
HopsGeneral 2
CostStartupConstant 0.04
Constant Buffering 0.2
CostByte 0.00077

4.3 Computation

At the instruction level we model computations as having one of three fixed costs; so the model for computation
is very simple:

Computation(Map) = gna)}() Z add; * costyqq + function; * costfunciion + divide; * costgivide
m €
ei; | Map(eij)=Pn,

where add; is the number of computations, taking the same time (approximately) as an addition, per element
in DECOMPOSITION D;, and similarly for function; and divide;. This three-cost component approach is used as
some processors, such as the Intel 1860, have costs of different orders of magnitude. For an example, on the 1860,
the following approximate timings were measured:

Operation | Timing (sec.)
multiply 5.3e-04
add 7.4e-04
function 4.2e-03
divide 9.4e-02

Since adds and multiplies take the same order of magnitude of time, adds and multiplies are grouped, for this
machine, and classified as “adds” in the model.

4.4 Indirection

We model indirection as the cost of doing the “get” when the index array element does not reside on the processor
performing the operation. Hence, for X(IX(I)) the cost of the indirection is

Indirection(Map) = Cr(F#hops(Map(IX (1)), Map(X(IX(I)))), #bytes(IX(I)))

when Map(IX(1)) # Map(X(I1X(I))).
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4.5 Inspector

The inspector’s only variation in this model is when index arrays are used. Since this component is handled above
via the indirection cost, the inspector overhead is fairly simple:

Inspector(Map) = max { constantinspector * E lesj| * |program]|
Py,
eij | Map(eij)=Pn

which is the data for all elements on P, times the program size. This is actually a rather large upper bound
on the cost for using the inspector. If there are no index arrays in the program, then communication should be
analyzed at compile time and the inspector is not needed.

4.6 Machine 1: Intel 1860

On the Intel 1860, the following approximate computational timings were measured:

Operation | Timing (sec.)
multiply 5.3e-04
add 7.4e-04
function 4.2e-03
divide 9.4e-02

Since adds and multiplies take the same order of magnitude of time, adds and multiplies are grouped, for this
machine, and classified as “adds” in the model.
Communication timings resulted in the following approximate values for the timing variables:

Variable Timing (sec.)
CostNeighbor 0.04
HopsGeneral 2
CostStartupConstant 0.04
Constant Buffering 0.2
CostByte 0.00077

5 Model Validation
5.1 Test Problem: 1-Dimensional Explicit Material Dynamics

1-dimensional explicit material dynamics provides an excellent test problem as I have run this problem on a variety
of machines with many different distributions. This experience allows me to predict the relationships between the
runtimes of various distributions and verify that the model produces valid results. In this test problem there are
32 “adds”, 3 “functions”, and 7 “divides” for each element in the mesh on each timestep. There is no indirection
and there are 56 bytes of communication between neighbors on each timestep.

5.1.1 Single Decomposition Mapping

Here we simulate the flow of fluid in a single section of pipe. This is arguably the simplest type of problem for
distribution as each element of the decomposition has the same computation and communication pattern (with
the exception of minor variations at the boundaries or ends of the pipe).

In this first test case, we will just run the model on a single mesh with different distributions. The variations
on distribution that are modeled include: load balanced distribution with best block map, load balanced with
bad block map, load balanced with cyclic map, and not load balanced with best block map. These types of
distributions are illustrated in Figure 1 for a twelve element mesh mapped onto a four processor (hypercube)
machine. In the figure each element is numbered with the id of the processor who owns it. A one hundred
element problem was used with four processors in the model evaluation. The predicted runtimes for the four
different distributions are:

Distribution Predicted Time (sec.)
load balanced with best block map 17.52
load balanced with cyclic map 19.59
load balanced with bad block map 18.68
not load balanced with best block map 18.21
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Figure 1: Single Mesh Sample Distributions.

The ordering of the predicted runtimes is correct according to previous experiments on the Intel (and other
distributed memory machines as well).

5.1.2 Multiple Decomposition Mapping

Here we simulate the flow of fluid in two pipes joined as a “Tee”. This is similar to the type of computation that
actually occurs on a larger scale in the simulation of water-cooled nuclear reactors.

In this second test case, we ran the model on two coupled meshes with four distributions. The variations on
distribution that are modeled include split block map, block map, bad block map, and very bad block map. These
types of distributions are illustrated in Figure 2 for two twelve-element meshes mapped onto a four processor
(hypercube) machine. In addition to numbering elements with the processor number, coupling between meshes
is shown with a dashed line. A one hundred element (per mesh) problem was used with four processors in the
model evaluation. The predicted runtimes for the four different distributions were:

Distribution Predicted Time
split block map 34.77
block map 34.89
bad block map 35.30
very bad block map 37.46

Note that in this test problem there were 56 bytes of communication between nearest neighbors, but only 16
bytes across the coupling. When there are more communication bytes across the coupling than between neighbors,
which does not often happen, the block map will outperform the split block map.

6 Theorems

Here we present a few theorems about distribution in this model of parallel computation and extensions of
the model. These theorems provide direction for the design and comparison of distribution algorithms. Unless
otherwise stated, elements are to be equally distributed across p > 0 processors and we deal only with up to
3-dimensional decompositions.

6.1 Standard Model Theorems

The basic setting for all of these theorems is physical simulation applications for static problems. This applies to
all theorems unless otherwise stated.
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Figure 2: Two Mesh Sample Distributions.

Theorem 1 Given two distributions with the same overheads due to load balance, context switching, indirection,
and the inspector, if one distribution has a random placement of decomposition elements and the other has a
neighborhood placement (e.g., based on a domain decomposition) the neighborhood-based distribution will provide
better performance. More precisely, for large enough number of DECOMPOSITION elements per processor, the worst
case communication performance of a topology-based distribution will be better than the expected communication
performance for a random distribution.

Intuitive Argument: In our target physical simulation applications, the communication necessary for each
element is in its neighborhood. In the random distribution, no advantage is taken of this knowledge, every element
is equally likely to be on any processor. If, instead, we preserve the neighborhood property as much as possible
on each processor then there will be minimal communication across processors.

Proof: For 1-dimensional DECOMPOSITIONS, each (interior) element has 2 neighbors. Let there be m DECoM-
POSITION elements per processor.

With a random distribution, for each element the probability of needing to communicate to reference a neighbor
value is 2*’%1. Hence, for any processor, the expected number of communications is 2xmx* ’%1. For all processors,
the expected number of communications is 2+ m* (p — 1).

With a topology-based distribution, the worst case is for a processor storing an interior section of the distribu-
tion. On such a processor, there are 2 elements that must access 1 neighbor each on a different processor. Hence,
the communication for a 1-dimensional DECOMPOSITION distributed in this manner is 2 % (p — 1).

Therefore, with m > 1, the topology-based distribution has fewer communications than expected with random
distributions.
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For 2-dimensional DECOMPOSITIONS, each (interior) element has 8 neighbors. Let there be m*n DECOMPOSITION
elements per processor.

With a random distribution, for each element the probability of needing to communicate to reference a neighbor
value is 8 ’%1. Hence, for any processor, the expected number of communications is 8 * m * n * ’%1. For all
processors, the expected number of communications is 8 * m* n x (p — 1).

With a topology-based distribution, the worst case is for a processor storing an interior section of the dis-
tribution. On such a processor, there are 2  (m + n) — 4 elements that must access 3 neighbors each on other
processors and 4 elements that access 5 elements on other processors for an upper bound of 6 (m+n)+8. Hence,
the number of communications for a 2-dimensional DECOMPOSITION distributed in this manner is bounded by
p*[6x(m+n)+ 8.

Therefore, with m,n > 3, the topology-based distribution has fewer communications than expected with a
random distributions.

For 3-dimensional DECOMPOSITIONS, each (interior) element has 26 neighbors. Let there be [ * m * n DECOM-
POSITION elements per processor.

With a random distribution, for each element the probability of needing to communicate to reference a neighbor
value is 26 * ’%1. Hence, for any processor, the expected number of communications is 26 * [ % m * n * ’%1. For
all processors, the expected number of communications is 26 x { * m % n x (p — 1).

With a topology-based distribution, the worst case is for a processor storing an interior section of the distri-
bution. On such a processor, there are 2+ [({ —2)* (m —2)+ ({ = 2) * (n — 2) + (m — 2) * (n — 2)] elements
that must access 9 neighbors each on other processors, 4 * [({ — 2) + (m — 2) 4+ (n — 2)] elements that must access
15 neighbors each on other processors, and 8 elements that access 19 elements on other processors for an upper
bound of 18 * (Im + In + mn) — 12 % ({ + m + n) + 8. Hence, the number of communications for a 3-dimensional
DECOMPOSITION distributed in this manner is bounded by p* 18 * (Im + In +mn) — 12 ({ + m + n) + 8.

Therefore, with I, m,n > 3, the topology-based distribution has fewer communications than expected with
random distributions.

Throughout this proof it was only required that p be greater than one, but the larger p is the larger the gap is
between the number of communications for a topology-based distribution and the expected number for a random
distribution.

Theorem 2 Given two distributions with the same overheads due to load balance, communication, indirection
and the inspector, if one distribution has a single block of elements from one decomposition and the other has
a number of blocks of elements from various decompositions, then the distribution with one block per processor
will provide better performance. This is easy to see as no context switching is performed in the single block case
whereas it 1s necessary in the multiblock case.

Theorem 3 Given two distributions with the same overheads due to context switching, communication, indirec-
tion and the inspector, the distribution with the better load balance will outperform the other distribution.

Proof: This is obvious as the runtime is based, in part, on the maximum of the individual processor’s compu-
tational time, which increases with decreasing load balance, by definition.

Theorem 4 Given two distributions with the same overhead due to context switching, load balance, indirection,
the inspector, and the same number of communications, with the same blocking capabilities, a distribution with
communication between close together processors will outperform a distribution where communication takes place
between distant processors (up to, but not past the point where general communication takes over). This implies
that maintaining the neighborhoods when mapping blocks of decomposition elements to processors is important.

Proof: Let h; be strictly less than hopsgenerar — 1, then consider the communication cost, Cp, for b bytes. For
hla
Cr(h1,b) = constant + hq * costpeighbor + b * h1 * constantsyffering,

while for Ay + 1,
CT(hl +1, b) = constant + (hl + 1) * COStneighbor +bx (hl + 1) * Con5ta71tbuffering;
or

CT(hl +1, b) = constant + hy * COStneighbor +bhxhy* ConStantbuffering + COStneighbor + b COnStantbuffering~
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Hence,
Cr(h1,b) — Cr(h1 + 1,b) = costreighbor + b * constantsyyering.

Since costpeighbor > 0 and b, constantyyffering > 0, this shows that, in this model, more distant communication
implies longer runtime.

6.2 Extended Model Theorems

Now we shall consider some problems that require extension of our original modeling assumptions.

Consider the case of dynamic physical simulation problems where the computational cost per element in a
decomposition is not constant and may change over time. If we attempt a static distribution, then we must
accept that we will not achieve perfect load balance over time. Since the computation per element can change
at each iteration of the simulation, we may need to sacrifice communication overhead to achieve a reasonable
load balance. To do this we could consider breaking blocks into sub-blocks and mapping the sub-blocks onto the
processor mesh in a wrapped fashion, e.g., see Figure 3.

1 2 1 2
3 4 3 4
1 2 1 2
3 4 3 4

Figure 3: Sub-block distribution mapping

Using this approach we increase the communication overhead somewhat but we may also improve the load
balance. This approach applies particularly well to those applications where the difference in computation between
elements can be very large and the expensive type of computation occurs in large clusters of elements. In this
case we want to make the sub-blocks some fraction of the normal cluster size (maybe 1/4).

When the expensive type of computation is spread randomly (not clustered) over the elements, then you may
as well optimize the communication and just balance the number of elements per processor. This is because at
any step each element is just as likely as any other to be doing an expensive computation. Therefore it does not
matter how the elements are grouped in a static partition; each partitioning can be as bad as any other.

7 Summary

A model of parallel computation has been presented that can be used in comparing different distributions of
meshes in ICRM problems. This model and the theorems proven in relation to it provide insight into the nature
of good distributions for these problems. Two small problems were used to verify that the model reflects the
problem characteristics that we wish to use in automatic distribution of ICRM problems. For further results on
the use of this model see [2, 1].

Page 8



References

[1] L.M. Liebrock. Using problem topology in parallelization. Technical Report 94-477-S, Rice University, Center for
Research in Parallel Computation, Houston, TX, September 1994.

[2] L.M. Liebrock and K. Kennedy. Automatic data distribution of large meshes in coupled grid applications. Technical
Report 94-395, Rice University, Center for Research in Parallel Computation, Houston, TX, April 1994.

Page 9



