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Abstract

Data-parallel languages, such as High Performance Fortran, are designed to make programming of
distributed-memory machines easier, and resulting programs more portable and efficient. Advanced
features of these languages require new methods in both compilers and run-time systems. We present
efficient techniques for generating local memory addresses, in the exact order as specified by the original
program, for computations involving references to arrays with cyclic(k) distribution, the most general
regular data distribution provided in data-parallel languages. Our method exploits the repetitive pattern
of memory accesses to handle arbitrary affine subscripts, while minimizing the space and time overhead.
Extensive experimental results indicate the efficiency of our approach in practice.

1 Introduction

Distributed-memory machines are widely regarded as the most promising means for high performance com-
puting. However, the message-passing programming model, typically associated with these machines, makes
it difficult to take full advantage of parallel computing power. This has resulted in the development of data-
parallel languages, such as Fortran D [9], Vienna Fortran [2], and most recently High Performance Fortran
(HPF) [7, 13]. These languages provide familiar single address space and data mapping directives that allow
the programmer to specify how array data should be distributed across processors. A compiler then uses
these directives to partition the computation and generate SPMD (Single Program Multiple Data) code to
be executed by each processor.

Compilation of programs that access arrays with block or cyclic distribution has been studied exten-
sively [5,12,15]. A more general regular distribution is block-cyclic distribution (cyelic(k) in HPF), in
which an array is first divided into blocks of size k, and then these blocks are assigned to processors in a
cyclic fashion. An example of this distribution is shown in Figure 1 (we assume that array elements are
numbered starting from 0). The generality of cyelic(k) distribution poses a challenging problem of address
computation for array references. As pointed out by Knies et al., if full address generation were to be
performed for each access to an array with cyclic(k) distribution, the resulting overhead would be unaccept-

able [11]. Therefore, there is a strong need for compiler and run-time techniques that would minimize the

*This work was supported in part by ARPA contract DABT63-92-C-0038. and NSF Cooperative Agreement Number CCR-
9120008. The content of this paper does not necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred.



Processor 0 Processor 1 Processor 2 Processor 3
0 1 2 3|4 5 6 7|8 9 10 11|12 13 14 15
16 17 18 19|20 21 22 23|24 25 26 27|28 29 30 31
32 33 34 35|36 37 38 39|40 41 42 43|44 45 46 47
48 49 50 51|52 53 54 55|56 57 58 59|60 61 62 63

Figure 1 Layout of array elements distributed with cyelic(4) distribution over 4 processors.

cost of generating memory addresses that are accessed while performing a computation over block-cyclically
distributed arrays.

Several efforts to address some of the difficulties in compiling programs with cyelic(k) distribution have
been described in the literature. Ancourt et al. use a linear algebra framework for compiling tndependent
loops in HPF [1]. Although they can handle arbitrary affine array subscripts, the generated loop bounds
and local array subscripts can be quite complex, and thus introduce a significant overhead. Furthermore,
the assumption of independent parallelism allows them to enumerate loop iterations in any order, which is,
in general, not always possible. Gupta et al. address the problem of array statements involving block-cyclic
distributions [6]. In their virtual-cyclic scheme, array elements are accessed in an order different from the
order in a sequential program. In the virtual-block scheme array accesses are not reordered, but if the array
section stride is larger than the block size, their method effectively reduces to the run-time address resolution.
Stichnoth et al. use intersections of array slices for communication generation [14]. Their approach is similar
to, and has the same drawback as, the virtual-cyclic scheme mentioned above. The method described by
Chatterjee et al. is based on exploiting the repetitive pattern of memory accesses while traversing a regular
section of an array with cyelic(k) distribution [3]. They show how each processor can generate the correct
sequence of its local memory accesses using lookups into a table that has at most k entries, and present a
table construction algorithm that takes roughly O(klogk) time.

In our previous work [10], we described a linear-time algorithm for constructing the table needed to
generate local memory accesses, and presented experimental results to assert the practical efficiency of our
method. In this paper, we show how the ideas used in developing the algorithm can be applied to resolve
the time versus space tradeoff present in the table lookup technique. Furthermore, we extend the address
generation method based on the table lookup to handle array references with arbitrary affine subscripts. The
efficiency of the proposed schemes is demonstrated through a series of experimental results.

The rest of this paper is organized as follows. In Section 2 we briefly review our linear-time algorithm
for generating tables for simple regular sections and describe how the same ideas can be used to eliminate

memory overhead with minimal penalty in the execution time. In Section 3 we show how array references



with single subscripts containing multiple loop induction variables can be handled by a simple extension to
a table lookup based address generation. Our method for dealing with multiple coupled subscripts (two or
more subscripts containing the same induction variable) and generalization to arbitrary affine subscripts are
presented in Section 4. Finally, we conclude in Section 5 by summarizing our contributions and indicating

directions for future research.

2 Simple Regular Sections

We first describe how the memory access sequence is generated for simple regular sections, which correspond
to array references with subscripts containing a single loop induction variable (SIV subscripts). Given an

array A distributed with cyelic(k) distribution over p processors and the loop

doi=1u,s
A(7) = 100.0
enddo

the problem is to find the sequence of local memory locations that a given processor m must access while
performing its share of computation. This is equivalent to finding the starting location for processor m and
the gaps between every two memory locations corresponding to successive accesses of array elements that
belong to processor m. Since the offset of an array section element within its block uniquely determines the
offset of the next array element accessed by the same processor, and since the offsets range between 0 and
k — 1, the sequence of offsets must have a cycle whose length is at most k. The cycle of offsets induces the
cycle in the sequence of local memory gaps, which together with the processor’s starting location is sufficient
to specify the complete memory access sequence.

Chatterjee et al. [3] have shown that both the starting location and the table of local memory gaps can

be found by solving a set of k£ linear Diophantine equations
{si—pkg=i|km—1<i<km—Il+k—1}.

For each solvable equation (i.e., whenever GcD(s, pk) divides 7), they find the smallest nonnegative solution
for j. The minimum of all these solutions gives the first array element A(l + js) accessed by processor m,
while the sorted set of the solutions represents the initial cycle in the memory access sequence, which is then
used to construct the memory gap table.

The complexity of the method described by Chatterjee et al. is O(klogk + min(log s, logp)). We have
developed an improved table-construction algorithm that avoids sorting of the initial sequence and achieves
O(k + min(log s, log p)) running time [10]. Array elements are treated as points in Z% with the y-coordinate
corresponding to the number of the row to which the array element belongs, and the z-coordinate corre-
sponding to its offset within that row. Using the fact that the accessed array elements form an integer lattice,

we have shown how to choose a lattice basis that allows for simple and fast enumeration of array accesses.
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Figure 2 Layout of array elements distributed with cyclic(16) distribution over 2 processors.
Rectangles indicate elements of the array section with lower bound [ = 0 and stride s = 18.

We compute vector R = (b, a,) using the coordinates of the first array element accessed by processor 0
when lower bound [ = 0 (not counting index 0 itself). Similarly, vector L = (b7, a;) is computed by finding
the last array element in the initial memory access cycle, and subtracting it from the coordinates of the
array element that starts the next cycle. In the example in Figure 2 vector R is given by the array index 36,
and thus (br,a,) = (4,1). Vector L is given by the coordinates of the array index 288 relative to the array
index 270, and therefore (b;,a;) = (0,9) — (14,8) = (14, 1).

It has been shown that vectors R and L form a lattice basis for regular section elements, and furthermore
that the distance between two consecutive accesses must take one of the three possible values: R, L, or
R+ L [10]. This is used to enumerate the indices of the accessed array elements in the increasing order, and
to fill the table of local memory gaps based on the fact that vectors R and L correspond to local memory
distances of a,k + b, and a; k + b;, respectively.

While the maximal possible length of the cycle of local memory gaps is &, the actual cycle length for
any given processor will depend on the GeD(s, pk) and that processor’s starting location. In the example in
Figure 2 block size is 16, but the cycle length for either of the two processors is only 8. For simple regular
sections each processor’s starting location is fixed, and therefore only the entries corresponding to the offsets
that are actually visited need to be stored in the table. However, when multiple loop induction variables
are present within a single subscript (this case will be discussed in detail in Section 3), the starting location
may vary with iterations of the outer loop. In Figure 3 we show how to construct the table of local memory
gaps so that the entries corresponding to all offsets between 0 and k — 1 are filled.

As pointed out by Knies et al. address generation based on the local memory gap table makes a time

versus space tradeoff. Since a table is needed for every array reference with different stride or distribution,



do:=0,k—b, -1
AM[i] = ark + b,
Nezt[i] =1 + b,

enddo

doi=k—1b,,—b —1
AMI] = (ark + br) + (ark + br)
Next[i] =1+ b, + b

enddo

do:=—b,k—-1
AMi] = ark + by
Neazt[i] =1+ b
enddo

Figure 3 Computing the memory gap and offset sequences.

for large block sizes this can introduce a substantial memory overhead. An important advantage of our
algorithm is that the ideas used to generate the table can be extended to deal with the mentioned tradeoff.
If the memory is a critical resource, our algorithm can be modified to simply return the vectors R and
L. Each processor can then use these vectors to generate memory addresses on a demand-driven basis, by

performing simple tests similar to those in Figure 3.

2.1 Experimental Results

We now compare the performance of different methods for local address generation. All the experiments in
this and the following sections were done on an Intel iPSC/860 hypercube, using the icc compiler with -O4
optimization level and delock timer. All times are reported in milliseconds and represent maximums over 32
processors.

Two versions of the SPMD node code are shown in Figure 4. In Figure 4(a) we use the memory gap and
offset tables whose construction has been described above, while the code segment in Figure 4(b) does not
require any tables since it generates the memory addresses to be accessed on a demand-driven basis.

We also compared these two methods with the full run-time generation of local memory addresses and
with the virtual-block scheme proposed by Gupta et al. [6]. In the run-time resolution each processor
executes all the loop iterations, and for each iteration it checks whether it owns the array element that is
being assigned to, in which case it computes the local memory address for that array element and performs
the assignment.

In the virtual-block scheme the array is treated as being block distributed across a large enough number of
virtual processors, and these virtual processors are then cyclically mapped onto physical processors. If stride
s is not greater than block size k, then all virtual processors own some of the array elements being accessed,
i.e., all virtual processors are active [6]. In that case, each processor loops over all virtual processors mapped

to it (each of these virtual processors corresponds to a block that the processor owns), computes the lower



Compute AM, Next, and start
1 = start
offset = start mod k
while (i < end) do

A(i) = 100.0

i =1+ AM][offset]

offset = Neat[offset]
endwhile

Compute by, ar, by, a;, and start
1 = start
offset = start mod k
while (i < end) do
A(i) = 100.0
if (i <k —b,) then
i=1+4 (ark+b,)
offset = offset + b,

elseif (i > —b;) then
i:'i—i—(azk—I—bz)
offset = offset + b;

else
i=1i+(ark+0b;)+ (ark +br)
offset = offset + b, + b;

endif

endwhile

(a) Table-based address computation. (b) Demand-driven address generation.

Figure 4 Two versions of the SPMD node code for simple regular sections.

and upper bound of array elements accessed within each virtual processor, and performs the translation from
the virtual processor’s local index space to its own local index space. This translation is needed only for
the lower and upper bound, since stride s in the index space of a virtual processor on processor m remains
unchanged in the index space of m. However, if s > k, not all virtual processors are active. In that case,
the solution by Gupta et al. is to scan all the active virtual processors (each containing exactly one array
access) and, for each one of them, check whether it is located on processor m. This, essentially, is the same
procedure as that performed in the run-time address resolution.

Table 1 contains execution times for all four methods. The measurements were performed with lower

bound { = 0, while the upper bound was scaled in proportion to stride s, so that each processor accessed

Table Demand Virtual Run

lookup driven block time

s=3 2.3 3.3 60.4 1071.8

k=4 s =25 2.6 3.1 1094.8 1064.7
s =100 3.1 3.2 1094.6 1065.6

= 2.3 2.7 16.3 1076.8

k=16 s =25 2.6 3.6 1097.4 1067.2
s =100 3.1 3.5 1095.1 1065.0

s=3 2.3 2.6 5.2 1072.3

k=64 s =25 2.6 3.2 32.3 1077.9
s =100 3.0 4.0 1097.7 1067.6

= 2.3 2.6 2.3 1063.2

k = 256 s =25 2.6 2.9 9.3 1075.6
=100 3.1 3.6 32.8 1078.2

Table 1 Execution times in milliseconds for different versions of loops with the SIV subscript.



10,000 array elements. For several reasons the reported times do not include the time spent in constructing
the table or computing vectors R and L. First, if [, u, and s, as well as distribution parameters p and £,
are known compile-time constants, then the tables (or vectors) can be computed by the compiler, without
incurring any run-time cost. Second, even if this computation has to be done at run time, same tables (or
vectors) would typically be reused for multiple array references in the program. And finally, our previous
study [10] has shown that even for values of k as large as 512, table construction takes less than 1 millisecond,
and thus would have no significant impact on results presented here.

Both the virtual-block scheme and the run-time address resolution perform significantly worse than the
methods that take advantage of repetitive patterns in local memory addresses. While the run-time resolution
consistently performs poorly, the performance of the virtual-block method depends on the values of s and
k. As mentioned above, when s > k the virtual-block scheme effectively reduces to run-time resolution,
with small additional overhead incurred by virtual processor emulation. If s < k, the virtual-block method
is significantly better than the run-time resolution, but it is only competitive with the other two methods
when block size k is very large, and stride s is very small. In that case there are very few translations from a
virtual processor’s index space to a processor’s index space, and many constant stride accesses are performed
within each virtual processor.

Of particular interest is the comparison of the address generation method that uses memory gap and
offset tables with the demand driven generation based on vectors R and L. As can be seen from Table 1, the
performance penalty that one has to pay for direct generation of local addresses without using any tables is
only minor. Therefore, if memory overhead is to be minimized, particularly when block sizes are large, this

method can be used instead of the table lookup technique, without a significant performance degradation.

3 Multiple Induction Variables

We now show how the techniques described in the previous section can be extended to solve the problem of
address generation for array subscripts containing multiple induction variables (MIV subscripts). Assuming
again that the array A is distributed with cyclic(k) distribution over p processors, our task is to generate
the sequence of local memory addresses that a given processor m must access while executing its share of
iterations of the following canonical loop nest
doi = li, Uz, S
dOj = lj, Uj, S5
A(i+ j) =100.0
enddo
enddo

The example in Figure 5 shows the array elements accessed in the the loop nest specified by k = 4, p = 4,
(li, ui, s5) = (0,130,37) and (4, uj,s;) = (0,18,2). For a given iteration of the outer loop, a dark shaded

square indicates the first array element accessed in that iteration, while lightly shaded squares show starting
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Figure 5 Elements of an array distributed over 4 processors with cyclic(4) distribution accessed
in a doubly nested loop with parameters (I;, u;, s;) = (0,130, 37) and ({;,u;,s;) = (0,18,2).

locations for different processors. For example, the first array element accessed in the second iteration of
the outer loop is A(37) owned by processor 1, and the starting locations for processors 2, 3, and 0 are
A(41), A(45), and A(49), respectively. All other array accesses are shown in non-shaded squares. The key
observation is that for a given iteration of the outer loop, which determines each processor’s starting location,
the sequence of array accesses for a given processor depends on the stride of the innermost loop only (2,
in our example). Therefore, in a manner similar to that described in Section 2, the access sequence can be
generated using the table of memory gaps (AM). Moreover, the space versus time tradeoff can be handled
in the same way as in the case of simple regular sections.

In order to use the AM table on processor m, we need to determine m’s starting location for each
iteration of the outer loop, i.e., given a dark shaded square, we need to find the corresponding lightly shaded
square that belongs to processor m. As described in Section 2, this can be done by finding the minimum
of the smallest nonnegative solutions of k linear Diophantine equations. However, incurring the O(k) cost
for every iteration of the outer loop is hardly acceptable, and therefore we must look for a more efficient
solution.

If the inner loop stride s; is not greater than the block size k, processor m’s starting location can be
computed in constant time. If processor m owns A(first), the first array element accessed in a given outer
loop iteration, then its starting location (in global index space) is first itself. If this is not the case, then m’s
starting location start can be computed in the following way:

gap = mk — first mod pk
if (first mod pk > k(m + 1)) then

gap = gap + pk
endif

start = first + [gap/s;]s;



As an example, we show how the starting locations for processors 0 and 3 are computed for the second
iteration of the outer loop in Figure 5. The first array element accessed is A(37), and since pk = 16, we
have first mod pk = 5. When m = 0, we get k(m + 1) = 4, and therefore gap = 0 — 5+ 16 = 11 and
start = 374+ 12 = 49. On the other hand, when m = 3, k(m + 1) = 16 is greater than 5, and thus
gap =12 —5 =T and start = 374+ 8 = 45.

If s; > k, then the starting location for processor m can be computed using the following method,
which although simple, turns out to be efficient in practice. Processor m needs to find the smallest ¢ such
that it owns A(first + ts;). In naive run-time resolution, this is done by incrementing ¢ until an array
element owned by processor m is reached (or first 4 ts; exceeds the loop upper bound). The ownership test
requires expensive mod and divide operations. These can be avoided by working directly with the offsets.
Let offset = first mod pk, be the offset of the first element with respect to the beginning of the row. Let
movell = s; mod pk and movel = pk —moveR, the right and the left displacement due to incrementing the
induction variable by s;. For our example in Figure 5, moveR = 2 and movel = —14. The starting location
start is found by incrementing and decrementing the offset by move R and movelL respectively, until it falls
within the range of offsets corresponding to processor m. The following procedure computes the starting

location for processor m:

start = first; offset = first mod pk
while (offset < km or offset > k(m + 1)) do
if (offset < km) then
offset = offset + moveRR; start = start + s;

else
offset = offset + movel; start = start + s;
endif
endwhile
For the example shown in Figure 5, the starting location start for processor m = 0 and first = 74

is computed as follows. The offset of the first element accessed by the third iteration of the outer loop is
(74 mod 16) = 10, which is greater than k(m+ 1) = 4. Therefore, movel = —14 is added to 10; the resulting
offset = —4 is less than km = 0. Now, two additions of move R = 2 to —4 bring the offset within processor
0’s range. Correspondingly, s; = 2 is added three times to first = 74 to obtain start = 80, the required
starting location.

Although we now have ways to compute a processor’s starting location that are more efficient than solving
k Diophantine equations, we still have not exploited the repetitive pattern of array accesses generated by
the outer loop. In the same way that AM table reflects this pattern in the inner loop, we would like to
construct the table of gaps between starting locations corresponding to consecutive iterations of the outer
loop. Since the starting location can possibly have pk different offsets with respect to the beginning of the
row, we can find the cycle of these offsets by computing the starting locations for at most pk + 1 iterations

of the outer loop. This cycle can then be used to compute the table (AG) of local memory gaps between



consecutive starting locations.

Although the maximal possible size of AG table is pk, the actual table size will depend on the length of
the cycle of starting location offsets, and is likely to be much smaller than pk. However, using the argument
similar to that for filling all k entries of AM table, it is easy to see that for loop nests with more than two
loops a table with all pk entries might be needed.

For all first elements accessed by the outer loop that have the same offset with respect to the beginning
of the row, the gap between the first element and its corresponding starting location for processor m will
be constant. Therefore, we can construct a table such that each entry AS[t] contains the number of array
elements between the first element accessed by the outer loop iteration first, such that first mod pk = t,
and the starting location for processor m. For example, the AS[15] entry of the table for processor 2 is 10
because offset 15 corresponds to the first element, 111, accessed by the fourth iteration of the outer loop
and the starting location for processor 2 is 121; therefore, the number of elements that need to be skipped
is 121 — 111 = 10. The starting location for processor 2 is Local(111 + AS[111 mod 16]) = Local(121) = 29,
where Local performs the translation from global to local index space.

We now present an O(pk) method (linear in the table size) for constructing the AS table. From Figure 5,
it can be observed that each of the first elements A(4), A(6), A(8), A(10), A(12) and A(14) accessed by the
outer loop have A(16) as the starting location for processor 0. Therefore, the AS table will have 12, 10, 8 | 6,
4 and 2 as the number of elements skipped for the first elements with offsets 4, 6, 8, 10, 12 and 14 respectively
(i.e., AS[4] = 12, AS[6] = 10, and so on). This observation can be used to obtain a linear-time method
for computing the AS table for processor m: start with the offset km, find the offset of the next element
(say, €) accessed for the processor m (using the method described in Section 2); all the non-local elements
accessed (by following stride s;) between the first element and the element e have e as the starting location
on processor m; the number of elements skipped for each offset corresponding to different first elements can
be computed easily. This process is repeated for all the offsets between km and km + k — 1; the uninitialized
AS table entries correspond to the first elements accessed by the outer loop that have no corresponding
starting location on processor m.

Since the AS table is generated based on the stride of the innermost loop only, the table can be used to
find the starting location for a particular processor and a given first element (which depends on all enclosing
loops whose induction variables are present in the reference) irrespective of the number of loops enclosing
the innermost loop. However, it introduces a global to local translation for every iteration of the outer loop.

As with the AM table, if the distribution and the loop parameters are known at compile time, the AS
or the AG table can be computed at compile time. However, if the tables need to be computed at run time,
since the table entries are not modified in the loop, they can be computed outside the loop nest. Note that
the upper bound computation is simpler because the local upper bound need not be the actual last element
accessed by the processor. The procedures for computing the local upper bound (GetUpper Bound) and for

global to local index conversion (Local) were presented in [8].
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3.1 Experimental Results

In this section we compare the performance of various address generation approaches for array references
with MIV subscripts. Figure 6 shows two versions of the SPMD node code corresponding to our canonical
loop nest example. The code in Figure 6(a) uses the AS table to compute starting locations for each iteration
of the outer loop, while the code in Figure 6(b) does this using the AG table. In the inner loop, both versions
use the AM table to generate local memory addresses. We also implemented the method that uses the AM
table for accesses within the inner loop, but generates starting locations without any tables using one of
the two methods described above. This method of computing starting locations for outer loop iterations
was also combined with the demand-driven generation of addresses in the inner loops in the same way as
shown in Figure 4(b). In that way memory overhead incurred by tables is completely eliminated. Finally,
we compared these methods with naive run-time resolution, since, to the best of our knowledge, this is the
only other technique that guarantees that array accesses will not be reordered.

Table 2 contains execution times for different values of the block size k£ and the inner loop stride s;. The
stride of the outer loop s; was varied together with s; so that no array element was accessed twice. The
upper bounds were scaled proportionally to the corresponding strides so that every processor executed 100
iterations of each loop, resulting in total number of 10,000 array accesses per processor.

As expected, the performance of run-time resolution is much worse than any of the other address gen-
eration methods. The best performance was achieved using the AG table in the outer loop and the AM
table in the inner loop. The method that uses the AS table in the outer loop is somewhat less efficient
because it requires an additional translation from global to local index space for every iteration of the outer
loop, as shown in Figure 6(a). In addition, while the AG table contains only those entries corresponding
to starting location offsets actually visited by the iteration of the outer loop, the size of the AS table is

always pk (although some entries might be uninitialized). Since in our tests each processor performed 100

|| || AG & AM | AS & AM | AM Only | No tables | Run time ||

s=3 4.3 4.8 5.0 5.9 1087.8

k=4 s =125 4.5 4.9 5.5 5.9 1080.7

s =100 5.0 5.5 6.0 6.2 1080.6

s=3 4.2 4.8 4.9 5.3 1092.8

k=16 s =150 4.3 4.9 5.2 6.3 1083.2
s =100 4.8 5.4 6.0 6.4 1081.0

s=3 4.2 5.1 4.9 5.2 1088.3

k=64 s =125 4.4 5.2 5.1 5.5 1093.9
s =100 4.9 5.7 5.7 6.7 1083.5

s=3 4.3 6.5 4.9 5.1 1079.3

k=256 | s=25 4.4 6.7 5.2 5.4 1091.5
s =100 5.0 7.2 5.7 6.1 1094.2

Table 2 Execution times in milliseconds for different versions of loops with the MIV subscript.
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Compute AS, AM and Next Compute AG, AM, Nest, and start;

do: = 1;, u;, s; countG =0
ﬁrstJ:i+l] do : =1, ui, s;
start; = Local(first; + AS[first; mod pk]) end; = GetUpper Bound(i + u;)
end; = GetUpper Bound (1 + u;) j = start;; offset = 3 mod k
j = start;; offset = j mod k while (5 < end;) do
while (j < end;) do A(§) = 100.0
A(j) = 100.0 J =7+ AMJoffset]
J =7+ AM][offset] offset = Neat[offset]
offset = Next[offset] endwhile
endwhile start; = start; + AGlcountG]
enddo countG = (countG + 1) mod Size(AG)
enddo
(a) AS and AM tables. (b) AG and AM tables.

Figure 6 Two versions of the SPMD node code for the MIV subscript.

iterations of the outer loop, the size of the AG could not exceed 100 even for the large block sizes. On the
other hand, for £ = 256, the AS table had 8K elements and table lookups had poor locality, resulting in
increased performance degradation.

As mentioned earlier, the size of the AG table can be pk in the worst case. In the case, the AG table
memory overhead is unacceptable, methods that generate starting locations on a demand-driven basis can
be applied. Both of the two approaches, the one using the AM table (typically much smaller than AS or
AG table) in the inner loop, and the other without any table space overhead, perform only slightly worse
than the address generation based on using both the AG and AM tables, and therefore should be methods

of choice if memory overhead needs to be reduced or completely eliminated.

4 Coupled Subscripts

All address generation methods presented so far deal only with one-dimensional arrays. Chatterjee et al. have
shown that for multidimensional regular array sections (corresponding to array references with independent
subscripts), the memory access problem reduces to multiple applications of the algorithm used for the one-
dimensional case [3]. However, this is not necessarily true if subscripts are dependent, i.e., if two or more
subscript positions contain the same loop induction variables.

The example in Figure 7(a) shows a three-deep loop nest and a two-dimensional array reference with both
subscripts containing induction variable i, the outermost loop induction variable. We assume that array A
is distributed with cyclic(ky) distribution over p; processors along its first dimension and with cyclic(ks)
distribution over py processors along its second dimension. Although two subscripts contain a common loop
induction variable, as pointed out in Section 3, the AM table for a subscript depends on the stride of
the deepest loop only. Therefore, in this example, we can compute two independent tables: AM; for the

subscript in the first dimension and AM;, for the second dimension. The resulting SPMD code is shown in
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Figure 7(b).

Based on the above observation we define two subscripts to be coupled if and only if the deepest loop
induction variables occurring in two subscripts are identical. A typical example of a loop with coupled
subscripts is shown below.

doi=1[1u

A(Sli + C1, Sgi + 02) = 100.0
enddo

In order to use table lookups for address generation of array references with coupled subscripts, we first
show how the method presented by Chatterjee et al. [3] can be extended to find the starting location. Let
li = s1l 4+ ¢1 and I3 = s2l + ¢2 be the values of the two subscripts in the first loop iteration. The starting
location for a given processor (my, mz) corresponds to the smallest nonnegative integer j which satisfies both

of the following two inequalities

kimy < (I3 + s1j) mod p1k1 < k1(mq + 1), and
kamso < (12 + s27) mod paks < ka(ma +1).

As shown by Chatterjee et al. [3] for the one-dimensional case, finding such a j is equivalent to finding
the minimum of the smallest nonnegative solutions of the following set of simultaneous linear Diophantine

equations

iy | kymy — 1 <ty < kymy — 1 + k; — 1}, and

{517 = pikiaa
{82J — Pakaga = da | kama — Iy < iy < kamg — Iy + kg — 1},
Let dy = GCD(s1,p1k1) = ays1 — fipikr and dy = GCD(sa, paka) = aasa — fapaks where ay, 1, aa, 52 € Z.
Two separate applications of the extended Euclid algorithm [4] determine di, a1, 81 and ds, g, B2. The

do: = l;, u;, s Compute AM;, Next;, AMy, and Nexty
doj =1{;,uy, s do: = I, u;, s;
do k = Iy, ug, sk Compute start; and end;
A(i 4+ 7,1+ k) = 100.0 J = starty; offset; = start; mod ki
enddo while (j < end;) do
enddo Compute starty and endg
enddo k = starty; offset;, = starty mod ko
while (k < end) do
A(j, k) = 100.0

k =k + AMy[offset,]
offset, = Nextr[offset,]
endwhile
j =i+ AM;[offset,]
offset; = Newt;[offset,]
endwhile
enddo

(a) Original loop. (b) SPMD node code.

Figure 7 Example program with dependent MIV subscripts.
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general solution for equations from the two sets is given by one-parameter families j = (¢1a1 + p1k171)/d1,

@1 = (=101 +s171)/d1 and j = (daca + pakaya)/da, g2 = (—izf2 + s27y2)/da, respectively, where v1, 72 € Z.
Since we are looking for the solution j > 0, we must have 1 > [—ija1/p1k1| and ya > [—izsaa/paka]. The

simultaneous solution of the two equations satisfies the equation

(i1 + prkim)/di = j = (isas + pakays)/do,
which is equivalent to
dapirks v1 — dipaks v2 = diizas — dairag.

Let i = dyigas — daiyag and d = GeD(dapiky, dipaks) = adapiki + Bdipaks, «, f € Z. The general solution
for 41 and 72 is given by 71 = (ic + dip2kay)/d and y2 = (—if + dap1k17y)/d, where ¥ € Z. The minimal

value of parameter v that satisfies constraints on 7; and 7, is

7 = max [_Pillkall Jd—ia [_pljcazz ld+ip .
d1p2 ko ' d2p1 kq

We can back-substitute this value to compute v; (or v2) and, consequently, the desired solution for j.

The minimum of the smallest nonnegative solutions for j (across all pairs of equations that have solutions)
determines the first array element A(l1+517, la+s25) accessed by processor (my, ms). The complete algorithm
to determine the processor’s starting location is shown in Figure 8.

Using the same idea as described by Chatterjee et al. [3] for the one-dimensional case, the table of memory

gaps can be obtained by first sorting the initial sequence of array accesses and then computing the distances

Input: Distribution parameters (pi1, k1), (p2, k2), loop parameters ({1, s1), (I2, s2), and processor number (m1, msz).
Output: The starting location (start;, starts).
Method:

min = oo

(d1, @1, 1) — EXTENDED-EUCLID(s1, p1k1)
(d2, a2, B2) — EXTENDED-EUCLID(s2, p2k2)

(d, a, B) — EXTENDED-EUCLID(d2p1 k1, d1p2k2)

dou = kimi— b, kimi — b +k -1
do ig = k‘gmz—lz, k2m2—12+k2—1
i = d]'izozz — d2i1a/1
if (41 mod d; = 0 and ¢> mod d; = 0 and i mod d = 0) then

f_llk%]d—ia |—_12ka2-|d+i’8
T = ma‘x{ " md&?zkz -| ? [ P2d2i71k1
10 ] — (ila/l + p1 k1(i£¥ -+ d1p2k27)/d)/d1
11 if (j < min) min = j
12 endif

13 enddo
14 enddo

o =1 O Ut = W N =

©

15 (startl,startQ) = (11 + 81 min, lz + s2 mzn)

Figure 8 Algorithm to compute the starting location for processor (mq,ms).
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between every two consecutive locations. Both AM and Nezt (analogous to those presented in Section 2)
will be two-dimensional tables, with each entry containing two values, one for each array dimension.

Since an access sequence can be of length kik2 in the worst case, table construction based on sorting this
sequence has the complexity O(kikzlog(k1ks)). In the one-dimensional case we were able to use the fact
that regular section indices form an integer lattice to develop an algorithm that is linear in the size of table.
Furthermore, we used the lattice basis vectors R and L (defined in Section 2) to efficiently generate local
memory addresses at run time and save memory space needed to store the tables.

Vectors R and L correspond to memory gaps of the first and last element in each block of size &k | i.e.,
elements with offsets 0 and k£ — 1 within the block (see Figure 2). By analogy, in the two-dimensional case
we can consider the access gaps from the four corners of a rectangular k; x ks block, i.e., elements with
offset pairs (0,0), (k1 —1,0), (0,k2— 1) and (k1 — 1, ko — 1) within the block. Access gaps for all other array
elements can then be represented as positive integer linear combinations of these vectors. However, while
in the case of simple regular sections the number of distinct memory gaps was bounded by a constant (the
only possible gaps were R,L, and R+ L), with two-dimensional coupled subscripts the number of possible
memory gaps, and thus the number of required linear combinations of basis vectors can be arbitrary large.
Therefore, finding a linear time algorithm for constructing the table of memory gaps in the presence of
coupled subscripts remains an open problem.

A simple, though not as efficient, approach for computing local addresses without tables uses vectors R
and L in each of the two coupled dimensions. Processor (mj,msy) uses the vectors in the first dimension to
skip across array elements that are owned by some of the processors having m; as the first coordinate, and
the vectors in the second dimension to skip across array elements owned by some of the processors having
my as the second coordinate. When an array element, with identical iteration counts in two dimensions and
owned by processor (mg, mg) is found, the assignment is performed.

The techniques presented in this section can be extended to handle coupled subscripts with multiple
induction variables in a manner similar to the way the techniques for single induction variables, presented

in Section 2, were extended to handle multiple induction variables in Section 3.

4.1 Experimental Results

We now compare the performance of different address generation methods in the presence of coupled
subscripts. In addition to the run-time resolution, we compare the two versions of the SPMD code shown
in Figure 9. Figure 9(a) shows the code that uses two-dimensional AM and Nezt tables to generate local
indices for each array access. Code based on separately incrementing array indices in each dimension until the
identical iteration number is reached is shown in Figure 9(b). Due to the space consideration, we only show
the code using the AM, Nezt, and AT tables (the last one contains the iteration gaps between consecutive
array accesses). However, in our experiment, this version was implemented using vectors R and L in both

dimensions, since the intention was to completely eliminate memory overhead.

15



Compute AM and Next Compute AM; 2, AZj 5, and Newtq o

Compute start:s and starts Compute the start; and starts

Compute end; and ends Compute the end; and end:

11 = starty; 12 = startz 11 = starty; 12 = starts

offset; =11 mod k1; offset, = 12 mod ko offset; =11 mod ki; offset, = 12 mod ko

while (i1 < end; and i, < endz) do iter; = iters = (Global(start:) —1)/s:
A(i], 12) = 100.0 while (11 S end1 and ig S endg) do
(i1,82) = (i1, 292) + AM{[offset,, offset,] A(11,12) = 100.0
(offsety, offset,) = Nezt[offset,, offset,] do

endwhile do

i1 = 11 + AM[offset,];
offset; = Nextq[offset,]
iter; = wter, + AL[oﬂsetl];

while (iter; < iters)

while (iter; < iter;) do
i = iz + AMo[offset,];
offset, = Nexta[offset,]
iters = iters + ALz[offsety];

endwhile

while (iter; # iters)
endwhile

(a) Two-dimensional AM table. (b) Two one-dimensional AM tables.

Figure 9 Two versions of the SPMD node code with coupled subscripts.

Table 3 contains performance results for our canonical loop example with coupled subscripts on an 8 x 4
processor grid. In addition to the execution times, for each combination of a block size and a loop stride,
we show the number of processors that are actually performing some array accesses. Since accesses due to
array references with coupled subscripts are relatively sparse, it is quite likely that not all the processors will
participate in the loop execution. Moreover, while we scaled the loop upper bound so that the maximum
number of array accesses per processor is 10,000, not all the processors were accessing exactly 10,000 elements.

These facts had a particularly strong influence on the performance of the run-time resolution. It is very
clear from Table 3 that the run-time resolution performs better as the number of active processors decreases.
Furthermore, the performance is not uniform across different values of loop parameters that result in the
same number of active processors. This is the consequence of the uneven distribution of array accesses among
active processors. While the performance of the method with table lookups is, in essence, proportional to the
maximum number of array accesses per processor, the performance of the run-time resolution is proportional
to the sum of array accesses of all the processors. The performance of the code using vectors (based on the
code presented in Figure 9(b)) lies in between the two extremes. It also degrades with the increase in the
number of active processors, but it does so more gracefully, and is still significantly better than the run-time
resolution.

Although in the worst case the AM table can be of size k1ks and thus incur significant memory overhead,

our experience indicates that this is not very likely to happen in practice. In all our test runs, where block
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|| k1 % ko | (s1,52) | Active procs || AM table | No tables | Run time ||

(1,1) 8 6.6 16.3 337.6

4x4 [ (1,3) 24 6.6 287 639.8

(10, 5) 8 6.4 17.5 333.6

(1,1 8 6.5 16.0 337.5

4x8 [ (1,3) 16 6.5 20.6 4388

(10, 5) 16 6.4 305 629.7

(1,1) 8 6.7 15.9 337.0

8x8 [ (1,3) 24 6.7 32.5 838.3

(10, 5) 8 6.6 7.7 334.8

(1,1) 8 7.1 15.7 335.4

8x16 [ (1,3) 16 6.8 19.2 835.8
(10, 5) 16 6.7 29.6 631.9

(1,1) 8 7.3 15.6 335.4

16 x 16 | (1,3) 24 7.2 29.8 835.8
(10, 5) 8 7.2 16.7 334.3

Table 3 Execution times in milliseconds for different versions of loops with coupled subscripts.

and processor grid sizes were always powers of 2 (which is arguably the most common case), the table size
never exceeded the maximum of k; and ks. Since the array references with coupled subscripts are not as
frequent as those whose subscripts contain single induction variables, and since the method that generates
addresses without using any tables is from 2 to 5 times slower than the table lookup, using the tables in this

case is probably a better choice.

5 Conclusions

Although data-parallel languages, such as High Performance Fortran, are becoming increasingly popular,
many issues about their compilation are not fully resolved. In this paper we have presented efficient tech-
niques for generating local addresses for array references with arbitrary affine subscripts. We have improved
on the previously described table-based address generation scheme [3] in two ways. First, we have shown how
ideas used to develop our linear-time table construction algorithm [10] can be used to generate local addresses
without table lookups, with only insignificant performance degradation. Second, we have extended the ta-
ble lookup method to references with multiple loop induction variables and coupled array subscripts. The
generality of our technique and the efficiency with which different subscripts are handled, as demonstrated
by our extensive experimental results, make it suitable for inclusion in compilers and run-time systems for
HPF-like languages.

Our future work will deal with applying the address computation scheme presented here to generate
communication sets and optimize communication placement. Moreover, the techniques for handling array

references with coupled subscripts will be further investigated in order to improve their effectiveness.
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