Compiler Support for
Machine-Independent
Parallelization of Irregular

Problems
Reinhard von Hanzleden

CRPC-TR94494-S
December 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

RICE UNIVERSITY
Compiler Support for Machine-Independent

Parallelization of Irregular Problems
by
Reinhard von Hanxleden
A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy
APPROVED, THESIS COMMITTEE:

Ken Kennedy, Noah Harding Professor, Chair
Department of Computer Science
Rice University

John Mellor-Crummey, Faculty Fellow
Department of Computer Science
Rice University

Mary Wheeler, Noah Harding Professor
Department of Computational and Applied
Mathematics

Rice University

Charles Koelbel, Research Scientist
Center for Research on Parallel Computation
Rice University

Ridgway Scott, Professor of
Computer Science and of Mathematics
University of Houston

Houston, Texas

December, 1994

Compiler Support for Machine-Independent
Parallelization of Irregular Problems

Reinhard von Hanxleden

Abstract

Data-parallel languages, such as HIGH PERFORMANCE FORTRAN or FORTRAN D,
provide a machine-independent data-parallel programming paradigm in which the
applications programmer uses a dialect of a sequential language annotated with high-
level data-distribution directives. Identifying parallelism in data-parallel applications
typically is straightforward, but making efficient use of this parallelism for irregular
applications, such as molecular dynamics or unstructured meshes, is a challenge due
to the limited compile-time knowledge about data access patterns.

This dissertation establishes the thesis that spatial locality of the underlying prob-
lems can be used as a basis of compiler support for parallelizing such applications.
The work done for supporting this thesis and for parallelizing applications in general
can be divided into three parts, which correspond to different aspects of paralleliz-
ing compilers for different architectures. Value-based mappings express the spatial
locality characteristics of an application and assist the compiler in computing a dis-
tribution with both a balanced computational workload and high data access local-
ity. The GIVE-N-TAKE data-flow framework is an extension of Partial Redundancy
Elimination particularly well suited to advanced code-placement tasks such as com-
munication generation. Loop flattening is a code transformation to overcome SIMD
specific control flow limitations when executing nested loops with varying inner loop
bounds, which are typical for irregular problems.

To illustrate this thesis, the FORTRAN 77D compiler at Rice University has been
extended with value-based alignments and distributions, a communication placement
mechanism based on the GIVE-N-TAKE data-flow framework, and general infras-
tructure for handling irregular subscripts. This dissertation describes the techniques
involved in these extensions and provides experimental results for various irregular

applications compiled for a distributed-memory architecture.

Acknowledgments

This dissertation and the excellent research environment in which the underlying
work was conducted would not exist without my advisor, Ken Kennedy. He was most
supportive professionally and understanding in personal issues, and he gave advice
when it counted. Ridgway Scott, whose seminar on parallel computation at Penn
State got me in touch with this matter originally, not only was excellent in advising
my M.Sc. thesis, along with my academic advisor, Georg Schnitger; but he and his
family (and his pool) convinced me that Houston, Texas, is indeed a good place to
live. Together with John Mellor-Crummey, Chuck Koelbel, and Mary Wheeler they
constituted a critical, helpful, and uniquely stimulating thesis committee. 1 would
also like to thank IBM corp. for providing me with a generous fellowship, and the
National Aeronautics and Space Administration and the National Science Foundation,
who supported this work under grant #ASC-9349459.

Terry Clark was the one who provided me with most insights on real-world sci-
entific programs and proved to be an excellent collaborator. Joel Saltz and Raja
Das were inspiring partners for discussing the parallelization of irregular applications
and, together with other members of their group, were of critical importance for the
FORTRAN D implementation efforts. Special thanks also go to Seema Hiranandani
and Chau-Wen Tseng, who developed the original FORTRAN D compiler, to Paul
Havlak, whose symbolic analysis proved extremely valuable, and to the other D
System developers, who made this implementation possible. Scott Baden, whose
thesis raised my first interest in irregular applications, has since then continuously
influenced my thinking on this matter.

My cheerful office mates Nat McIntosh and Uli Kremer never let me down; Nat
in particular gave countless insights along the path to Unix wisdom. Kevin Cureton
saved the world whenever it was broken and proved an able master of monster make-
files. Debbie Campbell mercifully took up the cause of getting my technical writing
in shape. Our staff was always competent and extremely helpful; in particular, Ivy
Jorgensen, Ken Marshall, and Sean Starke never tired of answering questions and

keeping things running smoothly.

v

All of these people have not only improved the research environment, but also
enriched life at Rice in general. However, there is also a long list of other characters
I am indebted to for making graduate school the experience it has been. A very
incomplete subset includes Ervan, organizer of canoeing, stargazing, tubing, kayaking,
hiking, sailing and road trips; Rosana and Pete, who will hopefully keep up the
brewing in DC; Steph and Jerry, happy hot-tub hosts whenever it got chilly; Don,
whose bike was very difficult to hang on to; Saniya and Karim, whose Tunisian food
was simply the best; Gregor and Kay, fine hiking partners on those winter treks in
northern Germany; and David, who was not discouraged by tents ripping away if we
“were lucky with the weather.” And there is, of course, the Valhalla crew.

My deepest gratitude, however, is reserved for those to whom this thesis is dedi-

cated: my parents and my wife.

Fur Imke, Hildegard und Volkhard

Contents

Abstract

Acknowledgments

List of Illustrations

Introduction

1.1
1.2

1.3

Irregular Problems oo oo
Previous Results o oo
1.2.1 The inspector-executor paradigm
1.2.2 Compilation systems for irregular problems
1.2.3 Mapping arrays and mapping functions
1.2.4 Value-based mappings
1.2.5 Communication analysis
1.2.6 Evaluation 0000 o
The Thesis o o

Value-Based Mappings

2.1

2.2

2.3

Value-Based Locality
2.1.1 Molecular dynamics - An example for value-based distributions
2.1.2 Unstructured meshes - An example for value-based alignments
Implications of Value-Based Mappings
2.2.1 Specification and state00
2.2.2 Storing value-based distributed data
2.2.3 Translating name spaces L.
2.2.4 Communication generation
2.2.5 A bootstrapping problemo
The Compiler’s Perspective
2.3.1 The input language oL
2.3.2 When to distribute and align

i

11

B~ W N = =

-~ =~ O Oy Ot

3 Balanced Code Placement with Give-N-Take

3.1 Partial Redundancy Elimination
3.2 A Code Placement Example Problem: Communication Generation . .
3.2.1 Themodel
3.2.2 Previousworko
3.3 The Give-N-Take Framework
3.3.1 Communication placement with Give-N-Take.
3.3.2 Correctness and optimality
3.3.3 Zero-trip loop constructso
3.3.4 The Interval-Flow Graph
3.3.5 Traversal orders and neighbor relations
3.4 Give-N-Take Equations
3.4.1 Initial variables 0oL oo o
3.4.2 Propagating consumption
3.4.3 Blocking consumption 0 0oL
3.4.4 Placing production oL 0oL
3.4.5 Result variables 00000
3.5 Solving the Equations oo
3.5.1 The constraints Lo oo
3.5.2 Thealgorithm o oo
3.5.3 BEFORE vs. AFTER problems
3.5.4 A note on syntheticnodes L.

3.6 Summary

Irregular Computations on SIMD architectures

4.1 Languageso

4.2 Example of Loop Flattening

4.3 General Loop Flattening
4.3.1 Loop normalization
4.3.2 The transformation 0oL
4.3.3 Optimizations Lo o

4.4 Loop Flattening from the Compiler’s Perspective

Implementation Experience

5.1 Overview

Vil

5.2 The Analysis Phase o L 72
5.2.1 Symbolic analysiso 0oL 72

5.2.2 The regular part of FORTRAN D compiler 76
5.2.3 The data-flow universe for communication analysis 76
5.2.4 Communication analysis 77

5.2.5 Inspectors L 81
5.2.6 Executors 81

5.3 The Code-Generation Phase 82
5.3.1 The regular compiler 82
5.3.2 Value-based mappings L. 83
5.3.3 Trace arrays Lo 84
5.3.4 Inspectors 85
5.3.5 Communication statements 86

5.3.6 Reduction initialization 000 87
5.3.7 The actual computation 88
5.3.8 Executors 88
5.3.9 Dynamically allocated arrays 89
5.3.10 Final notes on the compiler output 90

5.4 An Object-Oriented Design 94
541 Overview 95
54.2 Theclasses Lo 95

6 Experimental Results 102
6.1 Value- vs. Index-Based Mappings 102
6.1.1 The molecular dynamics kernel 103
6.1.2 The unstructured mesh kernel 106
6.1.3 A sparse matrix computation 107
6.1.4 Full Gromos 109

6.2 The Efficacy of Loop Flattening 111
6.2.1 The application oo 111
6.2.2 The hardware used L. 112
6.2.3 Implementation experience L. 115
6.2.4 Theinputdatao L 119
6.2.5 Theresultso 119
6.2.6 Interpretation oL 119

7 Background and Related Work

7.1

7.2

7.3
7.4

Tools . . . o
7.1.1 Tools based on spatial decomposition
7.1.2 Tools based on access patterns
The Compiler
7.2.1 Parallel compilation systems,
722 FORTRAN D
The Operating Systemo L.
The Hardware
74.1 Lowlatency
7.4.2 General routing facilities 0L
7.4.3 Decoupling of control flow on SIMD architectures

7.4.4 Fast scan operations L L.

8 Summary & Open Issues

Bibliography

A Proofs of Correctness for GIVE-N-TAKE

Al

A2

Proof of correctness of the data-flow equations
A1l Balance
A1.2 Safety
A1.3 Sufficiencyo

Proof of correctness of the algorithm

X

124
124
124
126
127
127
127
128
129
129
129
129
130

131

134

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.4

3.5

3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

Illustrations

Sequential version of the Non-Bonded Force kernel nbf.
BLOCK mapping of an SOD system.
FORTRAN D version of the Non-Bonded Force kernel.
Value-based mapping of atoms along just one dimension.
Value-based mapping of atoms along all three dimensions.
FORTRAN D kernel of a sweep over the edges of an unstructured mesh.
Example mesh with four nodes and five edges.

Syntax of the value-based mapping directive.

An instance of the communication placement problem.
Possible communication placements..
A potentially illegal instance of the communication placement problem.
Example of a code with local definitions of potentially non-owned
data (left), and a corresponding placement of global WRITEs (right).
Left: unbalanced production. Right: possible solution obeying
correctness criterion C1.o
Left: unsafe production. Right: possible solution obeying C2.

Left: insufficient production. Right: possible solution obeying C3. . .
Left: redundant production. Right: possible solution obeying O1.
Left: too many producers. Right: possible solution obeying O2.

Left: too late production. Right: possible solution obeying O3.
Left: too early production. Right: possible solution obeying O3'. . . .
Examplecode.
Corresponding flow graph. o 0oL
GIVE-N-TAKE equations.
The code annotated with communication statements.
Algorithm GiveNTake computing an EAGER/LAZY code placement. .

Flow graph containing a jump into aloop.

27
28
30

35
37
37
37
38

42
46
52
o4
26

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13

5.1
5.2
2.3
5.4

3.5
2.6

5.7

5.8

5.9

5.10
5.11

5.12
5.13

Original loop nest Fzample.,
Example in FT7D. 00 o0 o
Example in FTTpypmp. - o 0 o 0 0 0 0 o o o
MIMD execution trace for Ezample loop.
Example in FOOgipyp. .« . .« o o o o oo
Execution trace for unflattened example loop.
Ezxample in flattened F90g;yp. o o o oo
Generic loop nest GenNest (left) and corresponding Ezample (right).

GenNest/ Example, with guard variables.
GenNest/ Example, after flattening.
Operational proof of equivalence of unflattened GenNest B, flattened

GenNest C, and optimized GenNest D.
GenNest/ Ezxample, flattened and optimized.
GenNest/ Example after further optimization.

Slightly simplified output of FORTRAN D compiler for nbf.

Slightly simplified output of FORTRAN D compiler for nbf, continued.

Flow graph G of nbf program.
Description of the GIVE-N-TAKE-universe used for communication
placement.
The information that is computed for each node n e N.
Initializations of TAKE;,;;, STEAL;,;;, and GIVE;,;; for the placement
of READ, WRITE, and ADD communication operations.
The nbf program after compilation by the FORTRAN D compiler,
Part Tof 3. o
The nbf program after compilation by the FORTRAN D compiler,
Part 20t 3.
The nbf program after compilation by the FORTRAN D compiler,
Part 3ot 3.
Main loop nest of the mesh kernel.
Main loop nest of mesh kernel, output of FORTRAN D compiler with
communication and inspection body.
C++ classes for constructing the communication data-flow universe. .
C++ classes for placing communication statements, inspectors, and

executors. L e e

xi

61
61
61
62
62
63
64

66
66

68

68

69

73

74

78

79

80

91

92

93
96

97
98

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

6.16

xil

The number of communicated data for nbf. 105
The fraction of maximum floating point operations for nbf. 105
The timing breakdown for nbf. L. 106
The speedup for nbf.o 106
The number of communicated data for the Mesh Code. 108
The speedup for the Mesh Code 108
NAS CGM benchmark, subroutine matvec(). 108
Performance of FORTRAN D for the NAS CGM benchmark. 110
Performance of GROMOS in FORTRAN D. 110
F77 version of the non-bonded force calculation nbf. 112
FI90sp version of mbf. 113
Flattened F90s;pp versionof mbf. 113
CMFORTRAN/MPFORTRAN version of flattened nbf. 116
CMFORTRAN/MPFORTRAN version of unflattened nbf. | 118
Maximum and average number of non-bonded force interaction

partners per atom.o Lo 120

Performance results for the CM-2 and the DECmpp 12000. 121

Chapter 1

Introduction

Data-parallel languages, such as HIGH PERFORMANCE FORTRAN (HPF) [KLST94]
and FORTRAN D [FHK*90], allow for a “machine independent parallel programming
style,” in which the applications programmer uses a dialect of a sequential language
and annotates it with high-level data distribution information. From this annotated
program, data-parallel compilers will generate codes in different native Fortran di-
alects for different parallel architectures. The target architectures of these compil-
ers include both shared- and distributed-memory architectures and both MIMD and
SIMD machines. The overall goal for the code generated by the data-parallel com-
piler is to have a performance which is, for most applications, relatively close to the
performance of hand-written native code.

Section 7.2.2 briefly describes the main concepts of the FORTRAN D language. A
prototype FORTRAN D compiler targeting distributed-memory architectures has had
considerable success with regular problems [HHKT92, HKK*91, HKT91, HKT92b,
Tse93]. The goal of this dissertation is to extend the applicability of data-parallel

compilers into the domain of irregular problems.

1.1 Irregular Problems

The definition of when an application is irregular varies:

e A physicist might classify a computational problem by the degree of geometric
simplicity and the variance of density of the underlying physical problem. An
example of a regular problem under this metric is the calculation of a simple
wave equation for a homogeneous rectangular problem domain, whereas map-
ping out the gravity potential for an expanding galaxy is certainly of irregular

nature.

e An applied mathematician who sees the mathematical description of a problem

may consider the sparsity of the data describing a particular instance of the

problem. Typical examples are finite-difference methods, which have a dense
(regular) description, vs. finite-element methods, whose description is sparse

due to the varying element sizes.

e A computer scientist is typically interested in the complexity of the data struc-
tures and access mechanisms needed to efficiently solve a problem; here we
say “efficiently” because even irregular problems can usually be captured by
very simple data structures, but not without wasting memory and/or pro-
cessing power. Simple arrays, accessed directly, are typical for regular prob-
lems, whereas irregular applications may employ arrays with indirection vectors,

pointers, linked lists, or quad trees, for example [SLY90].

We consider a problem to be irregular if its data access patterns are hard to analyze
at compile time; i.e., there is no obvious, simple parallelization and data distribution
that gives good speedups and makes efficient use of processing power and the mem-
ory hierarchy. With increasing processor power opening the door to solving scientific
problems that were previously impractical to solve (“Grand Challenges”), the relative
importance of the already widespread irregular applications is expected to increase
even further. Examples for areas of high interest are molecular dynamics, galaxy sim-
ulation, gene decoding, climate modeling, and computational fluid dynamics. Typical

difficulties that arise from parallelizing irregular problems are summarized below:

Difficulty 1 Poor load balance, for example when modeling a rapidly
changing physical system.

Difficulty 2 Lack of compile-time knowledge about where and which

data have to be communicated, for example in Monte-Carlo processes.

Difficulty 3 Limited locality, for example when computing long-range

interactions between particles.
Difficulty 4 Large communication requirements, for example when sim-

ulating many timesteps of a relatively small, but dynamic system.

1.2 Previous Results

The compiler support level is the focus of this thesis. A principal reason for developing

powerful compilers is to shift responsibilities for tedious low-level details away from

the programmer. This is typically associated with a tradeoff between abstraction and
performance, which is unfortunate but can be justified to some degree. However,
there also seems to be a fine line between a compiler being powerful and helpful, for
example by assisting the programmer in dealing with machine-specific details, and
a compiler trying to be too smart and getting in the way of the programmer. The
virtual-machine model used by CM FORTRAN [BHMS91] can be seen as a typical
example of the latter [Chr91], as explained in more detail in Chapter 4.

A programmer should not have to make this tradeoff when choosing a compiler,
especially in a performance-oriented field such as scientific parallel computing. A com-
piler should try to assist the user in making some decisions, but it should also provide
the user with convenient mechanisms to guide or override the compiler; such mech-
anisms are particularly important considering that parallelizing compiler technology
is still in its infancy. Citing from a study about parallelizing different applications
(including a molecular dynamics simulation) using the FX/FORTRAN parallelizing
compiler [SHI1]:

It is worth noting that the available directives were sometimes found to
be restrictive or incapable of expressing the exact information we wished
to convey to the compiler.

This observation has led to a trend away from completely automatic parallelizing
compilers, which try to extract parallelism from a sequential program without any user
assistance, towards the development of more annotation-oriented languages, which
try to give the user a convenient interface for indicating parallelism. This approach
is similar to the power steering paradigm [KMT91] used for loop transformations,
where the compiler cannot always pick the best transformation, but it assists the
user by (conservatively) testing correctness and performing the actual rewriting work.
Developing annotations for conveying information to the compiler at a high level is a

part of this dissertation.

1.2.1 The inspector-executor paradigm

An important concept associated with communication optimization for applications
using irregular array subscripts is the inspector-executor paradigm [MSST88, KMV90,
KMSB90, WSBH91]. A loop that contains indirect accesses to a distributed array is

processed in four steps:

1. The inspector runs through the loop and only records which array elements are
accessed, without doing the actual computation. Communication schedules are
computed that satisfy the communication requirements induced by these access

patterns.

2. A gather operation fetches all referenced off-processor data from their owners

and buffers them locally.
3. The executor runs through the loop and performs the computation.

4. A scatter writes all off-processor data that have been defined in the loop back

to their owners.

The inspector-executor paradigm has been shown to be very effective under cer-

tain circumstances and recently has been extended to general patterns of control

flow [DSvH93, Das94].

1.2.2 Compilation systems for irregular problems

Projects that have aimed at least to some degree towards compiler support for par-

allelizing irregular problems are the following.

Kali

Kartr [KMV90, MV90, KM91] is the first compiler system that supports both regu-
lar and irregular computations on MIMD distributed-memory machines. Programs
written for KALI must specify a virtual processor array and assign distributed arrays
to BLOCK, CYCLIC, or user-specified decompositions. Instead of deriving a compu-
tational decomposition from the data decomposition, KALI requires that the pro-
grammer annotates each parallel loop with an ON clause that maps loop iterations
onto the processor array. Communication is then generated automatically based on
the ON clause and data decompositions. An inspector/executor strategy as described
in Section 1.2.1 is used for run-time preprocessing of communication for irregularly
distributed arrays [KMSB90]. Major differences between KALI and FORTRAN D in-
clude KALI’s mandatory ON clauses for parallel loops and FORTRAN D’s support for

alignment, collective communication, and dynamic decomposition.

ARF

ARF is another compiler based on the inspector-executor paradigm. ARF is designed
to interface FORTRAN application programs with the PARTI run-time routines de-
scribed in Section 7.1.2 [WSHB9I1]. It supports BLOCK, CYCLIC, and user-defined ir-
regular decompositions. The goal of ARF is to demonstrate that inspector/executors

based on PARTI primitives can be automatically generated by the compiler.

Fortran S

FORTRAN S [BKP93] is a variation on FORTRAN 77 that contains directives for ex-
plicit parallelism. Conditioned Iterations Loops [HPE94] amortize the cost of irregular
data accesses on distributed shared memory machines by first inspecting each itera-
tion of a loop on whether a processor owns the page of data associated with it, and

then looping explicitly over these iterations.

1.2.3 Mapping arrays and mapping functions

To specify irregular mappings in a data-parallel context, index-based mapping ar-
rays [WSBH91] or mapping functions [CMZ92] have been proposed. However, such
arrays or functions that explicitly map indices to processors have to be provided by
the programmer, even though she or he may not be interested in what exactly these
mappings look like.

Another alternative is to replicate the data and distribute just the computation
itself and combine results at the end. This approach has the further advantage of
simplicity and robustness, and for relatively small problem sizes and numbers of pro-
cessors it may actually result in satisfactory performance [CM90]. However, one of the
main advantages of distributed-memory machines, scalability to large problem and
machine sizes, has to be compromised under this approach. Alternatively, one may
distribute the data in a way that considers the actual data dependences specific to
their application [CHMS94]. These “irregular” mappings are typically harder to de-
bug and manage than regular mappings and present an additional level of complexity

beyond general message-passing style programming.

1.2.4 Value-based mappings

Value-based distributions were initially proposed as an enhancement to FORTRAN
77D [Han92]. A variant of it, based on a GeoCoL (Geometrical, Connectivity and/or
Load) data structure, has since then been implemented in a FORTRAN 90D prototype
compiler by Ponnusamy et al. [PSC93a, PSC*T93b]. However, the GeoCoL. structure
still has to be managed explicitly by the programmer.

1.2.5 Communication analysis

Determining communication requirements and satisfying them efficiently is critical
for any parallel program running on a distributed-memory machine. Eliminating
redundant communication, message blocking and hoisting, and hiding communication
delays are important optimizations, all of which are particularly difficult to perform
for irregular problems. Our strategy for effective communication placement is based
on an extensive data-flow framework.

Data-flow analysis is a common technique for reasoning at compile time about the
run-time behavior of the program concerning variable definitions and uses. The bulk
of the work in this field has treated all variables as scalars, resulting in a very conser-
vative analysis for array variables. More precise methods are based on representations
of array subsets, such as data access descriptors [Bal90] or regular sections [HK91].

The W2 compiler [GS90] for the Warp multiprocessor gathers information such as
the set of definitions reaching a basic block to exploit the fine-grain parallelism offered
by the highly pipelined functional units. It is based on interval analysis [Al170, CocT0]
and computes information with array region granularity.

Granston and Veidenbaum combine flow and dependence analysis to detect re-
dundant global memory accesses in parallelized and vectorized codes [GV91]. They
assume that the program is already annotated with READ/WRITE operations. Their
technique tries to eliminate these operations where possible, also across loop nests
and in the presence of conditionals.

What appeared to be lacking so far is a general approach towards analyzing the
communication needs of a given program and determining when communication state-
ments can be combined and hoisted. This dissertation contributes a data-flow frame-
work which provides this analysis and furthermore gives specific treatment for the

access patterns induced by irregular applications (see Chapter 3).

1.2.6 Evaluation

The area of compiling regular applications onto distributed-memory machines has
become very active, and much progress has been made. The formation of the HiGH
PERFORMANCE FORTRAN Forum, an ongoing standardization effort for commercial
parallel FORTRAN compilers, is certainly an indication for this progress. HPF derives
many of its underlying concepts from FORTRAN D, which is the base language chosen
for the extensions proposed here, and other languages, such as VIENNA FORTRAN
[BCZ92].

The body of work that focuses on irregular applications is much smaller. In
particular, there are few attempts to directly exploit the characteristics of underly-
ing applications (such as the positions of atoms in a protein); previous approaches
are commonly based on access patterns (such as a pairlist directly indicating the
interaction partners for each atom) and try to determine data decompositions and
communication optimizations after the access patterns of the program have been
determined.

A compiler cannot reasonably be expected to derive all locality aspects of the
application underlying a given program. However, there appears to be a considerable
potential for optimizations if the user has a convenient way to express locality infor-
mation to the compiler. The main objectives of this dissertation are the design and
evaluation of language extensions that provide such an interface and the development

of the compiler analysis necessary to support these extensions.

1.3 The Thesis

The thesis of this dissertation is the following:

It is feasible and profitable to provide compiler support for the paralleliza-
tion of scientific applications of an irreqular nature to directly exploit the
spatial locality of the underlying problem. An important component of
this compiler support is the concept of value-based mappings which are
derived from snapshots of the spatial configuration of the application. In
combination with the distribution and alignment mechanisms provided in
data-parallel languages such as FORTRAN D, wvalue-based mappings are
a practical and convenient handle for expressing both spatial locality and
data interdependence.

Here, as in the rest of this dissertation, the term spatial locality refers to the physical

locality in the problem domain of the application (as opposed to locality of reference

in an array, for example). Furthermore, the term data interdependence is used in a
high-level sense, such as “the force between two particles depends on their distance”
(as opposed to the field of dependence analysis which derives statement-ordering
constraints based on definitions and uses of the same variables).

The goal for this dissertation is to validate this thesis and to show its effectiveness
for handling irregular applications by extending the support for irregular problems
within the FORTRAN D framework.

The rest of this thesis is organized as follows. Chapter 2 introduces value-based
mappings, which are an extension of FORTRAN D to express spatial locality when
distributing data across processors. Chapter 3 describes GIVE-N-TAKE, a code place-
ment framework which the FORTRAN D compiler uses to place communication state-
ments. Chapter 4 addresses some SIMD-specific issues when parallelizing irregular
applications and develops the loop-flattening transformation. Chapter 5 describes
practical aspects of the FORTRAN D implementation, followed by experimental re-
sults in Chapter 6. Chapter 7 provides a more comprehensive treatment of background
and related work. Chapter 8 presents conclusions, open problems, and future work.
In addition, Appendix A proves the correctness of the GIVE-N-TAKE framework from
Chapter 3.

He was to leave inhabited districts behind

and begin a trek tailor-made for disaster,

given his propensity for getting lost at the best of times.

His guides, on taking their leave,

cheerfully advised him to recite the sacred texts from time to time

to avoid being eaten by snow leopards.

— Scott Berry (A Stranger in Tibet — The Adventures of a Zen Monk)

Chapter 2

Value-Based Mappings

Let us assume that the value assigned to some array element a(i) depends on some
other array element b(j). In a regular problem, there will typically be some simple
relationship between ¢ and j; for example, they may be related to each other via
a linear function known at compile time. This usually implies that at least this
dependence can be satisfied, with little or no communication, when a and b are
distributed by first partitioning their index spaces in some regular fashion among
processors and then aligning them to each other in a certain way. We will refer to
this characteristic as index-based locality. Exactly how arrays should be mapped in
the presence of index-based locality is by no means trivial and still an active field of
research [KMCKC93]. However, one can generally assume that only regular mappings
(such as BLOCK, CYCLIC, or BLOCK_CYCLIC) and remappings need to be considered.
For irregular problems, this assumption cannot be made. Here subscripts ¢ and j
may each be determined by some complicated function or an array lookup, whose
outcome is unknown at compile time. Furthermore, even if the compiler knew the
values of the s and js, there would often still be no way to achieve good locality
(i.e., low communication requirements) via regular, index-oriented mappings. For
example, if ¢ and j are different vertices in a mesh, then a(z) and b(j) might depend
on each other if 7 and j are linked together by an edge. Most meshes number their
vertices in a way that does not directly reflect their topology; i.e., it is hard to predict
whether two vertices are linked together by just looking at their indices. Therefore,
distributing mesh points and the computation associated with them across processors
by dividing their index space in some regular fashion typically results in many off-
processor accesses; i.e., if a processor is assigned some a(7) and therefore has to know
the value of b(j), chances are high that b(j) will be on a different processor. The
potential speedup gained from distributing data and computation across processors is
likely to be lost by exceedingly high communication costs when using simple mapping

schemes.

10

The fact that the vertex numbering does not reflect the mesh topology is an
example of poor index locality within a data structure, which we consider a data
distribution problem. However, we may also have bad locality across data structures.
Revisiting the mesh example, we are typically operating on vertices and edges, which
have a certain interrelationship (each edge has two particular vertices as end points).
This relationship can usually not be determined from the node and edge numbering.
However, it would generally be advantageous if the data associated with an edge
would be stored on the same processor as the data associated with its end points; we
consider this a data alignment problem.

Fortunately, many scientific applications lacking any index-based locality that a
compiler might take advantage of do offer another kind of locality, which we will refer
to as value-based locality. This kind of locality, which will be introduced in more detail
in the next section, naturally lends itself to value-based mappings. These mappings
can be used to improve locality and also to increase load balance.

The rest of this chapter is organized as follows. Section 2.1 introduces value-based
locality and illustrates the use of value-based mappings with kernels taken from a
molecular dynamics code and an unstructured mesh application. (Experimental re-
sults obtained for these kernels are contained in Section 6.1.) Section 2.2 lists the
implications of value-based mappings for message-passing node programs. Section 2.3
describes language extensions and compiler technology for generating such node pro-
grams. (A comparison of the effectiveness of index-based and value-based mappings

for these applications is presented in Section 6.1 as well.)

2.1 Value-Based Locality

In the presence of value-based locality, two array references a(¢) and b(j) may not
be related to each other via their indices ¢ and j, but instead by their values a(z)
and b(7), or by the values of other variables, such as z(k) and z([), that in turn are
related to a(7) and b(j) by their indices (for example, k = 7 and [= 7). In this context,
“related” refers to a preference towards residing close to each other with respect to the
memory hierarchy, e.g., on the same processor. Revisiting the mesh example, might
be a coordinate array storing the physical location of each mesh point (assuming 1-D
for simplicity). Then the probability that vertices ¢ and j are connected increases
as |z(¢) — x(j)| decreases. Note that this is not a strict relationship; whether an

edge actually exists or not still depends on other factors, such as mesh density and

11

topology. However, since data mapping is not a correctness but only an efficiency
issue, we are usually more interested in a fast heuristic for finding a reasonably good
data mapping than in a strictly optimal, but expensive solution.

Value-based mappings allow the programmer to express value-based locality as a
simple extension of the regular mapping mechanism employed in data-parallel lan-
guages. We distinguish between value-based distributions and value-based align-
ments. For example, let array x be aligned to a decomposition arrayD. Then the
directive DISTRIBUTE arrayD(VALUE(x)) is a value-based distribution specitying that
decomposition arrayD (and with it array x) should be distributed such that the values
of the elements of x assigned to each individual processor are from disjoint intervals.
(See Section 2.3.1 for a more formal description of the syntax proposed for value-based
mappings.) In other words, if the values of two elements of some array elements x (1)
and x(j) are close, then x(1) and x(j) are likely to be mapped to the same processor,

no matter what relationship i and j may have to each other.

2.1.1 Molecular dynamics - An example for value-based distributions

Examples where data are not related by indices, but by values, are molecular dy-
namics programs such as GRoMos [GB88], CHARMM [BBO*83], or ARGOS [SM90]
that are used to simulate biomolecular systems. One important routine common to
these programs is the non-bonded force (NBF) routine, which typically accounts for
the bulk of the computational work (around 90%). Figure 2.1 shows an abstracted
version of a sequential NBF calculation. An important characteristic of NBFs is that
their intensities decay very rapidly with increasing distance between the atoms in-
volved. This locality is exploited by using a cutoff radius, R.,;, beyond which the
NBF interactions are ignored. This reduces the number of atom pairs for which
the NBF has to be computed and significantly reduces overall computational costs.
Furthermore, we can exploit this locality when distributing data in a parallel imple-
mentation according to the values of z, which stores the physical atom coordinates.
The atom numbering itself is not related to the coordinates; instead, they are typ-
ically numbered according to some data bank standard, such as the Brookhaven
protein data bank, which considers amino acid types, peptide bonds, solute/solvent
classifications, etc. — an ordering which is rather difficult for a compiler to take direct
advantage of without user assistance. Therefore, a traditional, index-based mapping

would lose this locality. In fact, since each processor needs for each owned atom to

12

doi=1,Nym
do p = 1,inb(¢)
J = partners(i,p)
force = nbf_func(z(i),z(j))
7() = J(i)+ force
1(7) = 1) foree
enddo
enddo

Figure 2.1 Sequential version of the Non-Bonded Force kernel nbf. Ny
is the total number of atoms, inb(7) is the number of atom partners that are
close enough to atom ¢ to be considered for the NBF calculation. For
simplicity, the coordinate and force arrays x and f are shown only
one-dimensional.

know about all atoms within R.,; of that atom, a regular mapping typically results in
each processor accessing all data, with accordingly high communication and storage
requirements. For example, Figure 2.2 shows the mapping resulting from distributing
an SOD* system (Nytom = 6968) across eight processors.

The actual use of a value-based distribution can be seen in Figure 2.3, which
shows a FORTRAN D implementation of the nbf kernel outlined in Figure 2.1. This
program is a condensed and abstracted version of the 340-line GROMOS subroutine
nonbal.f, enhanced with some data initialization. Although this program is very
simplified, it still presents similar difficulties as the original code with respect to the
compiler. FORTRAN D directives first declare a decomposition atomD (line 10), then
align coordinates x, forces £, partner counts inb, and adjacency lists partners with
atomD (line 11), and finally distribute atomD. Note that initially this is a regular,
BLOCK-wise distribution (line 12). After reading in the initial coordinates and part-
ner counts (line 15), atomD gets redistributed according to the values of coordinate
array x (line 18). Note also that the strict owner-computes rule is overridden in the
NBF calculation itself via an ON_HOME directive (line 29). Figures 2.4 and 2.5 show
the SOD mappings resulting from one- and three-dimensional value-based mappings,

respectively.

*SOD (superoxide dismutase) is a catalytic enzyme that converts the toxic free-radical, 02_4, a
byproduct of aerobic respiration, to the neutral molecules Oy and H,02 [WCSM93].

13

Figure 2.2 BLOCK mapping of an SOD system. Atoms are shaded according
to the processor they are mapped to, for an eight-processor configuration.
The regular, index-based mapping results in assigning each processor very

irregular subdomains, with accordingly poor locality and load balance.

2.1.2 Unstructured meshes - An example for value-based alignments

An example of a value-based alignment is shown in Figure 2.6, which shows a
FORTRAN D version of a sweep over the edges of an unstructured mesh [Mav9l].
There are two decompositions, nodeD for the node data and edgeD for the edge data.
After reading in the data (line 15), first nodeD gets distributed by value according to
the node coordinates; that is, the values of x determine the mapping of node data
indices onto processors (line 18). Secondly, edgeD gets aligned with nodeD according
to the values of the topology arrays ends1 and ends2 (line 21); that is, the edge-index-
to-node-index mappings given by ends1 and ends2 are combined with the node-index-
to-processor mapping of nodeD. Note that since edges tend to connect nodes that
are relatively close together, one would expect the two composed mappings, which
correspond to the both endpoints of each edge, to agree in most cases. However, there
may be conflicts in which case heuristics have to be used, which might for example

keep load balancing in mind or simply toss a coin.

14

10

15

20

25

30

35

40

PROGRAM nbf

INTEGER i, j, p, t, n$proc, Natom, pMax, Nstep
PARAMETER (n$proc = 8)

PARAMETER (Natom = 8000, pMax = 250, Nstep = 30)
INTEGER inb(Natom), partners(Natom, pMax)

REAL x(Natom), f(Natom), force, nbf_func, delta_func

ForTRAN D directives

DECOMPOSITION atomD(Natom)

ALIGN inb, x, £, partners(i,j) WITH atomD(i)
DISTRIBUTE atomD (BLOCK)

Initialize data
CALL read data(x, inb, partners)

Redistribute atomD according to coordinate values
DISTRIBUTE atomD(VALUE(DIM=1, VALS=x, WEIGHT=inb))

Loop over time steps
DO t = 1, Nstep

Reset forces to zero
DO i = 1, Natom

f(i) = 0
ENDDO

Computes forces
EXECUTE (i) ON_HOME £(i)
DO i = 1, Natom
DO p = 1, inb(i)
j = partners(i, p)
force = nbf func(x(i), x(j))

(i) = £(i) + force
£(j) = £(j) - force
ENDDO
ENDDO

Push atoms
DO i = 1, Natom
x(i) = x(i) + delta_func(£f(i))
ENDDO
ENDDO
END

Figure 2.3 FORTRAN D version of the Non-Bonded Force kernel (with
coordinates and forces shown 1-D for simplicity). During each of the Nstep

time steps, forces are first reset to zero, then they are computed based on the
distances between atoms (similar to the code in Figure 2.1), and finally the
forces are used for updating coordinates. Note the index-based distribution
directive in line 12, followed by a value-based redistribution in line 18.

15

Figure 2.4 Value-based mapping of atoms along just one dimension.
Locality is good, but communication may be expensive due to the high
surface-to-volume ratio.

dubetng

e

i

Figure 2.5 Value-based mapping of atoms along all three dimensions.
Locality is good, and the compact subdomains minimize communication
costs.

16

PROGRAM mesh

INTEGER i, ni, n2, n$proc, Nnodes, Nedges, Nstep, t

PARAMETER (n$proc = 8, Nnodes = 10000, Nedges = 20000)
5 INTEGER endsl(Nedges), ends2(Nedges)

REAL x(Nnodes), f(Nnodes), w(Nnodes), flux

C FoRTRAN D directives
DECOMPOSITION nodeD(Nnodes), edgeD(Nedges)
10 ALIGN £, w, x, WITH nodeD
ALIGN endsl, ends2 WITH edgeD
DISTRIBUTE nodeD(BLOCK), edgeD(BLOCK)

¢ Initialize data
15 CALL read data(x, w, endsl, ends2)
C Redistribute nodeD according to coordinate values

DISTRIBUTE nodeD(VALUE(DIM=1, VALS=x))

20 C Redistribute edgeD according to nodeD
ALIGN egdeD WITH nodeD(VALUE(DIM=2, VALS=ends1,ends2))

Loop over time steps
DO t = 1, Nstep

25
C Reset fluzes to zero
DO i = 1, Nnodes
£f(i) = 0
ENDDO
30
C Computes fluzes

EXECUTE (i) ON_HOME ends1(i)
DO i = 1, Nedges
nl = ends1(i)
35 n2 = ends2(i)
flux = flux_func(w(nl),w(n2))
f(n1) = £f(n1) + flux
f(n2) = £(n2) + flux
ENDDO
40 ENDDO
END

Figure 2.6 FORTRAN D kernel of a sweep over the edges of an
unstructured mesh. The mesh coordinates are stored in the coordinate array
x (again 1-D for simplicity), the topology is stored in the endpoint arrays
endsl and ends2. After an initial index-based distribution of node and edge
data in line 12, the node data are redistributed by value in line 18, and edge
data are aligned by value with the redistributed node data in line 21.

17

Processor O Processor 1

: X
0
¢ || x(¢) | nodeD(7) || ends1(z) | ends2(z) | edgeD(7)
1| 1.0 0 1 3 0
2 4.8 1 3 4 1
31 3.8 1 2 3 1
41 2.5 0 1 4 0
) - - 2 4 1

Figure 2.7 Example mesh with four nodes and five edges. The table shows
its node coordinates (x), topology (ends1, ends2), and resulting mappings
(nodeD, edgeD) for two processors.

18

A simple example where four nodes and five edges are mapped onto two processors
is shown in Figure 2.7. Given the mesh code in Figure 2.6, the FORTRAN D compiler
will generate code that at the location of the value-based mapping directive in line
18 will call a partitioner; see also Section 2.3.2. This partitioner will determine at
run time a function which maps the values stored in x, which represent physical
coordinates in space, to processors. A mapping function preserving physical locality

and load balance would be, for example,

0if x <3,
1if z > 3.

fnodeD(:C) = {

This corresponds a distribution function which maps array indices to processors as
follows:
nodeD(z) = { 0 ?f X(l) =5
Lif x(z) > 3.

After mapping node data to processors, edge data are mapped (line 21), preferably
to the same processors on which the node data of the endpoints of each edge are
residing. As mentioned in the previous paragraph, there may be mapping conflicts if
the endpoints of the same edge are on different processors. In Figure 2.7, edges are
shown directed to distinguish between the endpoints given by ends1 (tail) and ends?2
(head). In this example, let us assume for simplicity that such conflicts, which occur

for edges 1, 2, and 5, are resolved by favoring the processor to which the tail node

(ends1) is mapped to. This corresponds to a mapping function

edgeD(?) = nodeD(endsi(?)).

2.2 Implications of Value-Based Mappings

The prototype MIMD FORTRAN D compiler transforms a FORTRAN D program,
written in a global name space and annotated with data mapping directives, into
a message-passing program, which is a local name space node program including
communication statements. This section describes the effect that distributing data
by value has on a node program which may be generated by the compiler or coded

by a programmer directly using message passing.

19

2.2.1 Specification and state

A regular distribution can be fully specified by a simple keyword (“BLOCK”), or a
keyword enhanced with a small list of parameters (“BLOCK_CYCLIC(blockSize)”).
There is very little state associated with a mapping, both at compile time and at
run time. This already implies some simplicity for the programming assignment and
for the resulting program. Many mapping-dependent decisions, such as the effect of
an owner-computes rule (which links the mapping of computation to the mapping of
the data involved), can already be resolved before run time. The amount of addi-
tional code and variables for computing and storing the mappings and for translating
between global indices, local indices, and processor numbers is very small.

If an application has good index-based locality, then an irregular distribution may
be used to improve load balance, but some or all of the mapping computation can
still be done on the fly [BK93, Bia91, CHMS94]. Given a value-based distribution
(i.e., assuming no index-based locality), which for example distributes x according
to its values, one could envision a scheme that also had very little state specifically
devoted to representing the distribution. For example, one could compute the owner
of some x(1) on the fly by sorting all elements of x and determining the position of
x(1) in the sorted list. This, however, would clearly be impractical to do for each
reference to an element of x. Instead, one should amortize the cost of determining
ownership etc. by computing this information once and reusing it.

However, representing a value-based distribution explicitly requires a large amount
of state. A translation table maps global indices ¢4, into pairs (2., p) of local indices
and processor numbers. Often the translation table itself is too large to be fully
replicated and is distributed instead [WSBH91]. Therefore, not only storing but
also accessing the information adds complexity to the program. As also described in
Section 7.1.2, run-time libraries such as CHAOS can take most of the complexity of this
task from the programmer [DHU193], but their use still requires explicit managing

of the data structures associated with irregular distributions and communications.

2.2.2 Storing value-based distributed data

Again assuming that x is distributed according to its value, the number of elements
of x assigned to each processor typically varies and is not known until run time. This
poses particular problems when using a language that does not support dynamic

memory allocation, such as FORTRAN 77. Common strategies for circumventing this

20

restriction are to make arrays conservatively large or declare work arrays that are
shared by several variables, both of which have obvious disadvantages.

Note that the same problem occurs when regularly distributed arrays are accessed
irregularly and we wish to append buffer space for off-processor data at the end of
the array [Han93].

2.2.3 Translating name spaces

Translating between the global name space of a FORTRAN D program and the local
name space of the node program is an important component of the parallelization
process. For regular mappings, most of this task can be performed before run time, or,
if run-time translation is needed, the necessary code can be generated fairly easily; for
example, a statement x (1) = i, where 1 is global, might be translated into something
like x(1) = 1 + my$proc*block size, with a local 1.

For irregular mappings, the translation has to be delayed until run time, and

computing the translation may be complicated.

2.2.4 Communication generation

Again due to the complicated relationship between global and local name spaces,
generating correct communication statements in the presence of value-based mappings
can be tricky for regular array accesses, such as x(1) = x(i+1), and even more so
for irregular references, such as x(a(i)) = x(b(1)).

Resolving such references requires several translation steps, some of which may
themselves involve communication. To still generate efficient code, one should pre-
compute and reuse as much of this information as possible. The inspector-executor
paradigm (Section 1.2.1) allows us to message-vectorize low-locality data accesses,

even in the absence of compile-time knowledge.

2.2.5 A bootstrapping problem

One characteristic of value-based mappings is that they may pose a certain boot-
strapping problem to both the user and the compiler, as has also been identified by
Ponnussamy et al. [PSC93a]. This problem occurs when an array is distributed based
on its own values, which is considered perfectly legal, as is the case in the code shown
in Figure 2.3. Here an array x is aligned to a decomposition atomD, which in turn

gets distributed based on the values of x. When we start initializing x, we need to

21

know its mapping function to assign each processor its share of array elements. This
mapping function, however, cannot be determined until we know all values of x.

To resolve this problem, we start out with a different, typically regular mapping,
which can be used for example to read in the data as is the case with the program
shown in Figure 2.3. After the data relevant for the irregular mapping are known,

the decomposition is remapped based on their values.

2.3 The Compiler’s Perspective

The previous section outlined the general issues associated with distributing data
based on values. This section addresses some of the implications of using value-based
mappings in the context of a data-parallel language such as FORTRAN D. A more
detailed discussion of the implementation aspects of value based mappings can be
found in Chapter 5.

2.3.1 The input language

Since we implemented value-based mappings as part of a FORTRAN D compiler pro-
totype, the FORTRAN D language constructs also serve as a basis for the syntax of
value-based mappings. These extensions could also be applied directly to the HPF
standard [KLS*94]. We were able to limit ourselves to a simple extension of the
already existing DISTRIBUTE and ALIGN directives, as was also illustrated by the
code in Figure 2.3. Here the directive DISTRIBUTE atomD(VALUE(DIM=1, VALS=x,
WEIGHT=inb)) was the only statement the programmer had to add in order to express
the value-based locality of the application; the rest was done by the compiler. The
value-based mapping syntax currently supported is shown in Figure 2.8.

Note that the range of available mapping strategy depends more on the available
run-time support than on the compiler. In fact, the strategy specified by the user
might be passed through verbatim to the run-time library. However, one might still
require a certain minimal set of strategies to be always available [Han89, PSC93a).

Note also that the user may not select a specific strategy for distributing data
explicitly, as shown in Figure 2.3. In this case the compiler chooses a default strategy,
such as recursive bisection [BP90] or spacefilling curves [PB94]. Furthermore, since the
default number of dimensions is one and some key words are optional, the DISTRIBUTE
atomD (VALUE(DIM=1, VALS=x, WEIGHT=inb)) could be abbreviated as DISTRIBUTE
atomD (VALUE(x,inb)).

22

DistDirective is DISTRIBUTE ValMapping
AlignDirective is ALIGN decomposition-name WITH ValMapping
ValMapping is decomposition-name (VALUE (ValArrays [, Weight] [,Strategy]))
ValArrays 1s [DIM = num-dims,] [VALS =| val-array-name [, val-array-name] . ..
Weight is [WEIGHT =] weight-array-name
Strategy 1s [STRATEGY =| mapping-strategy-name

Constraint: Number of val-array-names must be one, or, if specified, num-dims.

Figure 2.8 Syntax of the value-based mapping directive.
Square brackets indicate optional components.

Naturally, there are several possible modifications/extensions for this syntax,
which was held deliberately simple. For example, the value-based alignments could
also be expressed as just another form of redistributions instead. Or, one could allow
multidimensional value arrays instead of several one-dimensional arrays; for example,
a program may store three-dimensional physical coordinates in one two-dimensional

array, x(3, n), instead of using three one-dimensional arrays, x(n), y(n), z(n).

2.3.2 When to distribute and align

In general, mapping directives can be viewed as either static declarations (such as the
HPF DISTRIBUTE), or as executable statements (such as the HPF REDISTRIBUTE).
There are several reasons why value-based mappings should be viewed as executable,
for example because of the bootstrapping problem described in Section 2.2.5, or be-
cause the values relevant for the mapping might change for dynamic problems and
we might want to remap periodically.

A resulting question is when this mapping should be performed, whether it should
be done when the execution reaches the directive, or instead at some other point in
the program determined by the compiler. In the latter case, one might for example
envision a scheme that lets the compiler analyze where relevant values are defined
(or redefined) and where mapped data are used. However, the gain in programming
convenience appears to be only marginal, and this kind of analysis seems to be fairly

difficult and problem dependent; for example, we might not really want to redistribute

23

whenever one relevant value changes. Therefore, the current implementation performs
the value-based mappings at the location corresponding to the mapping directive (see
also Section 5.3.2).

Value quietness, in which one has no wandering desires at all
but simply performs the acts of his life without desire,
that seems the hardest.

— Robert M. Pirsig (Zen and the Art of Motorcycle Maintenance)

24

Chapter 3

Balanced Code Placement with Give-N-Take

The previous chapter introduced the concept of value-based mappings to provide an
efficient mechanism for specifying irregular data distributions with good locality and
equalized work loads. However, in most cases even the best distribution results in
some off-processor accesses; i.e., the program requires communication. In the nbf ex-
ample program in Figure 2.3, the communication steps are gathering coordinates and
scattering forces. A performance-critical task of the compiler is to minimize the over-
heads associated with communication by generating and placing the communication
statements judiciously. This requirement motivated the development of the GIVE-
N-TAKE data-flow framework described in this chapter. As it turns out, however,
communication placement is only one of the possible application of this framework,
which for example can be used for any code placement task that is traditionally solved
by Partial Redundancy Elimination (PRE).

The rest of this chapter is organized as follows. Section 3.1 revisits PRE and
analyzes some of its current limitations. Section 3.2 introduces the communication
generation problem, which will be used as an illustrating example application of GIVE-
N-TAKE. Section 3.3 provides further intuition for the GIVE-N-TAKE framework and
some background on the type of flow graph and neighbor relations used by the GIVE-
N-TAKE equations. Section 3.4 states the actual equations and argues informally for
their correctness and efficiency. Section 3.5 gives an efficient algorithm for solving
the GIVE-N-TAKE equations. Section 3.6 concludes with a brief summary. Formal
correctness proofs of GIVE-N-TAKE can be found in Appendix A.

3.1 Partial Redundancy Elimination

PRE is a classical optimization framework for moving and placing code in a program.
Example applications include common subexpression elimination, loop invariant code
motion, and strength reduction. The original PRE framework was developed by Morel

and Renvoise [MRT79] and has since then experienced various refinements [JD82, DS88,

25

Dha88a, Dha9l, DRZ92, KRS92]. However, the PRE frameworks developed to date
still have certain limitations, which become apparent when trying to apply them to

more complex code placement tasks.

Atomicity: PRE implicitly assumes that the code fragments it moves, generates, or
modifies are atomic in that they need only a single location in the program to
be executed. For example, when placing the computation of a common subex-
pression, PRE will specify only one location in the program, and code will
be generated at that location to perform the entire computation. Later opti-
mizations may then reschedule the individual instructions, for example to hide

memory access delays, but PRE itself does not provide any such mechanism.

Ignoring side effects: Taking again the example of common subexpression elimi-
nation, classical PRE assumes that each common subexpression has to be com-
puted somewhere; i.e., nothing “comes for free.” However, there are problems
where side effects of other operations can eliminate the need for actual code
placement. For example, when placing register loads and stores, certain loads
may become redundant with previous definitions. This is generally treated as
a special case, for example by developing different, but interdependent sets of

equations for loads and stores [Dha88b].

Pessimistic loop handling: One difficulty with flow analysis has traditionally been
the treatment of loop constructs that allow zero-trip instances, such as a Fortran
do loop. Hoisting code out of such loops is generally considered unsafe, as it may
introduce statements on paths where they have not existed before. However,
unless the computation to be moved may change the meaning of the program,
for example by introducing a division by zero, we often would like to hoist
computation out of such loops even if the number of iterations is not known at

compile time.

GIVE-N-TAKE aims to overcome these limitations in a general context. It is
applicable to a broad class of code generation/placement problems, including the
classical domains of PRE techniques as well as memory hierarchy related problems,
such as prefetching and communication generation. GIVE-N-TAKE is subject to a
set of correctness and optimality criteria as described in Section 3.3.2; for example,

each consumption must be preceded by a production, and any generated code should

26

be executed as infrequently as possible. However, the solutions computed by GIVE-
N-TAKE vary depending on which kind of problem it is applied to. In a BEFORE
problem, items have to be produced before they are needed (e.g., for fetching an
operand), whereas in an AFTER problem, they have to be produced afterwards (e.g.,
for storing a result). Intuitively, one can think of an AFTER problem as a BEFORE
problem with reversed flow of control.

Orthogonally we can classify a problem as EAGER when it asks for production as
early as possible (e.g., sending a message), or as LAZY when it wants production as
late as possible (e.g., receiving a message); this definition assumes a BEFORE problem.
For an AFTER problem, “early” and “late” have to be interchanged since we are
reversing the graph. Classical PRE, for example, can be classified as a LAZY-BEFORE
problem. This means that the same framework can be used for different flavors of

problems; there are no separate sets of equations for loads and stores [Dha88b], or

for READs and WRITEs [GV91].

3.2 A Code Placement Example Problem: Communication

Generation

An example of code placement is the generation of communication statements when
compiling data-parallel languages, such as HIGH PERFORMANCE FORTRAN [KLST94]
or FORTRAN D [HKT92a]. For example, a processor of a distributed-memory ma-
chine may reference owned data, which by default reside on the processor, as well
as non-owned data, which reside on other processors. Local references to non-owned
data induce a need for communication, in this case a fetch of the referenced data
from other processors. We will refer to such a fetch of non-owned data as a READ
operation. Figure 3.1 shows another, simple example node code containing references
to distributed data.

Since generating an individual message for each datum to be exchanged would
be prohibitively expensive on most architectures, optimizations such as message vec-
torization, latency hiding, and avoiding redundant communication are crucial for
achieving acceptable performance [HKT92b]. The profitability of such optimizations
depends heavily on the actual machine characteristics; however, even for machines
with low latencies or shared-memory architectures, the performance can benefit from

maximizing reuse and minimizing the total number of shared data accesses.

27

do:=1,N
enddo
if test then
doj=1N
2(j)=...
enddo
dok=1,N
.= z(a(k))
enddo
else
do!/=1,N
.=z(a(l))
enddo
endif

Figure 3.1 An instance of the communication placement problem, where
the array = is assumed to be distributed or shared. Each reference to x in the
k and [loops necessitates a global READ operation, whereby a processor
referencing some element of z receives it from its owner. Possible
communication placements are shown in Figure 3.2.

28

doi=1,N
enddo
if test then
doj=1,N
2(j)=...
enddo
dok=1,N

READ geng{z(a(k))}
READReco{2(a(k))}

.= z(a(k))
enddo
else
do/=1,N
READ send{z(a(l))}
READ pecv{2(a(l))}
.= z(a(l))
enddo
endif

READgeng{z(a(1:N))}
dot:=1,N
enddo
if test then
doj=1,N
2(7)=...
enddo
READRecy{z(a(1:N))}
dok=1,N
.= z(a(k))
enddo
else
[READ Reco {2 (a(1: 1))}
do/=1,N
o=z(a(l))
enddo
endif

Figure 3.2 Possible communication placements for the code in Figure 3.1.

A naive code generation, shown on the left, results in a total of N messages
to be exchanged, without any latency hiding. The solution provided by
GIVE-N-TAKE, shown on the right, needs just one message and uses the ¢
loop for latency hiding. z(a(k)) and z(a(l)) can be recognized as identical

based on the subscript value numbers.

29

Figure 3.2 compares two possible communication placements for the example from
Figure 3.1. The solution on the left places a READg,q/ READR,., pair immediately
before each reference. We will refer to such a solution as a naive solution. Note
that the GIVE-N-TAKE solution shown on the right would generally be considered
unsafe, since for N < 1 the loops would not be executed. In the communication
generation problem, however, we would generally rather accept the risk of slight over-
communication than not hoist communication. Furthermore, it is often the case that
non-execution of a loop also means that no communication needs to be performed; in
the example, N < 1 implies z(a(1: N)) = 0.

Note that the examples shown in this chapter do not include data declarations,
initializations, distribution statements, etc. The communication statements are in
a high level format that does not include any processor ids, schedule parameters,
message tags, and so on. Communication schedule generation, which is a non-trivial
problem in itself [HKK%92], and the conversion from global to local name space are
also excluded. These and other implementation details on the usage of GIVE-N-TAKE
for communication generation, such as the value number based data-flow universe,

are described in Chapter 5.

3.2.1 The model

One must realize that both the hardware architecture and the operating system in-
fluence the exact nature of the communication problem and its solution. We will use

the following model.

1. Communication can be one-to-one, one-to-many, many-to-one, or many-to-

many.

2. Both the sending and the receiving processor(s) must issue matching commu-

nication operations.

3. If a processor p reaches a (lhs or rhs) reference requiring communication involv-

ing some other processor ¢, then ¢ also has to reach this reference.

The last requirement facilitates fulfillment of the second requirement. For example,
in Figure 3.3, assume that x(10) is owned by processor 0, and that test evaluates to

true on processor 1. Then processor 1 issues a receive statement, which processor

30

if test then

if test then READ gena{z(10)}
a = z(10)
endif READ Recy{2(10)}
a = z(10)
endif

Figure 3.3 A potentially illegal instance of the communication placement
problem (left) and its solution (right). Array « is assumed to be distributed
or shared. If on some processor test evaluates to true but not on the
processor owning x(10), then the third requirement of our communication
model is violated.

0 has to match with a send statement. This is only guaranteed if and only if test
evaluates to true on processor 0 as well.f

Another way of viewing the model is expressed in the following definition.

Definition 3.1 A program is a valid instance of the communication gen-
eration problem if its naive solution results in a correct program; i.e., the
program annotated with READg.,s/READR.., pair immediately preceding

each non-local reference is deadlock-free.

Determining whether a program is a valid in the above sense is by no means
trivial. In many cases the compiler could guarantee validity, but in other cases validity
depends on run-time values. One obvious way of enforcing validity is to have all
processors follow the same control flow, including that all conditionals have to evaluate
identically across processors. This, however, would be overly restrictive; we do not
require that all processors involved in a communication stemming from a particular
reference reach that reference along the same path. Strictly speaking, even applying

loop bounds reduction to a program can be viewed as carving up the control flow

It actually gets even more complicated than this, since even though the receiver typically does not
have to know whom to receive data from, the sender usually has to know where to send the data. An
example for this is the NX operating system running on the intel iPSC series of MIMD distributed
memory computers. Therefore, the processor owning #(10) in the example from Figure 3.3 not only
has to know whether some processor needs z(10), but it also has to know which processors need
this datum. However, we regard correctness in such cases to be outside of the scope of the GIVE-N-
TakE-framework and make it the responsibility of the code generation phase or the programmer.

31

between different processors and having processors following a different path through
the program, since then each processor executes a different subset of the original set
of iterations through the loop whose bounds are reduced even though the number of
iterations may be the same on each processor.

If we do not use a strict owner-computes rule [CK88], then non-owned data may
not only be locally referenced, but also locally defined. We assume that these data
have to be written back to their owners before they can be used by other processors,
as shown in Figure 3.4. (An alternative would be the direct exchange between a
non-owner that writes data and another non-owner that reads them [Gup92, GS93].
This could also be accommodated by GIVE-N-TAKE, but especially in the presence
of indirect references it would result in more complicated code generation.) A naive

solution would place a WRITEge,q/ WRITER,., pair immediately after each reference.

3.2.2 Previous work

Dependence analysis can guide communication optimizations, for example by guaran-
teeing the safety of hoisting communication out of a loop nest. However, dependence
analysis alone is not powerful enough to take advantage of all optimization oppor-
tunities, since it only compares pairs of occurrences (i.e., references or definitions)
and does not take into account how control flow links them together. Therefore,
combinations of dependence analysis and PRE have been used, for example for de-
termining reaching definitions [GS90] or performing scalar replacement [CK92]. For
example, Duesterwald et al. incorporate iteration distance vectors (assuming regular
array references) into an array-reference data-flow framework, which is then applied
to memory optimizations and controlled loop unrolling [DGS93].

Several researchers have addressed the communication generation problem, al-
though often restricted to relatively simple array reference patterns. Amarasinghe
and Lam optimize communication generation using Last Write Trees [AL93]. They
assume affine loop bounds and array indices, they do not allow loops within condition-
als as shown in Figure 3.1. Gupta and Schonberg use Available Section Descriptors,
computed by interval based data-flow analysis, to determine the availability of data on
a virtual processor grid [GS93]. They apply (regular) mapping functions to map this
information to individual processors and list redundant communication elimination
and communication generation as possible applications. Granston and Veidenbaum

combine dependence analysis and PRE to detect redundant global memory accesses

32

if test then

doi:=1,N
z(a(e)) = ...
enddo
doj=1,N
o=z(j+5)
enddo
endif
dok=1,N
.=z(k+5)
enddo

if test then

doi=1,N

z(a(e)) = ...

enddo
WRITEgeng{z(a(l: N))}
WRITEReew{z(a(1l: N))}
READgeng{z(6: N +5
READRec{2z(6: N +5
doj=1,N

co=a(j+5)
enddo

)}
)}

else
READgena{z(6: N +5)}
READRecv{2z(6: N +5)}

endif
dok=1N

..=xz(k+5)
enddo

Figure 3.4 Example of a code with local definitions of potentially
non-owned data (left), and a corresponding placement of global WRITEs

33

in parallelized and vectorized codes [GV91]. Their technique tries to eliminate these
operations where possible, also across loop nests and in the presence of conditionals,
and they eliminate reads of non-owned variables if these variables have already been
read or written locally. However, they assume atomicity, and they also assume that
the program is already annotated with read/write operations; they do not try to hoist
memory accesses to less frequently executed regions.

While these works address many important aspects of communication generation
that are outside the scope of GIVE-N-TAKE itself, such as name space mappings or
regular section analysis, they do not seem to be general and powerful enough with
respect to communication placement. In the following, it is this aspect that we will

focus on.

3.3 The Give-N-Take Framework

The basic idea behind the GIVE-N-TAKE framework is to view the given code gen-
eration problem as a producer-consumer process. In addition to being produced and
consumed, data may also be destroyed before consumption. Furthermore, whatever
has been produced can be consumed arbitrarily often, until it gets destroyed.
Data-flow frameworks are commonly characterized by a pair (L, F'), where L is
a meet semilattice and F' is a class of functions; see Marlowe and Ryder [MR90] for
a discussion of these and other general aspects of data-flow frameworks. Roughly
speaking, L characterizes the solution space (or universe) of the framework, such as
the set of common subexpressions or available constants, and their interrelationships.
F' contains functions that operate on L and compute the desired information about
the program. Together with a flow graph consisting of nodes, edges, and a root and
a mapping from graph nodes or edges to F', this framework constitutes a data-flow
problem, which can be solved to analyze and optimize a certain aspect of a specific
program. However, since GIVE-N-TAKE is not restricted to a specific lattice, we will
focus mostly on F', the class of functions that we use to propagate information about

consumption and production through a given program.

3.3.1 Communication placement with Give-N-Take

The problem of generating READs can be interpreted as a BEFORE problem as follows:

e Fach reference to non-owned data consumes these data.

34

e Each READ operation, where a processor p sends data that it owns to another

processor ¢ that receives and references these data, produces the data sent.

e Fach non-local definition (i.e., a definition on another processor) of non-owned

data destroys these data.

To split each READ into a READg,,4, the send issued at the owner, and a READ k...,
the corresponding receive at the referencing processor, we need both the EAGER and
the LAZY solution of the framework. We want to send as early as possible and receive
as late as possible; since this is a BEFORE problem, the READg.,4s will be given by
the EAGER solution, and the READR..,s will be the LAZY solution.

For placing global WRITESs, the non-owned definitions can be viewed as consumers,
just as non-owned references, and we have to insert producers which in this case
communicate data back to their owners instead of from their owners. Since we want
to write data after they have been defined, this is an AFTER problem. Note that
in this scenario, the previous problem of analyzing communication for non-owned
references can be modified to take advantage of non-owned definitions it they are
later locally referenced; i.e., non-owned definitions can also be viewed as statements
that produce non-owned references as a side effect “for free.” potentially saving
unnecessary communication to and from the owner. Again, we can split each WRITE
into a WRITEg.,q, given by the LAZY solution (since WRITE is an AFTER problem),
and a WRITERe.,, which is the EAGER solution.

3.3.2 Correctness and optimality

Given a program with some pattern of consumption and destruction, our framework
has to determine a set of producers that meet certain correctness requirements and
optimality criteria. The requirements that GIVE-N-TAKE has to meet to be correct
are the following (with their specific implications when applied to communication

generation):

(C1) Balance: If we compute both the EAGER and the LAZY solution for a given
problem, then these solutions have to match each other; see Figure 3.5. (For
each executed READg.,4, exactly one matching READg.., will be executed, and

vice versa; similarly for WRITEg.,4s and WRITERc.,S.)

35

Lazy(X

Figure 3.5 Left: unbalanced production, where one EAGER(X) production
is followed by an arbitrary number of LAZY(X) productions. Right: possible
solution obeying correctness criterion C1.

| |

Eager(X)
Lazy(X) \l
Eager(X)
Lazy(X)
|
Consume(X) Consume(X)
! !
Destroy(X) Destroy(X)

! !

Figure 3.6 Left: unsafe production. Right: possible solution obeying C2.

| |

Destroy(X) Destroy(X)
! !
Eager(X)
Lazy(X) \l
Eager(X)
Lazy(X)
!
Consume(X) Consume(X)

! !

Figure 3.7 Left: insufficient production.
Right: possible solution obeying C3.

36

(C2) Safety: Everything produced will be consumed; see Figure 3.6. (No unneces-
sary READs or WRITEs. In our specific case, this is more an optimization than

a correctness issue.)

A special case are zero-trip loop constructs, such as a Fortran do loop. GIVE-
N-TAKE tries to hoist items out of such loops, unless explicitly told otherwise

on a general or case-by-case basis; see also Section 3.4.1.

(C3) Sufficiency: For each consumer at node n in the program, there must be a pro-
ducer on each incoming path reaching n, without any destroyer in between; see
Figure 3.7. (All references to non-owned data must be locally satisfiable due to
preceding READs or local definitions, without intervening non-local definitions,
and all definitions of non-owned data must be brought back to their owners by

WRITEs before being referenced non-locally or communicated by a READ.)
The optimization criteria, subject to the correctness constraints stated above, are:

(01) Nothing produced already (and not destroyed yet) will be produced again; see
Figure 3.8. (Nothing will be recommunicated, unless it has been non-locally

redefined.)

(02) There are as few producers as possible; see Figure 3.9. (Communicate as little

as possible.)

(0O3) Things are produced as early as possible for EAGER-BEFORE and LAZY-AFTER
problems; see Figure 3.10. (Send as early as possible.)

(03’) Things are produced as late as possible for LAZY-BEFORE and EAGER-AFTER

problems; see Figure 3.11. (Receive as late as possible.)

Note that while the correctness criteria are treated as strict requirements that
GI1VE-N-TAKE must fulfill, the optimality criteria are viewed more as general guide-
lines and are phrased correspondingly vaguely. A proof that GIVE-N-TAKE does

indeed obey the correctness criteria can be found in Appendix A.

3.3.3 Zero-trip loop constructs

One difficulty with flow analysis has traditionally been the treatment of zero-trip loop

constructs, such as a Fortran do loop. We are interested in hoisting computation

Lazy(X Lazy(X
Consume(X)

Consume(X)
!

Eager(X)
Lazy(X)

Consume(X)

I

Consume(X)

Figure 3.8 Left: redundant production.
Right: possible solution obeying O1.

S Eager(X.Y)
Lazy(X) Lazy(X,Y)
Lazy(Y) \|/
Consume(X,Y) Consume(X,Y)
|

|

Figure 3.9 Left: too many producers.
Right: possible solution obeying O2.

Eager(X)
! !
Eager(X
YA A

Consume(X) Consume(X)

Figure 3.10 Left: too late production.
Right: possible solution obeying O3.

38

E X
L?;,r((x)) Eagir(x)
Lazy(X)

Consume(X) Consume(X)

Figure 3.11 Left: too early production.
Right: possible solution obeying O3'.

out of such loops as well, but this may introduce statements on paths where they
have not existed before, which is generally considered unsafe (criterion C2). Several
techniques exist to circumvent this difficulty, for example adding an extra guard and
a preheader node to each loop [Sor89], explicitly introducing zero-trip paths [DK83],
or collapsing innermost loops [HKK192]. These strategies, however, result in some
loss of information, and they do not fully apply to nested loops. Therefore, the GIVE-
N-TAKE framework generally treats a loop as if it will be executed at least once. In
case this approach is not valid as such for a particular application of the framework,

there are several relatively simple refinements to guarantee safety:

e The compiler can try to prove that a loop [will be executed at least once.

e Hoisting a statement S out of a loop [can be prohibited by adding S to
STEAL(!); see Section 3.4.2.

e S may implicitly be void in case [does not execute; for example, if [has n
iterations and S is a statement communicating z(1:n), then n < 0 results in an

empty statement.
o We can explicitly guard S by a test whether [will be executed.

e S might be a statement that results in some extra, but harmless computation,
such as an unnecessary communication statement. In this case, we might be
willing to pay that extra cost if it is amortized as soon as [is executed at least

o1ce.

39

e In case we rely on a statement S to be executed within [, for example, to bring
in some not-owned data that are needed outside of [as well, we can add a test

after the loop that explicitly executes S in case [is empty. These data are

indicated in the framework by GIVE(l) — GIVE,,;;(1).

3.3.4 The Interval-Flow Graph

A general data-flow analysis algorithm that considers loop nesting hierarchies is in-
terval analysis. It can be used for forward problems, such as available expressions
[A1l70, CocT0], and backward problems, such as live variables) [Ken71], and it has also
been used for code motion [DP93] and incremental analysis [Bur90]. We are using a
variant of interval analysis that is based on Tarjan intervals [Tar74]. Like Allen-Cocke
intervals, a Tarjan interval T'(h) is a set of control-flow nodes that corresponds to a
loop in the program text, entered through a unique header node h, where h & T'(h).
However, Tarjan intervals include only nodes that are part of this loop; t.e., together
with their headers they form nested, strongly connected regions. Allen-Cocke inter-
vals include in addition all nodes whose predecessors are all in T'(h); i.e., they might
include an acyclic structure dangling off the loop. In that sense, Tarjan intervals
reflect the loop structure more closely than Allen-Cocke intervals [RP86]. Note that
a node nested in multiple loops is a member of the Tarjan interval of the header of
each enclosing loop.

Unlike in classical interval analysis, we do not explicitly construct a sequence
of graphs in which intervals are recursively collapsed into single nodes. Instead,
we operate on one interval-flow graph G = (N, E), with nodes N and edges F.
RooT € N is the unique root of G, which is viewed as a header node for the entire
program. For n € N, LEVEL(n) is the loop nesting level of n, counted from the
outside in; LEVEL(ROOT) = 0.

We define T'(n) = () for all non-header nodes n, and T*(n) = T(n) U {n} for all
nodes n. We also define CHILDREN(n) to be the set of all nodes in T'(rn) which are one
level deeper than n; CHILDREN(n) = {c| ¢ € T'(n), LEVEL(¢) = LEVEL(n) 4+ 1}. For
each m € CHILDREN(n), we define J(m) to be the immediately enclosing interval,
T(n).

One of the main differences between G and a standard control-flow graph is the
way in which edges e = (m,n) € E are constructed and classified. In addition to

edges that correspond to actual control-flow edges, ¥ may also contain SYNTHETIC

40

edges, which connect the header h of an interval T'(h) to all sinks (excluding T'*(h))
of edges originating within 7'(h); i.e., £ will have SYNTHETIC edges if it contains
jumps out of loops. Each non-SYNTHETIC edge (m,n) is classified as having one of
the following types, as also illustrated by the example in Figure 3.13.

ENTRY: An edge from an interval header to a node within the interval; n € T'(m).
CYCLE: An edge from a node in an interval to the header of the interval; m € T'(n).

JUMP: An edge from a node in an interval to a node outside of the interval that is
not the header node; 3h : m € T'(h),n ¢ T+ (k). This corresponds to a jump

out of a loop.
FLow: An edge that is none of the above; Vh:m € T(h) <= n € T'(h).

We also define HEADER(n) = m if n is the sink of an ENTRY edge originating in m;
otherwise, HEADER(n) = {).

Note that CYCLE and JUMP edges correspond to Tarjan’s cycle and cross edges,
respectively [Tar74]. However, we divide his forward edges into FLOW and ENTRY
edges depending on whether they enter an interval or not (others divide them into
forward and tree edges depending on whether they are part of an embedded tree or
not [CLR90]). Note also that for each JUMP edge (m,n), G contains LEVEL(m) —
LEVEL(n) SYNTHETIC edges, one from the header of each interval jumped out of.

GI1VE-N-TAKE requires G to have the following properties:

e (7 is reducible; i.e., each loop has a unique header node. This can be achieved,

for example, by node splitting [CM69].

e For each non-empty interval T'(h), there exists a unique n € T'(h) such that
(n,h) € F; i.e., there is only one CYCLE edge out of T'(h). We will refer to
node n as LASTCHILD(h).

e There are no critical edges, which connect a node with multiple outgoing edges
to a node with multiple incoming edges. This can be achieved, for example, by
inserting synthetic nodes [KRS92]. Code generated for synthetic nodes would
reside in newly created basic blocks, for example a new else branch or a landing

pad for a jump out of a loop.

41

do:=1,N
y(a(i)) =
if test(¢) goto 77
enddo
doj=1,N
enddo
77do k=1,N

.= a(k+10)+ y(b(k))
enddo

Figure 3.12 Example code. We wish to use the j loop for latency
hiding in case the branch out of the z loop is not taken.

Intuitively, a critical edge might indicate a location in the program where we
cannot place production without affecting paths that are not supposed to be affected
by the production. The code shown in Figure 3.4 is a case of placing production at a
synthetic node, namely the added else branch. Note that for the EAGER production
on the else branch, which is the “READgeq{®(6 : N+5)}”, a naively placed matching
LAzY production (a “READpge,{x(6 : N +5)}”) might be located right before the &
loop, since LAZY productions are generally delayed as far as possible. This, however,
would violate balance, since on the then branch the corresponding EAGER production
has already been matched by a LAzY production. Therefore, the LAZY production
is moved up into the else branch.

Each of the requirements above can lead to a growth of G and can therefore slow
GIVE-N-TAKE down. For example, inserting synthetic nodes makes O(N) = O(F).
However, it has been noted by several researchers that for typical programs, both
the average out-degree of flow graph nodes and the maximal loop nesting depth can
be assumed to be bounded by small constant independent of the size of the pro-
gram [MR90]. Therefore, the increase of G should be fairly small for well structured
programs.

Figure 3.13 shows the interval-flow graph for the code in Figure 3.12. The ¢ loop,
for example, corresponds to the interval 7'(2) formed by nodes 3, 4, 5, with header 2;
again, remember that the header itself is not part of the interval. Note that FLow
edges are the only non-SYNTHETIC edges that do not cross nesting level boundaries.

42

Level O § Level 1 § Level 2

3 (@) =

Figure 3.13 Flow graph for the code from Figure 3.12. The dashed nodes
are synthetic nodes inserted to break critical edges, or to provide unique
START and STOP nodes. The dashed edge (2,10) is a SYNTHETIC edge

caused by JUMP edge (4,10) (since 4 € T'(2)). All non-FLow,
non-SYNTHETIC edges are labeled as either ENTRY, CYCLE, or JUMP edges.

43

3.3.5 Traversal orders and neighbor relations

The order in which the nodes of the interval-flow graph are visited depends on the
given problem type (BEFORE or AFTER, EAGER or LAZY) and on the pass of the
GIVE-N-TAKE framework that is currently being solved (see Section 3.5). E induces

two partial orderings on N:

Vertically: Given a FLOW/JUMP edge (m,n), a FORWARD order visits m before n,
and a BACKWARD order visits m after n.

Horizontally: Given m,n € N such that m € T'(n), an UPWARD order visits m

before n, whereas a DOWNWARD order visits m after n.*

Since these partial orderings are orthogonal, they can be combined without con-
flict into PREORDER (FORWARD and DOWNWARD), POSTORDER (FORWARD and
UPWARD), and the corresponding reverse orderings, REVERSEPREORDER (BACK-
WARD and UPWARD) and REVERSEPOSTORDER (BACKWARD and DOWNWARD).
For example, the nodes in Figure 3.13 are numbered in PREORDER.? Note that in
a BEFORE problem, the flow of information when solving the data-flow equations is
not necessarily in FORWARD order; this will become apparent in the discussion of the
algorithm in Section 3.5.

A data-flow variable for some n € N might be defined in terms of variables of
other nodes that are in some relation to n with respect to G. Therefore, we not only
have to walk G in a certain order, but we also have to access for each n € N a subset
of N — {n} that has a certain relationship with n. In general, we are interested in
information residing at predecessors or successors. However, we are also considering
the type of the edge through which they are connected to n. The edge type carries
information about how the neighboring nodes are related to each other, for example,

whether moving production from one node to the other constitutes a hoist out of

tNote that in the flow graph representation of Figure 3.13, the nesting depth increases left-to-right,
not top-to-bottom. This gives rise to some terminology conflicts, since the terms for the partial
orderings (“horizontal” and “vertical”) are derived from this graph representation, whereas the
terms for the two horizontal orderings (“UPWARD” and “DOWNWARD”) correspond to decreasing
and increasing loop nesting depth. An alternative would be to transpose the graph representation
(i.e., nesting depth increasing top-to-bottom and normal flow of control going left-to-right), but
this was not chosen in order to adhere closer to the more common top-to-bottom representation of
normal flow of control.

§This terminology is derived from viewing the flow graph as a tree, where CHILDREN(n) are subtrees
of n, ordered according to flow of control.

44

a loop or not. The type also indicates whether this information has already been
computed under the current node visiting order or not.

Let TYPE be a set of edge types, where the letters C, E, F, J, and S indicate
CycLE, ENTRY, FLOW, JUMP, and SYNTHETIC edges, respectively. GIVE-N-TAKE

uses the following neighbor relations:
PREDSTY"®(n): The source nodes of edges reaching n of a type in TYPE.
Succs™™PE(n): The sink nodes of edges originating from n of a type in TYPE.

The conventional sets of “predecessors” and “successors” of n are PREDS®®™’(n) and
Succs®®(n), respectively, which we will abbreviate as PREDS(n) and Succs(n),
respectively. We will refer to the transitive closures of PREDS™ (n) and Succs™(n)
as the ancestors and descendants of n, respectively.

Note that PREDS®(n) = {LASTCHILD(n)}, and PREDS®*(n) = {HEADER(n)}.
Note also that the lack of critical edges has several implications for some of the sets

defined above, two of which are stated in the following lemmata.

Lemma 3.1 The sink of a JUMP edge never has any predecessors besides

the source of the JUMP edge.

Proof: First, remember that “predecessors” do not include SYNTHETIC edges. Let
e = (m,n) be a JUMP edge. Then there exists an h € N with m € T'(h),n & T (h).
Since Tt (k) is by definition strongly connected, m must have successors within 7+ (k).
Since n as well is a successor of m, m has multiple outgoing edges. However, G does
not have critical edges, therefore n can only have one predecessor, which must be m;
i.e., PREDS“®(n) = (. O

Lemma 3.2 Succs®™’(m) = () for each source m of a CYCLE edge.

Proof: Let e = (m,n) be a CYCLE edge. Node n then is an interval header, which
by definition has multiple predecessors. Since n is a successor of m, m may not have

EFJ (

any other successors; otherwise e would be critical. However, it is n ¢ Succs®™(m).

O
Even though the equations and their correctness and effectiveness are the same
for both BEFORE and AFTER problems, we will for simplicity assume in the following

that we are solving a BEFORE problem unless noted otherwise.

45

3.4 Give-N-Take Equations

Given a set of initial variables for each node n € N, which describe consumption,
destruction, and side effects at the corresponding location in the program, GIVE-N-
TAKE computes the production as a set of result variables for each node. Intermediate
stages are the propagation and blocking of consumption, and the placing of produc-
tion.

In the following, let n € N, let L denote the empty set, and let T be the whole
data-flow universe. If an equation asks for certain neighbors, such as PREDS™ (n), and
there are no such neighbors, such as for a loop entry node, then an empty set results.
Subscripts in, out denote variables for the entry and the exit of a node, respectively
(reverse for AFTER problems). Subscript loc indicates information collected only from
nodes within the same interval (i.e., nodes in J(n)), and init identifies variables that
are supplied as input to GIVE-N-TAKE.

Figure 3.14 contains the equations for the data-flow variables, which will be in-
troduced in the following sections. We will provide example values from the READ
instance for the graph in Figure 3.13, where zy, y,, and y; correspond to references
x(k + 10), y(a(z)), and y(b(k)), respectively; values at ROOT are excluded for sim-
plicity. In the following, we will refer to these array references as array portions; see

Section 5.2.3 for a more formal definition.

3.4.1 Initial variables

The following variables get initialized depending on the problem to solve, where L
is the default value. Note that by default, these initializations are based on strictly
local analysis. (Section 5.2.4 describes the initializations specific to generating READs,

WRITEs and reductions for distributed memory accesses.)

STEAL;ui(n): All elements whose production would be voided at n. This can also be

used to prevent hoisting productions out of zero-trip loops, if so desired.

In our communication problem, this includes an array portion p if either the
contents of this portion get partly modified at n, or it p itself gets changed,
for example if p is an indirect array reference and n modifies the indirection

array [HK93].

46

STEAL(n) = STEAL;u;(n)USTEAL(LASTCHILD(n))
GIVE(n) = GIVE;,;1(n) U GIVE(LasTCHILD(n))
BLOCK(n) = STEAL(n)U GIVE(n)U U BLOCK . (s)

seSuccs® (n)
TAKEN,;(n) = N TAKEN,,(s) (3.4)
seSuccs” ¥ (n)
TAKE(n) = TAKE,u(n)U(|J TAKEN,(s) - STEAL(n))

seSuccs® (n)

U((TAKEN ,,¢(n) N J TAKEi.(s)) — BLOCK(n)) (3.5)

seSuccs® (n)

TAKEN;,(n) = TAKE(n) U (TAKEN yui(n) — BLOCK(n)) .

BLOCKp.(n) = (BLOCK(n)U |J BLOCK.(s)) — TAKE(n) (3.7)
seSuccs” (n)

TAKE.(n) = TAKEm)U(|J TAKE.(s) - BLOCK(n)) (3.8)
seSuccs®F (n)

GIVE,.(n) = (GIVE(m)UTAKE(m)U () GIVEs.(p)) — STEAL(n) (3.9)
pe PREDS™ (n)
STEAL.(n) = STEAL(n)U |J (STEALp.(p) — GIVEs.(p)) U

pe PREDS™ (n)

U STEAL.(p) (3.10)
pePREDS® (n)

GIVEN;,(n) = GIVEN(HEADER(R))U N GIVEN,,(p) U

pePREDS" ()
(TAKEN;,(n) N U GIVEN,,:(¢)) (3.11)
qe PREDS" (n)
B ‘ TAKEN;,(n) for an EAGER Problem,
GIVEN(n) = GIVENs(n)U { TAKE(n) for a Lazy Problem. (3.12)
GIVEN,,;(n) = (GIVE(n)UGIVEN(n)) — STEAL(n) (3.13)
RES;.(n) = GIVEN(n)— GIVEN;,(n) (3.14)
RES,ui(n) = U GIVEN;,(s) — GIVEN,(n) (3.15)

seSuccs™ (n)

Figure 3.14 GIVE-N-TAKE equations.

47

For Figure 3.13, we have for example y, € STEAL;,::({3}). (Read as: “For the
READ problem, the variable STEAL;,;; at node 3 contains the array portion
referenced by y(b(k)).”)

GIVE;it(n): All elements that “come for free;” i.e., elements that are already pro-
duced at n.

If we do not use the owner-computes rule in communication generation, then
this includes local definitions of non-owned data, since a later reference to these

data does not need to communicate them in any more.

Yo € GIVE;,.:({3}).

TAKE,,it(n): The set of consumers at n.
For communication generation, this is the set of non-owned array references.

zr, yp € TAKE;,({13}).

3.4.2 Propagating consumption

The following variables, together with the variables defined in Section 3.4.3, analyze

consumption.

STEAL(n): All elements whose production would be voided by n itself, as given by
STEAL;uit(n), or by some m € T'(n) without being resupplied by a descendant
of m within 7'(n), which is given by STEAL,.(LASTCHILD(R)).

yr € STEAL({2-3}).

GIVE(n): All elements that are already produced at n, or at some node in T'(n)
without being stolen later within 7'(n).

BLOCK(n): Elements whose production is blocked by n; i.e., elements whose pro-
duction cannot be hoisted across n because they are stolen or already produced

at n or a node in 7'(n).

Ya, y» € BLOCK({2-3}).

TAKEN,,:(n): Things guaranteed to be consumed before being stolen on all paths
originating in n, excluding n itself. Here we have to consider not only FLOW

and JUMP edges, but also SYNTHETIC edges; otherwise we might violate safety

48

by producing something whose only consumer may be skipped due to a jump
out of a loop.

zr, yp € TAKEN ({2, 6-7, 9-11});

also, x € TAKEN,,({1}).

TAKE(n): The set of consumers at n. This includes items that are guaranteed to be
consumed by nodes in 7'(n) (the TAKEN;, term) and not stolen at n, and items
that may be consumed by 7'(n) (the TAKE;,, term) and are guaranteed to be

consumed on exit from n without being blocked by n.

o, ys € TAKE({12-13}).

TAKEN;,(n): Similar to TAKEN,,:, except that the effects of n itself are included.

Tr,Yp € TAKENW({6*7, 9*13}),
also, x € TAKEN,, ({1-2}).

BLOCK,.(n): Items blocked by n or by descendants of n within J(n) without being

consumed.

Ya, Yp € BLOCK . ({1-3}).

TAKE,.(n): Items taken by n, by descendants of n within J(n), or by nodes within
T(n). Here, unlike for BLOCK,,., we have to explicitly include successors on
ENTRY edges, since they are not guaranteed to be reflected in TAKE, which
has to be conservatively small, whereas they will always be considered by

BLOCK(n), which is conservatively large.

zk, yp € TAKE;, ({6-7, 9-13});
also, z € TAKE ;. ({1-2}).

3.4.3 Blocking consumption

The following variables are used by the interval headers to determine whether items

are stolen or taken within the interval.

GIVE . (n): Items produced by n or by ancestors of n within the same interval. Here
items are treated as produced also if they are consumed, since consumption is

guaranteed to be satisfied by a production.

Yo € GIVE,.({2-7, 9-11});
Tk UYp € GlVE[UC({12*14})

49

STEALy.(n): Items stolen by n, or stolen by a predecessor p of n without being
resupplied by p. Furthermore, if there exists a p € PREDS®(n) (i.e., n is the
sink of a JUMP edge, and p is the header of an interval enclosing the source of
the JUMP edge but not n itself), then we also have to include items stolen by
p. However, since taking the JUMP edge corresponds to a jump from within the
interval, the interval headed by p is not guaranteed to be completed before n

is reached; therefore, we cannot exclude items resupplied by p, which would be

given by GIVE,.(p).
vy € STEALL.({2-7, 9-12, 14}).

3.4.4 Placing production

After analyzing at each node what is consumed and not already produced, the pro-
duction needed to satisfy all consumers is computed by the following variables. As
described in Section 3.5, the following variables may differ for the EAGER and for the
LAZY solution; this will be indicated in the examples by superscripts.

GIVEN;,(n): Things that are guaranteed to be available at the entry of n, or, for an
AFTER problem, the exit of n. If n is a first child, then it has everything avail-
able that is available at its header, and it is PREDS"™ = (). Otherwise, things
are guaranteed to be produced if they are produced along all incoming paths,
or if they are produced at least along some incoming paths and guaranteed to
be consumed. In the latter case, the result variable RES,,; will ensure that
things will be produced also along the paths that originally did not have them
available (see Equation 3.15).

z € GIVENS " ({2-14});

Yo € GIVENSY" ({4-14});

vy € GIVENZ“" ({7-9, 11-14}).
2, vy € GIVEN? ({13-14});
ya € GIVEN® ({4-14}).

GIVEN(n): Items guaranteed to be available at n itself, either because they come from
predecessors of n, or because they are consumed by n itself, or, for an EAGER

problem, by a descendant of n.

z € GIVEN > ({1-14});
Yo € GIVEN®°" ({4-14});

20

ys € GIVEN=se ({6-14}).
zg, yp € GIVEN"({12-14});
Yo € GIVEN™ ({4-14}).

GIVEN,,:(n): Things that are available on exit from n. This includes whatever comes
from at n itself, but it excludes things stolen by n.
z € GIVENS " ({1-14});
Yo € GIVENSY ({2-14});
yp € GIVEN .S ({6-14}).
2k, yp € GIVENYY ({12-14});
Yq € GlVENf)“jf({ZZfM}).

3.4.5 Result variables

The result of GIVE-N-TAKE analysis is expressed by the following variables.

RES;,(n): The production generated at the entry of n. This includes everything that

is guaranteed to be available at n itself but is not yet available at the entry of n.
The READgcnqs stem from z, € RES;*” ({1}) and y, € RES;**" ({6, 10}); the
READRc.,s are .,y € RESifzzy({liZ}).

RES,.:(n): The production at the exit of n. This includes items whose availability
has been guaranteed to some successors of n and that are not already available

on exit from n. See also the discussion of GIVEN;, in Section 3.4.4.

In Figure 3.13, there is no production needed on exit.
Note the following properties for production on exit:

Lemma 3.3

Let n € N be a node with RES,,:(n) # . Then node n has exactly one
successor s € Succs™(n).

Proof: Equation 3.15 implies that @ € RES,,:(n) requires ¢ GIVEN,,;(n), but
that for some s € Succs™(n) and p € PREDS™(s) — {n}, z € GIVEN,,;(p) must hold.

In other words, n must have a successor s which in turn has a predecessor p # n that

ol

produces an x which is consumed by s and not produced by n. The lack of critical
edges then implies that s must be the only successor of n, and therefore it does not

matter whether we use union or intersection in Equation 3.15. O

Corollary 3.4

Definition (3.15) is equivalent to the following:

RES,ui(n) = N GIVEN,(s) — GIVEN,,(n). (3.16)
seSuccs™ (n)

Proof: Follows directly from Lemma 3.3. O
Figure 3.15 shows the code from Figure 3.12 annotated with communication gen-

eration as computed by GIVE-N-TAKE.

3.5 Solving the Equations

This section presents an algorithm called Give NTake that can be used to solve a code
placement problem via the GIVE-N-TAKE framework. Section 3.4 already listed the
equations that lead from the initial data-flow variables to the result variables. What

is left towards an actual algorithm is a recipe for evaluating these equations.

3.5.1 The constraints

The objective of the algorithm is to assign the flow variables at each node a value
that is consistent with all equations; i.e., we have to reach a fized point. Note that
the number of evaluation iterations to reach a fixed point may be constant, as is
usually the case in interval analysis. In general, the evaluation order is also im-
portant for the convergence rate and, in some cases, termination behavior of the
algorithm. For GIVE-N-TAKE, there actually exists an order where the right hand
side of each equation to be evaluated is already fully known due to previous com-
putation. Therefore, GiveNTake has to evaluate each equation only once for each
node, which implies guaranteed termination and low computational complexity; it
also implies fastness [GWT6]. However, since the direction of the flow of information
varies across the equations, we still need multiple passes over the control flow graph,
solving a different set of equations during each pass.

An objective for GiveNTake is to minimize the number of passes; therefore, we

partition the equations into different sets that can be evaluated concurrently, i.e.,

52

|RBADgena{z(11: N + 10)}]
doi=1,N
y(a(i)) = ...

if test(i) then

WRITEscna{y(a(l : 7))}
WRITEReev {y(a(l 1))}
READscna{y(b(1: N))}
goto 77

endif
enddo
WRITEsena{y(a(l: N))}
WRITEgeco {y(a(l : V))}
READ seng{y(b(1: N))}
doj=1,N

)
)

enddo
77| READRecy{z(11: N +10),y(b(1: N))}
dok=1N
.= a(k+10)+ y(b(k))
enddo

Figure 3.15 The code from Figure 3.12
annotated with communication statements.

23

within the same pass. It turns out that Sections 3.4.2, 3.4.3, 3.4.4, and 3.4.5 each
define one set of equations that can be evaluated concurrently. We will refer to
these sets as S; (Equations 3.1-3.8), Sy (Equations 3.9, 3.10), S (Equations 3.11-
3.13), and Sy (Equations 3.14 and 3.15), respectively. Since all equations except
Equation 3.12 in S3 are the same for EAGER and LAZY problems and S; and 53 are
computed before S3, the variables defined in S; and S; are the same for both kinds
of problems. Therefore, we need to differentiate between EAGER and LAZY only for
variables defined in S5 and Sy. We distinguish these variables by superscripts eager
and lazy.

To determine an order for solving the GIVE-N-TAKE equations that yields a fixed
point after evaluating each equation only once, we have to make sure that an equation
is not evaluated before the right hand side is fully known. As also described in more

detail in Appendix A.2, inspection of the equations yields the following constraints.

e 57 should be evaluated in BACKWARD order, for example, because Equation 3.8
defines TAKE,.(n) in terms of TAKE,.(s), with s € Succs®™ (n).

e 57 should also be evaluated in UPWARD order; e.g., Equation 3.3.

e Si(n) (“the equations from S; for node n”) should be computed before Sz(n),
but after S;(CHILDREN(n)).

e S5 should be evaluated in FORWARD order.

e 53 must be computed in FORWARD, DOWNWARD fashion, ¢.e., in PREORDER,
after Sj.

e 54 has to be evaluated after S; and S3, in any order.

Intuitively, these constraints express that information about consumption is flowing
up and back, whereas the availability of production gets propagated forward and
down. The production to be inserted at a node, however, again depends on the

successors of the node.

3.5.2 The algorithm

The resulting algorithm is shown in Figure 3.16. A formal proof that it does in-
deed obey all ordering constraints, as well as a proof that GIVE-N-TAKE meets the
correctness constraints (C1), (C2), and (C3), can be found in Appendix A.

o4

Procedure GiveNTake

Input: G = (N, E); Vn € N:
Output: Vn € N: RES*?*"(n) and/or RESlazy(n)

forall n € N, in REVERSEPREORDER
forall ¢ € CHILDREN(n), in FORWARD order
Compute Equations 3.9, 3.10
endforall
Compute Equations 3.1...3.8
endforall
forall n € N, in PREORDER
Compute Equations 3.11...3.13 for EAGER/LAzY
endforall
forall n € N
Compute Equations 3.14,3.15 for EAGER/LAzY
endforall
end

Figure 3.16 Algorithm GiveNTake computing an EAGER/LAZY code
placement. RES without subscripts stands for both RES;, and RES,,;.

)

As already noted, each equation is evaluated only once for each node in N.
Furthermore, each equation depends only on a subset of neighbors. Therefore, the
total complexity of GIVE-N-TAKE is O(F) steps where the cost of each step depends
on the current lattice and its representation, for example bit vectors of a certain
length. As already noted in Section 3.3.4, £ can be assumed to be of a size in the
order of the program size in most cases; under this assumption, GIVE-N-TAKE as

well as other interval-based elimination methods have linear time complexity.

3.5.3 BEFORE vs. AFTER problems

We mentioned earlier that an AFTER problem can essentially be treated as a BEFORE
problem with reversed flow of control. However, this also means that the reversed flow
graph has to fulfill the same requirements from Section 3.3.4 as the original graph,
which is not trivially the case. For example, ENTRY edges may become CYCLE edges
and vice versa, but each loop may have only one CYCLE edge; this can be satisfied by
adding nodes similar to the SYNTHETIC nodes. More severe is the requirement for G
to be reducible, which will be violated if the original graph had any JUMP edges, since
these will become jumps into loops. In fact, this would prevent us from determining
a unique set of intervals for the reverse (G. For example, consider the flow graph in
Figure 3.17, which may be the result of solving an AFTER problem for a program
containing a jump out of a loop. A consumption placed at node 4 might be hoisted
into its header, node 3, which would be unsafe due to the path 1-2-5-3.

In our implementation, we handle this case by using the same interval structure
as for the original graph, and preventing hoisting production out of loops that con-
tain JUMP edges. This can be done by either accordingly initializing STEAL,,;; for
each header of a loop containing a JUMP edge, or by ignoring for these headers the
contributions to TAKE coming from the loop body (see Equation 3.5).

3.5.4 A note on synthetic nodes

Having computed the result variables with GIVE-N-TAKE, one still has to perform
the actual program optimizations by modifying the analyzed code. This step might
be complicated by having production placed at a synthetic node, which would require
new basic blocks (see Figure 3.4). However, it may often be possible to shift produc-
tion to a neighboring non-synthetic node. This can either be done at code generation

time, or by post-processing the results of GIVE-N-TAKE, in a way that is similar to

26

Figure 3.17 Flow graph containing a jump into a loop. Note
the synthetic (dashed) edge between nodes 2 and 3.

a mechanism employed in edge placement [Dha88a] for avoiding code proliferation.
Our implementation took the latter route, by running a backward pass on GG which

checks whether these movements can be done without conflicts.

3.6 Summary

This chapter has outlined a general code generation framework, based on Tarjan inter-
vals, that handles several different classes of problems. Unlike previous approaches, it
does not assume atomicity. Instead, GIVE-N-TAKE provides both EAGER and LAZY
solutions, and it guarantees their balance across arbitrary control flow. Furthermore,
GI1VE-N-TAKE can be applied to both BEFORE and AFTER problems, and it can
take advantage of side effects to further eliminate unnecessary production without
affecting balance. Other nice properties of GIVE-N-TAKE include the option to hoist
code out of zero-trip loop constructs even for nested loops, and the natural handling
of irregular loop bounds and access patterns.

Note, however, that as with code placement strategies in general, there may be
conflicting goals in how far to separate production and consumption. Often the com-
putations compete for resources, such as registers or message buffers, which could
cause some “optimizations” to have a negative effect in practice. While GIVE-
N-TAKE does not address this issue directly, certain extensions, such as a heuris-
tic for inserting additional STEAL;,;;s which blocks production, could help to solve
this conflict. Other possible extensions are the combination with dependence anal-

ysis citeKeNedeljkovic:DepDat, for example by refining the initial assignments to

57

TAKE;,;; and STEAL;,;;, or a more thorough treatment of jumps out of loops for
AFTER problems. While our current approach (Section 3.5.3) prevents unsafe code
generation, it may miss some otherwise legal optimizations. Related to that is the
issue of analyzing irreducible graphs in general.

As described in Chapter 5, the FORTRAN D compiler uses GIVE-N-TAKE to
generate messages for distributed-memory machines. We generate READs, WRITES,
and WRITEs combined with different reduction operations, such as summation. All
of these operations can be placed either atomically, for example, for a library call, or
divided into sends and receives. The non-atomicity and balance attributes enables
message latency hiding and other optimizations to be performed across arbitrary
control flow. GIVE-N-TAKE’s flexibility allowed us to apply the same algorithm to
very different tasks that traditionally were solved with separate frameworks. This

simplified the implementation in the FORTRAN D compiler significantly.

. the process of question and answer,
giving and taking,

talking at cross purposes

and seeing each other’s point —

performs the communication . ..

— Hans-Georg Gadamer (Truth and Method)

28

Chapter 4

Irregular Computations on SIMD architectures

On a MIMD machine, performing irregular computations does not impose particu-
lar problems once data have been distributed and can be properly communicated,
as addressed in the previous two chapters. On SIMD machines, however, the situ-
ation is slightly different, due to the control-flow restrictions imposed by the Single
Instruction Multiple Data model. There is only one program counter shared by all
processors, and for each instruction issued by that counter a processor only has the
choice between participating in it or sitting idle (“being masked out”). In other words,
SIMD processors have to synchronize after every single instruction, instead of just at
communication points. Every derivation from completely regular, balanced control
flow increases average idle time. This tends to cause performance problems for naive
implementations of irregular applications.

An important special case are loop nests with an uneven number of iterations of
the inner loop(s). When parallelizing the outer loop, different processors may end up
with a work load that is not balanced between different iterations of the outer loop.
Assuming no additional synchronization within the loop nest, this does not cause
any problems on a MIMD machine, as long as the total work load assigned to each
processor balances out. Under the SIMD model, however, each processor is required
to wait at each iteration of the outer loop for the processor with the largest number
of inner loop iterations, and idle time is likely to be high.

This chapter describes the technique of loop flattening, which aims at overcoming
these control-flow constraints in the context of loop nests with an uneven number of
inner iterations. The rest of this chapter is organized as follows. Section 4.1 describes
the different variants of pseudo-FORTRAN used in the examples. Section 4.2 presents
a small example to illustrate the kind of problem we are interested in and gives a
first glance at loop flattening, which Section 4.3 elaborates on at a more general level.
Section 4.4 evaluates loop flattening from the compiler perspective. (Experimental

results are given in Section 6.2).

29

4.1 Languages

The concepts introduced here apply to a broad range of languages. We will give

program examples in different variants of pseudo-FORTRAN:

F77 — Strictly sequential FORTRAN 77 (possibly a “dusty deck” program).

F77D - F77 enhanced with decomposition statements as proposed in FORTRAN D
[FHK*90]. An important goal of F77D is to provide a basis for efficient compi-
lation towards both MIMD and SIMD distributed-memory machines, so it does

not contain any constructs that are specific to either architecture.

F77yuup — A version of FORTRAN 77 designed to run on a MIMD machine, which

assuimmes a separate name space for each Processor.

F90s;:p — A version of FORTRAN 90 designed to run on a SIMD machine, similar to
Connection Machine FORTRAN [Thi91] or MasPar FORTRAN [Mas91]. There

are two important differences relative to the F77 variants:

e By default, scalars of F77 will be replicated in F90g7pp; i.€., they will be

declared as vectors of size P, where processor p owns the p-th element.

o In keeping with FORTRAN 90 convention, omitted array indices refer to
all elements of an array dimension, and an unsubscripted array reference

refers to all array elements.

For enhancing readability of F90g7,/p examples, we extend the language constructs

that are typically implemented by vendors in several ways:

e The forall construct can be applied not only to single statements, but also to
blocks, as is the case in HPF [Hig93]. The general form of this extension can
be interpreted differently depending on the semantics chosen for the case where
different iterations modify the same set of data; our examples, however, will

avoid these access interferences.

e do-enddos, do-whiles, ifs, wheres, and foralls can be nested freely within

each other. (HPF does not allow these control structures to be nested within

foralls.)

e while loops can be controlled by an array of booleans (instead of just a scalar

boolean), if the different array elements are guaranteed to have identical values.

60

4.2 Example of Loop Flattening

Consider the contrived F77 loop nest in Figure 4.1, henceforth called Fzample.
This clearly is a dependence-free, parallelizable loop, where the number of inner loop
iterations depends on the current iteration of the outer loop. Let K be 8 and let
L(1:8) have the values 4,1,2,1,1,3,1,3, respectively. Assuming P = 2 processors and
the owner-computes rule, where in all assignment statements the right hand side
expression is computed by the processor that “owns” the left hand side variable, we
can in this case just distribute L and the rows of X blockwise to achieve perfect load
balance. This is illustrated in the F77D program in Figure 4.2, which, for Lmax =
4, assigns L(1:4), X(1:4,1:4) to processor 0 and L(5:8), X(5:8,1:4) to processor 1.
The owner-computes rule results in partitioning the iteration space among the two
processors, so each processor executes only some iterations of the outer loop.

For a MIMD machine, the FORTRAN D compiler would derive the F770p pro-
gram shown in Figure 4.3. Each processor executes the loop nest independently,

needing a total of
4
TIMEymvp = g%; L(i +4p) =38 (4.1)

inner loop iterations. This is illustrated in the trace in Figure 4.4.

A F90g74p version could be derived from the F77D program by just changing the
outer do loop to a forall loop. This would result in a partitioning of the iteration
space, similar to the F77D version. For expository reasons, we will consider a slightly
different but equivalent F90¢;3p version that takes the data decomposition and the
number of processors already into account and thus directly reflects the control flow
for K =8 and P = 2. As in the F77yp version, we change the upper bound of the
outer loop from K = 8 to K/P = 4 and let each processor execute all iterations of
the loop. We continue to use the loop index ¢ in control-flow related statements; to
enable the different processors to operate on different data, we introduce an auxiliary
induction variable 2/, which replaces ¢ in non-control-flow statements. The result is
shown in Figure 4.5.

Note how we had to transform the inner do loop due to the single SIMD control
flow. To make sure that each processor can perform all of its iterations, the upper
bound L(:") had to be changed into the maximum of L(:’) over all processors. This in
turn necessitated a guard for the loop body that tests whether this processor is still
involved in the current inner loop iteration or whether it is masked out and sits idle,

possibly to participate again in later iterations.

61

C P1 - sequential version

doi=1K
do j =1, L(7)
X(i,j)=1%]
enddo
enddo

Figure 4.1 Original loop nest Example.

C P2 - Fortran D version
decomposition XD(K, Lmaz), LD(K)
align X with XD, L with LD
distribute XD(block,*), L D(block)

do:=1K
do j =1, L(7)
X(i,j)=1ix]
enddo
enddo

Figure 4.2 Fzample in FT7D.

C P3 - MIMD version

do:=1,4
do j=1,1L'(1)
X'(i,j)=1ix%j
enddo
enddo

Figure 4.3 FEzample in FT7ypyp. X and L are renamed to X' and L’ to
reflect that there is no common name space any more. On processor p,
p=0,1, L'(i) corresponds to L(i 4+ 4p), and X'(7,) corresponds to
X (i +4p, 7).

62

Time |1 2 3 4 5 6 7 8
20 11 1 1123 3|4
Jo 12 3 4711 2|1
7 112 2 2134 4 4
7 /1 2 3|11 2 3

Figure 4.4 MIMD execution trace for Example loop.
Here 7, and j, denote 2 and j on processor p.

C P4 - naive SIMD version
doi:=1,4
i' =14 [0,4]
do j =1, max(L(7))
where (j < L(i")) X(¢,j) =14 x7
enddo
enddo

Figure 4.5 Fzample in F90s7pp. [0,4] denotes the
two-element vector containing 0 and 4.

We will refer to this transformation, which can be applied to other loop types as
well, as SIMDizing a loop. It is a straightforward consequence of the SIMD restricted
control flow and motivates the code transformation introduced in this chapter. The
outer loop does not have to be SIMDized in this particular case because we know
that each processor works on exactly four rows of X and therefore has to execute
the outer loop the same number of times. Loop SIMDizing has the effect that our

F90s7mp program has to execute
4
TIMEsiyp = ;g?ﬁL(i +4p) = 12 (4.2)

iterations. Roughly speaking, our time bound has increased from a maximum over
sums to a sum over maxima. This becomes apparent when considering the execution
trace shown in Figure 4.6.

Since the equivalent MIMD implementation performs significantly better, this

bad running time can not be explained by lack of parallelism or bad load balance.

63

Time |1 2 3 4|5 6 7|8 910 11 12
20 11 1 112 3 3|4
Jo 1 2 3 411 1 21
7 1 2 2 2|3 4 4 4
7 1 1 2 31 1 2 3

Figure 4.6 Execution trace for unflattened example loop; i, j, denote the
actual iteration counts of processor p, no entry means “idle.”

To overcome this purely control-flow related problem, we apply loop flattening, which
will be introduced at a more general level in the next section. The result is shown in
Figure 4.7. Now we can achieve the same time bound as in the MIMD implementation,
needing only eight steps as shown in the trace in Figure 4.4.

The reader might have noticed that the loop body shown in Figure 4.7 is now
always executed at least once for each outer loop iteration, which is equivalent to
assuming L(z) > 1 for all «. Even though this is correct in our example, a more
general loop flattening does not rely on this assumption, as we will see in the next

section.

4.3 General Loop Flattening

Assume that we are given two fully parallelizable nested loops such as in the previous
section; an extension of the following to deeper loop nests is straightforward. Each
of the loops might be structured as a while loop, a do-while loop, a simple do or
forall loop, or it might use conditional gotos. The transformation described here
can be done either at the F77/ F77D level or at the F90g73p level. For simplicity and
generality, we will present it here on the F77 level. A corresponding F90s7,p version

can always be directly derived by SIMDizing loops and replacing ifs with wheres.

4.3.1 Loop normalization

As a first step, we normalize both loops by breaking their control pattern into three
phases for each nesting level [; an initialization phase init;, a guard test;, and an
incrementing step in¢. For example, a control pattern such as do var = lo, hi, stride

would be broken into init; = var = lo, test; = (var < hi), and in¢ = var = var

64

C P5 — flaltened SIMD version

i=1[1,5]
K =[4,8]
j=1

while any (¢ < K)
where (i < K)
X(i,j)=1tx]
where (j = L(7))
t=1+1
j=1
elsewhere
J=J+1
endwhere
endwhere
endwhile

Figure 4.7 Ezample in flattened F9057p.

+ stride. The resulting loop nest GenNest is shown in Figure 4.8, along with the
corresponding version of the Fzample from the previous section; of course, we usually
expect BODY to contain more computational work than in Fzample.

Since GenNest conservatively tests for loop completion before entering the loop
body, all loops can be brought into this normal form. To estimate the running time
of the above code on P processors, for processor p let K, be the number of outer
loop iterations and L; be the number of inner loop iterations for the i-th outer loop
iteration. A straightforward MIMD version would then finish after

Kp

TIMEyivp = mag_lglj; (4.1")

p=0,...,

iterations.

A F90g;mp version could be derived by SIMDizing both while loops and would

execute
111:1)(;:’:_01 Ky
TIMEsiyp = max L' 4.2/
Z.Z_; p=0,...,P—1 p ()

iterations. Again, if the number of iterations of the inner loop varies from one outer
loop iteration to the next, then the restriction to a common program counter makes

this SIMD implementation inefficient.

65

program (GenNest A program Fzample A
Al inih 1=1
A2 while test; while (1 < K)
A3 inity j=1
A4 while test; while (7 < L(7))
A5 BODY X(i,j)=1ix%]
A6 incy 17=7+1
A7 endwhile endwhile
A8 incy 1=1+1
A9 endwhile endwhile

Figure 4.8 Generic loop nest GenNest (left) and corresponding
FExample (right); original version after normalization.

4.3.2 The transformation

Since we do not know whether the evaluation of test; has any side effects, we introduce
flags t; to store the results of evaluating the conditions test; before we make any other
transformations, as shown in Figure 4.9. So far, control flow is still unchanged.

The key idea of loop flattening is to make sure that each processor has a chance
to advance to the next loop iteration where it participates in the execution of BODY
before the control flow actually reaches BODY. One requirement that follows immedi-
ately is that control variables (iteration counts etc.) are replicated to enable individual
processors to advance independently to the next outer loop iteration whenever they
are done with the current inner loop. Furthermore, we have to take BODY out of
the part of the loop nest that handles the transition between different iterations of
the inner and outer loop. Each processor should be able to execute BODY whenever
it has still work left to do in this loop nest and the control flow reaches BODY. In
other words, BODY should be executed whenever ¢ is true, independent of t;. The
flattened loop version meeting these goals is shown in Figure 4.10.

As the reader might verify, we still execute exactly the same instructions in the
same order and the same number of times as we did in the original loop nest.
Figure 4.11 provides a step-by-step comparison of the two versions. We also still
have two nested loops. However, BODY is lifted out of the inner loop. The inner

loop now contains just the control structure to let each processor advance to the next

66

program GenNest B

program Fzample B

B1 inily 1=1
B2 11 = testy i1 = (Z < I()
B3 while t; while ¢
B4 inity j=1
B5 1o = tesly o = (] < L(l))
B6 while ¢, while ¢,
B7 BODY X(i,j)=1ix]
B8 incy 7=74+1
B9 1o = tesly o = (] < L(l))
B10 endwhile endwhile
Bi11 incy 1=1+1
B12 11 = testy i1 = (Z < I()
B13 endwhile endwhile
Figure 4.9 GenNest/ Ezample, with guard variables.
program GenNest C program Fzample C
c1 inity 1=1
C2 11 = testy 11 = (’L < I()
C3 if t; then inity if t; then j =1
c4 while ¢ while ¢;
C5 ity = lesly ty = (] < L(l))
Cé while (tl A tg) while (tl A _|t2)
c7 incy 1=14+1
C8 11 = testy 11 = (’L < I{)
C9 if {; then if {; then
C10 inity 7=
C11 o = tesly 1o = (] < L(Z))
C12 endif endif
C13 endwhile endwhile
Cc14 if {; then if {; then
C15 BODY X(i,j)=1x7
ci1e incy 7=7+1
c17 endif endif
ci18 endwhile endwhile

Figure 4.10 GenNest/ Fxample, after flattening.

67

iteration in which it actually executes BODY. In other words, the processors still
have to run through BODY and the rest of the loop nest in lockstep, but now they

may be executing effectively different loop iterations.

4.3.3 Optimizations

The above transtormation is the most general, conservative one. It can be optimized

for several special cases; one common case is that
1. testy, testy, and inity have no side effects, and
2. For each outer loop iteration, the inner loop is executed at least once.

Then we can safely transform the code into the simpler version shown in Figure 4.12.
An operational proof is found again in Figure 4.11.
If it is also the case that

3. We can replace the guard test, with a test done; whether we are in the last

inner iteration (for example, in do var = lo, hi, stride, we can replace test =
(var < hi) with done = (var = hi)),

then we can save the last execution of incy, as shown in Figure 4.13. The SIMDized

equivalent Fzample of this version was shown in Figure 4.7.

4.4 Loop Flattening from the Compiler’s Perspective

The discussion so far seems to advocate a certain style of SIMD programming for ap-
plications that can benefit from loop flattening, just as a certain style of programming
emerged when vector machines became popular. However, this would be contrary to
existing efforts to make programming independent from machine idiosyncrasies, as
for example the development of the FORTRAN D language. For non-SIMD machines,
it still seems natural and efficient to have the inner loop bodies contained in the inner
loops, even though flattened loops should run well on these machines also. Therefore,
we suggest to make loop flattening part of the optimizing repertoire of SIMD compil-
ers.

Applicability is ensured whenever there are multiple loops fully contained in each
other; i.e., there are not several loops on the same nesting level. This can be easily

derived from the abstract syntax tree. Furthermore, the normalized version always

63

Operation B C D Comments
ity B1 C1 D1
tl = test1 B2 C2
if t; then (B3) t1 = true
nity B4 C3 D2 || Entered B3 while, C3 if
ty = testy B5 (C4), C5 Entered C4 while
L1: if t5 then (B6) (C6) (D3) || t1 = true, ty = true
BODY B7 | (C14),C15 | D4 || Skipped C6 while; entered B6/C14 if, D3 while
nce B8 C16 D5
ty = testy B9 (C4), C5 (D6) || Entered C4 while
goto L1
else t1 = true, ts = false
mey B11 CT D7 || Skipped B6 while; entered C6 while, D6 if
tl = test1 B12 C8
if t; then || (B3) (C9) t1 = true, ty = false
mnity B4 C10 D8 || Entered B3 while, C9 if
tz = testz B5 Cl11
goto L1
else (C6), (C14) | D8 || t1 = false, t2 = false
STOP (C4) (D3) || Skipped B3/D3 while
endif Skipped C9 if, C6 while, C14 if, C4 while
endif Executed spurious D8 (no side effects)
else (C3), (C4) | D2 || t1 = false
STOP (D3) || Skipped B3/C4/D3 while
endif Executed spurious D2 (no side effects)

Figure 4.11 Operational proof of equivalence of unflattened GenNest B,
flattened GenNest C, and optimized GenNest D. Control-flow statement
labels are parenthesized. Horizontal lines delineate basic blocks.

D1
D2
D3
D4
D5
Dé
D7
D8
D9
Dio

program GenNest D

z'nz'tl
initg
while test;
BODY
Incy
if not testy then
mney
initg
endif

endwhile

program FEzample D

=1
j=1
while (v < K)
X(i,j)=1x7
J=7+1
if not (j < L(7))
=141
j=1
endif

endwhile

Figure 4.12 GenNest/ Fzample, flattened and optimized.

69

program GenNest

program FEzample F

E1 inily 1=1

E2 inily j=1

E3 while test; while (1 < K)
E4 BODY X(i,j)=1%]
E5 if done; then if (7= L(¢))
E6 necy 1=14+1
E7 inity j=1

E8 else else

E9 incy 7=74+1
E10 endif endif

E11 endwhile endwhile

Figure 4.13 GenNest/ Ezample after further optimization.

tests the loop guard test; before executing BODY, so we cover all loop constructs.
The transformation itself is relatively straightforward; for example, there are no pa-
rameters to adjust, unlike in loop skewing. The first step of the transformation is to

identify the three phases init, test, and inc.

while/do-while loops: The relevant phases can be identified from their position be-
tween the while and endwhile keywords. Since inc; and BODY stay together
throughout the transformation, we actually do not need to separate these two

phases.

do/forall loops: The phases can be derived directly from the loop header, as exem-

plified earlier.

Reducible goto loops: Similar to while loops, we can identify the phases by their

position between labels and jumps.

After normalization, the introduction of flags ¢; and the actual code rearrangement
follow straightforwardly. As described in Section 4.3, we also can often detect op-
portunities for further optimizations, for example when we are transforming simple
do/forall loops.

In evaluating profitability, we note that the additional overhead caused by loop

flattening is, in the worst case, to manipulate two flags and to perform two condi-

70

tional jumps. So we can relatively safely assume profitability whenever the inner loop
bounds may vary across the processors.

As with many code transformations, the hardest problem in automating loop
flattening is to determine its safety. A sufficient condition is that the loop into
which we lift an inner loop body can be parallelized, which might be hard to detect,
especially if indirect addressing occurs. However, this is already a necessary condition
for parallelizing loops in general, and therewith a standard problem for parallelizing
compilers [HKT92a]. The same technology developed there can be applied here.

When safety is ensured, either by user information (such as a forall loop header) or
by “heroic dependence analysis,” we expect that the systematic loop flattening trans-
formation, as described in Section 4.3, can be implemented efficiently into compilers
like the FORTRAN D compiler. This implementation is not part of this dissertation;
however, Section 6.2 contains a performance study on the improvements gained when

applying loop flattening manually.

The correctness of the distribution

is founded on the justice

of the scheme of cooperation ...

the principle of utility requires us to mazximize
the algebraic sums of expectations

taken over all relevant positions.

— John Rawls (A Theory of Justice)

71

Chapter 5

Implementation Experience

So far, this dissertation stated a thesis (Section 1.3) and discussed issues, prob-
lems, and technologies regarding compiler support for the parallelization of irregular
problems. This chapter describes an extension of the FORTRAN D compiler proto-
type [T'se93] to handle irregular problems as part of the overall validation. Other
validation components are experiments (Chapter 6) and additional theoretical proofs
(Appendix A).

The rest of this chapter is organized as follows. Section 5.1 gives a general overview
of the compiler. Section 5.2 and Section 5.3 describe the analysis and code-generation
phases, respectively. Section 5.4 concludes with a short overview of the object-oriented

design methodology employed.

5.1 Overview

The FORTRAN D compiler can be divided into two phases: the analysis phase and
the code-generation phase. The analysis phase parses the program, builds internal
data structures, and analyzes the program, but does not modify it yet. The code-
generation phase performs the actual code transformation by modifying the Abstract
Syntax Tree (AST) and generates the final program by unparsing the AST. This im-
plies that the same AST can be used for both source and target language. On the one
hand, this strict separation might in some cases slightly increase intermediate storage
and run-time requirements. On the other hand, not touching the source code until
achieving full knowledge about the transformation to be done lengthens the validity of
intermediate analyses, such as the control flow graph (CFG), static single assignment
information (SSA), value numbers, and their links into the AST. This potentially de-
creases the need for reanalysis after intermediate code transformations, which in turn
can speed up the overall compilation process. Most importantly, however, the clean
separation enhances modularity of the compiler itself. This benefits the development

and debugging process, and it allows easy integration into an interactive environment

72

where the user wishes to make queries about a program without actually modifying
it.

The nbf kernel in Figure 2.3 will be used as a running example. The nbf program,
annotated with output statements not shown here, has been compiled and run on both
a Sun work station and, after feeding it through the FORTRAN D compiler, on an
iPSC/860 hypercube where it was linked with the CHAOS communication library
(see Section 7.1.2) and a memory allocation library; see Section 6.1 for experimental
results. The code generated by the FORTRAN D compiler is shown verbatim in
Figures 5.7, 5.8, and 5.9. However, to facilitate the discussion of the concepts that
are at a somewhat higher level than for example calling protocols for the run-time
support and the emulation of dynamic memory in FORTRAN 77D, we also provide a
slightly abstracted version of the FORTRAN D output in Figures 5.1 and 5.2, which

we will be mostly referring to.

5.2 The Analysis Phase

5.2.1 Symbolic analysis

Even though the FORTRAN D compiler can be used in batch mode as a stand-alone
tool, it is part of the PARASCOPE programming environment [KMT91]. Therefore
the compiler not only can be used within PARASCOPE, but it also takes advantage
of the information and utilities provided by this environment. Besides basic facilities
such as file I/O, lexing, parsing, and symbol table management, the environment also
provides more advanced features, such as a framework for deriving interprocedural
symbolic analysis. One simple example of the use of symbolic analysis in the nbf
program is the proper handling of the symbolic constants Natom and pMax in array
declarations, FORTRAN D directives, and loop bounds. Of particular importance
with respect to the algorithms presented here is the following information, which is

derived from a FORTRAN D program P and handed to the compiler.

The control flow graph, G := (N, F), with nodes N and edges F. Among other
functions, GG serves as a basis for the GIVE-N-TAKE data-flow analysis frame-
work described in Chapter 3 and therefore has to meet certain criteria, such as
reducibility and lack of critical edges (see Section 3.3.4). Furthermore, GG has
to be annotated with Tarjan interval information to guide the data-flow phase.
Figure 5.3 shows G for nbf; note that the current implementation generates one

node for each statement instead of summarizing information for basic blocks.

73

wt

10

15

20

25

30

35

40

PROGRAM nbf

INTEGER i, j, p, t, n$proc, Natom, pMax, Nstep
PARAMETER (n$proc=8)

PARAMETER (Natom=8000, pMax=250, Nstep=30)
INTEGER inb(1000), partners(1000, pMax)

REAL x(1000), £(1000), force, nbf_func, delta_func

General FORTRAN D wvariable declarations
COMMON /FortD/ np, myp
INTEGER np, myp, numnodes, mynode

Irreqular FORTRAN D wariable declarations

INTEGER atomD$cnt, atomD$sched, atomD$tab, atomD$loc2proc(Natom)

INTEGER x$sched, x$offsize, j$cnt, $init, i$

FoRTRAN D initializations

my$p =

n$p =

mynode ()
numnodes ()

IF (n$p .NE. 8) STOP

Initialize data
CALL read data(x, inb, partners)

Redistribute atomD according to coordinate values

atomD$cnt = Natom / n$p

Compute atomD$loc2proc, atomD$cnt from inb, x, atomD$cnt
Compute atomD$tab from atomD$loc2proc, atomD$cnt

Allocate atomD$loc2glob(atomD$cnt)

Compute atomD$loc2glob, atomD$sched from atomD$tab, atomD$cnt

Delete atomD$tab

Compute atomD$tab from atomD$loc2glob, atomD$cnt
Resize inb(atomD$ent), x(atomD$ent), f(atomD$cnt), partners(atomD$ent,pMax)
Shuffle inb, x, partners according to atomD$sched

Counting slice for j$cnt

j$cnt

DO i =

=0
1, atomD$cnt

j$cnt = j$cnt + inb(i)

ENDDO

Allocate j$glob(j$cnt), j$loc(j$cnt)
Compute j$glob

j$cnt

=0

Figure 5.1 Slightly simplified output of FORTRAN D
compiler for nbf (continued in Figure 5.2).

74

45

50

60

65

70

75

80

85

DO i = 1, atomD$cnt
DO p = 1, inb(i)
j$cnt = j$ent + 1
j = partners(i, p)
j$glob(j$ent) = j
ENDDO
ENDDO
Compute x$sched, j$loc, x$offsize from atomD$tab, j$glob, j$cnt, atomD$cnt
Delete atomD$tab
Resize f(atomD$cnt + x$offsize)
Resize x(atomD$cnt + x$offsize)

Loop over time steps
DO t = 1, Nstep
Gather x using x$sched

Reset forces to zero

DO i =1, atomD$cnt
(i) = 0

ENDDO

Initialize buffer for reduction

DO $init = atomD$cnt + 1, atomD$cnt + x$offsize
f($init) = 0

ENDDO

Compute forces

i$ =0
DO i = 1, atomD$cnt
DOp = 1, inb(i)
i$ = i$ + 1

j = partners(i, p)
force = nbf func(x(i), x(j$loc(i$)))
£(i) = £(i) + force
£(j$loc(i$)) = £(j$loc(i$)) - force
ENDDO
ENDDO
Scatter_add £ using x$sched

Push atoms
DO i =1, atomD$cnt
x(i) = x(1i) + delta_func(£f(i))
ENDDO
ENDDO
END

Figure 5.2 Slightly simplified output of FORTRAN D
compiler for nbf, continued from Figure 5.1.

75

Level O Level 1 Level 2 Level 3 Level 4

13 f (i) =
v
'19 14 f(j)=
_____ |_____I

Figure 5.3 Flow graph GG of nbf program. The loop nesting level in GG
increases from left to right. Node 0 is the root of . Header nodes have their
children attached to the right. Synthetic nodes, which do not directly
correspond to statements in nbf, are dashed.

76

Value numbers, VN :={ vn | e an expression in P, vn = val(e), the value number
of e}. Value numbers are computed for both constant and non-constant ex-
pressions and are closely related to the SSA information [Hav93, Hav94]. They
provide for example information about whether an expression is an immedi-
ate or auxiliary induction variable or a linear combination thereof. Each array
reference’s value number is a pair (state, (subq,. .., sub,r)), where state repre-
sents the internal state of the array that gets altered with every modification of
the array, and sub; is the value number of the z-th subscript. This means that
the array is viewed as a scalar with respect to modifications, but the actual

subscripts are taken into account when comparing array expressions.

Note, however, that we do not only construct value numbers for individual
subscripts, but also for whole subscript lists. Both types of subscript numbers
are used; for example, inspector generation is mostly concerned with individual
subscripts as described in Section 5.2.5, whereas communication (Section 5.2.4)

depends on whole subscripts.

5.2.2 The regular part of FORTRAN D compiler

Just as there are distinct analysis and code-generation phases, there is also a fairly
clean separation between those parts of the compiler that apply to both regular and
irregular features of an application, and those parts that are specific to either kind.
For brevity, the phases specific to irregular applications will be referred to as the
“irregular compiler,” whereas the rest of the FORTRAN D compiler that applies to all
or just regular programs will be called the “regular compiler.”

The irregular compiler performs its analysis after the regular compiler has per-
formed interprocedural analysis, but before the regular compiler’s intraprocedural
analysis. An important class of interprocedural information provided by the regular
compiler is reaching decomposition analysis, which propagates FORTRAN D specific

decomposition information from callers to callees [HHKT92].

5.2.3 The data-flow universe for communication analysis

In preparation for analyzing the communication requirements of P, the irregular
compiler first determines IREFS, the set of both regular and irregular references to
arrays that are accessed irregularly somewhere, and then computes KEYS, the data-

flow universe. Crucial to this phase is symbolic analysis, which can for example

7

determine the equality of expressions even if they are syntactically different, across
loops and other control flow constructs. An example of this can be seen in the code
of Figure 3.2, where z(a(k)) and z(a(l)) can be recognized as identical based on
the subscript value numbers. Symbolic analysis is also used to determine whether a
subscript is irregular or not; the current heuristic classifies all subscripts that are not
linear combinations of induction variables as irregular. A more formal specification
of the computed information is shown in Figure 5.4. We will refer to the elements of
KEYS also as array portions.

Note that to allow irregular references to multidimensional arrays, SUB_VALS
contains value numbers of individual subscripts, whereas KEYS considers value num-
bers of whole subscript lists. Furthermore, in order to determine when messages can
be combined, or when buffered data become stale because of non-local assignments,
etc., the data-flow universe must be based on the comparison of actual memory lo-
cations, not values. Therefore, KEYS does not use value numbers for classifying
data arrays, but instead their symbol table index. This is equivalent to syntactic
comparisons plus aliasing and formal/actual parameter resolutions.

In nbf, the js are considered irregular subscripts, resulting in IJARRS = {x,f}.

Therefore, all references to x and £ are collected to build the data-flow universe.

5.2.4 Communication analysis

The communication model used by the FORTRAN D compiler is that each datum d
has an owner owner(d) (see Section 3.2.1). If a processor p referencing d owns d, it
is assumed to have a valid copy of d at the point of reference. If p does not own d, it
might either have to receive d from owner(d), which together with the corresponding
Send of owner(d) is considered a global READ operation, or p might still have buffered
a valid copy of d. An option not considered here is that p might receive d from any
processor that has a valid copy of d [GS93].

Since the owner-computes rule is not strictly applied, any processor p may define d.
If p # owner(d) and d will be referenced by some processor ¢, ¢ # p, then p must
send d to owner(d) after defining d. That, together with the corresponding receive of
owner(d), is considered a global WRITE.

Under the above constraints, the objective of communication placement is to com-

municate as little and as infrequently as possible (see Section 3.2). Small messages

78

IARRS := {z |z is referenced irregularly in P.}
IREFS := {z(subs)|x € IARRS, subs = (s1,...,5s,) a subscript list.}
SUBS := {s|3Jz(...,s,...) € IREFS.}
SUB_VALS := {vn|vn is value number of some subscript s € SUBS.}
KEYS := {(st,vns,dist,iset) | for some reference z(subs) € IREFS, it is

st := symbol table index of z,
vns := value number of subscript list subs,
dist := distribution of z at point of reference,
1set := computational distribution of reference.
}
REFS_KFEY(key) := set of references that match key € KEYS.
REFS_KEYS := set of REFS_KFYs.

Figure 5.4 Description of the
GIVE-N-TAKE-universe used for communication
placement.

are combined into larger ones, and data buffered locally, due to proceeding READs or
local definitions, are reused as long as they are valid.

The data-flow framework uses a binary lattice and represents its variables as bit
vectors, one bit for each key € KEYS. The position within the bit vector constitutes
the id for each key. In the following, the “id of ref” denotes the id assigned to the
key matching a reference ref. Similarly, the definition, use, etc. of an id refers to
the definition, use, etc. of a reference with the key corresponding to ¢d. Figure 5.5
describes the information that is computed for each node n € N.

Here the subscript dependence set refers to the data that a subscript depends on.
This can be thought of as the set of data that are referenced when inspecting for a
subscript; a more detailed discussion can be found elsewhere [DSvH93]. For example,
a subscript that is itself an indirection-array lookup depends on the indirection array.
In nbf, it is x(j) € REF(12)Y, IND(2), and £(j) € REF(14), DEF(14), ADD(14),
RED(14), IND(2); there are additional entries for the x(1)s and £ (i)s.

fRead as: “The key associated with the reference x(j) is contained in the REF bit vector at node
18, which corresponds to the assignment to force in nbf.”

79

) = {id|n references id},
) = {id|n defines id},
) = {id|n adds to id},
MULT(rn) := {id|n multiplies to id},
) := ADD(n)U MULT(n),
) := {id | n redefines the subscript dependence set of id}.

Figure 5.5 The information that is computed for each node n € N.

Based on this local information, several instances of GIVE-N-TAKE are solved,
one instance for each kind of communication. The communication types considered
are global READs (or GATHERs), global WRITEs (SCATTERs), and global ADD
and MULT reductions (SCATTER_ADD, SCATTER_-MULT). The extension towards
additional reduction types is straightforward. Separating Send and Recv operations
for each type of communication can expose opportunities for hiding communication
latencies by overlapping them with computation. The GIVE-N-TAKE mechanism
accommodates this by providing both an EAGER and a LAZY solution for all com-
munication instances, where one solution indicates where to place the Sends and the
other computes where to place Recvs. However, the CHAOS communication library
generates Sends and Recvs internally and presents them as monolithic entity; i.e., a
single CHAOS call spawns complete Send/Recv pairs.

Each GIVE-N-TAKE instance is initialized by assigning bit-vector values to the
variables TAKE;,;;, STEAL;,;s, and GIVE;,;; for each node n € N. For example, the
READ instance is initialized as shown in the first three equations of Figure 5.6. This
initialization reflects the following: data that are referenced but not reduced to have
to be buffered, redefining data or indirection arrays blocks READs, and READs come
“for free” by local definitions. Here DEF(n)° and DEF(n)" are the data that are either
“touched” or “contained” (i.e., partially or fully enclosed) by references in DEF(n)
[HKK*92]. For example, since i and j cannot be proven to be disjoint subscript
ranges in nbf, it is {x(1)}° = {x(1),x(j)}.

After initialization, each instance is solved as either a FORWARD GIVE-N-TAKE

problem, which places communication before computation (as needed for READs), or

80

READ.TAKE,;,;; := REF\RED,
READ.STEAL,,;; := INDU DEF°,
READ.GIVE;,;; := DEF".
WRITE.TAKE,,;; := DEF\ RED,
WRITE.STEAL,,;; := (READ.GEN;, UREFURED)°,
WRITE.GIVE,,;; = 0.
ApD.TAKE;,;; := ADD,
ADD.STEAL;,i: := (READ.GEN;, U (REF\ ADD))°,

ADD.G'VEZ'm't @

Figure 5.6 Initializations of TAKE;,;;, STEAL;,;;, and GIVE,,;; for the
placement of READ, WRITE, and ADD communication operations.

as a BACKWARD problem, which places communication after computation (WRITEs
and reductions). The results of the data-flow analysis reside for each node n € N in
RES;,(n), which contains all references that have to be communicated on entry to n,
and RES,,:(n), on exit from n. The actual data-flow equations, formal correctness
and optimality criteria, etc., are described in Chapter 3.

A minor, but in practice interesting point is that in some cases communication
might be placed at synthetic nodes, i.e., nodes that correspond to not-yet existing
basic blocks (see Section 3.5.4). For example, if there is an if-then without a match-
ing else, then breaking critical edges generates a synthetic node corresponding to an
empty else branch. This may require creating new basic blocks during code genera-
tion. However, this can sometimes be avoided at no extra run-time cost by shifting
communication from synthetic nodes to other nodes. For example, if a loop is guarded
by a condition, then synthetic nodes are introduced for the else branch and between
the loop and the merge after the condition; any subsequent READ that is blocked
by the loop will be placed on both of these synthetic nodes instead of the merge
after the guard. To take advantage of such opportunities for code simplification, an

additional data-flow phase post-processes the RES;,,,.; results into new variables,

81

GEN;,/0ut, that try to move results to non-synthetic nodes and to minimize the need
for additional basic blocks.

Another interesting problem is that while global READs are shifted up and global
WRITESs are shifted down, they should not be moved past each other if they commu-
nicate non-disjoint data. This can be satisfied by first solving the READ problem, and
then initializing the WRITE problem. This and an example for a reduction initializa-
tion are shown in the middle and lower equations of Figure 5.6, respectively. In nbf, it
is for example x(j) € READ.{TAKE;,i:(12), STEAL;,:x(2), RES;,**" (4), GEN;,**"(5)};
we also have £(j) € ADD.{TAKE;,;;(14), STEAL;,:x(2), STEAL;,(6), RES;.**"(16),
GENZ" (8)}.

5.2.5 Inspectors

Inspectors have to be generated whenever runtime resolution is required for deter-
mining which data have to be communicated.

The set of inspectors is computed as follows. For each control flow graph node
that contains communication of a certain type, such as a READg.,q operation, let
Svals be the set of all subscript value numbers that need to be inspected for this
communication; let SVALS be the set of all Svals sets. For each Svals € SVALS,
one schedule Sched(Svals) will be created; let SCHED be the set of all Scheds. Each
schedule Sched € SCHED will be computed in an inspector placed at target(Sched),
which is computed as the header of the outermost loop enclosing the least com-
mon ancestor of all nodes containing communication statements requiring Sched. Let
Insp(n) be the set of all schedules Sched for which target(Sched) = n. Let INSP :=
{(n, Insp(n)) | Insp(n) # 0}; in nbf, it is INSP = {(3,{(Schedule for {j})})}.

Note that this strategy imposes some restrictions that might result in unnecessary

re-inspections. For a more general approach, see Das [Das94].

5.2.6 Executors

Executors are slightly modified versions of regions in P that contain irregular ref-
erences. Part of the modifications is to replace irregular subscripts by references to
trace arrays (see Section 5.3.3).

The use of trace arrays requires insertion of counters for indexing. For generat-
ing code to initialize and increment counters and for eliminating duplicate counters,

executors are collected as follows. For each s € SUBS, let limit(s) = n € N s.t.

82

n corresponds to the beginning of the inspector for s. This node may for example
be the header of the outermost loop enclosing s that will be copied into the inspec-
tor. Let Ezec(n) be the set of all subscripts s with limit(s) = n. Let EXEC :=
{(n, Ezec(n)) | Exec(n) # 0}; in nbf, it is EXEC = {(8,{js in nodes 12 and 14})}.

5.3 The Code-Generation Phase

After the compiler has finished the analysis phase, the AST is modified to transform
the FORTRAN D program into a message-passing node program.

5.3.1 The regular compiler

An important transformation performed by the regular compiler is the conversion of
global name space references to distributed arrays into local-name-space references
to local arrays. For BLOCK distributions and simple subscripts, this can be achieved
by loop bounds reduction, which is also a convenient and efficient way to exploit data
parallelism. In the nfb code, this transformation is applied to all i loops, whose
upper bound is reduced from Natom (= 8000) to 1000. This corresponds to using
eight processors, as indicated by the assignment to n$proc (line 4 in Figure 2.3). If
no value is specified for n$proc, then four processors are used by default. Note how
the use of induction variables outside of subscripts in reduced loops may necessitate
the need for adding a processor dependent offset [Tse93].

An additional task currently performed by the regular compiler is the communi-
cation generation for regular subscripts (none such communication is needed in nbf).
This process does not make use of the GIVE-N-TAKE analysis yet, one of the rea-
sons being that GIVE-N-TAKE so far does not include dependence analysis. That
alone could be changed relatively easily (see Section 3.6), but there are also other is-
sues that deserve special attention when generating regular communications from the
information provided by GIVE-N-TAKE. For example, message tags have to be gen-
erated for matching separate Sends and Recvs, which might require the construction
of Send/Recv equivalence classes in case of complicated control flow. Furthermore, if
the analysis indicates that data are sent together but received separately, data have

to be grouped accordingly.

83

5.3.2 Value-based mappings

Each value-based mapping directive D results in certain tasks that the compiler, in

the current implementation, performs at the location of the directive itself:

1. Generate code for calculating the new distribution as follows.

(a)

(e)

Compute an array that maps local indices (based on the initial distri-
bution) to processor numbers, D.loc2proc, and the resulting number of
owned data, D.cnt, by calling a partitioner (line 27 in Figure 5.1). This
partitioner applies the strategy specified by the programmer or a default
specified by the compiler to the values and, if specified, weights provided
by the user and generates a distribution. The partitioner tries to distribute
the data such that both high locality and good load balance are achieved;
in the presence of weights, the overall weight assigned to each processor
should be similar. Before partitioning, atomD$cnt is initialized (line 26)

according to the initial, regular distribution.

Based on D.loc2proc and D.cnt, compute a translation table as described
in Section 2.2.1, D.tab (line 28). D.tab is actually a pointer to a data
structure internal to the run-time library; within FORTRAN it is declared

as an integer. This mechanism is also used for other internal structures.

Allocate an array that maps local to global indices, D.loc2glob, of size
D.cnt (line 29).

Call a remapper (line 30) to compute a mapping from local to global in-
dices, D.loc2glob, and a communication schedule D.sched from D.tab and
D.cnt. This schedule is used in the communication statements that reshuf-
fle coordinates and pair list data according to the new distribution (line
34).

Based on D.loc2glob and D.cnt, recompute the translation table, D.tab
(line 32).

2. Let ARR be the set of arrays that are aligned to the decomposition being

distributed. (In our example, ARR can be determined at compile time; in

general, however, this may require run-time resolution.) Resize each arr € ARR

according to D.cnt (line 33).

84

As already indicated in Section 2.2.2, this implies a need for dynamic memory
allocation capabilities. The FORTRAN D compiler emulates these by convert-
ing arrays that are dynamically allocated or resized to work array accesses.
(However, for the sake of readability, Figures 5.1 and 5.2 show the code before
memory allocation). The offsets into these work arrays are generated at run
time by calls to a separate memory allocation library; see Section 5.3.9 for more
details.

3. Let LIVE be the set of arrays arr € ARR that are live at the location of D.
For each arr € LIVE, generate code for communicating the elements of arr
from their old owners to their new owners (line 34). In the example, we do not

need to communicate £ since forces have not been computed yet.

5.3.3 Trace arrays

The current strategy for collecting off-processor references is to record each individual
subscript in a trace array [DSvH93]. These arrays contain traces of the subscripts
encountered during inspection and will be localized from global to local name space.

In our example, a trace array j$glob is created for subscript j (lines 41-50 in
Figure 5.2). This trace array is first generated in global name space and then con-
verted into local name space (j$loc, line 51). For example, consider subscript j in
the loop nest in lines 30-37 of the original, sequential program in Figure 2.3. Assume
that for the original program, the value of j in the 15-th iteration of the inner loop
(say, for 1 = 1 and p = 15) is 38, and that after parallelization this loop iteration
will be executed on processor 2, as the third local iteration. Then the third global
trace element on processor 2 will be 38; ¢.e., j8glob(3) = 38. Furthermore, assume
that array x is distributed such that x(38) is owned by processor 2 and referred to
by that processor as x(12), then the third local trace element on processor 2 will be
12 (i.e., 3$1oc(3) = 12). If instead x is distributed such that x(38) is owned by
some other processor, then processor 2 has to communicate that element in and will
therefore extend its local version of x to create buffer space for accommodating a copy
of x(38). For example, if processor 2 owns 20 elements of x, it will refer to these
local elements as x(1), ... , x(20). If x(38) is the 7-th non-local element that
processor 2 has to buffer due to some reference to it, then it will referred to global
x(38) as local x(27), and it will be j$loc(3) = 27.

85

Trace arrays are one of several possible options to perform the name space con-
version. In the presence of high subscript reuse, for example, hash tables would
be a more complicated but also more space efficient alternative. Note that since the
name-space translation is already implicit in the trace array, the trace-array approach
results in a relatively fast executor. However, the space requirements for storing the
traces are proportional to the total number of references, instead of just the number
of elements referenced. Compile-time analysis can be used to shorten traces; in the
example, the compiler determined that the reference pattern is the same in each time
step and therefore did not include the time-stepping loop in the inspector. However,
the traces may still become too space consuming, in which case more space saving
alternatives, such as a hash table combined with name-space translations on the fly,

may be used [DSvH93].

5.3.4 Inspectors

The inspector code has to perform the following tasks:

1. If the size of a subscript trace is not known at compile time, then a counting
slice has to be generated and the trace array has to be allocated. A significant
implication of this scenario is the need for dynamically allocatable memory. For
example, in nbf the size of the pairlist storing all pairs of atoms within R.,;
depends on the physical properties of the molecule to be simulated and is not
known at compile time. Therefore, a counting slice is generated to compute

=

j$cnt (= 2229%inb(1); see lines 37-40 in Figure 5.1) and to allocate trace
arrays for both the global (j$glob) and local (j$1loc) name space (line 41).

2. Collect subscript traces, in global name space (lines 43-50).

3. Generate CHAOS calls to reglocalize () for computing a communication sched-
ule (x$sched), for counting the number of non-local elements (x$offsize), and

for transforming the subscript trace from global to local name space (line 51).

4. Resize the data arrays subscripted irregularly (x and f) to accommodate the

non-local data (lines 53-54), as computed by reglocalize().

Apart from generating the code slices for computing the subscript traces (which in
the current prototype is only implemented for relatively simple cases without compli-
cated internal control flow), most of the code generation is relatively straightforward.

A few implementation details are given below.

86

e When merging the code for generating multiple traces (which is not an issue in

nbf), transformations such as loop fusion are applied if possible.

e As with all variables generated by the compiler (indicated by a $ as part of the
name), the identifiers for schedule, subscript trace, etc. must not collide with
earlier declarations. Furthermore, on the one hand they should resemble the
variables they are related to in the original program, and on the other hand, they
should be reused as much as possible. For example, in nbf the communication

schedule x$sched and off-processor count x$offsize are used for both x and £.

e Another issue related to compiler generated variables is the use of trace indices
and counters providing the trace size for localization. A variable holding the
size of the trace is needed if the number of iterations of the slice is not known.
An auxiliary induction variable for indexing the trace array is required in case
the loop is nested or not in normal form. The slice for j$loc needs both, since
the size of the pairlist is not known, and since the slice is a nested loop; j$cnt

is used to serve both purposes.

e Comments are generated to delineate the generated inspectors and the sub-
scripts they are inspecting (similarly for counting slices, executors, and buffer
initializations). This kind of information is not only useful for making the gen-
erated output more readable, but also for later debugging support. Subscripts

occurring more than once are annotated with a count in brackets.

e If one schedule is computed for multiple subscripts, then each subscript needs
its own subscript trace. If this is the case, then a 2-dimensional trace array
will be constructed, where the first dimension selects a trace, and the second
dimension is indexed by the counter. Figure 5.11 illustrates this for the mesh

kernel (see also Section 2.1.2).

5.83.5 Communication statements

For each node n € N, the GEN sets of the different GIVE-N-TAKE instances indicate
the communication to be generated. Here we have to distinguish between commu-
nication to be prepended (indicated by GEN;, for a FORWARD problem and GEN,,;
for a BACKWARD problem) and communication to be appended (GEN,,; and GEN;,,

respectively). Furthermore, if we wish to generate separate Sends and Recvs, then we

87

have to consider both GEN®#*" and GEN'*¥. For example, the Sends to be prepended

to n are given by the communication set

PREPENDgng = READ.GEN:“*" U WRITE.GEN"? U ApD.GEN!*?¥ U MurT.GEN"*

out out *

For each generated communication set, the data to be actually communicated are
indicated by the st and vn components of the keys contained in the bit vector, where
st indicates the data array and vn gives a range of subscripts to communicate. For
irregular communications, vn is annotated with the name of the communication sched-
ule to use. Since irregular references are communicated using the CHAOS routines,
Sends and Recvs are not separated, and just the EAGER solution is used for placing
communication.

In nbf, the generated communications are PREPEND(5) = READ({x(j)}) and
APPEND(8) = ADD({£(j) }). This translates into an fgather of x (j$Lloc(1:j$cnt))
before the force initialization (line 58) and an fscatter_add of £(j$loc(1:j$cnt))
after the executor (line 81).

An optimization that is not implemented yet but at least conceptionally fairly
straightforward is to use incremental schedules for pruning messages in case at least
some of the data covered by a reference are already locally available [DPSM91,
HKK*92]. The information about what data are already available is stored for each
node n € N in READ.GIVEN(n).

5.3.6 Reduction initialization

An issue specific to reduction communications (such as ADD and MULT) is the need
for initializing buffer space for non-local data (assigning 0 for ApD, 1 for MULT). The
heuristic used for placing this initialization code for a reduction instance of GIVE-
N-TAKE is as follows. Let the “local reduction” of a node n € N be the variables
that are affected by a reduction operation in n itself or in one of the children of n
(i.e., in a statement in a loop headed by n). The local reduction is computed in the
GIVE-N-TAKE variable TAKE(n). Let TAKE,cuier (1) be the local reduction of the
header node of the loop directly enclosing n, if n is in a loop, let it be () otherwise.
The set of data for which initialization code should be prepended to n is then given
by TAKE(n) \ TAKE,cuzer (1).

In the nbf example, it is £(j) € ADD.TAKE(14). However, since £(j) is not
“stolen” within the enclosing p loop, £(j) € ADD.TAKE.u4e-(14) = ADD. TAKE(10)

88

holds as well. Similarly, £(j) is in the local reduction sets of the header of the enclos-
ing i loop: £(j) € ADD.TAKE(8). However, £(j) is “stolen” in nodes 6 and 5 enclosed
in the t loop (forces are reset to zero at the beginning of each time step); therefore,
£(j) ¢ ADD.TAKE(3). This implies £(j) € ADD.TAKE(8) \ ADD.TAKE} uac,(8);
therefore £ (atomD$cnt+1:atomD$cnt+x$offsize) is initialized on entry to node 8,

which is the header of the i loop. The corresponding initialization loop appears in

lines 66—68.

5.3.7 The actual computation

After distributing data and prefetching off-processor references, the actual compu-
tation can be performed (lines 57-87 in Figure 5.2). The following are some of the

issues arising here.

e When reducing loop bounds to parallelize a loop based on the owner-computes
rule, the number of local elements, D.cnt (computed in line 27), has to be

retrieved. In the nbf kernel, this is the case in the i loops.

e To regenerate the global iteration index from the local name space index, the

array D.loc2glob (from line 30) has to be consulted.

e To map global indices to processor numbers and local indices, for example when
printing a certain data element, a dereferencing call using the translation table

D.tab must be generated.

o Like most compiler transformations, converting a section of code into an execu-
tor may expose opportunities for further optimizations. In our example, line 75
could be removed by Dead Code Elimination, since j is not used as a subscript
any more (see above). We could also merge the two loops for initializing forces
(lines 61-63) and for clearing the reduction buffer (lines 66-68).

5.3.8 Executors

The major tasks when generating executors are the conversion of irregular sub-
scripts to trace-array lookups, and, related to that, the generation of counters (the
sub-subscripts) to index the trace arrays. The current strategy for generating sub-
subscripts is as follows. Pick an executor Fzec(n) from EXEC, and a subscript s €

FEzec(n). If n is the header of a loop in normal form and s is enclosed by n directly,

89

then use the induction variable of n as a sub-subscript. Otherwise, an explicit counter
is needed. If there already exists a counter at n for the loop directly enclosing s, then
use 1t as a sub-subscript, otherwise generate a new one to use as a sub-subscript.
After determining the sub-subscript, the value number of s determines which trace
array to use, and the subscript can be converted. Note that we might need several
counters for one executor, for example for different, imperfectly nested loops, or for
references at different loop nesting levels. Note also that in order to allow the use of
such indexing variables within loop headers, they have to be initialized to 1 instead
of 0. This in turn prohibits incrementing them at the beginning of the loop body;
instead they have to be incremented at the end, which complicates code generation
especially for loops with internal control flow.

In nbf, the executor for x(j) and £(j) (lines 71-80) needs a counter i$, because
the references are nested two levels deep within the executor. The value number of j is
the same throughout the executor and maps to the trace array j$loc. Consequently,
x(j) and £(j) are converted to x(j$1oc(i$)) (line 76) and £(j$loc(i$)) (line 78),

respectively.

5.3.9 Dynamically allocated arrays

Dynamic array allocation is handled by calls to external library routines, such as
ialloc(), iresize(), and free(). These routines manage space provided by some
large work arrays and provide offsets into them for each allocated array. In the
current prototype, the work arrays are of fixed size, specified either as a parameter
when invoking the compiler or by a default value. This rather crude scheme could
be replaced by a more advanced library that does not require fixed size work arrays.
Another option not addressed here is to distinguish between a copying and a non-
copying resizing operation.

In nbf, work arrays are the integer array i$wrk and the floating point array £$wrk.
A reference such as x(j$loc(i$)) becomes f$wrk (x$ind+i$wrk(j$loc$ind+i$)).
This scheme also has to consider multidimensional arrays, such as partners in the
example. In the prototype compiler, multidimensional arrays reference the work ar-
ray section assigned to them by performing array arithmetic explicitly. For example,
a reference to partners(i, p) becomes something like i$wrk(partners$ind + p +
(1 = 1) * 1000). Note that this does not increase the overall instruction count; it

only makes explicit the index calculations that are normally hidden from the pro-

90

grammer. Note how this explicit array arithmetic exposes the need for other classical
optimizations, such as common subexpression elimination or loop invariant code mo-
tion.

In the FORTRAN D compiler, a separate pass, which can also be used as a stand-
alone tool, converts all dynamic array references into work array references. It also
introduces some additional bookkeeping code, for example to store the size of each
dynamic array (the variables suffixed by $size). Separating explicit dynamic memory
handling from the rest of code generation sometimes results in suboptimal code; for ex-
ample, there are some redundant assignments to size variables if the same size is used
for multiple arrays. This, however, is just one of several examples where the compiler
relies on later, fairly well-understood optimizations, in order to achieve the modularity

necessary for efficient use of high level transformations (see also Section 5.3.7).

5.3.10 Final notes on the compiler output

As a reference, Figures 5.7, 5.8, and 5.9 show the code generated by the FORTRAN D
compiler, without any abstractions or cosmetic changes. Some comments on the

differences between this code and the simplified version in Figures 5.1 and 5.2 follow.

e References to dynamically allocated arrays have been converted into work array

accesses.

e Variable names containing a $ and comments preceded by --<< and succeeded

by >>-- are generated by the compiler.

o A Makefileruns the FORTRAN D compiler and feeds its output through the na-
tive compiler of the target machine. However, we also want to be able to include
statements in the original source that are visible to the native target compiler,
but not to the parser of the FORTRAN D compiler. For example, we would like
to use implicit none, which currently is not supported by PARASCOPE. For
that purpose one can wrap the statements to be hidden into comments, which
are then uncommented by a script in the Makefile before native compilation.
(Actually, the compiler currently generates an implicit none comment auto-
matically.) The same technique is used to pass FORTRAN D directives from the

user to the compiler.

There exist different kinds of “significant comments” in the current implemen-

tation:

91

Q

program nbf
--<<F77:implicit none
--<< OPTIONS: skip_irreg: O, code_before_reg: 0, do_all_arra
ys: O, split_comm: O, save_irreg: 1, gen_high_level: 0 >>--

integer i, j, p, t, n$proc, natom, pmax, nstep
parameter (natom = 8000, pmax = 250, nstep = 30)
integer inb(1), partners(1)

real x(1), £(1), force, nbf_func, delta_func

--<< Fortran D variable declarations >>--
common /FortD/ np, myp, my$pid
integer iglo, np, myp, mypid, numnodes, mynode, mypid

--<< Fortran D/irreg variable declarations >>--

integer j$loc(1), j$glob(1l), atomD$loc2glob(1l), atomD$loc2proc(n
*atom), i$wrk(500000)

integer x$sched, x$offsize, j$cnt, $init, i$, atomD$cnt, atomD$s
*ched, atomD$tab, init_ttable_with_proc, build_translation_table, $
*newsize, i$type, ialloc, iresize, f$type, falloc, fresize, atomD$1l
*0c2glob$ind, atomD$loc2glob$size, j$globind, jglob$size, j$loc$i
*nd, jlocsize, inbind, inbsize, xind, xsize, find, fsize, p
*artners$ind, partners$size

parameter (i$type = 1, f$type = 2)

real £$wrk(500000)

--<< END Fortran D/irreg variable declarations >>--

--<< Fortran D initializations >>--
call PARTI_setup()

call iputsize(500000, i$wrk)

inb$size = 1000

inb$ind = ialloc(i$type, inb$size) - 1
partners$size = 250000

partners$ind = ialloc(i$type, partners$size) - 1
call fputsize(500000, f$wrk)

x$size = 1000

x$ind = ialloc(f$type, x$size) - 1
f$size = 1000

f$ind = ialloc(f$type, f$size) - 1

n$p = numnodes()

if (n$p .ne. 8) stop

my$p = mynode()

my$pid = mypid()

Fortran D directives

Initialize data
--<< gather Send/Recv {[x(1:atomD$cnt)]} >>--
call read_data(x, inb, partners)

Redistribute atomD according to coordinate values

--<< Redistribute decomposition "atomD'" >>--

atomD$cnt = natom / n$p

call fCoorWeighBisecMap(atomD$loc2proc(1), i$wrk(inb$ind + 1), a
*tomD$cnt, 1, fSwrk(x$ind + 1))

Figure 5.7 The nbf program after compilation by
the FORTRAN D compiler, Part 1 of 3.

92

*t)

atomD$tab = init_ttable_with_proc(1l, atomD$loc2proc(1l), atomD$cn

atomD$loc2glob$size = atomD$cnt
atomD$loc2glob$ind = ialloc(i$type, atomD$loc2glob$size) - 1
call remap_reg(atomD$tab, 1, atomD$sched, i$wrk(atomD$loc2glob$i

*nd + 1), atomD$cnt)

*+

call free_table(atomD$tab)

atomD$tab = build_translation_table(1l, i$wrk(atomD$loc2glob$ind
1), atomD$cnt)

--<< Resize "inb", "x", "f", 'partners' >>--

$newsize = atomD$cnt

inb$ind = iresize(i$type, inb$ind + 1, inb$size, $newsize) - 1
inb$size = $newsize

$newsize = atomD$cnt

x$ind = iresize(f$type, x$ind + 1, x$size, $newsize) - 1

x$size = $newsize

$newsize = atomD$cnt

f$ind = iresize(f$type, £$ind + 1, f$size, $newsize) - 1

f$size = $newsize

$newsize = atomD$cnt * 250

partners$ind = iresize(i$type, partners$ind + 1, partners$size,

*$newsize) - 1

*)

partners$size = $newsize
--<< Shuffle "inb", "x'", "partners" >>--
call igather(i$wrk(inb$ind + 1), i$wrk(inb$ind + 1), atomD$sched

call fgather(f$wrk(x$ind + 1), f$wrk(x$ind + 1), atomD$sched)
call ngather(i$wrk(partners$ind + 1), i$wrk(partners$ind + 1), a

*tomD$sched, 1000)

--<< END Redistribute >>--

--<< Inspector for [3#]j$loc(1l:j$cnt) >>—-
--<< Counting slice for j$cnt >>--
j$cnt = 0
do i = 1, atomD$cnt
j$cnt = j$cnt + i$wrk(inb$ind + i)
enddo
j$glob$size = j$ent
j$glob$ind = ialloc(i$type, j$glob$size) - 1
jlocsize = j$cnt
jlocind = ialloc(i$type, j$loc$size) - 1
--<< END Counting slice >>--
j$cnt = 0
do i = 1, atomD$cnt
do p = 1, i$wrk(inb$ind + i)
j$cnt = j$ent + 1
j = i$wrk(partners$ind + i + (p - 1) * 1000)
i$wrk(j$glob$ind + j$cnt) = j
enddo
enddo
call localize(atomDtab, xsched, i$wrk(j$glob$ind + 1), i$wrk(j

*locind + 1), jcnt, xoffsize, atomD$cnt, 1)

call free_table(atomD$tab)

$newsize = atomD$cnt + x$offsize

x$ind = iresize(f$type, x$ind + 1, x$size, $newsize) - 1
x$size = $newsize

$newsize = atomD$cnt + x$offsize

f$ind = iresize(f$type, f$ind + 1, f$size, $newsize) - 1
f$size = $newsize

--<< END Inspector >>--

Figure 5.8 The nbf program after compilation by
the FORTRAN D compiler, Part 2 of 3.

93

Q

Loop
do t

over time steps
=1, nstep

Reset forces to zero
--<< gather Send/Recv {x(j$loc(1:j$cnt))} >>--
call fgather(f$wrk(x$ind + atomD$cnt + 1), f$wrk(x$ind + 1), x

*$sched)

do

i =1, atomD$cnt

f¢urk(f$ind + i) = 0O
enddo
--<< scatter Send/Recv {[f(1:atomD$cnt)]} >>--

--<< scatter_add initialization for {f(j$loc(1l:j$cnt))} >>--

do

$init = atomD$cnt + 1, atomD$cnt + x$offsize

f$wrk(f$ind + $init) = 0
enddo
Compute forces
--<< Executor for x(j), [2*]£(j) >>--

i$

=0

execute (i) on_home f(i)

do

i =1, atomD$cnt
do p = 1, i$wrk(inb$ind + i)

i$ = i$ + 1

j = i$wrk(partners$ind + i + (p - 1) * 1000)

force = nbf_func(f$wrk(x$ind + i), fPwrk(x$ind + i$wrk(j$l
+1i$)))

*oc$ind

f¢urk(f$ind + i) = f$wrk(f$ind + i) + force
fewrk(f$ind + i$wrk(jlocind + i$)) = f$wrk(£f$ind + i$wrk

*(j%locind + i$)) - force

enddo
enddo
--<< scatter_add Send/Recv {[f(1:atomD$cnt)], f(j$loc(1l:j$cn
t))} >>--
call fscatter_add(f$wrk(f$ind + atomD$cnt + 1), f$wrk(£f$ind +
*1), x$sched)
--<< scatter_add initialization for {} >>--
Push atoms
--<< gather Send/Recv {[f(1:atomD$cnt)]} >>--
do i = 1, atomD$cnt
f$urk(x$ind + i) = f$wrk(x$ind + i) + delta_func(f$wrk(f$ind
* + 1))
enddo
--<< scatter_add Send/Recv {[x(1:atomD$cnt)]1} >>--
enddo
call free(i$type, atomD$loc2glob$ind + 1, atomD$loc2glob$size)
call free(i$type, j$glob$ind + 1, j$glob$size)
call free(i$type, j$loc$ind + 1, j$loc$size)
call free(i$type, inb$ind + 1, inb$size)
call free(f$type, x$ind + 1, x$size)
call free(f$type, f$ind + 1, f$size)
call free(i$type, partners$ind + 1, partners$size)
end

Figure 5.9 The nbf program after compilation by

the FORTRAN D compiler, Part 3 of 3.

94

— FORTRAN D comments, starting with a FORTRAN D keyword such as
“DISTRIBUTE.”

— FORTRAN 77 comments, starting with “--<<F77.” Those are always un-

commented before native compilation.

— Target-specific FORTRAN 77 comments, starting with “--<<ArchPrefiz”
(e.g., “-=<<Sun:,” “--<<iPSC:”). Those will be uncommented when com-

piling for a specific architecture.

These target-specific comments are used mainly to annotate a program
machine-dependently with 1/O and timing routines without having to use

separate sources for different architectures.

e The declarations of arrays that are recognized as being dynamic are shrunk to
minimal size; for example, REAL x(Natom) became REAL x(1). We found this
a useful help for analyzing the compiler, but instead the declarations could also
be deleted altogether.

e The GIVE-N-TAKE framework decides on communication placement. The re-
sults of this analysis is shown in “--<<...” communication comments. However,
the decision on what to communicate or whether to communicate at all is left
to the code generator. The current prototype uses the GIVE-N-TAKE analysis
only for communicating for irregular references and rely on the “regular com-
piler” for placing the remaining communications. References considered regular

are enclosed in square brackets.

e The current implementation handles programs with procedure calls conserva-
tively and does not perform any interprocedural optimizations, such as inter-
procedural inspector or communication placement. For example, it assumes
that all actual arguments may be used and defined. However, the underlying
symbolic analysis does already provide some of the information that would be

necessary for interprocedural placement [Hav94].

5.4 An Object-Oriented Design

An important aspect of the implementation is its object-oriented design, reflected in

the encapsulation of most concepts and algorithms into separate classes. This section

95

describes the relationship between the basic strategies outlined in this chapter and

the actual C++4 classes of the compiler.

5.4.1 Overview

In the FORTRAN D compiler, most components of both the original and the gen-
erated codes correspond to specific types of classes. In particular, array references,
subscripts, communication statements, schedules, inspectors, executors, and various
aggregate concepts (such as the sets described in Figure 5.4) correspond to their own
classes.

Consider the main loop of the mesh kernel (Section 2.1.2), which is shown in
Figure 5.10. There are several references to arrays w, flux, and cc which require com-
munication. The code generated by the FORTRAN D compiler is shown in Figure 5.11.
We see that even though there are a total of 14 references for which we communi-
cate, there are only three communication statements (the gathers of w and cc, and
the dscatter_add of flux), one schedule (w$sched), and one inspector. This is re-
flected by the objects that get created during the compilation process. Figures 5.12
and 5.13 show which instances of which classes are built for a small loop inspired by
the mesh kernel. They also give an (incomplete) overview of their interdependences,
leading from individual subscripts and array references to communication statements,

inspectors, and executors.

5.4.2 The classes

This section gives an overview of the individual.

A single subscript: Dim

One instance of Dim will be created for each individual subscript node. The methods
of this class deal mostly with low-level details, such as unparsing subscripts, but
they also provide a test for whether a subscript is irregular, and they assist in code
generation for the inspectors by giving access to SSA information and incoming def-

use edges.

96

do t = 1, niter
do i = 1, nnode
flux(i) = 0.d0

enddo
c execute (i) on_home endsi(i)
do 1 = 1, nedge
nl = endsi(i)
n2 = ends2(i)
ql = ecx(w(2,n1) + w(3,n1) + w(4,n1)) / w(l,nl)
q2 = ec*(w(2,n2) + w(3,n2) + w(4,n2)) / w(1l,n2)

q = (q1+q2) / 2

flux(nl) = flux(nl) + (q + cc(nl)*ec)
flux(n2) = flux(n2) + (q + cc(n2)*ec)
enddo

enddo

Figure 5.10 Main loop nest of the mesh kernel.

A subscript value number: SubVal

An instance of SubVal will be created for each value number of an individual subscript
(not for the whole subscript; see Section 5.2.1). All instances together form the
SUB_VALS set from Figure 5.4. This class is mostly used for mapping back from

value numbers to actual code at code-generation time.

Sorting keys for the data-flow universe: Key

This class constitutes the members of KEYS from Section 5.2.3. It is used mainly
for comparing array references and sorting them according to their communication

needs. One instance of Key will be created for each bit in the data-flow vectors.

An array reference: Ref

One instance of Ref will be created for each individual array reference node in the
program. It mostly propagates information from the individual subscripts up, such as
whether it is irregular (which depends on whether any of the subscripts are irregular).
It also gives a handle on how the array of the reference is distributed and which data-

flow bit this reference corresponds to.

97

C --<< Inspector for [7*]n2nl
[2,1:n2n1$cnt) >>--

do i = 1, edgeD$cnt
n2 = ends2(i)

n2ni$glob(1, i) = n2
nl = ends1(i)
n2n1$glob(2, i) = ni

enddo

c --<< gather Send/Recv {w(2,
[ni$loc(2,1:n2n1$cnt)), w(4,
[ni1$loc(2,1:n2n1$cnt)), w(2,
C ni$loc(1,1:n2n1$cnt)), w(4,
[ni$loc(1,1:n2n1$cnt))} >>--
call ngather(w(1, nodeD$cnt
C
C oc(2,1:n2n1$cnt))} >>--
call dgather(cc(nodeD$cnt +
do t = 1, niter
do i = 1, nodeD$cnt
flux(i) = 0.d0
enddo
C --<< scatter Send/Recv {[
[--<< Executor for w(1, nil
C 1, n2), w(4, n2), w(3, n2
C cc(n2), [2*]flux(n2) >>--
C execute (i) on_home endsil
do i = 1, edgeD$cnt
nl = ends1(i)
n2 = ends2(i)

$loc(1,1:n2n1$cnt), [7*In2n1$loc(

n2n1$loc(2,1:n2n1$cnt)), w(3, n2
n2n1$loc(2,1:n2n1$cnt)), w(1l, n2
n2ni$loc(1,1:n2n1$cnt)), w(3, n2
n2ni1$loc(1,1:n2n1$cnt)), w(1, n2

+ 1), w(1, 1), w$sched, 32)

--<< gather Send/Recv {cc(n2ni$loc(1,1:n2n1$cnt)), cc(n2ni$l

1), cc(1), w$sched)

flux(1:nodeD$cnt)]} >>--

), w(4, n1), w(3, n1), w(2, n1), w(
), w(2, n2), cc(n1l), [2*]flux(nl),

(i)

ql = (ec * w(2, n2n1$loc(2, i)) + ec * w(3, n2ni1$loc(2, i))

*+ ec * w(4, n2n1%$loc(2, i)))

/ w(1, n2n1$loc(2, i))

q2 = (ec * w(2, n2ni1$loc(1l, i)) + ec * w(3, n2ni$loc(l, 1))

*+ ec * w(4, n2n1$loc(1, i)))
q=1(ql +q2) / 2
flux(n2ni1$loc(2, i))

*0c(2, i)) * ec)
flux(n2ni1$loc(1l, i))

*0c(1, i)) * ec)

enddo
enddo

/ w(1, n2ni1$loc(1, i))
flux(n2n1$loc(2, 1)) + (q + cc(n2ni1$l

flux(n2ni1$loc(l, 1)) + (q + cc(n2ni$l

call dscatter_add(flux(nodeD$cnt + 1), flux(1), w$sched)

Figure 5.11 Main loop nest of mesh kernel, output of FORTRAN D

compiler with communication and inspection body.

98

<1

Dim ./ \Dim Dim /\Dim

i :
n2)+x(2, n2)

RefsK ey RefK ey

key | refKey, ... key ref
Key Ref

stindx| Wval refNode |dim,...
Dim SubVal
dimNode dim,...

Figure 5.12 C++ classes for constructing
the communication data-flow universe.

99

I nspector]

Ins’p/ect for nin2$loc(1:2, n1n2%cnt) [Comm
Gather(x(1:2, n1n28oc(1:2, n1n2$cnt)), x$sched) J

xecutor \
E= e I
DO | = dor Sched @E /

N\ N
Key Ref |Key7| | Ref7| |Keyq|

oL\l
K/f’_/ | jjj

—
—

Inspector
targetNode | sched,...

Executor
header Node | ref,...

Sched
traces| sval,...| name
Comm
[comm] type] traces| key,...| sval,... [sched

ENDDO =
J/ —

ScatterAdd(y(n1n23$loc(1:2, n1n2%cnt)), x$sched)

Figure 5.13 C++ classes for placing
communication statements, inspectors, and
executors.

100

A reference and its key: RefKey

When constructing the data-flow universe, one instance of RefKey will be created for
each reference. This class provides some utilities for interfacing between the data flow

universe and actual program text, such as dumping the universe.

All references for a key: RefsKey

This corresponds to the elements of REFS_KEY from Figure 5.4. For example, the
references to y(n1) in Figure 5.12 have separate instances of Ref and RefKey, but
they are combined into one RefsKey.

This also contains pointers to the value numbers of the individual subscripts for

this key (not shown in Figure 5.12).

All keys: RefsKeys

This set, corresponding to REFS_KEYS, is the collection of RefsKey instances. It
provides most of the interface between the universe and the rest of the compiler, such
as mapping functions between value numbers, symbol table indices, keys, SSA nodes
etc., many of which are non-unique. It also has methods for computing affected,

contained, and touched closures of sets of keys (see Section 5.2.4).

A communication statement: Comm

An instance of Comm will be created for each statement that is sending or receiving
messages or both. We are currently assuming that we can aggregate messages if and
only if they are communicating the same array; this could easily be relaxed. This
class serves mostly for determining which schedules are needed and for creating the
actual statement at code-generation time (see also Section 5.2.5).

In Figure 5.12, there exist six different keys for the communication universe, four
for x and two for y. However, all keys for x will be communicated at the same location,
at the beginning of the loop. They also correspond to the same data array, and are
therefore combined into one communication statement with one instance on Comm.

Similarly, one Comm instance will be generated for reducing both y(n1) and y(n2).

101

A communication schedule: Sched

We generate one instance of Sched for each set of value numbers of individual sub-
scripts that are combined into one message somewhere.

In Figure 5.12, there are two communication statements. However, both state-
ments need a schedule for the same set of subscript value numbers. Again, note that
for schedule generation we are concerned with individual subscript value numbers,
of which here two are interesting (n1 and n2). For the communication generation,
however, we need whole subscript value numbers, of which the first communication

statement contains four and the second communication contains two.

The Inspector class

As outlined in Section 5.2.5, we generate an inspector whenever we have to generate
a schedule. This class is mostly concerned with linking schedules that have to be

generated at the same location together and with code-generation issues.

The Executor class

As described in Section 5.2.6, we create an executor for each loop which has a direct
or auxiliary induction variable that is used for indexing trace arrays. Again, this class

is used mostly for bookkeeping and code generation.

Relaxz — Don’t worry — Have a home brew.

— Charlie Papazian (The Joy of Homebrewing)

102

Chapter 6

Experimental Results

This chapter describes the results of the practical experiments carried out for validat-
ing the overall thesis and concepts introduced earlier. The experiments fall into two
categories. The first category, described in Section 6.1, uses the FORTRAN D proto-
type to compile and run FORTRAN D applications on MIMD machines and measure
their performance. This allows us to compare the effectiveness of value-based map-
pings vs. index-based mappings. It also exercises the GIVE-N-TAKE framework
for communication placement, and gives further insights into the overall feasibil-
ity of irregular data-parallelism. The second category of experiments, described in
Section 6.2, is SIMD specific and does not use the FORTRAN D compiler; instead, we
assess the value of the loop-flattening transformation by applying the transformation

manually and comparing the results with the original version.

6.1 Value- vs. Index-Based Mappings

In evaluating the language extensions proposed in Section 2.3.1, we are mostly inter-

ested in the following questions:
1. How much does the extension improve the generated code?

2. How close is the generated code to a hand-coded implementation of the same

approach?
3. How much convenience does the new extension provide over hand-coding?

To answer the first question, the output of the FORTRAN D compiler was compiled
with 1£77 onto an iPSC/860 with 32 nodes and 8 Megabytes of memory per node,
and various performance aspects were measured as described in the following sections.

Regarding the second question, the FORTRAN D compiler-generated output was
practically identical to a hand-coded parallel program using the same CHAOS run-
time support. While this is certainly at least partly due to the simplicity and small

103

size of most of the compiled kernels, it still gives reason to believe that there are
no fundamental disadvantages when using the compiler to implement value-based
mappings.

To answer the third question, one has to compare the complexities of original
and compiled codes, with and without value-based distributions. While size alone
is not a sufficient measure of complexity and programming difficulty, it still is an
indication of the savings provided by the compiler. For example, one might compare
the FORTRAN D version of the nbf program in Figure 2.3 with the compiler-generated
code in Figures 5.7, 5.8, and 5.9. It turned out that for our test cases, the generated
code, which in size was very close to hand-coded, was typically about twice as large
as the initial code for index-based distributions. For value-based distributions, the
code grew by another 25%.

The following sections describe the different benchmarks and experiments in detail.

6.1.1 The molecular dynamics kernel

Our experiments with this kernel were based on the FORTRAN D program from
Figure 2.3 (but with 3-D instead of just 1-D coordinates and forces) with varying
index- and value-based distribution directives as listed below. The parallel runs used
pairlist data and physical coordinates from an SOD simulation (see Section 2.1.1)
using an 8A cutoff radius; SOD itself is of size 53 x 55 x 52A3. We ran the simulation
for 30 time steps, on 1, 2, 4, 8, 16, and 32 processors, with the following distribution

strategies.

1. Index-based, BLOCK-wise.

For N atoms and P processors, processor p gets assigned atoms (p — 1)N/P +
l,...,pN/P (assuming P divides N). This corresponds to using the original
BLOCK distribution (line 12 in Figure 2.3) throughout the run (i.e., no redistri-

bution in line 18), and is illustrated in Figure 2.2.

2. Value-based, 1-dimensional bisection, no load balancing.

The physical problem domain gets divided along the z-axis, assigning each pro-
cessor an equal number of atoms. This corresponds to redistributing data with
a “DISTRIBUTE atomD(VALUE(DIM=1, VALS=x))” directive (no “WEIGHT=inb”

parameter).

104

3. Value-based, 1-dimensional bisection, with load balancing.

Each atom’s work load is measured by the number of interaction partners, and
the partitioner divides the physical problem domain such that each processor
has an even workload. The appropriate directive is already shown in Figure 2.3,

the resulting mapping can be seen in Figure 2.4.

4. Value-based, 3-dimensional bisection, no load balancing.

The physical problem domain gets recursively divided along the z, y, and z-
axes, assigning each processor an equal number of atoms. The directive is
“DISTRIBUTE atomD(VALUE(DIM=3, VALS=x,y,z)).”

5. Value-based, 3-dimensional recursive bisection, with load balancing.

This is the version shown in Figure 2.5. The directive here is “DISTRIBUTE
atomD (VALUE(DIM=3, VALS=x,y,z, WEIGHT=inb)).”

We were able to run all strategies on all processors sizes, except for 1 and 2

processors, where the irregular distributions were too memory intensive.

Locality

The number of not-owned atoms accessed by the individual processors is a measure
for the inter-processor access locality of the nbf kernel. We can estimate a theoretical
lower bound on this number based on the total number of atoms (6968), the space
they occupy (a sphere with a little over 50A in diameter), and R, (8A), which yields
that at least about 950 atoms will have to be buffered.

Figure 6.1 compares the maximum number of buffered atoms for different machine
sizes and distribution strategies. The dotted line with circles corresponds to the
BLOCK-wise index-based distribution. For other, value-based distributions, the line
style indicates dimensionality (dashed: 1-D, solid: 3-D), and the point style indicates
balance (crosses: unbalanced, stars: balanced). We see that the 3-dimensional, value-
based distribution performs best, with a slight additional advantage for the load

balanced version, which comes very close to the predicted lower bound.

Balance

Figure 6.2 measures balance by comparing maximum and average workloads, ex-

pressed as floating point operation counts. The index-based distribution gets less

105

NBF Code, Lack of Locality NBF Code, Load Inbalance

4000 2
%) | ©] o
g 3500 o s BLOCK
%3000 o 0 o

BLOCK o 1-D Unbalanced
D 2500 o 3-D Unbalanced
e %/ﬁx\i\‘\\‘o ~':::_,:::—% &= 16f X,
o I = 1-D Unbalanced o)) o K>
20000] >
5 | 1-D Balanced o
D 1500f 1 x4 ©
3-D Unbalanced @
5 1000f -/] 2 1-D Balanced
© 3-D Balanced L2r 0 3-D Balanced
= 500
O L L L L L L 1 7!(‘ L L L L L
0 5 10 15 20 25 30 35 o s 10 15 20 25 30 35
Number of processors Number of processors
Figure 6.1 The number of Figure 6.2 The fraction of
communicated data maximum floating point
(maximum across processors) operations (i.e., workload of
for varying machine sizes and the slowest processor) and of
distribution strategies in the the average across processors.

non-bonded force kernel.

balanced as the number of processors goes up. Value-based distributions perform
consistently better, and taking the work load into account provides a further im-
provement. For this application, the index-based BLOCK distribution is particularly
unsuitable due to the diagonal nature of the adjacency matrix, which is actually sym-
metric according to Newton’s Third Law; therefore, only one half of it is stored, which

shifts the work load towards atoms with smaller indices.

Individual timings

Figure 6.3 shows the timings of the different code phases, using the 3-dimensional,
balanced recursive bisection. In the processor ranges measured, the overheads associ-
ated with preprocessing, redistributing data, and communication are about an order
of magnitude lower than the cost of the actual computation. The cost of preprocess-
ing, including the inspector which enables message vectorization, gets well amortized
for the given number of time steps (30). However, it is also apparent that the scala-

bility of the run-time support may become critical for larger numbers of processors.

106

NBF Code, 3-D Balanced Timin NBF Code, Speedups
10 T

¥— 3-D Balanced
1-D Balanced
1-D Unbalanced
3-D Unbalanced
BLOCK

,_.
S)
™
-
/
/
N
o1
IX*
I
X ¥

~.__ Total time

p
8]
o
o]
o

Computation

>

D
4 15 L

]

L o

6o munication)
©~ - -& — - BRemapping 10

6}

Time (secs)
=
o

=
o
©
T

0
Preprocessing

107

10° 0" 10° 0 5 10 15 20 25 30 35
Number of processors Number of processors
Figure 6.3 The timing Figure 6.4 The speedup
breakdown (excluding 1/0) for obtained with different
varying machine sizes, using a processor numbers and
3-dimensional, value-based distribution strategies.

balanced bisection.

Speedups

Figure 6.4 summarizes the speedups obtained for the various distribution methods,
computed as the fraction of single-processor timing and parallel-processing time. The
value-based distributions outperform the index-based distribution, and explicit load

balancing provides an additional advantage.

6.1.2 The unstructured mesh kernel

We generated code for the FORTRAN D kernel from Figure 5.10, but again with 3-
D instead of just 1-D coordinates and fluxes. Here we measured only the effect of
varying alignments of edgeD; the distribution of nodeD was a fixed, 3-D value-based
distribution. The parallel runs were done for a mesh with 9428 nodes and 59863
edges. We ran the simulation for 30 time steps, on 1, 2, 4, 8, and 16 processors, with

the following alignment strategies.

1. Index-based, BLOCK-wise: for N edges and P processors, processor p gets as-
signed edges (p — 1)N/P +1,...,pN/P (assuming P divides N). This corre-

107

sponds to using the original BLOCK distribution (line 12) throughout the run

(i.e., no redistribution in line 21).

2. Value-based: decomposition nodeD and edge info ends1, ends2 serve to align
edge data with the node data. This corresponds to the value-based alignment

directive shown in Figure 5.10.

Locality

Similar to the number of buffered atoms in the nbf kernel, here the number of not-
owned nodes accessed by the individual processors is a measure for the inter-processor
access locality of the mesh kernel. Figure 6.5 compares the maximum numbers of
buffered atoms for different machine sizes and alignment strategies.

Considering that there are less than 10,000 atoms total, we see that the index-
based mapping requires buffering a significant fraction of the whole data domain.
Together with the owned edges we are effectively replicating the edge data for P < 8.
The value-based alignment has a significantly better locality, typically requiring less
than 500 nodes to be buffered.

Speedups

Figure 6.6 summarizes the speedups obtained for the two mapping methods. While
the index-based mapping does not result in any speedup due to the bad locality, the

value-based distribution provides about 40% efficiency for 16 processors.

6.1.3 A sparse matrix computation

The NAS CGM benchmark solves an unstructured sparse linear system by the con-
jugate gradient method [BBLS91]. The bulk of the computational time is spent in
matvec, which multiplies a sparse matrix a with a vector x, as shown in Figure 6.7.

An interesting facet of this benchmark is the use of double indirection, since the
inner loop not only accesses the y array through the rowidx indirection array, but
also the loop bounds depend on the colstr array.

The FORTRAN D version parallelized this code by distributing x and colstr
BLOCK-wise and using an on_home directive to parallelize the loop, since the owner-
computes rule is difficult to apply to the innermost loop. Furthermore, since the

current compiler prototype does not support interprocedural placement of inspectors

108

Max. # buffered nodes

10000 i
8000} _ %~ _ Index-based
x T
/
6000t)/
/
X
4000F |
i
1
2000f |
| Value-based
0 *)kfﬁkj“‘ek~—f-4-ﬁ;_ﬁ_*

Mesh Code, Lack of Locality

5 10 15 20
Number of processors

0
Figure 6.5 The number of
communicated data
(maximum across processors),
for varying machine sizes and
alignment strategies of the
mesh kernel.

Mesh Code, Speedups

Value-based

Index-based

é 1‘0 1‘5
Number of processors

Figure 6.6 The speedup
obtained with different
processor numbers and

mapping strategies.

20

subroutine matvec(n, a, rowidx, colstr, x, y)

c y = a * x.

a is a sparse matrix rep in a, rowidx, colstr form

integer rowidx(1), colstr(1)

integer n, i, j, k
real*8

do 10 i =1, n
y(1) 0.0d0
10 continue
do 200 j =1, n
xj = x(3)

a(1), x(n), y(n), xj

do 100 k = colstr(j) , colstr(j+1)-1
y(rowidx(k)) = y(rowidx(k)) + a(k) * xj

100 continue
200 continue
return
end

Figure 6.7 NAS CGM benchmark, subroutine matvec().

109

and communication, calls to matvec and to its caller, cgsol, where inlined, which
resulted in a modest increase in code size; the original, sequential code had 13 sub-
routines and 855 lines, the FORTRAN D version had 11 subroutines and 892 lines.

The performance of the compiled code is shown in Figure 6.8.

6.1.4 Full Gromos

As attested in Section 6.1.1, the main component of molecular dynamics performed by
programs such as GROMOS, the non-bonded force computation, is inherently data par-
allel and amenable to efficient parallelizations using languages such as FORTRAN D.
However, having a clean, data-parallel underlying algorithm alone is not sufficient;
the compiler must also have a way to easily access this data parallelism.

Unfortunately, most of GROMOS is written in a way that makes this access hard,
if not impossible; it is clearly not written in a “data-parallel programming style.” For
example, the compiler typically was unable to apply loop bounds reduction based
on the owner-computes rule, since most loops did not iterate over data structures
directly (e.g., atom data were typically not accessed by looping over atoms directly,
but instead by looping over whole charge groups). We parallelized this program, which
consists of 7 subroutines and 4547 lines, in a very simple manner, by applying the
on_home directive in association with a distributed dummy array. The corresponding
speedups, shown in Figure 6.9, seem encouraging; however, one must realize that this
is only for the main subroutine, with full data replication and correspondingly poor
scalability.

The data-parallel community does not seem to promise users that they can easily
transfer their old codes to the new paradigm, and the conversion of such “dusty decks”
to parallel programs appears to be outside of the scope of most research interests.
However, there is also the “dusty programmer” problem, which makes it worthwhile
to analyze the difficulties of programs such as GROMOS in some more detail.

There were a number of difficulties that are probably neither limited to GROMOS
nor do they seem likely to be addressed by improved compiler technology in the near

future. The following lists a few of them, a more detailed discussion can be found

elsewhere [CHK94].

e Multi-dimensional arrays that we would like to distribute only along a certain

dimension are linearized.

110

Times (seconds)

_NAS CGM benchmark, N = 1400, 50 steps lteration Distribution of GROMOS, N = 4096, Nsteps = 10
0 T 10 T
0)
c
o
L . (5]
\ 3
© Total time E .,
©..._ _ -0 Communica tion 310
e--mTTTTT T © Ideal speedup g o NBF
° Ideal
g e Global Sum
©
oo e o Inspect % 10° .o °
z
8
()
£
=
1072 0 1 2 1071 0 1 2
10 10 10° 10 10 10°
Number of processors Number of processors
Figure 6.8 Performance of Figure 6.9 Performance of

FORTRAN D for the NAS GROMOS in FORTRAN D.
CGM benchmark.

For example, 3-dimensional atom data, such as their coordinates stored in x, are
not declared as a 2-dimensional array indexed by dimension and atom index,
such as x(3,Natom), but instead as 1-dimensional, linearized array, x (3*Natom).
It is possible to apply a BLOCK_CYCLIC distribution (in HPF: CYCLIC(K)) to
distribute the linearized array, but analyzing accesses to these linearized arrays

is challenging.

Distributed arrays serve as work space for non-distributed data.

Due to the lack of dynamic memory in FORTRAN 77, this seems to be a common
practice disturbing advanced analysis.

Distributed parameters are declared with different sizes in caller and callee.

Unrelated computations are folded together.

For example, the long-range force computation is performed together with the
pair list recomputation. This complicates control flow and owner-computes

analysis.

No loops whose bounds could be reduced according to the owner-computes rule.

As mentioned above, this typically evolved from the difference between the way
data were organized (according to atom index) and the way computation was

performed (on a charge group by charge group basis). This violates a major

111

data-parallel principle, that computation should be distributed according to
data distribution.

e gotos often substitute for the do-construct.

This is another incarnation of the difficulty to apply loop bounds reduction.

e Jumps into loops result in irreducibilities.

This is a classic problem for interval-based analysis techniques, which in our

case can prevent hoisting communication out of such loops.

6.2 The Efficacy of Loop Flattening

On an SIMD architecture, the loop transformation described in Chapter 4 should
be profitable whenever some processors sit idle in an inner loop and still have work
to do in later iterations of the outer loop. This seems to be a situation potentially
occurring in many scientific programs solving irregular problems [BSGM90, SPBR91,
TP90, WLRY0].

6.2.1 The application

One example of a loop nest with varying inner bounds is the NBF calculation as
shown in Figure 2.1. However, this kernel takes advantage of Newton’s Third Law and
performs an indirect lhs assignment to f(j), which results in irregular communication
patterns. While it is possible to perform such communication operations on SIMD
machines as well (see Section 7.1.2), they are generally more expensive than on MIMD
machines. It appears that the performance gains from Newton’s Third Law are likely
to be small due to this computation/communication tradeoff. More importantly,
however, is in this context that we are mostly interested in the relative effects of loop
flattening, which does not change the communication requirements, and not so much
in the communication costs itself.

For the experiments described in this section, we are using kernels derived from the
F77 program shown in Figure 6.10. This code can be parallelized by partitioning the
set of all atoms into P disjoint subsets and assigning one subset to each processor p.
To achieve load balancing, the sum over the number of the partners of the atoms

in a processor’s subset should be roughly equal across the processors. Furthermore,

112

do Atl = 1, N
do pr = 1,pCni(Aty)
Aty = partners (Atq, pr)
F(Aty) = F(Aty) 4+ nbf_func(Aty, Aty)
enddo
enddo

Figure 6.10 F77 version of the non-bonded force calculation nbf.

to achieve locality and scalability, the atoms within each subset should be closely
together in space.

Figure 6.11 shows a F90g7ap program which lays out the data in a cyclic fashion.
If we assume for simplicity that P divides NV, then each processor computes the non-
bonded forces for N/P atoms. The uneven atom density results in varying values of
pChnt; therefore, the inner loop with the (relatively expensive) force calculation often
has to be executed with processors masked out even though they still have work to
do in later iterations, just as it was the case in the EXAMPLE in Section 4.2. All

processors have to go through

N/P '
TIMEsiyp = ; p:(rJ?.%%_l pCnt(Atom,) (6.2")

iterations, where Atom; is the ¢-th Atom of processor p.

This can be improved on by applying loop flattening, where we take into account
that each atom has at least one interaction partner. The result is shown in Figure 6.12.
Now each processor can loop through its atoms individually, so this code achieves the
same time bound as a MIMD implementation:

N/P '
TIMELS,) = max > pCnt(Atoms), (6.1")
i=1

p=0,...,P—-1 %

which is only limited by the quality of our workload distribution.

6.2.2 The hardware used

We implemented the non-bonded force kernel taken from the GROMOS program suite
on two SIMD machines and one work station. Our implementation models the be-

havior of the actual GROMOS routine by reading in the arrays pCnt and partners

113

=0
Atl = [1 . P]
lastAt=[N —P+1:N]
while any (At; < lastAt)
where (At; < lastAt)
do pr = 1, max(pCnt(Aty))
where (pr < pCni(Aty))
Aty = partners(Aty, pr)
F(Aty) = F(Aly) 4+ nbf_func(Aty, Aty)
endwhere
enddo
Atl = Atl + P
endwhere
endwhile

Figure 6.11 F90g;yp version of nbf.

F=0

Atlz[lp]

lastAt=[N —P+1:N]
pr=1

while any (At; < lastAt)
where (At; < lastAt)
Aty = partners (Alq, pr)
F(Aty) = F(Aty) 4+ nbf_func(Aty, Aty)
where (pr = pCnt(Aty))
Atl = Atl + P
pr=1
elsewhere
pr=pr+1
endwhere
endwhere
endwhile

Figure 6.12 Flattened F90s53p version of nbf. We
take into account that pCnt(z) > 1 for all s.

114

as produced by GROMOS and then generating the calls to a force routine for each
interaction pair. To exclude communication time from our measurements, we assume
that the pCnt and partners arrays and the molecular configuration data (including
the coordinates of atoms we are interacting with) are already locally available when
calling the force routines.

The DECmpp 12000 model 8B (from Digital Equipment Corporation), which
is identical to the MasPar MP-1200 series model, consists of 8192 processors (up
to 16384 available), which are arranged in a mesh topology. It has 64 Kbytes main
memory per processor, which gives 512 Mbytes total. Based on clock cycle counts, the
individual processors are rated at 1.8 Mips. They are joined by an array control unit
rated at 14 Mips. The MPFORTRAN version we had on site (1.0) did not allow the
use of indirect array addressing in forall statements, so the timing results presented
here are achieved using an a-version of the 2.0 compiler at MasPar which does not
have this restriction.

The CM-2 (from Thinking Machines Corporation) consists of 8192 one-bit proces-
sors (up to 65536 available), arranged in a hypercube topology. These are enhanced
with 128 64-bit vector Floating Point Accelerators (FPAs) which use vector registers
of length four. Each FPA is shared by two processor nodes of 32 processors each. The
processors have 256 Kbits memory per processor, yielding a total of 268 Mbytes. The
performance measured for a BYTE ADD is 500 Mips. We compiled our codes using
the Slicewise 1.1 CMFORTRAN compiler which lays out the data “slicewise” across
the one-bit processors and uses the FPAs directly.

We also implemented the kernel on Sun Microsystems’ Sparc 2, which is rated
at 28 Mips and whose 16 Mbytes memory allowed us to run the smaller test cases.
We compiled our program with the Sun {77 compiler.

One additional interesting machine parameter is the data granularity which mea-
sures how small an array can be if we want to distribute it across all processors.
This granularity, Gran, is particularly important on SIMD machines since whenever
a certain array has to be manipulated by some processors, all processors have to step
through the operation and they will be merely masked out if they do not actually
own part of the array. Furthermore, this potential waste of processing time can not
only occur for small arrays, but it is encountered whenever array sizes are not ex-
act multiples of Gran [KLS90]. On the CM-2, using the slicewise compiler results
in Gran = P *4/32 = P/8 (32 processors per FPA, vector length 4); i.e., we can

economically use arrays whose total sizes are arbitrary multiples of P/8. This is a

115

major advantage of the Slicewise model over the Paris model, which allocates data
per one-bit processor. The corresponding data granularity on the DECmpp is simply
Gran = P, and on the Sparc it is obviously Gran = 1.

Furthermore, the SIMD machines differ in the way they distribute data across
the processors, which is significant if a dimension larger than Gran is distributed.
The difference can be summarized as a cyclic (“cut-and-stack”) data layout on the
DECmpp and a blockwise layout on the CM-2.

6.2.3 Implementation experience

The DECmpp program and the CM-2 program used a single source, annotated with
two sets of compiler directives, one for each machine. This worked relatively well; the
only exception in our code was the reshape intrinsic. (The CMFORTRAN conven-
tion for the argument order of this function is mold argument first, source argument
second; MPFORTRAN calls the mold argument shape, and has the order reversed.
This combination of incompatibilities necessitated separate include files when using
reshape; another option we tried was to replace the reshapes with explicit forall
statements, which caused a slight performance degradation on both machines.) The
Sparc implementation shared the code for performing 1/O and gathering timing statis-
tics.

On the DECmpp, a compiler switch is used to recompile for different machine
sizes. No compiler switch is needed for CM-2 since it uses a virtual processor model
which adjusts automatically to the actual machine size. However, we can still obtain
significant performance improvements if compile time constants are used to adjust
array dimensions to actual machine configurations.

The indirect addressing used in the flattened loop version frequently required
resorting to foralls in the source code. For example, the statement

forall(i=1:P) at2(i) = partners(i,1(i),pr(i))
cannot be expressed with indirection vectors as

at2 = partner(:,1l,pr)
since this expression would yield a three-dimensional array with at2(i,j,k) = partners
(1,1(3) ,pr(k)) instead of the desired one-dimensional array computed in the forall
statement. However, implementing the flattened F90g7/p version from Figure 6.12
was still relatively straightforward. The derived code, Ly, ran well on both machines

without further tuning; it is shown in Figure 6.13. Lrs is the number of memory layers

116

subroutine Al1FFlat()

C Formal parameters omitted here;
C F, pCnt, partners are distributed
C in first dimension

integer at1(P),at2(P),1(P),pr(P),m(P)
real Force(P)

cmf$ layout Force,atl,at2,l,pr,m

cmpf ondpu Force,atl,at2,l,pr,m

F=20
1 1
pr = 1
atl = [1:P]
do while(any(l.le.Lrs))
forall(i=1:P)
at2(i)= partners(i,1(i),pr(i))
call OneFFlat(Force, atl, at2)
forall(i=1:P, 1(i).le.Lrs)
F(i,1(i)) = F(i,1(i)) + Force(i)
forall(i=1:P)
m(i) = (pCnt(i,1(i)).ge.pr(i))
where (m)
pr = pr + 1
elsewhere
pr = 1
1=1+1
atl = atl1 + P
endwhere
enddo

Figure 6.13 CMFORTRAN/MPFORTRAN version of flattened nbf.

117

(or wirtual processor slices) which are in actual use; it is Lrs = |1 + (N — 1)/ Gran|.
The dimensions indexed with 1:Lrs are of size maxLrs = |1 + (Nyaw — 1)/ P]; for
our implementation, the maximal number of atoms simulated is N,,,, = 8192. For
example, for Gran = 128 and the N = 6968 atom test case described in Section 6.2.4,
it is Lrs = 55 and maxLrs = 64; for Gran = 8192, we have Lrs = maxLrs = 1.

Our experience with the implementation of the unflattened loop version was very
different. The initial implementation of the pseudocode in Figure 6.11 was trivial
to write, but its performance was roughly an order of magnitude worse than the
flattened version on both machines and required significant performance debugging.
We tried several different implementations using interface blocks, layout directives,
inlining, different compiler switches, etc.; parameter arrays were automatic, fixed
size, or passed in COMMON blocks; the dimension corresponding to different atom
numbers was either left as a single dimension, as in Force(1:Nmax), or split up
into physical processor number and memory layer, as in Force(1:P,1:maxLayers);
the :serial-ized dimensions were rightmost or leftmost (the latter version recom-
mended by the CMFORTRAN manuals); we tried do-enddo loops with precom-
puted loop bounds, such as do pr = 1, maxPCnt, and do-while loops, as in do
while(any(pr.le.pCnt)); we also tried vectorizing the code in the dimension in-
dexed by pr, but this was unfeasible due to the size of partners.

We here present timing results for two different unflattened versions; the first
version, L}, is shown in Figure 6.14. The other version, L?, differs from L’ in that all
explicit “1:Lrs” indices are replaced with just a “:” referring to the whole dimension.
Note that the dimension indexed with 1:Lrs is laid out serially into local memory.
Theoretically the machine front end could take advantage of the explicit subscripts
of the L! version by pruning the number of processed memory layers. However, in
practice it turns out that, at least on the CM-2, the processors will always cycle
through all layers of memory. Doubling N, (and therefore doubling maxLrs) and
leaving all other parameters fixed results therefore not only in doubling execution time
of the L? version on both machines, but on the CM-2, it also doubles running time
of the L} version; on the DECmpp, the L} time increases by about 5%. The running
time of Ly is independent of N,,,, on both machines, which is a nice side effect of
loop flattening. Therefore, using the L’ loops does not automatically result in savings
by reducing the number of processed layers; however, we have to pay the additional
overhead of checking on each layer whether it is active [Chr91]. This overhead is

saved in the L2 version.

118

subroutine A11F()

C Formal parameters omitted here;
C F, pCnt, partners are distributed
C in first dimension

integer atl(P,maxLrs),at2(P,maxLrs)
real Force(P,maxLrs)

cmf$ layout Force(:news,:serial)

cmf$ layout ati(:news,:serial)

cnf$ layout at2(:news,:serial)

cmpf ondpu Force,atl,at2

cmpf map Force(allbits,memory)

cmpf map ati(allbits,memory)

cmpf map at2(allbits,memory)
integer pr

F=20
atl = reshape(shape = [P,maxLrs], source = [1:Nmax])
maxPCnt = maxval(pCnt)
do pr = 1, maxPCnt
at2(:,1:Lrs) = partners(:,1:Lrs,pr)
call OneF(Force,atl,at2)
where (pCnt.ge.pr)
F(:,1:Lrs) = F(:,1:Lrs) + Force(:,1:Lrs)
endwhere
enddo

Figure 6.14 CMFORTRAN/MPFORTRAN version of unflattened nbf.

119

6.2.4 The input data

We ran our test case for the bovine superoxide dismutase molecule (SOD), which has
N = 6968 atoms. SOD is a catalytic enzyme composed of two identical subunits,
each with 151 amino-acid residues and two metal atoms [SM91].

Figure 6.15 shows maximal and average numbers of interaction partners, pCnt
and pChnt

As expected, both values increase cubicly with the cutoff radius. As indicated in

maxr

wves Which indicate the computational workloads for different cutoff radii.
Equations 6.1” and 6.2"”, the difference between maximum and average number of
partners gives us an upper bound on how much improvements we can expect from

loop flattening.

6.2.5 The results

Table 6.1 gives performance results for the CM-2 and the DECmpp 12000, which
are also displayed in Figure 6.16. For comparison, the running times on the Sparc
were 3.86 seconds for the 4 A case and 31.43 seconds for the 8 A case. All runs were
done several times, the differences in running times were usually less than 0.01%.

All loop versions were also timed with inlined calls to the force routine. On the
CM-2, the effect was marginal; on the DECmpp, fluctuations were within 5%, roughly
evenly distributed in both directions.

Table 6.2 gives the number of calls to Force routine for the flattened and the
unflattened loop versions (the latter number scaled up by Lrs to account for the
different argument sizes of OneF () and OneFFlat()) for different data granularities,
along with their ratios. Note that the counts given in the last row are actually the
maxima of pCnt for the corresponding cutoff radii, as given in Figure 6.15. The given
L,/L; ratios are bounded by the pCnt,,./pCnt,,. ratios, which are 3.347, 2.689,
2.665, and 2.949 for cutoffs 4 A, 8 A, 12 A, and 16 A, respectively.

maxr

6.2.6 Interpretation

Considering the different computing powers per individual processor, the overall
speedups of the parallel codes over the Sparc code version were satisfactory. However,
we have to take into account that we excluded communication costs from our study.
Due to the irregular nature of the problem, these communication costs might be rela-
tively high; but as indicated earlier, the communication requirements are not changed

by our transformation.

120

Number of Nonbonded Pairs for Superoxide Dismutase Molecule (SOD)

1600
o Maximum
1400+ :
12001
£ 10001
o
©
g e /
@
5 §
T g0l P
% Average
0l B
ol 0 "
s g »/"’*"/‘
0 g L L L L L L
0 2 4 6 8 10 12 14 16 18

Cutoff radius (Angstroms)

20

Figure 6.15 Maximum and average number of non-bonded force
interaction partners per atom for the superoxide dismutase molecule, using
different cutoff radii.

4A 8A 12A 16A

P/Gran || L. | L2 | L; LY | L2 | L LY | L2 | Lj LY | L2 | Ly
1024/128 3.89 27.03

2048/256 || 6.57 | 3.86 | 2.13 ||42.91|25.13|14.72

4096/512 || 3.22 | 1.83 | 1.11 ||21.02]11.95| 7.65 24.78

8192/1024 1 1.72 | 0.99 | 0.64 || 11.19| 6.46 | 4.57 13.31 27.17
1024/1024/0.910[0.934[0.390 || 5.36 | 5.85 | 2.81 |[15.91]17.45] 8.19 || 36.86 |40.45 | 16.84
2048/2048 || 0.638 | 0.481]0.266 || 3.35 | 3.00 | 1.69 || 9.96 | 8.95 | 4.98 ||23.07|20.71|10.68
4096/4096 || 0.352{0.269| 0.157 || 1.86 | 1.55 | 1.05 || 5.18 | 4.59 | 3.14 || 11.96|10.58 | 6.51
8192/81921/0.145 | 0.129 | 0.104 ([0.683 | 0.715| 0.671 || 1.92 | 2.09 | 2.00 || 4.42 | 4.82 | 4.66

Table 6.1 Performance results for the CM-2 (upper half) and the DECmpp
(lower half). Running times (in seconds) are listed for different cutoff radii
and different loop versions. L. — unflattened loop selecting memory layers,

L? — unflattened loop using all memory layers, L; — flattened loop.

121

Running time (seconds)

Runming timesfor CM-2 Running timesfor DECrpp
1027 T] 1027 T T T
*\\\cutoff=12Ang utoff = 16 Ang] 1;
L ' S X fy
cutoff =8 Ang
i ? o cttoff = 16 Ang |
o g]
o : \‘\gutoff:IZAng:
| otoff=4An ? Ny
c =
ml 3l \q{t?f\f §Ang |
i -
0 ~
N o=y |
10 — 10
10 " 10 "

Numboer of processors Numboer of processors

Figure 6.16 Performance results for the CM-2 and the DECmpp 12000.
Different loop versions vary in line style; dashes: unflattened loop selecting
memory layers; dots: unflattened loop using all memory layers; solid lines:
flattened loop. Different cutoff radii are indicated by point styles; circles:
4 A, plusses: 8 A; stars: 12 A; crosses: 16 A. For judging speedups, note the
log-log scale and the aspect ratio.

122

4A 8A 12A 16A
Gran| Ly | Ly || Lu/Ls|| Ly | Ly ||Lu/Ls|| Lu | Ly || Lu/Ls| Lu | Ly ||Lu/Ls
128 722 5076
256 (1924|397 2.327 ||6048|2754]| 2.196
512 ||462(224 | 2.063 ||3024|1559] 1.940 4649
1024 |[231]125| 1.848 ||1512| 906 || 1.669 |[4536|2642]| 1.717 || 105285436 1.937
2048 |[132| 86 || 1.535 || 864 | 545 || 1.585 ||2592|1606| 1.614 || 6016 | 3434 1.752
4096 || 66 | 51 || 1.210 || 432 | 357 || 1.210 ||1296|1069| 1.212 || 3008 |2222| 1.354
8192 || 33 | 33 1 216 | 216 1 648 | 648 1 1504 1504 1

Table 6.2 Number of calls to Force routine, flattened /unflattened version.
The data granularity, Gran, is equal to P for the DECmpp and P/8 for the
CM-2. L, counts are multiplied with Lrs.

When comparing Tables 6.1 and 6.2, loop flattening fulfills the expectations given
by Equations 6.1” and 6.2"”. Despite the significant effort on speeding up the unflat-
tened loop versions (as described in Section 6.2.3), the improvements of the flattened
version often went beyond what we predicted from the pChnt, , ./pCnt,,. ratios, in
particular on the DECmpp. We assume that this is largely due to the side effect
mentioned in Section 6.2.3, namely that loop flattening makes actual running times
less dependent on array sizes if we do not access all parts of the array; i.e., we can
increase N, without automatically making L; slower (unlike for L? and even L.).
This we consider a significant advantage in practice, since it allows compiling pro-
grams with provision for maximal problem sizes without paying a penalty on smaller
sizes.

Moreover, it turned out that the effort of expressing array bounds in terms of
actual machine sizes improved the unflattened loop versions as well. This was partic-
ularly beneficial for the virtual processor model of the CM-2.

The differences between the two unflattened loop versions L! and L? were larger
on the CM-2 than on the DECmpp, as mentioned in Section 6.2.3. However, even on
the DECmpp, L? performed better than L! when Lrs approached maxLrs.

It is important to keep in mind that the slicewise compiler for the CM-2 actually
generates code with a data granularity of Gran = P/8, as discussed in Section 6.2.2.
This coarser granularity results in more atoms per processor and therefore better
applicability of loop flattening. As the table and the graph indicate for the CM-2,

several cases could be run with the L; version with reasonable performance while

123

they could not be run at all in L. or L? because of stack overflows; large temporary
arrays were needed in L} and L? even in loop versions which forward substituted

intermediate results.

A Terraplane filled with Pinto beans

wetghs 284 pounds and claims to have 6800 cu in ...
A clatm made under obvious duress.

These volume figures provide usable volume,

not how much sand a pack will hold.

— Dana Design

124

Chapter 7

Background and Related Work

We can classity the steps towards the efficient parallel implementation of an irregular
problem by the level at which they are taken: the algorithm development, the pro-
gram text, supportive tools, the compiler, the operating system, or the underlying
hardware. While this thesis has a strong focus on the compiler level, this section puts
its contributions in perspective by examining related work also at higher and lower

levels and in the domain of regular applications.

7.1 Tools

Tools can assist in load balancing and in communication, both of which can be par-
ticularly tedious and error prone when trying to parallelize an irregular problem
efficiently [HS91].

The tools for parallelizing irregular problems can roughly be divided into two
groups. The first group of tools provides an easier grip on the physical properties of
the problem; i.e., it takes advantage of spatial locality. The second group comes into
play after the data structures have been laid out; these tools try to free the user from
dealing with the access properties of the parallel program; i.e., they examine data

locality.

7.1.1 Tools based on spatial decomposition
The Generic Multiprocessor

The Generic Multiprocessor (GENMP) [Bad87, Bad91] aims at providing a machine-
independent programming environment for a certain class of problems, namely scien-
tific calculations that are spatially localized on a mesh. GENMP is a layer of software
that can be thought of as a virtual machine that operates on a d-dimensional work
mesh through a sequence of states. With the aid of application dependent routines

written by the user, it repartitions the work mesh across processors to achieve a

125

balanced work load and performs the necessary communication. Good results have
been achieved with the implementation of the vorticity-stream function formulation
of Euler’s equation for incompressible flow in two dimensions in an infinite domain.
The tests were performed on a 32-processor distributed-memory iPSC hypercube and
a 4-processor shared-memory Cray X-MP vector machine. The limitation of this
approach lies in its specificity towards applications that already use data structures
reflecting locality characteristics; this we try to overcome by using general value-based

decompositions as introduced in Chapter 2.

Lattice Parallelism

Lattice Parallelism (LPAR) [Bad92, BK93, BKF94, FB95] is an SPMD programming
model that supports coarse-grained parallelism based on the FIDIL language [HC88|
and the owner computes rule. It is intended for non-uniform computations that in-
volve partial differential equations and have local structure. It explicitly excludes
unstructured calculations such as sparse matrix linear algebra and finite element
problems. Its main data type is the Map, whose elements are indexed by tuples just
like array elements. However, the index set of a map, the Domain, is not necessarily
rectangular, but can be arbitrarily sparse instead. Furthermore, a map declaration
itself does not reserve any storage; this has to be allocated explicitly or by an ini-
tialization assignment. Maps are flexible; their domain can change at run time, and
several domain constructors (for rectangular domains, also with arbitrary starting
and ending points and strides) and operators (union, intersection) are available.

Parallelism is expressed by mapping a logical processing Domain onto a spatial
processing Domain. LPAR supports load balancing and ghost regions, in which each
processor stores data within a certain proximity to its own data, similarly to overlap
regions [Ger90]. It is currently implemented in C++ for the iPSC/860. LPAR treats
parallelism at a very high level, it manipulates the structure of the data, rather than
the data itself. It enables very elegant formulations of a limited class of problems and
can be seen as a potential user of an implementation of the value-based decompositions
proposed in Chapter 2. Citing Baden [Bad92]:

It is not an implementation-level system, and relies on application li-
braries or other run time systems to handle data partitioning or to handle
machine-level optimizations, that could be provided for example by DINO
or by FORTRAN D.

126

7.1.2 Tools based on access patterns
Chaos

The CHAOS primitives, which succeed PARTI (Parallel Automated Runtime Toolkit
at ICASE), are a set of high level communication routines that provide convenient
access to off-processor elements of arrays that are accessed (and distributed) irreg-
ularly [BS90, SBW90, DMS*92, DHU%93]. The authors of PARTI were the first to
propose and implement user-defined irregular distributions [MSS*88] and a hashed
cache for nonlocal values [MSMB90]. They build on the inspector-executor paradigm
described above; they

1. Coordinate interprocessor data movement,
2. Manage the storage of and access to copies of off-processor data, and

3. Support a shared name space, using a distributed translation table [SCMB90] to

store the local address and processor number for each distributed array element.

High-level library routines, such as CHAOS, can assist in tasks such as global-to-
local name space mappings, communication schedule generation, and schedule based
communication. Such libraries are essential both for keeping code complexity and
programming difficulties in reasonable limits and also for the compiler writer; our
FORTRAN 77D implementation also generates code that calls the CHAOS library.
However, since each application still has its own individual communication require-
ments, the proper usage of such routines and preprocessing for generating their argu-
ments is still a non-trivial task one would rather leave to a compiler.

Communicating the right data at the right time and place is a difficult, yet crucial
task for parallelizing irregular problems. The CHAOS primitives are valuable tools for
the first part of the problem, namely for determining where to find which data and
for carrying out efficient data exchange. The data-flow framework presented as part
of this thesis in Chapter 3 is designed for attacking the second part of the problem,
namely enabling the compiler to make good use of these primitives without further

advice by the user.

The Communication Compiler

The Communication Compiler [Dah90] is a software facility for scheduling general

communications on the Connection Machine. It employs simulated annealing to find

127

a data mapping with as low communication requirements as possible. It uses a re-
cursive routing algorithm to determine an actual communication schedule. For fixed
communication patterns, the cost of generating this schedule can be amortized by
reuse, for example, over many time steps of a simulation. Its generality makes it
highly applicable towards irregular communication structures. However, the commu-

nication patterns have to be known before using the Communication Compiler.

7.2 The Compiler
7.2.1 Parallel compilation systems

There have been and still are numerous research projects in the area of compiling for
parallel architectures. Early work in the field of compiling for distributed-memory
machines focussed on defining frameworks for nonlocal memory accesses [CK88] and
data distributions [GB91, HA90, RS89]. For exploiting coarse-grained functional
parallelism, high-level parallel languages such as LiNDA [CG89], STRAND [FT90,
FO90], and DELIRIUM [L.S91] have been defined.

Several compilation systems for exploiting fine-grained parallelism have been and
are being built, which include AL [Tse90], Aspar [IFKF90], C*/DATAPARALLEL C
[HQL*91, RS87], CrysTAL [LC91], DiNno [RSW91], ID NouvEAU [RP89], MImMD-
1ZER [SWW92], OXYGEN [RA90], P?C [GAY91], PANDORE [APT90], PARAFRASE-2
[GB92]|, PArAGON [CCRS91], SPOT [SS90, Soc90], SUPERB [ZBGS88], and VIENNA
FoRrRTRAN [BCZ92]. While there is still much work to be done in this field in general,
there has already been considerable success in the field of regular applications, and

“second generation parallelizing compiler” has become a common term.

7.2.2 FORTRAN D

FORTRAN D is an SPMD (Single-Program Multiple-Data) style language developed
by the distributed-memory compiler group at Rice University and serves as a basis
for this work. The following contains a very brief summary of its basic concepts, the

complete language is described in detail elsewhere [FHK*90]. Citing Hiranandani
et al. [HKT92b]:

FORTRAN D is the first language to provide users with explicit control
over data partitioning with both data alignment and distribution specifi-
cations. The DECOMPOSITION statement specifies an abstract problem or

128

index domain. The ALIGN statement specifies fine-grain parallelism, map-
ping each array element onto one or more elements of the decomposition.
This provides the minimal requirement for reducing data movement for
the program given an unlimited number of processors. The alignment of
arrays to decompositions is determined by their subscript expressions in
the statement; perfect alignment results if no subscripts are used.

The DISTRIBUTE statement specifies coarse-grain parallelism, grouping
decomposition elements and mapping them and aligned array elements
to the finite resources of the physical machine. Each dimension of the
decomposition is distributed in a BLOCK, CYCLIC, or BLOCK_CYCLIC manner
or replicated.

7.3 The Operating System

Virtual or hardware supported single-address space systems can ease the task of
parallel programming by eliminating separate address spaces and explicit communi-
cations. Examples of these systems are AMBER [CALT89], CLouDs [RAKS88], DASH
[LLG*90], Ivy [LH89], Mipway [BZ91], MunIN [CBZ91, KCZ92], Orca [BTS88],
and PLATINUM [CF89]. They preserve sequential semantics by enforcing a consis-
tency protocol, which can be lazy or eager, based on invalidations or updates. MUNIN
supports several such protocols, the choice between them for each individual shared
variable is guided by access pattern annotations provided by the user. These systems,
however, are demand-driven and therefore limited in how much they can hide memory
latency (by prefetching data before they are needed) or reduce data movement costs
(by fetching entire blocks at once). They are limited in that they can only react to
accesses to nonlocal memory; at best, they can maintain a history of past accesses
and try to guess future patterns.

One problem where operating systems can assist in the implementation of irreg-
ular applications in particular is the task of load balancing, since some spatial and
temporal locality is usually associated with the workload. Here information about
the utilization of different processors can be helpful. However, the work done in
this area has focussed on thread-based parallelism [ELZ86, Luc88], typically even
associated with distinct processes, instead of data parallelism. One also has to keep

in mind that irregularities in the presence of race conditions might lead to system

crashes [HtEBBW].

129

7.4 The Hardware

Some hardware facilities that can be particularly useful for irregular applications are

the following.

7.4.1 Low latency

Due to the typically very irregular access patterns, message blocking becomes more
complicated than for regular applications [SHG92]. A low latency communication

system makes this difficulty less critical.

7.4.2 General routing facilities

Again, due to indirect addressing and the associated irregular access patterns it is
often difficult to constrain the communication to nearest neighbor communication

channels, so a fast general router is advantageous.

7.4.3 Decoupling of control flow on SIMD architectures

A problem similar to the potential load imbalance across processors is an uneven
workload within processors. This is also a common characteristic of irregular prob-
lems, where the fraction which a processor spends of its total computation time on
a certain part of its assigned workload may vary. This may cause additional idling
when running irregular problems on SIMD machines instead of MIMD machines.

The restricted control flow of pure SIMD programming has been addressed by
several researchers. General simulators of MIMD semantics on SIMD machines have
been implemented by Kuszmaul [Kus86] and Hudak et al. [HM88] on the Connection
Machine and by Biagioni [Bia91] and Dietz et al. [DC92] on the MasPar. These sim-
ulations are generally based on graph reduction interpreters for functional languages.
Their performance tends to be scalable, but in absolute measures still below the speed
of sequential work stations.

Philippsen et al. introduce two variants of a forall statement, a synchronous
version and an asynchronous one [PT91]. The asynchronous forall enables multiple
threads of control to coexist. This can either be emulated using stacks of MASK bits,
or it can be implemented directly in an MSIMD machine which contains multiple
program counters. In either case, their proposal is mainly concerned with enabling

the concurrent execution of both branches in if-then-else constructs.

130

Loop flattening [HK92] is one technique to overcome this limitation for loop nests
with varying loop bounds, as proposed in Chapter 4. Loop flattening can also be used
to process multiple array segments of different lengths per processor, as introduced
in Blelloch’s V-RAM model [Ble90]. Thus it can be viewed as a generalization of
substituting direct addressing with indirect addressing as Tomboulian and Pappas

did for computing the Mandelbrot set [TP90].

7.4.4 Fast scan operations

The inhomogeneous workload across processors generally associated with irregular
problems calls for load balancing. Scan operations are one efficient way for determin-
ing the total workload and its distribution [Bia9l, Ble90]. On architectures providing

an embedded reduction tree, this operation can be done in O(log P) cycles.

131

Chapter 8

Summary & Open Issues

The projects described in Chapters 2, 3, and 4 focus on different aspects of the same
problem, namely how to solve irregular applications efficiently with parallel machines.
Furthermore, they all focus on the issue of how much support a compiler can give
for these applications. The results so far seem to indicate that it is feasible to design
high-level language support similar to the support existing for regular problems and
to implement it at reasonable implementation and run-time costs.

An important example of this is the concept of the value-based decomposition
based on the exploitation of spatial locality of the underlying physical problem do-
main, as introduced in Chapter 2. We extended the data-parallel paradigm by adding
value-based enhancements to the already existing, so far index-based data distribu-
tion and alignment mechanisms. We illustrated their use with representative irregular
kernels and compared the performance of these kernels with index-based and value-
based distributions. We also compared a FORTRAN D version and a message-passing
version, ¢.€., a program using run-time support explicitly as generated by the com-
piler (or written by hand), of the same kernel. This gave an example for the added
convenience provided by the proposed language extensions.

A principal difference between index-based and value-based mapping strategies
is the departure from a model that derives data-to-processor mappings from static,
sequential data-to-storage information (such as an array index). Instead, we consider
run-time values to derive the mappings. This approach could also be used for data
types other than arrays, for example for list structures in a version of data-parallel
C, or for distributing spatial data structures such as oct-trees commonly used for
N-body problems with very large N.

Another application of the value-based approach could be value-based inspectors.
For example, the pair list used in the NBF computation is typically generated with
a naive O(N?) algorithm, where each atom is compared against every other atom,
with correspondingly high computation, communication, and storage requirements. If

we know that each processor has atoms only within a relatively small subdomain, we

132

could restrict our attention to atoms that are either within or close to this subdomain,
thereby reducing the amount of non-local data that have to be buffered.

Value-based mappings provide a specific kind of expressiveness that had been
missing so far for data-parallel languages; they can give the compiler information
that cannot be described in terms of array indices, and they provide a convenient
mechanism to specify irregular mappings. While this is only one aspect of parallelizing
irregular problems, we believe that it significantly widens the range of application that
can be implemented efficiently in data-parallel languages.

After having decided on a certain decomposition, communicating the right data
at the right time and place is still a difficult, yet crucial task for parallelizing irregular
problems. The CHAOS primitives are valuable tools for the first part of the problem,
namely for determining where to find which data and for carrying out efficient data
exchange. The data-flow framework presented in Chapter 3 is designed to attack the
second part of the problem, namely enabling the compiler to make good use of these
primitives without further advice by the user. We expect GIVE-N-TAKE to have
potential use in other areas as well, such as general memory hierarchy issues (cache
prefetching, register allocation, parallel I/O) and classic partial redundancy elimi-
nation applications (common subexpression elimination, loop invariant code motion,
etc.).

However, there is obviously still room for further improvement and generalization
of the underlying theory. For example, the current framework does already support
latency hiding by separating Send- and Recv-operations. However, there are some
additional issues involved when generating simple Sends and Recvs from there (in-
stead of using high-level communication routines such as CHAOS). In particular, the
assignment of message id’s and matching Send s and Recvs such that data which are
sent together are also received together and vice versa appear to be both interesting
and challenging problems.

A refinement that would be useful for block structured irregular problems, for
example, is to allow data exchanges between just subsets of processors, instead of
requiring a global coordination whenever the primitives are called as mentioned in
the introduction.

One might also consider relaxing the static ownership concept for data accessed
via indirection arrays. For example, it might occur that a processor p computes some
data that are owned by processor ¢, but the next use of the data is on processor r.

In the current owner-computes framework, we would first scatter the data from p to

133

g and then gather them from ¢ to r, which could be replaced by a single “scatter-
gather” from p to r. This, however, would add an additional degree of complexity to
the theoretical framework and the underlying communication primitives.

Finally, one might consider pruning the framework down towards regular appli-
cations, where the same need for blocking and combining communication arises. So
far, this is typically handled with local code transformations based on dependence
analysis, but there is no inherent reason for not applying data-flow analysis here as
well. This could be done by using the GIVE-N-TAKE framework over a lattice based
on regular array sections.

Important questions not only for the GIVE-N-TAKE-based communication place-
ment method presented here, but for compiling onto message passing architectures
in general are how to determine whether a program is a valid instance of the com-
munication generation problem (see Section 3.2.1), and how to transform an invalid
program into a valid one. Answering these questions without being overly restrictive
is a crucial step towards compiling correctly in the presence of arbitrary, non-SIMD
control flow.

The loop flattening transformation described in Chapter 4 is an attempt to over-
come certain limitations when using a SIMD computer for solving irregular problems
without going as far as trying to achieve general MIMD semantics on SIMD machines.
Loop flattening was designed to ease some particular SIMD restrictions without in-
troducing any overhead; however, it supports a programming style that seems to be
preferable on current SIMD machines even when running regular applications [HK92].
This rather surprising result suggests that flattened loops make it easier for compil-
ers to derive the information they need for performing certain optimizations, such
as pruning out virtual processor layers for individual statements whenever possible.
This transformational approach might possibly be carried over into other situations
where the restrictiveness of the SIMD model degrades overall performance.

So far, there does not seem to be a clear limit to the level of support that a
compiler, when given the proper analysis, can give the scientist programming an

irregular problem.

His “long range plan,” he says,
is to “refine” these nerve-wrecking methods, somehow,

and eventually “create an entirely new form of journalism.”

— The Editor (Dr. Hunter S. Thompson)

[AL93]

[ALl70]

[APT90]

[Bad87]

[Bad91]

[Bad92]

[Bal90]

[BBLS91]

[BBO*83]

134

Bibliography

S. P. Amarasinghe and M. S. Lam. Communication optimization and code
generation for distributed memory machines. ACM SIGPLAN Notices,
28(6):126-138, June 1993. Proceedings of the ACM SIGPLAN 93 Confer-

ence on Programming Language Design and Implementation.
F. E. Allen. Control flow analysis. ACM SIGPLAN Notices, 5(7):1-19, 1970.

F. André, J. Pazat, and H. Thomas. Pandore: A system to manage data
distribution. In Proceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, The Netherlands, June 1990.

S. B. Baden. Run-Time Partitioning of Scientific Conlinuum Calculations
Running on Multiprocessors. PhD thesis, Lawrence Berkeley Laboratory, Uni-

versity of California, 1987.

S. B. Baden. Programming abstractions for dynamically partitioning and co-

ordinating localized scientific calculations running on multiprocessors. SIAM
Journal on Scientific and Statistical Computing, 12(1):145-157, 1991.

S. B. Baden. Lattice parallelism: A parallel programming model for ma-
nipulating localized non-uniform scientific data structures. In Intel Super-
computer University Partners Conference, Timberline Lodge, Mt. Hood, OR,
April 1992.

V. Balasundaram. A mechanism for keeping useful internal information in
parallel programming tools: The data access descriptor. Journal of Parallel
and Distributed Computing, 9(2):154-170, June 1990.

D. Bailey, J. Barton, T. Lasinski, and H. Simon. The NAS parallel bench-
marks. International Journal of Supercomputing Applications, 5(3):63-73, Fall
1991.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan,
and M. Karplus. CHARMM: A program for macromolecular energy, mini-

[BCZ92]

[BHMS91]

[Bia91]

[BK93]

[BKF94]

[BKP93]

[Ble90]

[BP90]

[BS90]

[BSGM90]

135

mization and dynamics calculations. Journal of Computational Chemistry,
4(2):187-217, 1983.

S. Benkner, B. Chapman, and H. Zima. Vienna Fortran 90. In Scalable High
Performance Computing Conference, Williamsburg, VA, April 1992.

M. Bromley, S. Heller, T. McNerney, and G. Steele, Jr. Fortran at ten gi-
gaflops: The Connection Machine convolution compiler. In Proceedings of the
ACM SIGPLAN °91 Conference on Program Language Design and Implemen-

tation, Toronto, Canada, June 1991.

E. S. Biagioni. Scan Directed Load Balancing. PhD thesis, University of North
Carolina at Chapel Hill, 1991.

S. B. Baden and S. R. Kohn. Portable parallel programming of numerical
problems under the LPAR system. Technical Report CS93-330, Department
of Computer Science and Engineering, University of California, San Diego,
1993.

S. B. Baden, S. R. Kohn, and S. J. Fink. Programming with LPARX. In
Intel Supercomputer User’s Group Meeling, June 1994. Also available via
anonymous {tp from cs.ucsd.edu as pub/baden/tr/cs94-377.ps.

F. Bodin, L. Kervella, and T. Priol. Fortran-S: A Fortran interface for shared
virtual memory architectures. In Proceedings of Supercomputing ’93, Portland,
OR, November 1993.

G. E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press,
1990.

K. P. Belkhale and P. Prithviraj. Recursive partitions on multiprocessors.
In Proceedings of the 5th Distributed Memory Computing Conference, pages
930-938, 1990.

H. Berryman and J. Saltz. A manual for PARTI runtime primitives. ICASE
Interim Report 13, Institute for Computer Application in Science and Engi-

neering, Hampton, VA, September 1990.

H. Berryman, J. Saltz, W. Gropp, and R. Mirchandaney. Krylov methods
preconditioned with incompletely factored matrices on the CM-2. Journal of
Parallel and Distributed Computing, 8:186-190, 1990.

[BTS8S]

[Bur90]

[BZ91]

[CAL*89]

[CBZ91]

[CCRS91]

[CF89]

[CGSY]

[CHK94]

136

Henri E. Bal and Andrew S. Tanenbaum. Distributed programming with
shared data. In Proceedings of the IEEE CS 1988 International Conference
on Computer Languages, pages 82-91, October 1988.

M. Burke. An interval-based approach to exhaustive and incremental inter-
procedural data-flow analysis. ACM Transactions on Programming Languages
and Systems, 12(3):341-395, July 1990.

Brian N. Bershad and Matthew J. Zekauskas. Shared memory parallel pro-
gramming with entry consistency for distributed memory multiprocessors.
Technical Report CMU-CS-91-170, Carnegie-Mellon University, September
1991.

J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield. The Amber
system: Parallel programming on a network of multiprocessors. In Proceedings
of the Twelfth ACM Symposium on Operating Systems Principles, pages 147—
158, December 1989.

J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Implementation and per-
formance of Munin. In Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, pages 152-164, October 1991.

C. Chase, A. Cheung, A. Reeves, and M. Smith. Paragon: A parallel program-
ming environment for scientific applications using communication structures.
In Proceedings of the 1991 Inlernalional Conference on Parallel Processing,
St. Charles, IL, August 1991.

A. Cox and R. Fowler. The implementation of a coherent memory abstraction
on a NUMA multiprocessor: Experiences with Platinum. In Proceedings of the

Twelfth ACM Symposium on Operating Systems Principles, December 1989.

N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444-458, April 1989.

T. W. Clark, R. v. Hanxleden, and K. Kennedy. Experiences on
data-parallel programming. Technical Report CRPC-TR94495-S, Cen-
ter for Research on Parallel Computation, Rice University, Decem-
ber 1994. Available via anonymous ftp from softlib.rice.edu as
pub/CRPC-TRs/reports/CRPC-TR94495-S.

[CHMS94]

[Chr91]

[CKSS]

[CK92]

[CLRYO]

[CM69]

[CM90]

[CMZ92]

[CocT0]

[Dah90]

[Das94]

[DC92]

137

T. W. Clark, R. v. Hanxleden, J. A. McCammon, and L. R.
Scott. Parallelization using spatial decomposition for molecular dynam-
ics. In Scalable High Performance Computing Conference, Knoxville, TN,
May 1994. Available via anonymous ftp from softlib.rice.edu as
pub/CRPC-TRs/reports/CRPC-TR93356-S.

P. Christy. Virtual processors considered harmful. In Proceedings of the 6th
Distributed Memory Compuling Conference, Portland, OR, April 1991.

D. Callahan and K. Kennedy. Compiling programs for distributed-memory
multiprocessors. Journal of Supercomputing, 2:151-169, October 1988.

S. Carr and K. Kennedy. Scalar replacement in the presence of conditional
control flow. Technical Report TR92283, Rice University, CRPC, November
1992. To appear in Software — Practice & Fxperience.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, MA, 1990.

J. Cocke and R. Miller. Some analysis techniques for optimizing computer
programs. In Proceedings of the 2nd Annual Hawaii International Conference
on System Sciences, pages 143-146, 1969.

T. W. Clark and J. A. McCammon. Parallelization of a molecular dynamics
non-bonded force algorithm for MIMD architectures. Computers & Chem-
istry, 14(3):219-224, 1990.

B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran.
Scientific Programming, 1(1):31-50, Fall 1992.

J. Cocke. Global common subexpression elimination. ACM SIGPLAN No-
tices, 5(7):20-24, 1970.

D. Dahl. Mapping and compiled communication on the connection machine
system. In Proceedings of the 5th Distributed Memory Computing Conference,
Charleston, SC, April 1990.

R. Das. Compilation Techniques for Irregular Problems on Parallel Machines.
PhD thesis, The College of William and Mary in Virginia, 1994.

H. Dietz and W. Cohen. A control-parallel programming model implemented
on SIMD hardware. In Proceedings of the Fifth Workshop on Languages and

[DGS93]

[Dha88al]

[Dha88b]

[Dha91]

[DHUT93]

[DK83]

[DK93]

[DMS+92]

[DP93]

138

Compilers for Parallel Computing, pages 311-325, New Haven, CT, August
1992.

E. Duesterwald, R. Gupta, and M. L. Soffa. A practical data flow frame-
work for array reference analysis and its use in optimizations. ACM SIG-
PLAN Notices, 28(6):68-77, June 1993. Proceedings of the ACM SIGPLAN

93 Conference on Programming Language Design and Implementation.

D.M. Dhamdhere. A fast algorithm for code movement optimization. ACM
SIGPLAN Notices, 23(10):172-180, 1988.

D.M. Dhamdhere. Register assignment using code placement techniques.
Computer Languages, 13(2):75-93, 1988.

D.M. Dhamdhere. Practical adaptation of the global optimization algorithm
of Morel and Renvoise. ACM Transactions on Programming Languages and
Systems, 13(2):291-294, April 1991.

R. Das, Y.-S. Hwang, M. Uysal, J. Saltz, and A. Sussman. Applying the
CHAOS/PARTI library to irregular problems in computational chemistry and
computational aerodynamics. In Proceedings of the Scalable Parallel Libraries
Conference, Mississippi State University, Starkville, MS. IEEE, Computer So-
ciety Press, October 1993.

D.M. Dhamdhere and J.S. Keith. Characterization of program loops in code
optimization. Computer Languages, 8:69-76, 1983.

D. M. Dhamdhere and U. P. Khedker. Complexity of bidirectional data flow
analysis. In Conference Record of the Twenlieth Annual ACM Symposium
on Principles of Programming Languages, pages 397408, Charleston, South
Carolina, January 1993.

R. Das, D. Mavriplis, J. Saltz, S. Gupta, and R. Ponnusamy. The design and
implementation of a parallel unstructured Euler solver using software primi-
tives, AIAA-92-0562. In Proceedings of the 30th Aerospace Sciences Meeling.
ATAA, January 1992.

D.M. Dhamdhere and H. Patil. An elimination algorithm for bidirectional
data flow problems using edge placement. ACM Transactions on Programming
Languages and Systems, 15(2):312-336, April 1993.

[DPSMOY1]

[DRZ92]

[DS8S]

[DSvHO93]

[ELZ86]

[FB95]

[FHK*90]

[FO90]

[FT90]

139

R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Distributed memory com-
piler methods for irregular problems — Data copy reuse and runtime parti-
tioning. ICASE Report 91-73, Institute for Computer Application in Science
and Engineering, Hampton, VA, September 1991.

D.M. Dhamdhere, B.K. Rosen, and F.K. Zadeck. How to analyze large pro-
grams efficiently and informatively. In Proceedings of the ACM SIGPLAN ’92
Conference on Program Language Design and Implementation, pages 212223,
San Francisco, CA, June 1992.

K. Drechsler and M. Stadel. A solution to a problem with Morel and Ren-
voise’s “Global optimization by suppression of partial redundancies”. ACM
Transactions on Programming Languages and Systems, 10(4):635-640, Octo-
ber 1988.

R. Das, J. Saltz, and R. v. Hanxleden. Slicing analysis and indirect accesses
to distributed arrays. In U. Banerjee et al., editor, Lecture Notes in Com-
puler Science, volume 769, pages 152-168. Springer, Berlin, August 1993.
From the Proceedings of the Sixth Workshop on Languages and Compilers
for Parallel Computing, Portland, OR. Available via anonymous ftp from
softlib.rice.edu as pub/CRPC-TRs/reports/CRPC-TR93319-S.

D. Eager, E. D. Lazowska, and J. Zahorjan. A comparison of receiver-initiated
and sender-initiated adaptive load sharing. Performance Fvaluation, 6:53—68,
1986.

S. J. Fink and S. B. Baden. Run-time data distribution for block-structured
applications on distributed memory computers. In Seventh SIAM Conf. on
Parallel Proc. for Scientific Compuling, February 1995. Also available via
anonymous ftp from cs.ucsd.edu as pub/baden/tr/cs94-386.ps.

G. C. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, C. Tseng,
and M. Wu. Fortran D language specification. Technical Report TR90-141,
Dept. of Computer Science, Rice University, December 1990. Revised April,
1991.

. Foster and R. Overbeek. Bilingual parallel programming. In Advances in
Languages and Compilers for Parallel Computing, Irvine, CA, August 1990.
The MIT Press.

I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

[GAY91]

[GBSS]

[GB91]

[GB92]

[Ger90]

[GS90]

[GS93]

[Gup92]

[GV91]

[GW76]

[HA90]

140

E. Gabber, A. Averbuch, and A. Yehudai. Experience with a portable paral-
lelizing Pascal compiler. In Proceedings of the 1991 International Conference
on Parallel Processing, St. Charles, IL, August 1991.

W. F. van Gunsteren and H. J. C. Berendsen. GROMOS: GROningen MOlec-
ular Simulation software. Technical report, Laboratory of Physical Chemistry,
University of Groningen, Nijenborgh, The Netherlands, 1988.

M. Gupta and P. Banerjee. Automatic data partitioning on distributed mem-
ory multiprocessors. In Proceedings of the 6th Distributed Memory Computing
Conference, Portland, OR, April 1991.

M. Gupta and P. Banerjee. Compile-time estimation of communication costs
on multicomputers. In Proceedings of the 6th International Parallel Processing
Symposium, Beverly Hills, CA, March 1992.

M. Gerndt. Updating distributed variables in local computations. Concur-
rency: Practice and Frperience, 2(3):171-193, September 1990.

T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use
in an optimizing compiler. Software— Practice and Ezxperience, 20(2):133-155,
February 1990.

M. Gupta and E. Schonberg. A framework for exploiting data availability to
optimize communication. In Proceedings of the Sizth Workshop on Languages
and Compilers for Parallel Computing, Portland, OR, August 1993.

M. Gupta. Automatic Dala Partitioning on Distributed Memory Multicom-
puters. PhD thesis, College of Engineering, University of Illinois at Urbana-
Champaign, September 1992.

E. Granston and A. Veidenbaum. Detecting redundant accesses to array data.

In Proceedings of Supercomputing ’91, Albuquerque, NM, November 1991.

S. Graham and M. Wegman. A fast and usually linear algorithm for global
data flow analysis. Journal of the ACM, 23(1):172-202, January 1976.

D. Hudak and S. Abraham. Compiler techniques for data partitioning of
sequentially iterated parallel loops. In Proceedings of the 1990 ACM Inter-
national Conference on Supercompuling, Amsterdam, The Netherlands, June
1990.

[Han89]

[Han92]

[Han93]

[Hav93]

[Hav94]

[HC8S]

[HHKT92]

[Hig93]

[HK91]

[HK92]

141

R. v. Hanxleden. Parallelizing dynamic processes. Master’s thesis, Dept.

ofhpcnComputer Science, The Pennsylvania State University, August 1989.

R. v. Hanxleden. Compiler support for machine independent parallelization of
irregular problems. Technical Report CRPC-TR92301-5, Center for Research
on Parallel Computation, Rice University, November 1992. Ph.D. Thesis Pro-

posal.

R. v. Hanxleden. Handling irregular problems with Fortran D — A pre-
liminary report. In Proceedings of the Fourth Workshop on Compilers for
Parallel Computers, pages 353-364, Delft, The Netherlands, December 1993.
D Newsletter #9, available via anonymous ftp from softlib.rice.edu as
pub/CRPC-TRs/reports/CRPC-TR93339-S.

P. Havlak. Construction of thinned gate single-assignment form. In Proceed-
ings of the Sizth Workshop on Languages and Compilers for Parallel Com-
puting, Portland, OR, August 1993.

P. Havlak. Interprocedural Symbolic Analysis. PhD thesis, Rice University,
May 1994. Available as Technical Report CRPC-TR94451-S.

P. N. Hilfinger and P. Colella. FIDIL: A language for scientific program-
ming. Technical Report UCRL-98057, Lawrence Livermore National Labora-
tory, January 1988.

M. W. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural com-
pilation of Fortran D for MIMD distributed-memory machines. In Proceedings

of Supercomputing 92, Minneapolis, MN, November 1992.

High Performance Fortran Forum. High Performance Fortran language spec-
ification, version 1.0. Technical Report CRPC-TR92225, Center for Research
on Parallel Computation, Rice University, Houston, TX, 1992 (revised Jan.
1993). To appear in Scientific Programming, July 1993.

P. Havlak and K. Kennedy. An implementation of interprocedural bounded
regular section analysis. IFEFE Transaclions on Parallel and Distributed Sys-
tems, 2(3):350-360, July 1991.

R. v. Hanxleden and K. Kennedy. Relaxing SIMD control flow constraints
using loop transformations. In Proceedings of the ACM SIGPLAN 92 Con-

ference on Program Language Design and Implementation, pages 188-199,

[HK93]

[HKK+91]

[HKK+92]

[HKT91]

[HKT92a]

[HKT92b]

[HMSS]

[HPEY4]

142

San Francisco, CA, June 1992. ACM Press. Available via anonymous ftp
from softlib.rice.edu as pub/CRPC-TRs/reports/CRPC-TR92207-S.

R. v. Hanxleden and K. Kennedy. A code placement framework and
its application to communication generation. Technical Report CRPC-
TR93337-S, Center for Research on Parallel Computation, Rice University,
October 1993. Available via anonymous f{tp from softlib.rice.edu as
pub/CRPC-TRs/reports/CRPC-TR93337-S.

S. Hiranandani, K. Kennedy, C. Koelbel, U. Kremer, and C. Tseng. An
overview of the Fortran D programming system. In Proceedings of the Fourth

Workshop on Languages and Compilers for Parallel Computing, Santa Clara,
CA, August 1991.

R.v. Hanxleden, K. Kennedy, C. Koelbel, R. Das, and J. Saltz. Compiler anal-
ysis for irregular problems in Fortran D. In U. Banerjee et al., editor, Lecture
Notes in Computer Science, volume 757, pages 97-111. Springer, Berlin, Au-
gust 1992. From the Proceedings of the Fifth Workshop on Languages and
Compilers for Parallel Computing, New Haven, C'T. Available via anonymous
ftp from softlib.rice.edu as pub/CRPC-TRs/reports/CRPC-TR92287-S.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimizations for For-
tran D on MIMD distributed-memory machines. In Proceedings of Supercom-
puting ’91, Albuquerque, NM, November 1991.

S. Hiranandani, K. Kennedy, and C. Tseng. Compiler support for machine-
independent parallel programming in Fortran D. In J. Saltz and P. Mehrotra,
editors, Languages, Compilers, and Run-Time Environments for Distribuled
Memory Machines. North-Holland, Amsterdam, The Netherlands, 1992.

S. Hiranandani, K. Kennedy, and C. Tseng. Evaluation of compiler optimiza-
tions for Fortran D on MIMD distributed-memory machines. In Proceedings
of the 1992 ACM International Conference on Supercomputing, Washington,
DC, July 1992.

P. Hudak and E. Mohr. Graphinators and the duality of SIMD and MIMD.
In Proceedings of the 1988 ACM Conference on Lisp and Functional Program-
ming, pages 224-234, July 1988.

M. Hahad, T. Priol, and J. Erhel. Irregular loop patterns compilation

on distributed shared memory multiprocessors. Publication Interne 862,

[HQL*91]

[HS91]

[HtEBBW]

[IFKF90]

[JD82]

[KCZ92]

[Ken71]

[KLS90]

[KLST94]

[KM91]

143

IRISA, Rennes, France, September 1994. Available via anonymous ftp from
ftp.irisa.fr as techreports/1994/PI-862.ps.Z.

P. Hatcher, M. Quinn, A. Lapadula, B. Seevers, R. Anderson, and R. Jones.
Data-parallel programming on MIMD computers. IFEFE Transactions on Par-
allel and Distributed Systems, 2(3):377-383, July 1991.

R. v. Hanxleden and L. R. Scott. Parallelizing dynamic processes on message
passing architectures. In J. Dongorra et al., editor, Proceedings of the Fifth
STAM Conference on Parallel Processing for Scientific Compuling, pages 451—
455, March 1991.

Little Red Riding Hood and the Eight Big Bad Wolves. Evaluating the per-
formance of the GSA system under BB race conditions. Valhalla Press. In

preparation.

K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An automatic and symbolic
parallelization system for distributed memory parallel computers. In Proceed-
ings of the 5th Distributed Memory Computing Conference, Charleston, SC,
April 1990.

S.M. Joshi and D.M. Dhamdhere. A composite hoisting-strength reduction
transformation for global program optimization, parts I & II. International
Journal of Compuler Mathematics, 11:21-41, 111-126, 1982.

P. Keleher, A. Cox, and W. Zwaenepoel. Lazy consistency for software dis-
tributed shared memory. In Proceedings of the 19th Annual International

Symposium on Compuler Archilecture, pages 13-21, May 1992.

K. Kennedy. A global flow analysis algorithm. International Journal of Com-
puter Mathematics, 3:5-15, 1971.

K. Knobe, J. Lukas, and G. Steele, Jr. Data optimization: Allocation of
arrays to reduce communication on SIMD machines. Journal of Parallel and
Distributed Computing, 8(2):102-118, February 1990.

C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High
Performance Fortran Handbook. The MIT Press, Cambridge, MA, 1994.

C. Koelbel and P. Mehrotra. Programming data parallel algorithms on dis-
tributed memory machines using Kali. In Proceedings of the 1991 ACM In-

ternational Conference on Supercompuling, Cologne, Germany, June 1991.

144

[KMCKC93] U. Kremer, J. Mellor-Crummey, K. Kennedy, and A. Carle. Automatic

[KMSB90]

[KMT91]

[KMV90]

[KRS92]

[Kus86]

[LCY1]

[LHS9]

[LLG+90]

data layout for distributed-memory machines in the D programming envi-
ronment. In Christoph W. Kessler, editor, Automatic Parallelization — New
Approaches to Code Generation, Data Distribution, and Performance Predic-
tion, pages 136-152. Vieweg Advanced Studies in Computer Science, Verlag
Vieweg, Wiesbaden, Germany, 1993. Also available as technical report CRPC-
TR93-298-S, Rice University.

C. Koelbel, P. Mehrotra, J. Saltz, and S. Berryman. Parallel loops on dis-
tributed machines. In Proceedings of the 5th Distribuled Memory Compuling
Conference, Charleston, SC, April 1990.

K. Kennedy, K. S. MCKinley, and C. Tseng. Analysis and transformation in
the ParaScope Editor. In Proceedings of the 1991 ACM International Con-

ference on Supercomputing, Cologne, Germany, June 1991.

C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data struc-
tures on distributed memory machines. In Proceedings of the Second ACM

SIGPLAN Symposium on Principles and Praclice of Parallel Programming,
Seattle, WA, March 1990.

J. Knoop, O. Riithing, and B. Steffen. Lazy code motion. In Proceedings of
the ACM SIGPLAN °92 Conference on Program Language Design and Imple-

mentation, San Francisco, CA, June 1992.

B. C. Kuszmaul. Simulating applicative architectures on the Connection Ma-

chine. Master’s thesis, Massachusetts Institute of Technology, 1986.

J. Li and M. Chen. Compiling communication-efficient programs for massively
parallel machines. IEEF Transaclions on Parallel and Distributed Systems,
2(3):361-376, July 1991.

K. Li and P. Hudak. Memory coherence in shared virtual memory systems.
IFEFE Transactions on Computer Systems, 7(4):321-359, November 1989.

D. Lenoski, J. Laudon, K Gharachorloo, A. Gupta, and J. Hennessy. The
directory-based cache coherence protocol for the DASH multiprocessor. In
Proceedings of the 17th Annual Inlernational Symposium on Computer Archi-
tecture, May 1990.

[LS91]

[Luc8s]

[Mas91]

[Mav9l]

[MR79]

[MR90]

[MSMBY0]

[MSS+88]

[MV90]

[PBY4]

[PSC93a)

145

S. Lucco and O. Sharp. Parallel programming with coordination structures.
In Conference Record of the Fighteenth ACM Symposium on the Principles of
Programming Languages, Orlando, FL, January 1991.

B. J. Lucier. Performance evaluation for multiprocessors programmed using
monitors. In Proceedings of the 1988 ACM SIGMETRICS Conference on
Measurement and Modeling of Compuler Systems, volume 16 of SIGMET-
RICS Performance Fuvalualion Review, 1988.

MasPar Computer Corporation, Sunnyvale, CA. MasPar Fortran Reference
Manual, 1991.

D. Mavriplis. Three dimensional unstructured multigrid for the euler equa-
tions. Technical Report 91-41, Institute for Computer Application in Science

and Engineering, Hampton, VA, May 1991.

E. Morel and C. Renvoise. Global optimization by suppression of partial
redundancies. Communications of the ACM, 22(2):96-103, February 1979.

T. Marlowe and B. Ryder. Properties of data flow frameworks. Acta Infor-
matica, 28:121-163, 1990.

S. Mirchandaney, J. Saltz, P. Mehrotra, and H. Berryman. A scheme for
supporting automatic data migration on multicomputers. In Proceedings of
the 5th Distributed Memory Compuling Conference, Charleston, SC, April
1990.

R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and K. Crowley. Principles of
runtime support for parallel processors. In Proceedings of the Second Interna-
tional Conference on Supercomputing, pages 140-152, St. Malo, France, July
1988. ACM Press.

P. Mehrotra and J. Van Rosendale. Programming distributed memory ar-
chitectures using Kali. In Advances in Languages and Compilers for Parallel
Computing, Irvine, CA, August 1990. The MIT Press.

J. R. Pilkington and S. B. Baden. Partitioning with spacefilling curves. Tech-
nical Report C594-349, Department of Computer Science and Engineering,
University of California, San Diego, March 1994.

R. Ponnusamy, J. Saltz, and A. Choudhary. Runtime compilation techniques

for data partitioning and communication schedule reuse. In Supercomputing

[PSC*93b]

[PT91]

[RA0]

[RAKSS]

[RPS6]

[RPSY]

[RSS7]

[RSS9]

[RSWO1]

146

93, pages 361-370. IEEE Computer Society Press, November 1993. Technical
Report CS-TR-3055 and UMIACS-TR-93-32, University of Maryland, April

‘93. Available via anonymous {tp from hyena.cs.umd.edu.

R. Ponnusamy, J. Saltz, A. Choudhary, Y.-S. Hwang, and G. Fox. Runtime
support and compilation methods for user-specified data distributions. Tech-
nical Report CS-TR-3194 and UMIACS-TR-93-135, University of Maryland,

November 1993. Available via anonymous {tp from hyena.cs.umd.edu.

M. Philippsen and W. F. Tichy. Modula-2* and its compilation. In First
International Conference of the Austrian Center for Parallel Computation,
Salzburg, Austria, September 1991.

R. Ruhl and M. Annaratone. Parallelization of FORTRAN code on distributed-
memory parallel processors. In Proceedings of the 1990 ACM International
Conference on Supercompuling, Amsterdam, The Netherlands, June 1990.

U. Ramachandran, M. Ahamad, and Y. Khalidi. Unifying synchronization
and data transfer in maintaining coherence of distributed shared memory.
Technical Report GIT-CS-88/23, Georgia Institute of Technology, June 1988.

B.G. Ryder and M.C. Paull. Elimination algorithms for data flow analysis.
ACM Computing Surveys, 18:77-316, 1986.

A. Rogers and K. Pingali. Process decomposition through locality of reference.
In Proceedings of the ACM SIGPLAN °89 Conference on Program Language
Design and Implementation, Portland, OR, June 1989.

J. Rose and G. Steele, Jr. C*: An extended C language for data parallel
programming. In L. Kartashev and S. Kartashev, editors, Proceedings of the
Second International Conference on Supercompuling, Santa Clara, CA, May
1987.

J. Ramanujam and P. Sadayappan. A methodology for parallelizing programs
for multicomputers and complex memory multiprocessors. In Proceedings of

Supercomputing ’89, Reno, NV, November 1989.

M. Rosing, R. Schnabel, and R. Weaver. The DINO parallel programming lan-
guage. Journal of Parallel and Distributed Computing, 13(1):30-42, Septem-
ber 1991.

[SBW90]

[SCMB(]

[SHO1]

[SHG92]

[SLY90]

[SM90]

[SMO1]

[Soc90]

[Sor&9]

[SPBRY1]

147

J. Saltz, H. Berryman, and J. Wu. Multiprocessors and runtime compila-
tion. ICASE Report 90-59, Institute for Computer Application in Science
and Engineering, Hampton, VA, September 1990.

J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time schedul-
ing and execution of loops on message passing machines. Journal of Parallel
and Distributed Computing, 8(2):303-312, 1990.

J. P. Singh and J. L. Hennessy. An empirical investigation of the effectiveness
and limitations of automatic parallelization. In Proceedings of the Interna-
tional Symposium on Shared Memory Mulliprocessing, Tokyo, Japan, April
1991.

J. P.Singh, J. L. Hennessy, and A. Gupta. Implications of hierarchical N-body
methods for multiprocessor architecture. Technical Report CSL-TR-92-506,
Stanford University, 1992.

Z. Shen, 7. Li, and P. Yew. An empirical study of Fortran programs for par-
allelizing compilers. IFEFE Transactions on Parallel and Distributed Systems,
1(3):356-364, July 1990.

T. P. Straatsma and J. Andrew McCammon. ARGOS, a vectorized gen-
eral molecular dynamics program. Journal of Computational Chemistry,
11(8):943-951, 1990.

J. Shen and J. A. McCammon. Molecular dynamics simulation of Superoxide
interacting with Superoxide Dismutase. Chemical Physics, 158:191-198, 1991.

D. Socha. Compiling single-point iterative programs for distributed memory
computers. In Proceedings of the 5th Distributed Memory Computing Confer-
ence, Charleston, SC, April 1990.

A. Sorkin. Some comments on “A solution to a problem with Morel and Ren-
voise’s ‘Global optimization by suppression of partial redundancies’”. ACM
Transactions on Programming Languages and Systems, 11(4):666-668, Octo-
ber 1989.

J. Saltz, S. Petiton, H. Berryman, and A. Rifkin. Performance effects of irreg-
ular communication patterns on massively parallel multicomputers. ICASE
Report 91-12, Institute for Computer Application in Science and Engineering,
Hampton, VA, January 1991.

[5590]

[SWW92]

[Tar74]

[Thi91]

[TP90]

[Tse90]

[Tse93]

[WCSMO3]

[WLR90]

[WSBH91]

[WSHBY1]

148

L. Snyder and D. Socha. An algorithm producing balanced partitionings
of data arrays. In Proceedings of the 5th Distributed Memory Compuling
Conference, Charleston, SC, April 1990.

R. Sawdayi, G. Wagenbreth, and J. Williamson. MIMDizer: Functional and
data decomposition. In J. Saltz and P. Mehrotra, editors, Languages, Compil-
ers, and Run-Time Environments for Distributed Memory Machines. Elsevier,
Amsterdam, The Netherlands, 1992.

R. E. Tarjan. Testing flow graph reducibility. Journal of Computer and System
Sciences, 9:355-365, 1974.

Thinking Machines Corporation, Cambridge, MA. CM Fortran Reference
Manual, 1991.

S. Tomboulian and M. Pappas. Indirect addressing and load balancing for
faster solutions to the Mandelbrot set on SIMD architectures. In Frontiers90:
The 3rd Symposium on the Fronliers of Massively Parallel Computation, pages
443-450, College Park, MD, October 1990.

P.-S. Tseng. A parallelizing compiler for distributed memory parallel com-
puters. In Proceedings of the ACM SIGPLAN 90 Conference on Program
Language Design and Implementation, White Plains, NY, June 1990.

C. Tseng. An Oplimizing Fortran D Compiler for MIMD Distributed-Memory
Machines. PhD thesis, Rice University, January 1993.

Y.-T. Wong, T. W. Clark, J. Shen, and J. A. McCammon. Molecular dy-
namics simulation of substrate-enzyme interactions in the active site channel
of superoxide dismutase. Journal of Molecular Simulation, 10(2-6):277-289,
1993.

M. Willebeek-LeMair and A. P. Reeves. Solving nonuniform problems on
SIMD computers: Case study on region growing. Journal of Parallel and
Distributed Compuling, 8:135-149, 1990.

J. Wu, J. Saltz, H. Berryman, and S. Hiranandani. Distributed memory com-
piler design for sparse problems. ICASE Report 91-13, Institute for Computer
Application in Science and Engineering, Hampton, VA, January 1991.

J. Wu, J. Saltz, S. Hiranandani, and H. Berryman. Runtime compilation
methods for multicomputers. In Proceedings of the 1991 International Con-

ference on Parallel Processing, St. Charles, 1L, August 1991.

149

[ZBGS8S8] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization. Parallel Computing, 6:1-18, 1988.

150

Appendix A

Proofs of Correctness for GIVE-N-TAKE

A.1 Proof of correctness of the data-flow equations

To simplify the discussion of correctness for different cases of control flow, we expand
a control flow path into its different program points [DK93], namely the entries and

exits of nodes passed through. For
p: (START =) ng—n1— ... —n, (= STOP),
we define the expanded control flow path to be
B(p) : ((START, 0ut) =) (g0, 70)— (g1, 71)— - —(gs,72) (= (STOP, in)

where t > s and Vi,0 < ¢ <t:¢q € N,r; € {in,out}. (¢, in) stands for the entry of
¢i, and (g¢;, out) denotes the exit of ¢;. Of course, paths and expanded paths do not
always have to originate at START and terminate at STOP.

How exactly an edge e = (m,n) is expanded depends on the type of edge (see

Section 3.3.4).
o If ¢ is a FORWARD or JUMP edge, then E(e) = (m, out)—(n, in).
e If e is an ENTRY edge, then E(e) = (m, in)—(n, in).

o If e is a CYCLE edge, then E(e) = (m, out)—(n, out).

Note that edges of the form (n, in)—(n, out) do not correspond to actual edges

in the control flow graph; we will refer to such edges as internal edges.

Furthermore, there is no direct expanded equivalent for a control flow path that
goes from the end of a loop through the loop header CYCLE to the beginning
of the loop, since it goes through the header without going through either its
entry or its exit. This, however, does not affect our proofs, since we can take
the full effect of each loop into account by traversing it once (we might also not

execute it at all).

151

For example, a path (with a loop iteration)
p:l1—=2—3—-2—4
would be expanded into
E(p): (L, out)—(2,in)—(3, in)—(3, out)—(2, out)—(4, in)

Let be an arbitrary entry in our data-flow universe. For a data-flow variable

VAR and a node n € N, let “VAR(n)” denote € VAR, and let “VAR(n)” denote
x ¢ VAR.

A.1.1 Balance
The Balance Theorem

Balance is equivalent to matching, at run time (i.e., along all possible control flow
paths), all EAGER productions with succeeding LAZY productions, without any inter-
vening EAGER production, and vice versa. This has to hold for BEFORE and AFTER
solutions, but with different orientations relative to the flow of control. The following

theorem expresses these constraints.

Theorem 1 (C1: Balance.)

Given: An expanded path

p: ((START, out) =) (qo,70)—(q1,71)— ... —(¢s,rs) (= (STOP, in))
with an EAGER production for some ¢, 0 < e < s:

RES:” (g). (A1)

Claim: In a BEFORE solution, there exists an ¢q; € N,e < | < s, such
that
laz ¢
RES!**(q), (A2)

Vi € N,e < k < 1: REST7 (g,). (A.3)

Similarly, a LAZY production RESZZy(qe) is balanced by an EAGER pro-
duction. In an AFTER solution, the same holds with the flow of control

reversed.

152

We will show the proof for balancing EAGER production in a BEFORE problem
(in our communication generation application, this corresponds to guaranteeing that
each READg.,q¢ will be matched by a READg..,, without any READg.,4 in between).
The proofs for the other cases are analogous.

The underlying idea is to show that if an EAGER production has been placed
on a path but no LAZY production has taken place yet, then this information is
propagated forward (for a BEFORE problem) or backward (for an AFTER problem)
by both GIVEN®*" and TAKEN being true and by GIVEN"# heing false (control flow
graph node numbers omitted here). The following contains some lemmata on which
the inductive proof of Theorem 1 will be based (Section A.1.1).

Induction base lemmata

Intuitively, the different flavors of GIVEN indicate which productions are guaranteed
to be available at n. The next lemma states that wherever the LAZY production of

an item is available, its EAGER production must be available as well.

Lemma A.1 (EAGER implies LAZY.)

Claim: For all n € N, the following holds:

GIVEN:“*" (1) D GIVEN (1), (A.4)
GIVEN®s< (1) D GIVEN™=(]), (A.5)
GIVEN:4 (1) D GIVEN (). (A.6)

For the READ problem, this means intuitively the following: anything that is
received at a certain point must already have been sent.

Proof:

The only difference between EAGER and LAzZY is in Equation (3.12), where
GIVEN®*" gets induced by TAKEN;, and GIVEN"“# follows from TAKE. (3.6) im-
plies that for all n € N:

TAKEN,, (n) 2 TAKE(n). (A7)

PRrEDS™ (ROOT) =) implies by (3.11) GIVEN{““"(RooT) = GIVEN!**(RooT) = L,
which can serve as a base for a simple induction using (3.11), (3.12), (3.13), and (A.7)
to prove (A.4), (A.5), and (A.6) for all n € N.

153

O
The next lemma states that for each EAGER production at a node entry that is

not matched yet by a LAZY production, the outstanding LLAZY production is reflected
by the values of GIVEN and TAKEN;,.

Lemma A.2 (Production at entry.)
Given: A node n € N such that

RES;.*""(n), (A.8)
RES™ (). (A.9)
Claim:
GIVEN®¥"(n), (A.10)
GIVEN™ (), (A.11)
TAKEN;, (n). (A.12)
Proof:

(Read the following as: “Fact (A.8) implies by rule (3.14) that (A.10) holds, and
that (A.13), i.e., GIVEN;?""(n), holds as well. Fact (A.13) implies by rule (A.4)...”)

(A.8) U (4.10), GIVEN™ (n), (A.13)
(A13) Y GIVEN"*(n). (A.14)

From (A.10) and (A.13) follows (A.12) by (3.12). (A.11) can be derived from (A.14)
and (A.9) via (3.14).
O

The following lemma ensures that for each EAGER production at a node exit
that is not matched yet by a LAZY production, the outstanding LAZY production is
reflected by the values of GIVEN and TAKEN;, at the successors.

Lemma A.3 (Production at exit.)
Given: A node n € N such that

RES:"%" (n), (A.15)

RESlfﬁ(n).
Claim: For all s € Succs™(n):
GIVEN;,**"(s),

GIVEN!*(s),
TAKEN,, (s).

Proof:

(A.15) Lemma, 3.4 (A.17),GIVEN;.Y" (n), Lemma 3.4

(A.20) Y9 GIVEN™?(n).

(A.16)

(A.17)

(A.18)
(A.19)

154

(A.16), (A.21) imply (A.18) by (3.15), and (A.19) follows from (A.17) and (A.20)

using (3.11).
O

Induction step lemmata

The following lemma states that whenever we enter a node n with an outstanding

LAzY production, this will either be satisfied on entry of n or it will be preserved

through n.

Lemma A.4 (Balance entering a node.)

Given: A node n € N such that

GIVENZ*" (n),

GIVEN™ (n),

TAKEN,, (n).
Claim:

RES;,"" (n),

GIVEN®*" (n).

(A.22)
(A.23)
(A.24)

155

Furthermore, it is

RES* (n) (A.27)
or all of
GIVEN" (n), (A.28)
TAKE(n), (A.29)
TAKEN (). (A.30)
Proof:

(A.22) implies (A.25) by (3.14) and (A.26) by (3.12). Assume (A.27) does not
hold. This together with (A.23) implies by (3.14) that (A.28) must hold, which in
turn implies (A.29) by (3.12). (A.30) follows by (3.6) from (A.24) and (A.29).

O

The subsequent lemma ensures that local blocking and consumption are correctly

propagated within each interval.

Lemma A.5 (Local blocking and consumption.)

Given: A node n € N such that

BLOCK,.(n), (A.31)
TAKE ;¢ (n). (A.32)
Claim:
TAKE(n), (A.33)
BLOCK(n), (A.34)
GIVE(n), (A.35)
STEAL(n). (A.36)
Furthermore, (A.31), (A.32) (and therefore also (A.33), ... , (A.36)) hold

for all s € SuCcs®™ (n) as well.

156

Proof:

First the claims for n itself: (A.32) implies (A.33) by (3.8); (A.33), (A.31) imply
via (3.7) that (A.34) must hold, which in turn results in (A.35) and (A.36).

Now the recursive claim for s € Succs™ (n). Let s € Succs®(n). From (A.34) for
n follows (A.31) for s by definition (3.3). (A.32) for s follows from (A.32) and (A.34)
for n by Definition (3.8). Let s € Succs®(n). (A.31) for s follows by definition (3.7)
from (A.31), (A.33) for n. (A.32) for s follows again from (A.32) and (A.34) for n by
Definition (3.8). O

The following corollary is based on the observation that the transitive closure of
Succs®™ (n) is the set of descendents of n that are in T(HEADER(n)), i.e., within the

interval immediately enclosing n.

Corollary A.6 (Blocking and consumption within an interval)

Given: A node n € N such that for all s € Succs®(n),

BLOCK ;. (s), (A.37)
TAKE 5. (s). (A.38)
Claim: For all m € T'(n), (A.31), ... , (A.36) hold.

Proof: It is easy to see that for each m € T'(n), there exists a path to m which
originates in some s € SUCCS®(n) and consist of only ENTRY and FLOW edges. The
corollary then follows from applying Lemma A.5 recursively along this path. O

Lemma A.7 (Balance within a node and its interval.)

Given: A node n € N such that

GIVEN®#*" (n), (A.39)
GIVEN"# (n), (A.40)
TAKEN;,(n). (A.41)

Claim:

RESC (), (A42)

157

GIVEN:Y " (n), (A.43)
GIVENY (n), (A.44)
TAKEN, (). (A.45)

Furthermore, for all m € T'(n):

GIVEN =97 (), (A.46)
GIVEN24*" (m), (A.AT)
GIVEN"™ (m), (A.48)
RES:™ (m), (A.49)
RES™ (1m), (A.50)
RES7 (m), (A.51)
RES™ (m). (A.52)
Finally, for all s € Succs®(n):
GIVEN™#(s), (A.53)

Proof:

We first prove the claims for n itself (claims (A.42) ... (A.45)). Then we will show
that there is no consumption within 7'(rn). From there we will derive that EAGER and
LAZY availability stay unchanged throughout 7'(n) (claims (A.46), (A.48)). Proving
that there will be no production of either type within 7'(n) (claims (A.49), ... ,
(A.52)) concludes the proof.

(312) ==

(A.40) @2 TAKE(n), (A.54)
(AA1),(A54) 29 (A.45), BLOCK(n), (A.55)
(A55) @Y STEAL(n), (A.56)
GIVE(n). (A.57)

(A.44) follows by (3.13) from (A.40) and (A.57). (A.39), (A.56) imply via (3.13) that
(A.43) holds, which in turn implies (A.42) by (3.15).

158

Having proven the claims for n itself, we will now apply Corollary A.6 to show
that nothing is locally blocked or taken within T'(n). Let s € Succs®(n); t.e., n =
HEADER(s). (A.55) implies by (3.3) that (A.31) holds for s. (A.32) for s follows from
(A.45), (A.54), (A.55) via (3.5). This fulfills the requirements for Corollary A.6; i.e.,
(A.31), ..., (A.36) must hold for all m € T'(n).

Let { = LASTCHILD(n). It follows:

(34)

Sucos™(l) =0 ~—— TAKEN,.({), (A.58)
(A.33),(A.58) &4 TAKEN,, (D). (A.59)

Let m € PREDS™ (1) N T'(n). This implies [€ Succs™(m), and from (A.59) then
follows by Equation (3.4) that (A.58) must hold for m as well. This together with
(A.33) implies in turn (A.59) for m by (3.6). In this manner we can prove inductively
that (A.58), (A.59) hold for all t € T'(n), i.e., there is no consumption within 7'(n).

We proceed to prove inductively that EAGER and LAZY availability stay un-
changed throughout 7'(n). First, the EAGER availability (claims (A.46) and (A.47)).
Induction base: Let m € Succs®(n).

(3.11)
—

(A.39) GIVEN " (m), (A.60)

Induction step: Assume that (A.60) holds for some arbitrary m € T'(n). Equation
(3.12) implies (A.46) for m. It follows (A.47) from (A.46), (A.36) via (3.13). Let
s € T(n) such that (A.47) holds for all m € PREDs"(s). Equation (3.11) then
implies (A.60) for s, which concludes the induction. O Now, the LAZY availability
(claim (A.48)). Induction base: Let m € Succs®(n).

(A.40) © GIVEN™ (). (A.61)
Induction step: Assume that (A.61) holds for some arbitrary m € T'(n). (A.33)
then implies via Equation (3.12) that (A.48) holds for m. It follows:

(3.13)
—

(A.48),(A.35) GIVENY (m). (A.62)

Similarly to the induction step for (A.47), we can assume to have inductively proven
(A.62) for all m € PREDS"'(s). Equation (3.11) then implies (A.61) for s, which
concludes the induction. O

It remains to prove (A.53) for all s € Succs®(n), which ensures that JUMP edges
do not push production back into T'(n). Let s € SUCCS®(n); i.e., there exists a JUMP

159

edge e = (m,s) with m € T'(n),s € T'(n). From the lack of critical edges follows
PREDS™ (s) = {m} (see Section 3.3.5). (A.62) for m then implies by Equation (3.11)
that (A.53) holds for s. O

We conclude by proving that there is no production within 7'(n) (claims (A.49),

., (A.52)). Definition (3.14) implies (A.49) from (A.60), and (A.50) from (A.48).

From (A.47) follows (A.51) via (3.15). Claim (A.52) is slightly more complicated,
since we have to prove (A.61) to hold for all s € Succs™(m), including successors
connected to m through a JUMP edge. This, however, corresponds to (A.53), which
we just proved. Since (A.61) was already proven to hold for all s € T'(n), we now
know (A.61) to hold for all s € Succs™(m), from which (A.52) follows by Equation
(3.15).

O

Lemma A.8 (Balance along FORWARD/JUMP edges.)

Given: Nodes p,n € N such that p € PREDS™’(n) and

GIVEN 2" (p), (A.63)
GIVEN"#(p), (A.64)
TAKEN .4 (p), (A.65)

RES™(p). (A.66)

Claim:
GIVEN;,**" (n), (A.67)
GIVEN"* (1), (A.68)
TAKEN;, (n). (A.69)
Proof:

(A.69) follows from (A.65) by (3.4). (A.63) and (A.69) imply (A.67) by (3.11).
(A.64), (A.66) imply (A.68) by (3.15).
O

160

Proof of the Balance Theorem

Based on the lemmata developed so far, we now inductively prove Theorem 1 (as
mentioned before, we will only show the EAGER, BEFORE case, the other cases are

analogous).

Induction base.

Let the prerequisites for Theorem 1 be true; i.e., (A.1) holds. RES"(¢.) would
correspond to (A.2) for [= e. (A.3) would be vacuously true, and we would be done.
Let n = ¢.. Suppose

RES*(n). (A.70)

The following is the induction invariant that the induction base will prove to hold for

n (if re = in) or ¢ + 1 (for r. = out):

GIVEN<9e" (1), (A.71)
GIVEN™ (1), (A.72)
TAKEN;, (n). (A.73)

(The induction step will then prove that the invariant for some ¢; implies that either
the invariant holds for ¢;1;1 as well, or that (A.70) cannot hold for ¢;11, in which case we
would be done.) We have to differentiate between production at entry and production
at exit of n. If r. = in, then the invariant follows directly from (A.1), (A.70) through
Lemma A.2. Suppose r. = out; let s = g.11. We cannot prove the invariant for n
itself ((A.1) actually contradicts (A.71) via (3.15) and (3.13)), but we will show that
the invariant to hold for s. (A.1) implies by (3.15) that Succs™(n) # 0, therefore e
cannot be a CYCLE edge (see Section 3.3.5). It follows s € Succs™(n). (A.1), (A.70)
then imply through Lemma A.3 that (A.17), (A.18), (A.19) hold for s. This implies
(A.73) (= (A.19)) and also makes Lemma A.4 applicable ((A.17) = (A.22), (A.18) =
(A.23), (A.19) = (A.24)). Invariant (A.71) then corresponds to (A.26). Assumption
(A.70) contradicts (A.27), so the last invariant, (A.72), follows from (A.28).

Our induction has not only to prove that (A.2) will eventually come true for some
q, e <[< s, (ie., that (A.70) will fail for ¢;), but it also has to prove that (A.3)
holds for all ¢, € N,e < k < [. For r. = in, the induction base corresponds to e = [
(since we proved the invariant for ¢. itself), and (A.3) is vacuously true again. For
re = out, we have to prove (A.3) for s = g.41. This, however, is equivalent to result

(A.25) of Lemma A.4 whose prerequisites were already fulfilled.

161

Induction step.

Let ¢ € N, k > ¢; let m = g, n = gr1. Assume (A.70), ... , (A.73) to hold
for m. We want to prove that either (A.70) does not hold for n, or that (A.71), ...
, (A.73) do hold for n. We also have to show (A.3) for n. We perform the induction
along the edge (m,ry)—(n,rr+1), based on the actual type of edge.

Case 1 (internal edge): r; = in, rz11 = out. Since this is an internal edge, it is
m = n, and the invariant to prove is already part of the induction step assumptions.
From the invariant also follows via Lemma A.7 that (A.3) (= (A.42)) holds for n. O

Case 2 (FORWARD/JUMP edge): 1, = out, rgy1 = in. We can apply Lemma A.7
for m ((A.39) = (A.71), (A.40) = (A.72), (A.41) = (A.73)). This lemma, together
with (A.70), implies the prerequisites for Lemma A.8 (it is (A.43) = (A.63), (A.44)
= (A.64), (A.45) = (A.65), (A.70) = (A.66)). Lemma A.8 in turn makes Lemma A .4
applicable ((A.67) = (A.22), (A.68) = (A.23), (A.69) = (A.24)). As in the induction
base, it follows that for n either (A.70) does not hold or (A.71), (A.72), (A.73) hold;
(A.3) (= (A.25)) follows as well. O

Case 3 (ENTRY edge): r;, = 1441 = in. We can apply Lemma A.7 for m, which
then states in (A.49), ... , (A.52) that there will be no production anywhere within
T'(m) (implying (A.3) for all nodes in T'(m)). Therefore, we will perform an induction
step that leads directly to the first ¢, f > k, such that ¢; € T'(m), gs41 & T'(m). Let
P =qs, S = qsy1. We want to prove the invariant (A.71), (A.72), (A.73) for s. Let
g = (p,s); g can be either a CYCLE edge or a JUMP edge.

If g is a CYCLE edge, then we are exiting T'(m) as we entered it (i.e., through it’s
header, m). Since in this case the induction invariant is already proven for s (= m),
we are done and can continue with Case 1 (with f = k).

If g is a JUMP edge, it is s € SUCCS®(m), ry = out, ryp1 = in. Lemma A.7 states
that (A.53) holds for s, and it implies in (A.45) via (3.4) that (A.73) holds for s. The
same lemma states that (A.47) holds for p, which together with (A.73) implies via
(3.11) that (A.60) holds for s. Now we can apply Lemma A.4 for s ((A.60) = (A.22),
(A.61) = (A.23), (A.73) = (A.24)), and we are done. O

Case 4 (CYCLE edge): ry = rgy1 = out. In this case, m is the last child of an
interval. Since we do not allow critical edges, it is Succs™(m) = . From Equation
(3.4) follows that (A.45) does not hold for n, which together with (A.73) implies via
(3.6) that (A.54) does not hold. This, however, is by (3.12) a contradiction with

(A.72), therefore we do not have to consider this case further. Note the implication

162

that after an EAGER placement has occurred along p within some loop, we can never
delay LAzY production past the exit of the loop. O

To conclude the proof of the theorem, we notice that since TAKEN,,;,(STOP) = L,
the induction invariant (A.73) eventually leads to a contradiction along p; therefore,
(A.70) cannot hold for all nodes visited after ¢., and (A.1) becomes true.

O

A.1.2 Safety

Safety is guaranteed if each production is succeeded by a consumption specified in

the initial input for the framework. This is equivalent to the following theorem:

Theorem 2 (C2: Safety.)

Given: An expanded path
p: ((START, out) =) (qo,70)—(q1,71)— ... —(¢s,rs) (= (STOP, in))

such that each loop is traversed at least once, and for some p, 0 < p < s,
it is

RES (A.74)

Tp*

Claim: there exists in a BEFORE solution a ¢. € N, 0 < p < ¢, such that
r. = in and

TAKE i:(¢.). (A.75)
In an AFTER solution, the flow of control is reversed.

Proof:

Let m = ¢,. Case 1: r, = n. It is

(A7) %Y GIVEN(m), (A.76)

and GIVEN,(m), (A.T7)

(A.76), (A.77) Y22 TAKEN,(m) for an EAGER Problem, (A.78)
or TAKE(m) for a LAZY Problem. (A.79)

The proof of the theorem follows by a straightforward induction from (A.78)
and (A.79) using Equations (3.4), (3.5), (3.6), and (3.8). Note, however, that we

163

rely on the fact that each loop is executed at least once (since GIVE takes through
GIVE,, also production within loop bodies into account); see Section 3.3.3 for a
motivation/discussion. O

Case 2: 1, = out. Let n = g,41. From Equation (3.15) follows Succs™(m) # 0,
the lack of critical edges subsequently implies that n € Succs™(m). It is

(Aa) CPOMLmme 4 CNVEN,, (m), (A.80)
and GIVEN,,(n), (A.81)
(A.80), (A.81) G119 TAKEN;, (n). (A.82)

Again the proof of the theorem follows by induction. O

A.1.3 Sufficiency
The Sufficiency Theorem

Sufficiency requires that each consumption is proceeded by production, without being
destroyed before reaching the consumption. Furthermore, there has to be both an
EAGER and a LAZY production, in this order. This is implied by the following

theorem.
Theorem 3 (C3: Sufficiency.)
Given: An expanded path
p: ((START, out) =) (qo,70)—(q1,71)— ... —(¢s,rs) (= (STOP, in))
such that for some ¢, 0 < ¢ < s, r. = n,

Claim: There exists in a BEFORE solution a ¢., 0 < e < ¢, such that
GIVEinit(qe)- (A84)

or

RES:“* (g,) (A.85)

In the latter case, there also exists an [, e < [< ¢, such that

RES!*(q). (A.86)

164

Furthermore, for all « with r; = out, e <1 < ¢, it is
In an AFTER solution, the flow of control is reversed.

Again, we will show the proof for a BEFORE problem (in our communication
generation application, this corresponds to guaranteeing that each reference will be
proceeded by a local definition or a READg.,4 and a READR..,, without any non-local
definition in between). The proof for an AFTER problem is analogous.

The basic idea of the proof is to backtrace on p from ¢. until we reach a producer.
While walking backwards, we keep the invariant GIVEN, and we also ensure STEAL
holds along all internal edges crossed. The following contains some lemmata on which

an inductive proof of Theorem 3 will be based.

Induction step lemmata

Lemma A.9 (Local availability implies global availability.)
Claim: For all n € N, the following holds.

GIVEN ,u¢(n) 2 GIVE . (n). (A.88)

Proof:
If n = Roor, then GIVEN,,;(RooT) = GIVE;,.(RoOT) = L, and we are done.
For n # RoOT, it is

GIVEN,.i(n) 2Y (GIVE(n) U GIVEN(n)) — STEAL(n)

(3.12),(A.7)
3" (GIVE(n) U GIVEN,, (n) U TAKE(n)) — STEAL(nJA.89)

(A.89)
> (GIVE(n) U TAKE(n)) — STEAL(n) (A.90)

If n € Succs®(m) for some m € N, it is PREDS™(n) = (), and (A.88) follows from
(3.9).
Otherwise, assume (A.88) to hold for all p € PREDS™(n). This implies

N GIVEN,u(p) 2 N GIVEw(p), (A.91)

pePREDS™ (n) pePREDS" (n)

165

(A.89),(3.11)

GIVEN ;44 (n)) (GIVE(n) U ﬂ GIVEN,4+(p) U TAKE(n))
pe PREDS™ (n)
—STEAL(n)

(3.9),(A.91)
D

GIVE ().

Lemma A.10 (ltems are either propagated or stolen locally.)
Given: A node n € N such that PREDS™ (n) # (), for all p € PREDS™ (n):

STEAL . (p) (A.92)
or GIVEN,.(p). (A.93)
Claim:
STEAL . (n), (A.94)
or GIVEN,(n) (A.95)
and GIVEN(n). (A.96)
Proof:
Assume
STEAL . (n). (A.97)
(A.97) 19 STEAL(n) (A.98)

Case 1: Assume (A.93) holds for all p € PREDS™ (n).

(3.11)

(A4.93) 22 GIVEN,(n). (A.99)

(A.96) follows from (A.99) via (3.12), and (A.96), (A.98) together result by (3.13) in
(A.95). O

Case 2: Assume Jp € PREDS"’(n) such that (A.93) does not hold for p; this
implies (A.92) for p.

(3.10)

(A.92),(A.97) 2 GIVEL.(p). (A.100)

This, however, implies (A.93) for p by Lemma A.9, which is a contradiction.
O

Lemma A.11 (Sufficiency throughout intervals.)
Given: A node n € N such that

GIVEN(n),
GIVEN ¢ ().
Claim: For [= LASTCHILD(n),
GIVEN (1),
and for all ¢ € CHILDREN(n):

STEAL,.(¢),
or both GIVEN(c¢)
and GIVEN,,(c).

Proof:

The main result of this lemma that we are interested in is (A.103).

166

(A.101)

(A.102)

(A.103)

(A.104)
(A.105)
(A.106)

However, we

first prove inductively that (A.104) or both (A.105) and (A.106) hold for all children.

Furthermore, this induction might lead us to deeper nesting levels of T'(n) than just

the children of n.
Let f € Succs®(n).

A
w
o
=

=

(A.101)
(A.107)
(A.108)

GIVEN;,(f),

GIVEN(f) (=(A.105) for f)
GIVEN . (f) (=(A.106) for f)
or STEAL(f

(3.10)
—

—_
w
—
()

—

A
w
=
w0

N4

(A.110) f) (=(A.104) for f)

?

(A.107)
(A.108)
. (A.109)
(A.110)
(A.111)

If for all ¢ € CHILDREN(n), PREDS™(¢) C CHILDREN(n) (i.e., no JUMP edge from

any loop nested within n is reaching any child of n), then we can apply Lemma A.10 to
prove inductively for all ¢ € CHILDREN(n) that (A.104) or both (A.106) and (A.105)

hold.

167

Otherwise, let ¢ be the first child of n such that there exists a JUMP edge e = (p, ¢),
and let A € CHILDREN(n) such that p € T'(h) (i.e., h is the header of the outermost
loop exited by e). It is

h € PREDS®(c). (A.112)

Since ¢ was the first child of n reached by a JuUMP edge, we can prove inductively by
Lemma A.10 that (A.104) or both (A.105) and (A.106) hold for all ancestors of ¢,
including h.

If (A.104) holds for h, then (A.112) implies (A.104) for ¢ via (3.10). Assume
(A.104) does not hold for h. Then (A.105) and (A.106) hold for h, and we can
inductively apply Lemma A.11 for h. In this manner, we can perform an induction
over the nesting level; due to the finite nesting depth of T'(n), (A.104) has eventually
to hold for some header and we are done. O

This concludes the induction for (A.104) or both (A.106) and (A.105). We also
have:

(3.13)

(A.102) %2 STEAL() (A.113)
(A113) @Y STEALL. (D). (A.114)

In other words, (A.104) does not hold for I, which implies (A.103) for { (= (A.106))
and concludes the proof of the lemma.
O

Proof of the Sufficiency Theorem

Based on the lemmata developed so far, we now prove Theorem 3 (as mentioned

before, we will only show the EAGER, BEFORE case, the other cases are analogous).

Induction base. We will prove that for both flavors (EAGER and LAZY) there exists

a producer g, reaching consumer ¢.. Balance then implies that they are actually in
the right order.

Let n = ¢..
(A83) 4 TAKE(n), (A.115)
(A.115) @ TAKEN,, (n). (A.116)

This implies for both EAGER and LAZY:

(3.12)

(A.115), (A.116) 22 GIVEN(n), (A.117)

168

3.14)

(A117) @ RES;.(n) (A.118)
or GIVEN;,(n). (A.119)

If (A.118) were true, then we would have reached production and would be done.

Assume (A.119); this will be the induction invariant we will use for node entries.

Induction step.
Let ¢ € N, 1 < ¢; let m = ¢_1, n = ¢;. We perform the induction along
the edge (m,r;—1)—(n,r;), based on the actual type of edge. We have to prove for
m that we either reach production ((A.118) at entry, or (A.120) at exit), or that
availability is preserved (the invariant, (A.119) at entry and (A.121) at exit). The
exit invariant (A.121) then implies via (3.13) and (3.1) that nothing is stolen ((A.87)
at exit). A special case arises when traversing internal edges of interval headers, which
corresponds to skipping the interval (e.g., not executing a loop; see Section 3.3.3).
Case 1 (FOorwarD/JUuMP edge): r;_;

= out, r; = in. From the invariant
(A.119) for n follows for m directly from (3.15) either

RES (1) (A.120)

or the invariant

GIVEN ;¢ (). (A.121)

Case 2 (ENTRY edge): r;,_; = r; = in. Since in this case m = HEADER(n), it
follows from the invariant (A.119) for n via (3.11) that (A.117) must hold for m. We
can proceed as in the induction base to prove that at m we either reached production
or preserve the invariant. O

Case 3 (internal edge): r;_; = in, r; = out. Since this is an internal edge, it is
m = n. The invariant (A.121) for n implies by (3.13) that either (A.117) must hold
for n, in which case we could proceed as in Case 2 and would be done, or that the

following holds:

GIVE(n), (A.122)
(4122) 2 GIVELu(n), (A.123)
or GIVE,.(LASTCHILD(n)). (A.124)

(A.123) would be equivalent to (A.84), and we would be done. If (A.123) does not
hold, then we have encountered the special case mentioned above, where data are pro-

duced in 7'(n) and not in n itself or a predecessor of n. As described in Section 3.3.3,

169

GIVE(n) — GIVE;,i:(n) are the data for which we rely on them being produced in the
loop, or being produced in a separate node that gets executed if the loop does not
get executed. O

Case 4 (CYCLE edge): r,_; = r; = out. As in Case 3, (A.123) or (A.124) must
hold. If (A.123) were true, we would be done. Otherwise, (A.124) would imply for
m (= LASTCHILD(n)) by (A.88) that the invariant (A.121) for m, and we would be
done in this case as well. O

This completes the proof of the Sufficiency Theorem.

A.2 Proof of correctness of the algorithm

After proving in Appendix A.l the correctness of the equations form Section 3.4, this
section proves the correctness of the Give N Take algorithm presented in Section 3.5 by
demonstrating that it computes a fixed point for these equations. We are guaranteed
to reach a fixed point if each equation gets evaluated after its right hand side is fully
known.

For the discussion of how the equations are linked to each other, we define the
E(e,n) as a shorthand for the variable defined by Equation e for node n; for example,
E(e1,ny)«— E(ez, ny) expresses that E(eq,ny) depends on F(ez, nz). We let S;(n)
denote the evaluation of the equations in set S; for node n. We assume that each
set is evaluated in increasing equation number. Therefore, constraints of the form
E(e1,n)«— FE(ez,n) are satisfied for all e;, e; from the same set with e; > e; and
will be omitted from further discussion. For example, the dependence of GIVE(n) on
STEAL(N) (i.e., E(3.2,n) «— FE(3.1,n)) is already satisfied under this assumption.

S1 depends on itself as follows:
e F(3.4,n) «— E(3.6,Succs™(n));
E(3.7,n) «— E(3.7,Succs™ (n));
E(3.8,n) «— E(3.8,Succs™(n)).
This implies that S; should be evaluated in BACKWARD order to make sure all

the successors of n are processed before n itself.
e F(3.3,n) «— E(3.7,Succs®(n));
E(3.5,n) «— E(3.6,Succs®(n)), £(3.8,Succs®(n)).

S, should be evaluated in an UPWARD fashion to make sure that each header

can access the values of its children.

170

The above constraints could be satisfied by evaluating 57 in REVERSEPREORDER.

However, Sy also depends on 5, as follows:
o £(3.1,n) «— E(3.10, LASTCHILD(n));
E(3.2,n) «— E(3.9, LASTCHILD(n)).

This can be satisfied by evaluating S;(n) after Sy(CHILDREN(n)).

Furthermore, S; depends on Si:

e F(3.9,n) «— E(3.1,n), E(3.2,n), E(3.5,n);
E(3.10,n) «— FE(3.1,n), E(3.2,n), F(3.5,n).
S3(n) should be computed after Sy(n).

Finally, Sy depends on itself:

e F(3.9,n) «— FE(3.9, PREDS™(n));

E(3.10,n) «— E(3.10, PREDS™(n)).

Sy should be evaluated in FORWARD order.

The dependencies for S3 and S; are somewhat simpler:

e £(3.11,n) «— FE(3.6,n), £(3.12, HEADER(n)), £(3.13, PREDS™ (n));
E(3.12,n) «— E(3.6,n), £(3.5,n);
E(3.13,n) «— FE(3.2,n), E(3.1,n).
These constraints are satisfied when evaluating S3 in FORWARD, DOWNWARD
fashion (i.e., PREORDER) after Sj.

e F(3.14,n) «— F(3.6,n), E(3.12,n), F(3.11,n);
E(3.15,n) «— FE(3.4,n), E(3.11,n), E(3.11,Succs™(n)), E(3.13,n).

Sy has to be evaluated after S; and Ss, in any order.

It can easily be verified that the algorithm in Figure 3.16 observes all the con-

straints.

The story ends in a bloodbath,
like most conjugal complications

in 10th-century Iceland.
— Rowlinson Carter (Insight Guides Iceland)

171

Vita

Originally from Neustadt in Holstein, Germany, Reinhard v. Hanxleden began his
studies at the Christian Albrechts University in Kiel, where he received the Vordiplom
in computer science and physics in 1987. He completed his M.S. in computer science
at Pennsylvania State University in 1989. In 1990, he joined the Center for Research
on Parallel Computation at Rice University in Houston, Texas. He was a member of
the GSA Beer Bike Team in 1991, 1992 (captain), 1993, and 1994.

After completing his dissertation, R. v. Hanxleden will join the Research and

Technology division of Daimler-Benz AG, Berlin.

