Automatic Data Layout for High
Performance Fortran

Ken Kennedy
Ulrich Kremer

CRPC-TR94498-S
December 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

First Revision: April, 1995.

Second Revision: August, 1995.

Formerly entitled: “Automatic Data Layout for HPF-like
Languages.”

Automatic Data Layout
for High Performance Fortran

*

Ken Kennedy Ulrich Kremer!

Department of Computer Science
Rice University

Abstract

High Performance Fortran (HPF) is rapidly gaining acceptance as a language for parallel
programming. The goal of HPF is to provide a simple yet efficient machine independent
parallel programming model. Besides the algorithm selection, the data layout choice is the
key intellectual step in writing an efficient HPF program. The developers of HPF did not
believe that data layouts can be determined automatically in all cases. Therefore HPF
requires the user to specify the data layout. It is the task of the HPF compiler to generate
efficient code for the user supplied data layout.

The choice of a good data layout depends on the HPF compiler used, the target archi-
tecture, the problem size, and the number of available processors. Allowing remapping of
arrays at specific points in the program makes the selection of an efficient data layout even
harder.

Although finding an efficient data layout fully automatically may not be possible in all
cases, HPF users will need support during the data layout selection process. In particular,
this support is necessary if the user is not familiar with the characteristics of the target HPF
compiler and target architecture, or even with HPF itself. Therefore, tools for automatic data
layout and performance estimation will be crucial if the HPF is to find general acceptance
in the scientific community.

This paper discusses a framework for automatic data layout for use in a data layout
assistant tool for a data-parallel language such as HPF. The envisioned tool can be used to
generate a first data layout for a sequential Fortran program without data layout statements,
or to extend a partially specified data layout in a HPF program to a totally specified data

*This research was supported by the Center for Research on Parallel Computation (CRPC), a Science
and Technology Center funded by NSF through Cooperative Agreement Number CCR-9120008. This work
was also sponsored by ARPA under contract #DABT63-92-C-0038. The content of this paper does not
necessarily reflect the position or the policy of the U.S. Government and no official endorsement should be
inferred.

TCorresponding author; e-mail: kremer@cs.rice.edu; phone: (713) 527-6077; address: Department of
Computer Science, Rice University, 6100 S. Main, Houston, Texas 77005-1892

layout. Since the data layout assistant is not embedded in a compiler and will run only
a few times during the tuning process of an application program, the framework can use
techniques that may be too computationally expensive to be included in a compiler.

A prototype data layout assistant tool based on our framework has been implemented
as part of the D system currently under development at Rice University. The paper reports
preliminary experimental results. The results indicate that the framework is efficient and
generates data layouts of high quality.

1 Introduction

Compilers for data parallel languages such as High Performance Fortran (HPF) or For-
tran D [FHK*90] typically perform many optimizations based on the specified data layout.
The actual optimizations performed may vary between compilers. Different parallel machine
architectures have different communication and computation costs, resulting in distinct op-
timal balances between communication and computation for each architecture. On some
machines and for some compilers, remapping data between different parts of an application
program may be profitable. All these factors make it extremely difficult for a user to predict
the performance impact of a particular data layout for an application.

This paper discusses a framework for automatic data layout for regular problems as part
of a data layout assistant tool in a data parallel programming environment such as the D
system [ACGT94]. A data layout assistant tool can be used to determine an initial data
layout for a sequential Fortran application. If the quality of the automatically generated
layout is not satisfactory, static and dynamic performance analysis tools can help the user to
understand the performance characteristics of the program. Once the user has chosen data
layouts for program parts crucial for the overall performance, the layout assistant tool can be
used to extend these data layouts to a data layout for the entire program. The application
scenario for our proposed data layout assistant tool is shown in Figure 1. Typically, regular
problems represent data objects as dense arrays as opposed to a sparse representation. Reg-
ular problems allow the compilation system to determine the communication requirements
and to perform a variety of program optimizations at compile time. The automatically
selected data layout may contain remappings if they are found profitable.

Our framework for automatic data layout has been designed to support experimentation
with different data layout strategies. It uses explicit search spaces of candidate data layouts,
allowing different techniques for search space construction, performance prediction, and final
selection of candidates from each search space. In addition, explicit candidate layout search
spaces provide a natural user interface. The user will be able to browse through the search
spaces of candidate layouts with their predicted performances and insert new candidate
layouts into or delete candidate layouts from the search spaces.

Some problems in finding efficient data layouts are known to be NP-complete. Rather
than resorting to heuristics prematurely, the framework capitalizes on 0-1 integer program-
ming technology to compute optimal solutions for two NP-complete problems. The frame-
work is parameterized with respect to the HPF compiler, the machine architecture, the
problem size, and the number of available processors. As a consequence, these entities have
to be known at tool invocation time. Note that an automatically generated data layout can

(Fortran program)

+ = regular problems
Partial datalayout specifications | « dynamic remapping allowed

= Invoked only afew times
Data L ayout

Assistant = Not part of the compiler

==> Can use expensive techniques

(HPF program)
with
Total datalayout specifications

Target HPF
Compiler

Target Machine
Object Code

Figure 1: Automatic data layout as part of a programming environment

be used for different problem sizes and numbers of processors, although its quality may be
suboptimal.

The framework consists of several steps. An overview of these steps is given in Section 2.
A prototype implementation based on the framework is described in Section 3. The results
of applying the prototype to four application programs are discussed in Section 4. The paper
concludes with a discussion of related work, followed by a summary and discussion of future
work in Section 5 and Section 6, respectively.

2 Framework for Automatic Data Layout

The framework for automatic data layout consists of four steps. In the first step the input
program is partitioned into program segments. For each such program segment, the second
step constructs a search space of promising candidate layouts. A candidate layout for a
program segment is a mapping of every array referenced in the segment onto the target
architecture. Heuristics are used to generate the candidate layout search spaces. In the third
step each candidate layout is evaluated in terms of its estimated execution time. In addition,
costs of possible remappings between candidate layouts are determined. The performance

estimation is based on a compiler model, execution model, and machine model. Based on
the estimated candidate layout costs and costs of possible remappings between candidate
layouts, a single candidate layout from each search space has to be selected such that the
overall cost is minimal. This selection process is performed in the fourth and last step of
our framework. In the remainder of this section each of the four steps is discussed in more
detail.

2.1 Program Partitioning

The first step partitions the program into code segments, called program phases. In our
current framework, data remapping is allowed only between phases. A phase is the outermost
loop in a loop nest such that the loop defines an induction variable that occurs in a subscript
expression of an array reference in the loop body. This operational definition does not allow
the overlapping or nesting of phases. Other strategies for identifying program phases are
a topic of current research. For instance, two adjacent phases can be merged into a single
phase if remapping can never be profitable between them. Sheffler et al. describe techniques
to perform such phase merges [SSP195]. Transformations to improve phase recognition are
beyond the scope of this paper.

The phase structure of the program is represented in the phase control flow graph (PCFG),
an augmented control flow graph [ASU86] where each phase is represented by a single node.
The graph is annotated with branch probabilities and loop control information. Branch
probabilities can either be supplied by the user or are determined based on a guessing
heuristic.

2.2 Layout Search Spaces Construction

The second step of the framework for automatic data layout constructs explicit search spaces
of candidate data layouts for each phase. Promising candidate layouts for a phase are
generated based on their expected performance as part of an efficient data layout for the
entire program.

A data layout in HPF is defined in two stages, referred to as alignment and distribution.
Arrays are aligned relative to each other by specifying a mapping of their elements to the
same array of virtual processors, called a template. Every array element aligned with a
template is mapped to a real processor by distributing the template onto the processors of
the target architecture.

The use of explicit search spaces is an important design decision in our framework for
automatic data layout. Explicit alignment search spaces allow the framework to postpone
the evaluation of an alignment candidate until all distribution candidates are known. There-
fore, promising alignment candidates are not eliminated prematurely, but are evaluated in
combination with the selected candidate distributions.

The current framework determines a single template for the entire program based on the
maximal dimensionalities and maximal dimensional extents of the arrays in the program. All
alignments and distributions are specified relative to this program template. Corresponding
to the two stage mapping, the framework first builds search spaces of promising candidate

alignments for each phase. If arrays have fewer dimensions than the program template,
alignment analysis may generate different embeddings for the arrays. Then, distribution
analysis uses the alignment search spaces to build candidate data layout search spaces of
reasonable alignments and distributions for each phase. Alignment and distribution analysis
is discussed in the next two sections.

2.2.1 Alignment Analysis

Alignment analysis takes the phase control flow graph as input and generates explicit align-
ment search spaces for each phase. Heuristics have to be used to determine a reasonably
sized set of alignment candidates that will guarantee a good overall performance for most
applications.

Alignment analysis is done in two stages. First, only alignment preferences between
arrays are considered. In the second stage, each array is mapped onto the unique program
template such that the relative alignment preferences are respected. The second stage of the
alignment mapping is called orientation [AL93].

This section discusses basic operations that are needed to identify and represent relative
alignment preferences, to detect and resolve conflicting relative alignment preferences, and
to compare relative candidate alignments. The comparison of alignment candidates is im-
portant in order to avoid redundant alignment information in the alignment search spaces.
In addition, some methods for orientation selection are discussed.

The basic operations and methods form the building blocks for implementing different
heuristics and strategies for the alignment search space construction. The heuristic imple-
mented in our prototype tool is discussed in Section 3.2.

There are two types of alignment preferences, namely inter—dimensional and intra—
dimensional alignment [LC90, KLS90, CGST93]. The current framework does not perform
intra-dimensional alignment analysis, i.e., assumes canonical offset and stride alignments.

Identification and Representation of Relative Alignment Preferences

A central representation for the relative, inter-dimensional alignment problem is the
weighted, undirected component affinity graph (CAG) introduced by Li and Chen at Yale
University [LC90]. It represents the alignment preferences of arrays that are coupled in a
computation. A d-dimensional array is represented in the CAG by d nodes, one node for
each dimension. Alignment preferences between dimensions of distinct arrays are represented
as edges between the corresponding nodes. The weights of the edges reflect the relative
importance of alignment preferences. Typically, an edge weight represents the expected
performance penalty if the corresponding alignment preferences is not satisfied. Therefore,
methods to determine edge weights are based on some performance model. Our framework
is independent of the actual performance model used. The alignment analysis performance
model in our prototype implementation is discussed in Section 3.1.

Detection of Relative Alignment Conflicts

Assume that d is the dimensionality of the program template. A solution to the inter-
dimensional alignment problem is a partitioning of the nodes in the CAG into d partitions

such that no two nodes representing dimensions of the same array are in the same partition.
A CAG contains a conflict if there is a path between two nodes that represent distinct
dimensions of the same array. The definition of a conflict does not allow diagonal alignments
such as aligning a one-dimensional array with the main diagonal of a two-dimensional array.
The test for alignment conflicts is linear in the size of the CAG, since it involves solutions
of reachability problems between nodes in the CAG.

Relative Alignment Conflict Resolution

A conflict implies that every solution of the corresponding inter-dimensional alignment
problem will have alignment preferences that cannot be satisfied. A good solution tries to
minimize the weights of the edges that cross partitions and therefore cannot be satisfied. Li
and Chen showed that finding the optimal solution for the inter-dimensional alignment prob-
lem is NP-complete [LC90]. Instead of using a heuristic, the current framework formulates
the inter-dimensional alignment problem as an efficient 0-1 integer programming problem.
A detailed description of our 0-1 formulation is given in the appendix.

Comparison of Relative Alignment Preferences

The inter-dimensional alignment information of a conflict-free CAG can be represented
as a partitioning of its nodes. Each partition in the partitioning of a conflict-free CAG 1is
a connected component in the CAG. The set of all possible conflict-free, inter-dimensional
alignments of a set of arrays forms a semi-lattice [Hec77]. The bottom element of the lattice
is the CAG that contains no alignment information, i.e., the graph contains no edges and
therefore its partitioning consists of partitions that contain only single nodes. Figure 2 shows
an example lattice for two two-dimensional arrays.

The partial order C defined over the set of conflict-free CAGs is that of partitioning
refinement. Assume that C AG; and C AG5 are two conflict-free CAGs, then CAG; E C AG,
if and only if the node partitioning of C'AG} is a refinement of the node partitioning of C'AG.
A partitioning X is a refinement of a partitioning Y, if for each partition x € X there is a
partition y € Y, such that x C y. Assuming that partitions are implemented using hashing,
and the elements in X and Y are tagged with their partition membership, then the test “X
is refinement of Y7 is linear in practice in the number of elements in all partitions of X. In
other words, the complexity of computing C AG; C ' AG, is linear in practice in the number
of nodes in C AG,;.

The test for CAG; C C AG, allows the direct comparison of the alignment information
in two CAGs. Other operations on the semi-lattice are the meet operation CAG, M CAG,
and the join operation C'AG; U C' AG,. Both operations can be implemented efficiently.

Orientation Selection

A conflict-free CAG represents relative inter-dimensional alignment preferences of arrays.
A final stage is needed to determine the orientation of the CAG relative to the unique program
template. An orientation of a conflict-free CAG maps the CAG’s connected components,
i.e., the sets of aligned array dimensions to the dimensions of the program template. For
a d-dimensional program template and a conflict-free CAG with d connected components,

{ag by | & bp} {a by | b}

G—® | | & & @ 0| 6 ®

® ® ® ®
{ab lalbd] [{al @bt lby| |{alaeb b |[{ab|alb

@ ®

{aq| a | by | b}

Figure 2: Inter-dimensional alignment information lattice for two arrays ¢ and 6. Both
arrays have two dimensions. Each conflict-free CAG is shown with its node partitioning. The
bottom element of the lattice is the CAG without edges, i.e., the partitioning {ay |ay b1 |b2}.

there are d! possible orientations.

Any orientation of a conflict-free CAG satisfies the alignment preferences represented in
the CAG. However, in the presence of dynamic realignment, the orientation of two distinct
CAGs may influence the potential remapping costs between the two alignments. Therefore
an algorithm is needed that matches the orientations of the CAGs in the alignment search
spaces as closely as possible. Anderson and Lam propose a greedy strategy to determine
orientations [AL93]. We discuss a similar strategy based on meet operations over the lattice

of conflict-free CAGs in [Kre95].

2.2.2 Distribution Analysis

Distribution analysis is performed after alignment analysis. A candidate distribution can
map single template dimensions either by block, cyclic, or block-cyclic onto the target
architecture, or replicate dimensions on each processor. In addition, a candidate distribution
specifies the number of processors in each distributed dimension. Different heuristics can be
used to determine a suitable set of promising distribution candidates. Once the distribution
candidates have been determined, the cross product of alignment candidates and distribution
candidates defines the candidate data layout search spaces for each phase.

The heuristics for the construction of candidate distribution search spaces can be roughly

divided into two classes, exhaustive and constructive. The sizes of some exhaustive search
spaces are discussed in [Kre95]. Exhaustive heuristics approximate the exhaustive set of all
possible distributions of the program template. An approximation is a subset of candidate
distributions that can be considered a sparse representation of the exhaustive set. Con-
structive heuristics choose distribution candidates based on the alignments in the alignment
search spaces.

The quality of the performance estimator in the framework determines a bound on the
granularity of the distribution search space. If the estimator is not able to distinguish two
similar distributions, then only a single representative distribution should be added to the
search space.

2.3 Performance Estimation

After the generation of the search spaces each candidate data layout is evaluated in terms of
its expected execution time for its phase. In addition, execution time estimates are needed
for possible remappings between candidate data layouts.

The performance estimator uses a compiler model to determine where and what kind
of communication will be generated for a given candidate data layout and its phase. The
compiler model is parameterized with respect to the transformations and communication
optimizations that may be performed by the target compiler.

The compilation process needs to be simulated for performance purposes only. Special
cases that have a small impact on the the overall performance, but must be handled by a real
compiler in order to generate correct code, may be ignored in the performance estimation
compiler model. For instance, the compiler model implemented as part of our prototype
ignores code that is generated for boundary processors in loops. The implemented compiler
model is discussed in Section 3.

Once locations and types of compiler generated communications are known for a candi-
date layout and its phase, an execution model is used to estimate the performance effects of
synchronizations induced by the communications. Communication inside a phase may lead
to a reduction or pipelined execution of the loop. In contrast, communication outside of the
phase may result in a loosely synchronous execution scheme [FJL*88].

2.4 Layout Selection

As the result of the performance estimation step, performance numbers in terms of relative
execution times are available for all candidate data layouts and possible remappings between
layouts. In the last step of our framework for automatic data layout, a single candidate
layout has to be selected from each search space of each phase such that the resulting set of
candidate layouts has minimal overall cost. The overall cost is determined by the costs of
each selected candidate layout and the required remapping costs between selected layouts.
Note that the optimal data layout for a program may consist of candidate data layouts that
are each suboptimal for their phases.

In our framework, the final layout selection problem is formulated as a graph problem.
The data layout graph has one node for each candidate layout. Edges represent possible

remappings between layouts. Nodes and edges are weighted by their relative execution times.
The optimal selection problem has been shown to be NP-complete [Kre93]. We discuss a
translation of the graph problem into a 0-1 integer programming formulation elsewhere
[BKK94b]. We found our 0-1 formulation to be efficient in practice.

3 Prototype Implementation

A prototype data layout assistant tool has been implemented as part of the D system
[ACG194]. The prototype tool performs only intra-procedural analysis. Non-linear con-
trol flow in input Fortran programs is restricted to Do loops and If statements.

The alignment analysis performance model and the heuristic for alignment search space
construction are discussed in Section 3.1 and Section 3.2, respectively. Distribution analy-
sis generates exhaustive search spaces for only one-dimensional, block distributions. This
restriction is due to the fact that the compiler model implementation mimics the program
analysis steps in the Fortran D prototype compiler which does not support multi-dimensional
distributions [Tse93]. Fortran D [FHK'90] shares many features with HPF since it was one
of the main contributors to the HPF language proposal. The execution model uses data
dependence information to detect processor synchronization. Phases are classified as either
pipelined, loosely synchronous, or reductions. Performance estimates for basic computations
and communication patterns are based on machine level training sets for Intel’s iPSC/860 or
Paragon [BFKK91]. The training set node programs were compiled using the highest level
of optimization (if77 —O4).

The prototype uses over 100 training sets that measure basic computations such as real
and double floating point operations, and basic communication patterns such as nearest
neighbor communication, single send/receive pairs, broadcasts, reductions, and transpose
operations. For each communication pattern there are training sets for different numbers
of processors, different memory access patterns, and different observable message latencies.
The current implementation distinguishes between a unit or non-unit stride memory access
pattern, and high or low latency messages. A non-unit memory access pattern requires
message buffering. Low latency message costs are used to estimate the communication costs
in pipelined phases where computation and communication can be overlapped. In contrast,
message costs for loosely synchronous phases are based on high latency training sets.

The prototype tool solves NP-complete problems during alignment analysis and the fi-
nal data layout selection step. Instances of these problems are translated into 0-1 integer
programming problems suitable to be solved by CPLEX', a linear integer programming tool
and library, partly developed by Robert Bixby at Rice University [Bix92]. The prototype
tool builds the required constraint matrices internally, and directly calls the CPLEX routines
without creating any intermediate files.

VCPLEX is a trademark of CPLEX Optimization, Inc.

3.1 CAG Edge Weights

Our algorithm to determine CAG edge weights assumes an advanced compilation system
that caches communicated values and uses the owner-computes rule for computation map-
ping. The target machine is assumed to be a MIMD architecture. Our alignment analysis
performance model is pessimistic since it assumes that unsatisfied alignment preferences will
always lead to communication.

During the process of determining edge weights, our CAG representation is a directed
graph. The edge directions keep track of the flow of values due to the owner-computes rule.
If the same alignment preference is encountered, the algorithm checks whether the preference
has the same direction as the one already represented in the CAG. If the directions are not
identical, the edge weight is increased by the estimated communication cost and the edge
direction is reversed. If the directions are the same, the CAG remains unchanged. The
estimated communication cost models the volume of the communication, i.e., corresponds
to the size of the array that has to be communicated. Due to the owner-computes rule, a
communicated array is at the source of an edge in the CAG. Once the edge weights of a
CAG have been determined, all edge directions are removed.

3.2 Heuristic for Construction of Alignment Search Spaces

The alignment search spaces are initialized with the undirected, weighted CAGs of their
phases. If a CAG has inter-dimensional alignment conflicts, the conflict is resolved and the
resulting CAG is used for the initialization. After initialization, the phases are partitioned
into classes such that their merged CAGs are conflict-free. Each class of phases is represented
by its joined, conflict-free CAG. The current prototype uses a greedy strategy to determine
the phase CAGs to be merged next. The implemented algorithm visits the phases, i.e., the
nodes in the PCFG in reverse postorder [Hec77], and joins their CAGs as long as no conflict
is detected. Once a conflict is encountered, a new class is created and initialized with the
CAG of the single phase that led to the conflict. The partitioning algorithm terminates after
all phases have been visited.

The main step of our heuristic to construct alignment search spaces for each class con-
sists of exchanging alignment information between different phase classes by inserting corre-
sponding alignment candidates into their alignment search spaces. An imported alignment
candidate is the result of the optimal embedding of the source CAG into the sink CAG of
the import operation. The import process merges the CAGs of the source and sink class of
the import operation after increasing the edges weights of the source CAG by some constant
factor. The edge increase guarantees that the alignment preferences of the source CAG
will dominate the alignment preferences of the sink CAG. This is important if the merged
CAG has an alignment conflict. The imported alignment candidate is the alignment scheme
resulting from solving possible conflicts in the merged CAG, and restricting the resulting
alignment information to those arrays that are referenced in the sink class of the import
operation.

The current prototype imports each optimal alignment candidate of another phase class
into the search space of a phase class. If the phase partitioning has p classes, then each final
class alignment search space can have at most p candidates. In order to avoid duplication

10

time in seconds

57.88
_51'91 double, 16 processors, 512 x 512
[] measured time
|:| estimated time
10.34
10.00
8.57 8.32 ’_ﬂ
row column transpose

Figure 3: Example test case for ADI with three possible data layouts

of alignment information, the imported alignment candidate is only inserted into the class
search space if its alignment information is not weaker or equal to any alignment information
already in the search space. A more detailed discussion of the alignment heuristic can be
found in [Kre95]. Finally, candidate alignment schemes for phase classes are translated into
candidate alignments for each individual phase in the class.

Since the current prototype generates exhaustive search spaces of only one-dimensional
block distributions, the orientation selection is trivial due to the symmetry between orienta-
tions and distribution candidates. For instance, in the two-dimensional case, the candidate
layout resulting from a transposed orientation and distribution by row is the same as from
a canonical orientation and distribution by column.

4 Experimental Results

The experiments were based on a target compiler that performs message coalescing and
message vectorization, but does not perform coarse grain pipelining, loop interchange, or
loop distribution. The parameters in the compiler model were set to simulate such a target
compiler. The target architecture for our experiments was Intel’s iPSC/860.

It is important to note that it is not the goal of our experiments to evaluate the quality of
any target compiler, but to show the ability of the data layout assistant tool to simulate the
target compiler and to correctly estimate the relative performance of the candidate layouts
in its generated search spaces. The quality of a data layout for a program is always relative
to the HPF compiler that is used to compile the program.

We used four programs for our experiments, an alternating direction implicit integration
kernel (Adi), a 3D tridiagonal solver based on ADI integration and developed by Thomas
Eidson at ICASE (Erlebacher), a grid generation program, adapted from the SPEC bench-
mark suite by Applied Parallel Research (Tomcatv), and a weather prediction program based
on shallow-water equations (Shallow). Shallow was written by Paul Swarztrauber from the

National Center for Atmospheric Research (NCAR).

11

The automatic data layout tool was applied to each program for different test cases. A
test case consists of a data type for the arrays in the program, a problem size, and a given
number of processors used. Figure 3 shows a single test case for the Adi kernel and its
results. The test case is for double precision arrays, 16 processors, and a problem size of
512 x 512. For each test case, the overall execution times of promising data layouts for the
entire program were measured and compared to execution times predicted by the prototype
data layout assistant tool. For the Adi kernel test case shown in Figure 3 the prototype tool
picked the best data layout, namely a static row-wise data layout, and also ranked the data
layout alternatives correctly.

For all four programs, the prototype tool did not miss any promising data layouts. The
remaining questions are whether the tool ranked the data layout alternatives correctly, and
whether the best predicted data layout alternative was also the best measured alternative.

To perform the comparison, each program was compiled for each data layout in its set of
promising data layouts using the Fortran D compiler prototype [Tse93] with loop interchange
and coarse-grain pipelining disabled. When necessary, the output of the Fortran D compiler
was modified by hand to ensure correct code. The resulting SPMD node programs were
compiled using the highest optimization level (if77 —O4), and executed and timed on the
iPSC/860. In the remainder of this section, we will discuss the results for each program in
more detail.

Measured

N
o
1

IR
a1
T

+——+ static row

Execution Time in Seconds
=
o
T

% — — —X static column
O0--—-—-0 remapped
5,
e —
0 1 1 1 1 1 1 J
0 5 10 15 20 25 30 35

Execution Time in Seconds
=
o
T

1 1
0 5 10 15 20 25 30 35
Number of Processors

Figure 4: Measured and estimated execution times for Adi kernel with problem size 256 x 256,
double precision

12

Adi: Adi solves a two-dimensional problem. The program has 9 phases. There are no inter-
dimensional alignment conflicts. The solution of the 0-1 data layout selection problem took
CPLEX 60 milliseconds on average on a SPARC-10. The problem had 61 variables and 53
constraints.

We measured 40 test cases, one of which is shown in Figure 3. The results of all five
test cases for problem size 256 x 256 and double precision arrays can be found in Figure 4.
Distributing the second dimension (column layout) resulted in the sequential execution of
two phases. This was always the worst choice. Distributing the first dimension (row layout)
introduced a fine-grain pipeline in two phases and resulted in the best possible data layout
in 24 cases. In the remaining 16 cases, a dynamic layout that remaps the arrays between
row and column sweeps (transpose or remapped layout) was the best data layout choice.

The prototype tool selected the best data layout in 36 cases. In all these cases the relative
rankings of data layout alternatives were correct. In 4 cases the automatically chosen layout
was suboptimal. The worst case performance loss due to the suboptimal selection was 9.3%
as compared to the best possible choice.

Measured

o 81 »———X static 1. dimension

i)

S + — — — + static 2. dimension

é 6F 0— — —-© static 3. dimension

= remapped

s 5 pp

E4r N

= S

5 oL %‘ == —

3 e e o

2 —— =

w 0 1 1 1 1 1 1 1]

0 2 4 6 8 10 12 14 16

Estimated

0]
T

(o]
T

N
T

Execution Time in Seconds
S
T

o

|
6 8 10 12 14 16
Number of Processors

o
N
N

Figure 5: Measured and estimated execution times for Erlebacher with problem size 64 x
64 x 64, double precision

Erlebacher: We used an inlined version of Erlebacher for the experiments, since the
prototype implementation of the data layout assistant does not perform inter-procedural

13

analysis. Erlebacher has 40 phases. There are no inter-dimensional alignment conflicts. The
data layout selection step generated a 0—1 problem with 327 variables and 190 constraints.
CPLEX solved the problem in 120 milliseconds on average on a SPARC-10.

The program consists of a three symmetric computations, each along one of the dimen-
sions of the problem. The computations share access to a 3-dimensional, read-only array. All
four 3-dimensional arrays are aligned canonically, i.e., there is no inter-dimensional alignment
conflict. The choice of a static data layout leads to cross-processor dependences in exactly
one of the three symmetric computations. Since the target compiler performs message vec-
torization but no coarse-grain pipelining or loop interchange, the particular loop order in
the partitioned loops determines the granularity of the resulting pipelined execution.

60 +——+ static row
Measured .
X — —X static column
40+ \ 0—-—-6 remapped
\
20+ e ; ‘
~ \\\@
0 ! Tt — \
8 0 5 10 15 20 25 30 35
C
8401
3 Estimated (pre—determined branch probabilites)
c
© SN
.g 201 \\
= - w —
c T~
8 TR——
30 \ \ == \
E 0 5 10 15 20 25 30 35
151
Estimated (default branch probabilities)
10
\,
\
5 [Zg = 1
TR—— ' ;
e —_—
0 1 1 1 1 1 1]
0 5 10 15 20 25 30 35

Number of Processors

Figure 6: Measured and estimated execution times for Tomcatv with problem size 128 x 128,
double precision (Note the different time scales)

We measured 21 test cases. Distributing the first dimension resulted in introducing a fine-
grain pipeline which was never profitable. Introducing a coarse-grain pipeline by distributing
the second dimension was the best choice in 9 cases. The last possible static data layout,
namely distributing the third dimension, resulted in the sequential execution of one of the
three symmetric computations. This choice was the best in 2 cases. Finally, using a dynamic
data layout by remapping the read-only array once between a pair of symmetric computations
was the best choice in 10 cases.

The prototype tool determined the best layout in 13 cases. Since the performance of the

14

dynamic data layout and the static layout that distributes the second dimension were very
close, the tool failed to rank them correctly in some cases. However, the incorrect ranking
would have only resulted in a maximum performance loss of 8.6% as compared to the best
possible data layout choice.

Figure 5 shows the measured and estimated execution times for the test cases of problem
size 64 x 64 x 64 and double precision. Although the different candidate layouts are ranked
correctly, the layout that distributes the third dimension is overestimated by up to 60 %.

Tomecatv: In contrast to Erlebacher and Adi, Tomcatv has inter-dimensional alignment
conflicts for two of its 2-dimensional arrays. The assistant tool partitioned the 17 phases
into two classes and exchanged their inter-dimensional alignment information. The resulting
alignment search spaces for each phase had two entries. Together with the two possible single
dimension distributions, the final data layout search space contained four candidate layouts
for most phases. Some phases had search spaces with only two entries, since the projection of
phase partition layouts onto single phase layouts resulted in identical candidate data layouts.

Measured

N
T

+——+ static row

=
(62
T

% — — — X static column

Execution Time in Seconds
==
T

35

Estimated

15

0.5r

Execution Time in Seconds
==
T

| |
0 5 10 15 20 25 30 35
Number of Processors

Figure 7: Measured and estimated execution times for Shallow with problem size 384 x 384,
real

The two inter-dimensional alignment conflicts were translated into 0—1 problems with 312
variables and 530 constraints. Although the sizes of the two problems are the same, their
objective functions are different, since the edge weights in the two merged CAGs are not
identical. The sizes of the 0—1 problems are quite large since we scalar expanded all scalar

15

temporaries. On a SPARC-10, CPLEX solved the two problems in 480 and 1030 milliseconds
on average. The 0-1 formulation of the data layout selection problem had 336 variables and
203 constraints. CPLEX determined the optimal solution in 160 milliseconds on average on
a SPARC-10.

We measured 19 test cases. In all but two cases, distributing the second dimension was
the best choice. In all cases the prototype tool selected the column-wise data layout. The
single wrong choice resulted in a performance degradation of 1.0% as compared to the best
choice.

Figure 6 shows the measured and estimated execution times for the test cases of problem
size 128 x 128 and double precision. Tomcatv has control flow inside its main iterative loop.
The prototype implementation guesses a 50% branch probability. The bottom graph in
Figure 6 shows the resulting estimates. However, if the actual branch probabilities are used,
the performance prediction is more precise although still lower than the actually measured
timings.

Shallow: The program is a 200 line benchmark weather prediction program developed by
Paul Swarztrauber at the National Center for Atmospheric Research (NCAR) in Boulder,
Colorado. It uses a two-dimensional, finite-difference model of the shallow-water equations.
The main computations consist of two-dimensional stencils that can be parallelized in either
dimension. However, a row distribution requires messages to be buffered. Therefore, the
column distribution should perform slightly better than the row distribution.

Shallow has 28 phases. There are no interdimensional alignment conflicts. Each candidate
layout search space has two layouts. The data layout selection problem is solved by CPLEX
in 150 milliseconds on average. The 0-1 formulation has 228 variables and 200 constraints.

We ran 19 test cases. Column distribution was the best choice in all but one case. Our
automatic data layout tool always picked the column distribution. The potential performance
loss due to the single suboptimal selection was 1.8% as compared to the optimal choice.
Figure 7 shows the 5 test cases for data type real and a problem size of 384 x 384. The static
performance estimates slightly overestimate the measured timings. However, the relative
performance is predicted with high accuracy.

5 Related Work

The problem of automatic data layout has been addressed by many researchers [AL93,
CGS93, CGSTI3, Gup92, HA90, KeB93, KLS90, KLD92, LT93, LCI0, RS89, BKK*94a,
Who91]. The presented solutions differ significantly in the assumptions that are made about
the input language, the possible set of data layouts, the compilation system, and the target
machine architecture.

Our work is similar in nature to the recent work done by Anderson and Lam at Stanford
University [AL93], Chatterjee, Gilbert, Schreiber, Sheffler, and Pugh at RIACS, Xerox Parc,
and the University of Maryland [CGSS94, SSP195], Ayguadé, Garcia, Girones, Labarta,
Torres and Valero at the University of Catalunya in Barcelona, [AGG194, GAL95], and
Ning, Van Dongen, and Gao at CRIM and McGill University [NDG95].

In contrast to previous work, our framework is designed to be used inside a data layout as-

16

sistance tool. To support user interaction, the framework builds and examines explicit search
spaces of possible candidate layouts. Many previously published heuristics for choosing data
layout candidates can be implemented in our framework.

Our framework can use techniques that may be too expensive to be included in a compiler,
such as 0-1 integer programming. More recently, other researchers have started to investigate
the feasibility of 01 integer programming techniques in the context of automatic data layout

[GAL95, Phi95).

6 Summary and Future Work

The paper discussed a new framework for automatic data layout designed to be used in a
data layout assistant tool. Since the tool is not part of a compiler, automatic data layout
techniques that may be too expensive to be included in a compiler are used. The paper pre-
sented an efficient 0—1 formulation of the NP-complete inter-dimensional alignment problem.
A prototype data layout assistant tool has been implemented based on our framework.

The prototype implementation uses the latest and most powerful general purpose tech-
niques for linear and integer programming to solve two NP-complete problems optimally,
namely the inter-dimensional alignment problem and the data layout selection problem.

A total of 99 experiments based on four scientific programs and program kernels were
conducted. For three out of the four programs, the data layout choice is non-trivial, i.e.,
choosing the wrong layout results in substantial performance loss. Choosing the best lay-
out is difficult since it involves complex trade-off decisions between minimizing communica-
tion overhead and maximizing usable parallelism. Making such trade-off decisions requires
knowledge about the target compilation system, the performance characteristics of the target
machine, the problem size, and the number of processors used.

In 84 cases, the tool selected the optimal data layout. In the cases where the tool selected
a suboptimal layout, the performance loss incurred was within 9.3% of the optimal layout.
All encountered instances of the inter-dimensional alignment problem and the data layout
selection problem were solved in less than 1.1 seconds. This result shows that our framework
is efficient and generates good data layouts.

We are currently extending our distribution analysis, compiler model, and execution
model to handle multi-dimensional distributions. In addition, the framework will be extended
to deal with programs that consist of multiple procedures in order to allow experiments on
larger programs.

References

[ACGt94] V. Adve, A. Carle, E. Granston, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kre-
mer, J. Mellor-Crummey, C-W. Tseng, and S. Warren. Requirements for data-parallel
programming environments. [FEFFE Parallel and Distributed Technology, 2(3):48-58,
1994.

[AGGT94] E. Ayguadé, J. Garcia, M. Girones, J. Labarta, J. Torres, and M. Valero. Detecting
and using affinity in an automatic data distribution tool. In Proceedings of the Seventh

17

[AL93]

[ASUS6]

[BFKK91]

[Bix92]

[BKK*94a]

[BKK94b]

[(CGS93]

[CGSS94]

[CGST93]

[FHK*90]

[FIL*88]

[GALOS5]

[Gup92]

Workshop on Languages and Compilers for Parallel Computing, Ithaca, New York,
August 1994.

J. Anderson and M. Lam. Global optimizations for parallelism and locality on scal-
able parallel machines. In Proceedings of the SIGPLAN °93 Conference on Program
Language Design and Implementation, Albuquerque, NM, June 1993.

A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA, second edition, 1986.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. A static performance estimator
to guide data partitioning decisions. In Proceedings of the Third ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Williamsburg, VA,
April 1991.

R. Bixby. Implementing the Simplex method: The initial basis. ORSA Journal on
Computing, 4(3), 1992.

D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill. Solving alignment using
elementary linear algebra. In Proceedings of the Seventh Workshop on Languages and
Compilers for Parallel Computing, Ithaca, New York, August 1994.

R. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer
programming. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACTY94), pages 111-122, Montreal, Canada, August
1994.

S. Chatterjee, J.R. Gilbert, and R. Schreiber. The alignment-distribution graph. In
Proceedings of the Sizth Workshop on Languages and Compilers for Parallel Comput-
ing, Portland, OR, August 1993.

S. Chatterjee, J. R. Gilbert, R. Schreiber, and T. Sheffler. Array distribution in
data-parallel programs. In Proceedings of the Seventh Workshop on Languages and
Compilers for Parallel Computing, Ithaca, New York, August 1994.

S. Chatterjee, J.R. Gilbert, R. Schreiber, and S-H. Teng. Automatic array alignment
in data-parallel programs. In Proceedings of the Twentieth Annual ACM Symposium
on the Principles of Programming Languages, Albuquerque, NM, January 1993.

G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu.
Fortran D language specification. Technical Report TR90-141, Dept. of Computer
Science, Rice University, December 1990.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems
on Concurrent Processors, volume 1. Prentice-Hall, Englewood Cliffs, NJ, 1988.

J. Garcia, E. Ayguadé, and J. Labarta. A novel approach towards automatic data dis-

tribution. In Proceedings of the Workshop on Automatic Data Layout and Performance
Prediction (AP’95), Houston, TX, April 1995.

M. Gupta. Automatic Dala Partilioning on Distributed Memory Mullicomputers. PhD
thesis, University of Illinois at Urbana-Champaign, September 1992.

18

[HA90]

[Hec77]

[KeB93]

[KLD92]

[KLS90]

[Kre93]

[Kre95]

[LCY0]

[LT93]

[NDG95]

[NW8S]

[Phi95]

[RSS9]

[SSP+95]

D. Hudak and S. Abraham. Compiler techniques for data partitioning of sequentially
iterated parallel loops. In Proceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, The Netherlands, June 1990.

M. S. Hecht. Flow Analysis of Computer Programs. North Holland, New York, NY,
1977.

C.W. KeBler. Knowledge-based automatic parallelization by pattern recognition. In
C.W. KeBler, editor, Automatic Parallelization — New Approaches to Code Genera-
tion, Dala Distribulion, and Performance Prediction, pages 110-135. Verlag Vieweg,
Wiesbaden, Germany, 1993.

K. Knobe, J.D. Lukas, and W.J. Dally. Dynamic alignment on distributed memory
systems. In Proceedings of the Third Workshop on Compilers for Parallel Computers,
Vienna, Austria, July 1992.

K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of arrays to
reduce communication on SIMD machines. Journal of Parallel and Distributed Com-
puting, 8(2):102-118, February 1990.

U. Kremer. NP-completeness of dynamic remapping. In Proceedings of the Fourth
Workshop on Compilers for Parallel Computers, Delft, The Netherlands, December
1993. Also available as technical report CRPC-TR93-330-S (D Newsletter #8), Rice

University.

U. Kremer. Automalic Data Layout for Distributed Memory Machines. PhD thesis,
Rice University, October 1995. Available as CRPC-TR95-559-5S.

J. Li and M. Chen. Index domain alignment: Minimizing cost of cross-referencing
between distributed arrays. In Frontiers90: The 3rd Symposium on the Frontiers of
Massively Parallel Computation, College Park, MD, October 1990.

P. Lee and T-B. Tsai. Compiling efficient programs for tightly-coupled distributed
memory computers. In Proceedings of the 1993 International Conference on Parallel
Processing, St. Charles, IL, August 1993.

Q. Ning, V. V. Dongen, and G. R. Gao. Automatic data and computation decom-
position for distributed memory machines. In Proceedings of the 28th Annual Hawaii
International Conference on System Sciences, Maui, Hawaii, January 1995.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

M. Philippsen. Automatic alignment of array data and processes to reduce communi-
cation time on DMPPs. In Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Santa Barbara, CA, July 1995.

J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs for mul-
ticomputers and complex memory multiprocessors. In Proceedings of Supercomputing
’89, Reno, NV, November 1989.

T. J. Sheffler, R. Schreiber, W. Pugh, J. R. Gilbert, and S. Chatterjee. Efficient distri-

19

[T'se93]

[Who91]

bution analysis via graph contraction. In Proceedings of the Workshop on Automatic
Data Layout and Performance Prediction (AP’95), Houston, TX, April 1995.

C. Tseng. An Optlimizing Fortran D Compiler for MIMD Distributed-Memory Ma-
chines. PhD thesis, Rice University, Houston, TX, January 1993. Rice COMP TR93-
199.

S. Wholey. Automatic Data Mapping for Distributed-Memory Parallel Computers.
PhD thesis, School of Computer Science, Carnegie Mellon University, May 1991.

20

Appendix

Alignment Conflict Resolution as a 0—1 Problem

This section describes the translation of an instance of the inter-dimensional alignment prob-
lem into an instance of a 0-1 integer programming problem with linear constraints. Note
that there are many possible translations. Experiments showed that our formulation is very
promising. A proof of the correctness of our formulation is given in [Kre95]. An introduction
to integer programming can be found in [NW8S].

Definition An instance of the inter-dimensional alignment problem with d dimensions con-
sists of finding a d-partitioning of an undirected, weighted component affinity graph (CAG)
such that the sum of the weights of the edges that cross distinct partitions is minimized.

Definition An instance of the 0-1 problem consists of a set of variables X, a set of linear
constraints over the variables in X, and a linear objective function with domain X. A
solution to an instance of the 0-1 problem is a function sg; : X — {0,1} that minimizes (or
maximizes) the objective function while respecting the constraints.

In the following, we will discuss the translation of a d-dimensional alignment problem
into a 0—1 problem. We will assume that all arrays represented in the CAG have d or less
dimensions. Let a; be the node in the CAG that represents the i-th dimension of array a,
1 <@ < dim(a), where dim(a) denotes the number of dimensions of array a. Each such
node is represented by d variables or switches in X, a;, € X, 1 < k < d. The switch a;
will be on if and only if the node a; belongs to the k-th partition in the final solution. Let
e = (a;,b;) be an edge in the CAG. Each edge e is represented by d variables or switches in
X, a$b§]z € X, 1 <k <d. In the final solution, the switch a$b§’fC is on, if and only if the sink
and the source of the edge e belong to the same partition.

There are two types of constraints. Node constraints ensure that any solution is a d-
partitioning of the CAG, and edge constraints identify edges with source and sink nodes in
the same partition.

Node constraints: To ensure that an array dimension is in exactly one partition, con-
straints of the form Zzzl a;r = 1 (typel) are introduced for each node a;. Two dimensions
of the same array must not be in the same partition. This property is enforced by the fol-
lowing constraints, one constraint for each pair of an array ¢ and a partition £, 1 < k < d:
zfj{“(“) air < 1 (type2). Note that in the case of an embedding of array a, dim(a) < d,
some partition k& will not contain any CAG node associated with a. There are |N| node
constraints of (typel) and d|Arrays| node constraints of (type2), where N is the set of nodes
in the CAG, and Arrays is the set of arrays represented in the CAG.

Edge constraints: The formulation of the inter-dimensional alignment problem uses count-
ing arguments on the number of incoming and outgoing edges of nodes in the CAG. For each
node a;, constraints are introduced for incoming and outgoing edges. The translation re-
quires a directed graph. The particular direction of edges in the CAG is irrelevant for the
correctness of the formulation. However, the direction influences the form and number of

21

edge constraints, and therefore has an impact on the performance of the generated 0-1 prob-
lem instance. An edge direction normalization step ensures that for any pair of arrays («a, b),
all edges between nodes that represent a dimension of @ and a dimension of b have the same
direction, e.g., are all oriented “from a to b”.

| NODE Constraints |
DOi=1,n
y(i, 1) =x(i, 1) +x(1, i) Each node isin exactly one partition
=NDPO Yn+Yie =1 Ya+¥n =1
@ @ Xut+ X2 =1 Xt X =1
@ @ Two dimensions of the same array must
not be in the same partition
CAG Yiut Y¥a1r 1 Yo+ Yy <1

N

X0+ X1 S 1 Xpp+ Xpp <1

[EDGE Constraints]

An edgeisswitched on IFF
the source and sink are switched on

IN-constraints:

11 21 12 22
X EISy11 +x $yllf Y11 X $y12 +x “'JSy12 <Y

OUT-constraints:
11 21
x$yy7 <xpq x$ypy <xpp

21 22
xBy1y <Xp1 xBy7H <Xpp

Figure 8: Alignment conflict resolution of an example CAG as a 0-1 integer programming
problem

Let SRC(b,a;) denote the set of all nodes b; that represent a dimension of array b and
there is an edge from b; to a;. For each k, 1 < k < d, and each non-empty set SRC(b, a;),
IN-constraint of the form 37, csres,0,) b$af~f < a;; are introduced. Let STN K (a;,¢) denote
the set of all nodes ¢; that represent a dimension of array c¢ and there is an edge from q;
to ¢;. For each k, 1 < k < d, and each non-empty set STN K (a;,c), OUT-constraint of the
form 3. esINK (i) a$c§]f€ < a;, are introduced.

The total number of edge constraints is O(2d|FE|), where E is the set of edges in the
CAG. Each edge occurs in exactly two constraints, a IN-constraints of its sink node and a
OUT-constraints of its source node. To be more precise, the number of edge constraints is
the number of nonempty SRC and SINK sets, multiplied by d. In the worst case, each
SRC and SINK set contains only one edge, resulting in 2d|F/| edge constraints.

22

Figure 8 shows the constraints resulting from the translation of an example CAG with
an alignment conflict into a 0-1 problem. The CAG was generated for a loop with a two-
dimensional program template. Therefore, conflict resolution requires a minimal cost two-
partitioning of the example CAG. Edge weights are not shown here since they are only
relevant for the objective function and not for the constraints. The graph below the CAG
in Figure 8 is not actually generated during the translation process, but illustrates our 0-1
formulation.

Objective function: A solution of the 0-1 problem formulation of the inter-dimensional
alignment problem mazimizes the following objective function under the given constraints:

d
>y a$b§-’f€ wetght (a;,bj) .

(ai,bJ)EE k=1

The switch a$bj~’f€ is on, if and only if the corresponding edge is inside a partition. A solution
maximizes the edge weights inside a partition and thereby minimizes the edge weights across
different partitions.

23

