Experiences on Data-Parallel
Programming

Terry W. Clark
Reinhard von Hanzleden

Ken Kennedy

CRPC-TR94495-S
December 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Experiences on Data-Parallel Programming

Terry W. Clark Reinhard v. Hanxleden Ken Kennedy
tclark@kacha.chem.uh.edun reinhard@rice.edu kenO@rice.edu
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science
University of Houston Rice University Rice University
Houston, TX 77204 Houston, TX 77251 Houston, TX 77251

December 13, 1994

Abstract To parallelize a scientific application with a data-parallel compiler requires certain structural
properties in the source program, or conversely, the absence of others. We have encountered a number of
difficulties in applying FORTRAN D to GROMOS, a popular dusty-deck program for molecular dynamics,
that probably are neither limited to GROMOS nor do they seem likely to be addressed by improved compiler
technology in the near future. This parallelization effort motivated this correspondence where we present
some guidelines for engineering data-parallel applications that are compatible with FORTRAN D or HiGH
PERFORMANCE FORTRAN compilers. Qur experience with GROMOS suggests a number of points to keep in
mind when developing software that may at some time in its life cycle be parallelized with a data-parallel

compiler.

One concern often not foremost in a scientific programmer’s mind at the outset of software
development is parallelization. Yet, even for scientific applications developed for sequential ex-
ecution, it is not unlikely that someone at sometime will parallelize the software. It turns out,
some programming styles are easier to parallelize than others. Moreover, for programs to yield
to the data-parallel approach of compilers for FORTRAN D [4] or HIGH PERFORMANCE FORTRAN
(HPF) [7], certain structural properties must be present in the software. Elements of a program
style congruous with an HPF compiler include, for example, consistent distribution and use of data
arrays and structured flow of control. It appears that writing such programs from the outset largely
embraces good software engineering techniques (e.g., see [3]). In this correspondence, we discuss
some of these requirements and provide guidelines for engineering data parallel applications to be
compatible with compilers for data-parallel languages. Alternatively, the observations presented
here could also serve as guidelines for making an existing program suitable for data-parallel compi-
lation. In the following, we will first outline some general principles, then illustrate them with short
code examples, and finally give some additional suggestions to facilitate effective data-parallelism.

One underlying idea of data-parallel languages is that the user does not explicitly specify the
parallelism inherent in a program, but instead annotates the program with directives on how to dis-
tribute the data, and lets the compiler work from there. Performance and investment-preserving
independence from environment-specific details are two key objectives. The art of data-parallel
programming might be defined as achieving the former without compromising the latter. For this
correspondence, this also means that while the programmer should understand certain character-
istics of data-parallelism, she or he should not have to develop a style which will have an adverse
effect on code maintainability or efficiency in non-data-parallel environments.

Performance depends on the degree of parallelism and on overheads, such as communication
and synchronization costs. Compilers for distributed memory architectures typically try to achieve
parallelism by distributing loop iterations across processors. The first guideline for designing data-
parallel programs should therefore be:

PROGRAM GoodlwortD PROGRAM Goodlyode
REAL x(100) REAL x(25)
DISTRIBUTE x (BLOCK)

doi=1, 25

do [i] =1, 100 x(i) = ...
x((i]) = ... ENDDO

ENDDO

Figure 1: Simple example loop with matching array access; the FORTRAN D program (left) can be
compiled into a node program (right) with reduced loop bounds (assuming N,,,, = 4). Distributed
array and loop indices are framed.

The flow of control should be structured; e.g., D0-loops are preferable to GOTOs.

Distributing loop iterations is commonly driven by some heuristic for minimizing communication,
such as the owner-computes rule [1] or variations thereof. This heuristic may fail even for incar-
nations of “embarrassingly parallel” algorithm if the program expressing the algorithm obscures
the parallelism by some (perhaps apparently unrelated) means. Even though there are many other
issues crucial for achieving full success, realizing these points and designing program and data
structures accordingly should already go a long way towards good performance for many applica-
tions.
The perhaps most important principle that should guide design decisions is:

Loops and arrays should match.

That is, in computationally intensive code regions, array subscripts and loop indices should be
related to each other in a simple manner, allowing the compiler to derive a loop parallelization
directly from an array distribution. To justify this guideline, let us briefly digress into the workings
of a data-parallel compiler for distributed memory machines, such as the FORTRAN D prototype
at Rice University.

Assume the compiler is given a simple code segment as shown in Figure 1 on the left, Good1pertp.
The FOrRTRAN D compiler will generate a node program Goodlyede, shown in Figure 1 on the right,
which in turn will be compiled by the native compiler of the target machine. This program will
be written in local name space, as opposed to the single, global name space of the FORTRAN D
program. It will contain the instructions for an individual processor, identified by my$p, and it
may contain communication statements. Here we will focus on the distribution of computation;
for a discussion of communication generation and other compilation issues we refer the reader to
other publications [6, 10]. The compiler tries to parallelize the i-loop in Goodlpertp by applying
the owner-computes rule to the distributed array reference, x(i). The owner-computes rule works
fine here, assuming no sequentializing dependences on the rhs of the assignment, since induction
variable i and array subscript i are in a simple relationship — they are identical. The loop and the
array match. The compiler can fully apply the owner-computes rule at compile-time and perform
loop bounds reduction, and assuming that there are N,,,, = 4 processors, each processor will
perform only a quarter of the total number of iterations.

Now consider the program BAD1pertp in Figure 2. Similar to Goodlpertp, the array and the
loop match in size and we can parallelize the loop, assuming again no dependences. However, the
loop index i and the arrays subscript j do not match; the compiler cannot apply loop bounds
reduction, but instead has to apply the owner-computes rule at run-time with a guard. The core of
the computation, which we assume to be the assignment to x(j), will still be executed in parallel,
but scalability is likely to be limited due to the fully replicated loop iteration set.

PROGRAM BAD1rorip PROGRAM BAD1yode
REAL x(100) REAL x(25)
DISTRIBUTE x(BLOCK)

do i =1, 100

do i =1, 100 ji=...
j=... IF ((j-1)/25 .EQ. my$p) THEN
x() = ... x(mod(j-1,25)+1) = ...
ENDDO ENDIF
ENDDO

Figure 2: Example loop not matching the array access; the FORTRAN D program (left) will be
compiled into a node program (right) with full loops and a guard (assuming N, = 4).

PROGRAM Bad2a PROGRAM Bad2b PROGRAM Good?2
REAL x(300) REAL x(300) REAL x(3, 100)
DISTRIBUTE x (BLOCK) DISTRIBUTE x (BLOCK) DISTRIBUTE x(*, BLOCK)
do i =1, 100 i=0 do=1,100
dod=1, 3 do i =1, 100 dod=1, 3
j=3%i+d-2 dod=1, 3 x(d,)=...
x<)=... j=j+1 ENDDO
ENDDO X<> =... ENDDO
ENDDQ ENDDO
ENDDO

Figure 3: FORTRAN D programs with linearized (left) and delinearized (right) array accesses.

In some cases, it will be difficult to establish a simple relationship between loops and sub-
scripts, for example in irregular access patterns of distributed arrays. However, subscript-analysis
complications are often avoidable artifacts of programming styles that obscure compiler analysis
in general, not only in the data-parallel context. For example, consider the two FORTRAN D frag-
ments in Figure 3 (from now on we will omit the FortD subscript in the examples). Bad2a and
Bad2b illustrate the popular practice of linearizing arrays, for example by storing a set of coordi-
nate triplets into a 1-D array. (Such linearizations are used to eliminate a loop nest, facilitating
vectorization of the resulting single loop [8].) For data-parallel programming, linearization often
results in blurring the distinction between distributed and replicated subscript components. For
example, in Bad2a or Bad2b one would typically want to distribute x along the triplets, but keep
each individual triplet on a single processor; i.e., the i loop should be parallelized, while the d loop
should be replicated. This, however, is obscured to the compiler by the way the array is indexed,
and, in Bad2b, by the artificial self-dependence in incrementing the counter j. In the still fairly
clean and simple case of Bad2a and Bad2b one might still be able to teach a compiler to correctly
apply loop bounds reduction to the outer loop; in the general case, however, it is likely that the
compiler will resort to replicating both loops and inserting guards similar to Bad1lyege. It is much
more desirable to clearly reflect the programmers intent by splitting the subscript of x into the
distributed triplet index i and the replicated dimension index d, as shown in Good2. In general, a
rule for making the compiler’s life easier is:

Arrays should not be linearized.

Turning to our experience with parallelizing GrRoOMOS using the FORTRAN D compiler, we
first give a brief introduction into the underlying application for the examples presented here; for

SUBROUTINE NBF_Lin At () SUBROUTINE NBF Delin At () SUBROUTINE NBF Delin Chg()

INTEGER inb(Natom) INTEGER inb(Natom) INTEGER inb(Nchg)
INTEGER jnb(MaxAl1P) INTEGER jnb(Natom,MaxAtomP) INTEGER jnb(Nchg,MaxChgP)
DISTRIBUTE inb(BLOCK) DISTRIBUTE inb(BLOCK) DISTRIBUTE inb(BLOCK)
DISTRIBUTE jnb(BLOCK) DISTRIBUTE jnb(BLOCK,*) DISTRIBUTE jnb(BLOCK,*)
cnt = 0 DO [i] = 1, Natom DO [ii] = 1, Nchg
DO i = 1, Natom DOp =1, inb() DO i = firstAt(ii), lastAt(ii)
DO p =1, inb() j= jnb(,p) DOp =1, inb()
cnt = cnt + 1 ff = nbf _func(i,j) jj = jnb(, p)
j = jnb(fent] £(i) = £(i) + £f DO j = firstAt(jj), lastAt(jj)
ff = nbf_func(i,j) £(3) = £(j) - £f £f = nbf_func(i,j)
(1) = £(i) + £f ENDDO £(i) = £(i) + £f
£(3) = £(j) - £f ENDDO £(j) = £(j) - £f
ENDDO ENDDO
ENDDO ENDDO
ENDDO
ENDDO

Figure 4: NBF kernel with linearized (left) and delinearized (middle) atom-based pair list, and
with delinearized charge-group-based pair list (right). Natom is the number of atoms, MaxA11P the
maximum total number of partners, and MaxAtomP the maximum number of partners per atom.
Nchg is the number of charge groups, and MaxChgP the maximum number of partners per charge
group. firstAt and lastAt give the range of atoms for a charge group.

more details, we refer the reader to the literature [5, 9]. Molecular dynamics (MD) is a classical
mechanics approach typically used to determine the motion of large molecular systems. At the core
of the simulation, a force is calculated for each atom from the analytic derivative of a potential
energy function. This force displaces the atom from its position in the previous time step. The MD
program iterates over some number of time steps in the course of calculating a molecular dynamics
trajectory. Since each atom interacts with other atoms in some spatial neighborhood, dependences
arise between atoms in so far as the potential energy function for each atom is evaluated with
the positions of surrounding atoms from the previous time step. A pair list indicating which
atoms interact with each other is computed every ¢ steps, where { is typically between 10 and
50. Since there are typically tens to hundreds of interaction partners for each atom, the data
structures representing the pair list tend to be the most space consuming in the program. Within
a time step the computation for each atom is independent from the computation for all other
atoms and therefore inherently parallel. We base this report on the replicated approach, where we
distribute the pairlist data structures, inb and jnb, while replicating the other principle arrays,
which includes the coordinate and velocity arrays, x and v, and the forces, £. For reports on more
aggressive distributions we refer the interested reader to the literature [2].

The non-bonded force (NBF') constitutes the main component of the molecular dynamics com-
putation performed by GromMos and other MD programs. Since a force is computed for each
atom, one natural implementation of the NBF algorithm loops over atoms and their partners,
computes the force between them, and accumulates it according to Newton’s Third Law, as shown
in NBF Lin At () in Figure 4, a (highly abstracted) subroutine in GRoM0s. However, the compiler
will fail to parallelize this loop nest. The reason is the loop-carried dependence on cnt, which
is similar to the dependence on j in Bad2b (Figure 3). Here, however, even advanced compiler
analysis cannot identify a simple relationship between the array subscript cnt and the loop indices
i and p. The problem is that in order to retrieve the list of partners for some atom i, one has to
calculate the correct offset into jnb, which in turn depends on inb(i’) for 1 < i’ < i, i.e., one has

SUBROUTINE Pairs Delin At () SUBROUTINE Pairs Delin_Chg()

INTEGER inb(Natom), jnb(Natom, MaxAtomP) INTEGER inb(Nchg), jnb(Nchg,MaxChgP)
DISTRIBUTE inb(BLOCK), jnb(BLOCK,*) DISTRIBUTE inb(BLOCK), jnb(BLOCK,*)
DO ii = 1, Nchg DO = 1, Nchg
DO jj = ii + 1, Nchg cnt =0
IF (isPair func(ii, jj)) THEN DO jj = ii + 1, Nchg
isPair(jj) = .TRUE. IF (isPair func(ii, jj)) THEN
ENDIF cnt = cnt + 1
ENDDO jnb(, cnt) = jj
ENDIF
DO i = firstAt(ii), lastAt(ii) ENDDO
cnt.=. 0 . inb() = cnt
DO jj = ii + 1, Nchg ENDDO

IF (isPair(jj)) THEN
DO j = firstAt(jj), lastAt(jj)
cnt = cnt + 1

jnb(, cnt) = j

ENDDO
ENDIF
ENDDO
inb() = cnt
ENDDO

ENDDO

Figure 5: Pair-list generation with delinearized atom-based pair list (left) and charge-group-based
pair list (right).

to iterate through all previous jnb segments. The advantage of linearizing jnb this way is space
conservation; instead of having to reserve an equal amount of storage for each atom’s pairlist, we
only need to reserve enough storage to accommodate the sum of partners. However, the storage
savings in distributing jnb across processors would be much higher, and to do so requires a delin-
earization as shown in NBF Delin At () in Figure 4. This will also allow parallelization, since now
the distributed and replicated array dimensions are separated, and they directly correspond to the
surrounding parallel and sequential loops.

The force calculation in NBF Delin_At() now corresponds to the pattern in Good2, so, in it-
self, it can easily be parallelized. However, we must also consider the construction of the pair
list: Pairs Delin At() in Figure 5 shows a simplified version of the GROMOS routine, with jnb
delinearized according to NBF Delin At (). It turns out that the criterion for including pairs of
atoms in the pairlist actually depends on which charge group each atom belongs to, where a charge
group is a collection of atoms treated collectively by the MD model. (Two atoms are considered
“close” if their respective charge groups are “close.”) Pairs Delin At () implements this by loop-
ing over charge groups ii, deciding for each charge group which other charge groups jj are close
to it (and storing this in an array isPair), and then looping over the atoms i of charge group
ii and constructing inb(i) and jnb(i, 1:inb(i)) accordingly. Distributed and replicated array
dimensions are cleanly separated; however, we again have unmatched loop and data structures.
The distributed dimensions of inb and jnb are both indexed by atom index, whereas the enclos-
ing loops iterate over charge groups (ii) and atoms within each charge group (i). The problem
is that the granularity of the pair list computation is not the atom, but the charge group. We
therefore switch to a charge-group-based representation, as in Pairs Delin Chg(); this not only
allows parallelization by loop bounds reduction, but also preserves memory.! To finalize the data-

Gromos actually already provides two versions of the pair-list construction and corresponding NBF calculation,

parallelization (at the level presented here), we now have to also modify the NBF calculation to
use the charge-group-based pair list. The result is NBF_Delin_Chg() shown in Figure 4.

We have stressed the importance of matching array and loop structures for data-parallel pro-
gramming. However, there are many other issues influencing the quality of a compiler’s analysis
and the performance of the resulting code. We list, without further elaboration, a few points which
may be of particular significance to dusty-decks.

Do not use distributed arrays as work space for other, non-distributed (or differently
distributed) data.

Try to keep unrelated computations separate.

Keep array uses consistent across procedure boundaries.

As a general rule of thumb, one may say that programs that are hard to parallelize by hand will
be even harder to parallelize for the compiler. That is not to say that a compiler can be of little use
for parallelization. What appears to have hampered a breakthrough-success of parallel computation
so far is mostly the amount of tedious, error-prone, machine-specific, low-level work that usually
comes along with it (name-space translation, communication generation, synchronization, etc.),
not the high-level task of extracting exploitable parallelism. While data-parallel compilers promise
only limited help in the latter, they should certainly be able to assist in the former. This note
intends to help programmers harness this power to its fullest potential.

References

[1] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors. Journal of Super-
computing, 2:151-169, October 1988.

[2] T.W. Clark, R. v. Hanxleden, J. A. McCammon, and L. R. Scott. Parallelization using spatial decomposition for
molecular dynamics. In Scalable High Performance Computing Conference, Knoxville, TN, May 1994. Available
via anonymous ftp from softlib.rice.edu as pub/CRPC-TRs/reports/CRPC-TR93356-S.

[3] E. W. Dijkstra. Go to statement considered harmful. Communications of the ACM, 11(3):147-148, March 1968.

[4] G. C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng, and M. Wu. Fortran D language
specification. Technical Report TR90-141, Dept. of Computer Science, Rice University, December 1990. Revised
April, 1991.

[5] W.F. van Gunsteren and H. J. C. Berendsen. GROMOS: GROningen MOlecular Simulation software. Technical
report, Laboratory of Physical Chemistry, University of Groningen, Nijenborgh, The Netherlands, 1988.

[6] R. v. Hanxleden. Compiler Support for Machine-Independent Parallelization of Irregular Problems.
PhD thesis, Rice University, December 1994. Available via anonymous ftp from softlib.rice.edu as
pub/CRPC-TRs/reports/CRPC-TR94494-S.

[7] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance Fortran Handbook.
The MIT Press, Cambridge, MA, 1994.

[8] L.M. Liebrock and K. Kennedy. Parallelization of linearized application in Fortran D. In Proceedings of the 8th
International Parallel Processing Symposium, New York, NY, April 1994.

[9] J. A. McCammon. Computer-aided molecular design. Science, 238:486-491, October 1987.
[10] C. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines. PhD thesis, Rice

University, January 1993.

an atom-based version and a charge-group-based one; However, both versions use linearized pair-list representations.

