Problem Formulation for
Multidisciplinary Optimization

FEvin J. Cramer
J. E. Dennis, Jr.
Paul D. Frank
Robert Michael Lewis
Gregory R. Shubin

CRPC-TR94489
August, 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Appears in the SIAM Journal of Optimization, Vol. 4,

1994

PROBLEM FORMULATION FOR MULTIDISCIPLINARY
OPTIMIZATION

EVIN J. CRAMER *, J. E. DENNIS, JR. {, PAUL D. FRANK * ,
ROBERT MICHAEL LEWIS ' AND GREGORY R. SHUBIN *

Abstract. This paper is about multidisciplinary (design) optimization, or MDO, the coupling
of two or more analysis disciplines with numerical optimization.

The paper has three goals. First, it is an expository introduction to MDO aimed at those who
do research on optimization algorithms, since the optimization community has much to contribute
to this important class of computational engineering problems. Second, this paper presents for
the MDO research community a new abstraction for multidisciplinary analysis and design problems
as well as new decomposition formulations for these problems. Third, the “individual discipline
feasible” (IDF) approaches introduced here make use of existing specialized analysis codes, and they
introduce significant opportunities for coarse-grained computational parallelism particularly well-
suited to heterogeneous computing environments.

The key distinguishing characteristic of the three fundamental approaches to MDO formulation
discussed here is the kind of disciplinary feasibility that must be maintained at each optimization
iteration. Other formulation issues, such as the sensitivities required, are also considered. This
discussion highlights the trade-offs between reuse of existing software, computational requirements,
and probability of success.

Keywords: Constrained optimization, multidisciplinary design optimization, op-
timal design, computational engineering.

1. Introduction. This paper is about multidisciplinary (design) optimization,
or MDO. By MDO we mean the coupling of two or more analysis disciplines with
numerical optimization. We expect MDO to have a tremendous economic impact in
industry by shortening the design cycle and enabling the design of better systems and
products at lower cost.

Mathematical programmers have much to contribute, especially through the ad-
vancement of modern algorithms for nonlinear and integer programming and their
introduction into the MDO community. However, today’s mathematical program-
ming algorithms are not sufficient for many industrial MDO problems. To help the
algorithm designer understand the kind of frontiers that must be pushed back, we
carry throughout the paper the example of aeroelastic design. This enables us to give
a context to research directions we hope will be followed. Another reason to include
this rather lengthy example is to give a familiar, albeit simplified, context for the
MDO community in which to understand and judge our abstraction and notation for
the MDO problem.

Due to the extreme complexity of most MDO problems, we believe it is necessary
to focus on problem formulation methods and their interdependence with nonlinear
programming algorithms. In this paper we present a new abstraction of the MDO
problem, and we use it to examine alternative ways to formulate MDO problems.
We do not concentrate here on the application of mathematical programming algo-
rithms to MDO. The question of formulating MDO problems is a major topic in the
engineering literature on MDO (e.g., [16]).

* The Boeing Company, P.O. Box 24346, Mail Stop 7L-21, Seattle, WA, 98124-0346

t Department of Computational and Applied Mathematics and Center for Research in Paral-
lel Computation, Rice University, P.O. Box 1892, Houston, TX, 77251-1892. This work was sup-
ported by the State of Texas under contract #1059, the Air Force Office of Scientific Research under
grants F'49629-92-J-0203 and F49629-9310212, the Department of Energy under grant DE-FG005—
86ER25017, and the National Science Foundation under cooperative agreement CCR-9120008.

In part, the genesis of the ideas given here was to find ways to exploit parallel
computation in nonlinear programming. We turned to reformulating the problems
because in our opinion, the design of parallel algorithms for general nonlinear pro-
gramming has not been very successful. The new IDF formulations we suggest here
have the advantage of a coarse-grained parallelism naturally suited to a heterogeneous
computing environment. We hasten to point out that parallelism is not the only mo-
tivation for this formulation; indeed, even without parallelism, we expect IDF to be
an attractive approach for solving MDO problems.

In Section 2 , we present aeroelastic optimization as an example to provide intu-
ition into the concepts presented in the rest of the paper. In Section 3, we present
notation and definitions describing our abstract model of the multidisciplinary analysis
and optimization problem. This model is used in Section 4 to discuss multidisciplinary
analysis, the attainment of feasibility for MDO. Section 5 is a discussion of the three
main formulations for MDO including one hinted at in other work, but stated explic-
itly here. Section 6 discusses the derivative requirements for MDO. Section 7 discusses
some issues related to choosing a formulation, and make some concluding remarks.
Section 8 presents a simple example of the different MDO formulations discussed in
this paper.

The contents of this paper represent an abstraction and generalization of more
specific material presented in [3].

2. Example: Aeroelastic Optimization. A specific problem is very useful
in thinking about MDO. For us the model problem is aeroelastic optimization. We
use this example to define some terms, and throughout the text we will refer to this
example to illustrate the model and the various problem formulations. However, the
model and formulations discussed in this paper are meant to apply to general MDO
problems.

In static aeroelasticity we consider a flexible wing of an aircraft in steady flight.
The air rushing over the wing causes pressures to be imposed on the wing, which
causes the wing to deflect and change shape. This change in wing shape in turn
causes the aerodynamic pressures to change. In static aeroelasticity, we assume that
these physical processes reach an equilibrium.

The aeroelastic system in equilibrium is shown in Figure 1. The two analysis
disciplines involved are aerodynamics (D;) and structures (Dz). The computational
problems for these disciplines are generally solved by individual analysis codes, say,
a finite difference computational fluid dynamics (CFD) code for aerodynamics (A;),
and a finite element code for structures (Az).

It is important to note that Figure 1 and others like it portray a purely static
view of the relationships between the components, and do not imply a sequence of
calculations.

Suppose that the structures code has been given input parameters specifying the
wing’s structure, and that both the aerodynamics and structures code have been
given input specifying the undeflected wing shape. The aerodynamics code takes as
an additional input the wing deflections (M75), and produces as output the pressures
(and velocities, etc.) (U1) on the wing surface. The structures code takes as an addi-
tional input the load on the wing (M»1), and produces as output the deflections (and
stresses, etc.) (Uz) of the wing. We say that we have single discipline feasibility for
aerodynamics when the CFD code (A;) has been executed successfully and solved for
the pressures, given an input shape. Similarly, we have single discipline feasibility for
structures when the structures code (A2) has successfully solved the structural analy-

2

| |
| |
| |
| |
| |
:M]_:M]_z Mz:le:
| |
| |
I Al I
| |
| |
| |
| U1 |
| |
| F |
: Dy Dy |
 Aerodynamics | Structures |
H21

FiG. 1. Aeroelastic System

sis equations to produce deflections, given some input forces. Thus, “feasibility” for a
single discipline means that the equations the discipline code is intended to solve are
satisfied. Maintaining feasibility with respect to any user-specified design constraints
is not at issue in this discussion, although it certainly would be an issue for the op-
timization algorithm that one might choose to apply to the nonlinear programming
problem resulting from one of the formulations suggested here.

Continuing with the aeroelastic example, we note that the two analysis codes
solve their problems on different computational grids (discretizations) and interact
only at a specific interface. We accommodate this by following each analysis map,
e.g., (A1), by a map (Fa1) that represents something like a spline fit to the grid values
generated, and preceding the following analysis code by a map (F4q;) that represents
something like a spline evaluation to generate values at points needed by that analysis
code, e.g., (A2). Any additional computations required, such as converting pressures
from aerodynamics into forces for structures, are assumed to be associated with either
a fit or evaluate routine, as appropriate. It will also be convenient to view a discipline
as the analysis code together with all the £ and F' codes used to obtain its input and
provide its output to other disciplines; this notion is depicted by the dashed boxes in
Figure 1.

We call all of the maps E o F 2 G interdisciplinary mappings. They represent
the coupling between disciplines, and play a key role in MDO. We tacitly assume that
each instance of an E or an F' takes inputs from a single discipline and sends outputs
to a single discipline. One way to handle instances of £ or F' that have more complex
communication is to treat the subject mapping as a new “discipline”. Note that the
data passed between the disciplines in Figure 1 may be considered “compressed” if pa;
and p12 are much smaller vectors than U; and Uj, respectively. This would happen
if, for example, the p vectors represented coefficients of fitting functions with the U
vectors as data. We call this “reducing the interdisciplinary bandwidth.” Note that
an approximation would be made in such a fitting operation. As shown later, this
data compression can be used to reduce the dimension of the optimization problem

3

in certain formulations. These interdisciplinary mappings could also be implemented
to provide a common interface between codes rather than the “all pairs” abstraction
we are using here for simplicity.

A multidisciplinary analysis is achieved when

1. We have single discipline feasibility in aerodynamics and in structures, and
2. The input to each corresponds to the output of the other via the interdisci-
plinary mappings.
We call this situation multidisciplinary feasibility and it corresponds to the simulations
in Figure 1 being in equilibrium, by which we mean that none of the values of the
variables change upon execution of all mappings shown in Figure 1 without regard to
order. We discuss obtaining multidisciplinary feasibility in Section 4.

It is possible to have single discipline feasibility in both aerodynamics and struc-
tures (we call this individual discipline feasibility) and not have multidisciplinary
feasibility. This occurs if the equations in each code are satisfied, but the input to one
discipline does not correspond to the output of the other. This key observation plays
an important role later when we present the “individual discipline feasible” (IDF)
formulations for MDO.

We next add optimization to the aeroelastic example. Aerodynamic optimization
combines the single analysis discipline aerodynamics with optimization. The design
variables would typically be some parameters, say, spline coefficients, defining the
wing’s shape. The objective function might be drag, or some measure of closeness
to some specified pressure distribution. There may be design constraints to prohibit
undesirable wing shapes or bad aerodynamic flows. Similarly, structural optimization
combines structures and optimization to minimize the structural weight by chang-
ing the size of structural components, subject to stress constraints. In aeroelastic
optimization, the combination of aerodynamics, structures and optimization, we will
generally have both aerodynamic design variables (shapes) and structural design vari-
ables (sizes, and perhaps shapes). In our model, we lump all the design variables into
a single vector variable Xp.

There is no consensus concerning the formulation of the aeroelastic optimization
problem. Some logical choices are to minimize weight, subject to the constraint that
drag be acceptably small, or to minimize drag, subject to weight being acceptably
small. Alternatively, minimizing a combination of drag and weight might be appro-
priate. Ultimately, however, the aeroelastic behavior of the aircraft needs to be tied
to some overall aircraft performance measure, like direct operating cost. This situa-
tion, with a set of conflicting objectives, is to be expected in MDO because engineers
in each discipline will probably have formulated their own objectives for the design.
We will not consider the matter further in this paper, but the reader will note a goal
programming approach to nonconvex multiobjective optimization in these comments.
(See [27].)

In order to appreciate the trade-offs between the various formulations of MDO
problems presented later, it is necessary to know something about the size and diffi-
culty of the underlying analysis disciplines. Obviously these depend on the problem,
but we assume that the problem is sufficiently complex that it cannot simply be over-
whelmed with computing power. For example, a practical aeroelastic optimization for
a three-dimensional configuration will involve a computational fluid dynamics code
that takes hours of supercomputing time to execute a single analysis. The structural
analysis code will typically be less costly, but may take a significant fraction of an
hour. For either code the amount of computing time is acceptable for engineering

U.
Fy; Fy; XX Fri
T T .
Hii H2; Hni

Fi1G. 2. One of many disciplines

analysis. However, many formulations of MDO require tens to hundreds of such exe-
cutions; thus the impetus for MDO formulations requiring less computational work,
and the need to employ parallel computing even for the cheaper methods. A discussion
of further considerations in choosing a formulation is postponed until Section 7.

3. A Framework for Describing MDO Problems. In this section, we gen-
eralize the two discipline aeroelastic MDO example to an abstraction for reasoning
about general MDO problems. Figure 2 shows the data flow for a single discipline of
a many-discipline version of Figure 1.

In our notational convention, X denotes the vector of variables controlled by
the optimizer. This is useful because it allows one to immediately identify what
is, and what is not, an optimization variable. The original design variables Xp are
always components of X, but in some formulations, X includes other variables as well.
These other optimization variables may be thought of as surrogates for the quantities
appearing as subscripts on X. For example, Xy, is an optimizer-controlled surrogate
for U;. Constraints in the optimization problem are denoted by C(X). The original
design or system constraints Cp(X) are always components of C', but C' can include
other constraints.

The notation dC'/OX represents the Jacobian matrix of C' with respect to X.
Thus, [0C/0X],s = 0C,/0X; and its rth row is the transpose of the gradient vector
of constraint C,.

An important convention is the way we use subscripts. When a quantity has
double subscripts, the order indicates information flow as in “to-from.” For example,
denote a generic ith single discipline by D;. Then information meant to pass to D;
from D; will be subscripted ij. It is useful to think of a discipline D; as a grouping of

5

communication and analysis codes. In terms of the example, the structural analysis
code might have an “evaluator” code to provide loads where they are needed for the
structural analysis. It might also have a “fitter” code to compress its output for
communication to other disciplines. To avoid even more complexity, we allow these
routines to pass some variables, like Xp, directly through; this has the effect of making
Xp globally accessible while respecting the structure we wish to abstract. Constants
needed for an analysis are assumed to reside where required.

We use the convention that arguments to the left of a semicolon are inputs to a
function of a vector variable, and those to the right are the dependent variables to be
determined by an equation involving the function.

3.1. Analysis inputs, equations, and outputs.

M; 2 Inputs to the analysis code A; of discipline D);. Components M;; of M; are
inputs to analysis code A; needed from discipline D;. The long vector M
comprises the subvectors M;, for every i. (The M is mnemonic for “multidis-
ciplinary data.” A; is to be executed with M; and design parameters Xp as
inputs.)

£ The total number of interdisciplinary inputs to A;, i.e., the length of the

vector M;.

A; £ The analysis mapping of the form U; = A;(Xp, M;) from the inputs Xp, M;
of an analysis discipline to the outputs U;. We often use the expressions
“analysis solver” or “analysis code” to describe the computer program that
implements the mapping. Much effort and talent have gone into developing
these codes, so there are serious advantages to formulations that preserve
their integrity.

U; = Quantities for which A; solves internally when executed in D;. These could
include pressures, velocities, stresses, etc. As above, U denotes the vector of
analysis discipline variables computed in a given formulation by solving the
complete set of analysis discipline equations.

A . . .
ny, = Total number of analysis quantities, such as pressure, stresses, etc., associated
with discipline 2. For example, an analysis code A; solves ny, equations for
ny, analysis unknowns.
A
W; = Residual function of equations solved in D; by A; to compute the analysis

variables U;. These equations take the form W;(Xp, M;; U;) = 0. We remind
the reader that the variables to the left of the semicolon represent inputs to
the system, while those to the right are the outputs (the variables for which
A; solves). There are ny, of these residuals.

3.2. Interdisciplinary mappings.

Gij 2 Mapping to the inputs required for analysis code A; from the output of A;.
For example, G;; could be the mapping of the pressures on the aerodynamic
grid to the loads on the structures grid. The functional form of this mapping
is M;; = G4j(Xp,U;), where the G;; are the composition of two mappings
E;j o Iy given below. Sometimes there will be no input to A; from A;. Our
convention for this is to set Gy; = 0.

(>

Mnemonic for “fit.” Mapping from the analysis variables from A; to the out-
puts of D; needed to produce input to D;. For each ¢, 7, Fj; has the role of
transforming U; for use in discipline . This transformation will often involve

a data compression to reduce the communication bandwidth between disci-
plines. For example, u;; = F;;(Xp,U;) could map the pressures computed
by aerodynamic analysis to the coefficients of a spline surface approximation
to the pressures or to coefficients for a fit to the load induced on the wing by
those pressures. There are n;; such vector functions. Some may be identity
mappings, and some may be zero mappings.

i 2 Inputs to D; from other disciplines. Components p;; of p; are sent by the
fitter of D; to the evaluator of discipline D;. Our convention is that u;; may
be just a compression of U; by Fj; which will be transformed into M;; by
E;;. Alternatively, p;; may be the product of a more complicated transmo-
grification. The symbol p is mnemonic for “M or U”. It is intended to reflect
the nature of u as a surrogate for M or U depending on the particular pair
Fi;, Eyj. The vector p is the block vector of all block vectors y; for every :.

The total number of inputs y;; to ;. That is, n,, = Ej i Tais

e e

Mnemonic for “evaluate.” Mapping to the inputs required for A; from the

compressed p;; from D;. For example, M;; = E;;(Xp, pij) could be the
evaluator of a spline approximating structural loads with coefficients pu;;, or
if p;; is the vector of coefficients of a spline fit to pressure, then the convention
is that £;; also performs the integration to obtain loads. We will assume that
for each Fj; there is a corresponding F;;; some of the F;; may be identity
mappings, and some may be zero maps.

The reader will see that the separation between A; and its evaluators, and the
flow of information only in the direction from the evaluators to the analysis code, are
likely simplifications of the true relationships of these components. For instance, if
A; is a code involving an adaptive grid, in the course of performing its analysis A;
may need to return to its evaluators to obtain information for the adaptively updated
grid. This complication is not a problem if the reader bears in mind that the purpose
here is to represent the flow of information between disciplines.

Because of the expense of executing the analysis codes, A; might be used to
represent a driver routine that uses some input parameter to decide which of a suite
of solver codes with varying fidelity to call at this stage of the design optimization.
That is an implementation question, but the ability to handle this situation shows
some of the power of the abstraction.

For all of the preceding, A, G, F, E, and W will denote the long vector functions
comprising all of the corresponding subscripted functions, for all 7, 5. In order to
use this compact notation, it is necessary to keep in mind that the ordering of the
components must be different to be consistent. For example, suppose that D; is
aerodynamics and Dy is structures. Then if we order U as Uy, Uz, we must order A as
Ay, As and we must order G as (G132, G217 in order to have the convenience of writing
U=A(Xp,G(Xp,U)) to express the equilibrium of the aeroelastic system.

3.3. Optimization variables.
A

Xp Original problem design variables. These could include wing shape parame-

ters, beam thicknesses, etc. There are np original problem design variables.

Xy, Xu, Xy 2 Optimizer-controlled values respectively for u, U, M. These are not
used in all formulations. In some formulations, the optimizer will explicitly
control not only Xp, but also a subset of these surrogates for u, U, M. They
look just like design variables to D;.

X2

The long vector comprising Xp and any of X, Xy, Xps that are explicitly
controlled by the optimizer. For convenience, we will sometimes use X as
surrogate arguments in a function that we have defined above in terms of the
original system variables. For example, if we have specified in a particular
MDO formulation that X has components Xp, X,, then we may write M =
E(X).
3.4. Optimization objective and constraints.
A

f

Design objective function to be minimized. This could be deviation from de-
sired pressure distribution, drag, weight, etc. In general, f depends explicitly
on the design variables Xp and the outputs U of all the analysis disciplines.

S
13

Original problem design constraints. These could include required lift, max-
imum allowable stresses, maximum wing length, etc. The constraints in the
original problem depend explicitly on the design variables Xp and the out-
puts U of all the analysis disciplines. These constraints may also include
constraints that ensure that the output from one discipline is acceptable as
input to another discipline.

Couz 2 Coupling constraints among or within the disciplines, needed for formula-
tions in which the optimizer explicitly controls more parameters than Xp,
and will change with the formulation chosen. These constraints ensure that
feasibility for the reformulated MDO problem is achieved at optimization
convergence. For example, if the optimizer controls a surrogate Xy for U,
then an auxiliary constraint like Cyye(X) = W(Xp, G(X), Xv) = 0 would

be needed for the MDO problem.

The vector function of residuals of all constraints C'p and Cyy, to be satisfied
by the optimizer.

4

C

4. Feasibility. As described in Section 2, a multidisciplinary analysis, or MDA,
is achieved when the coupled system is satisfied. We say that MDA has been com-
pleted when the values of all the variables do not change upon execution of all map-
pings shown in Figure 1 without regard to order.

MDA can be very costly because solving the coupled problem usually involves re-
peatedly executing the single discipline analysis codes in a iterative process. One way
to avoid some of this cost is not to require feasibility until convergence to optimality.
However, there will be approaches in which we will require partial feasibility for some
very good reasons. The point of this section is to express the notions of feasibility
needed later by using the framework provided in the previous section.

We say that a single discipline analysis has been carried out for a particular D;
when W;(Xp, M;;U;) = 0 has been solved to yield U; for the given inputs Xp, M;.
This would probably be done by executing an analysis code A; for the given input.
When W;(Xp, M;,U;) = 0 we have single discipline feasibility for discipline i. Note
that we do not use the semicolon to separate the arguments when W; is viewed as
a system of equations that are satisfied when particular values are specified for the
arguments (i.e, there is no contextual distinction between input and output). The
design variables Xp are fixed for a multidisciplinary analysis, but of course, they vary
for a multidisciplinary optimization.

Likewise, using the residual form, we say that we have individual discipline feasi-
bility when

(1) W(Xp, M, U)=0

or when U has been computed in explicit form as U = A(Xp, M). Equation
(1) states that individual discipline feasibility implies that every discipline has single
discipline feasibility. We emphasize this subtle definition: individual discipline feasi-
bility means that each and every discipline is independently feasible. It is a result of
the use of surrogates for the interdisciplinary variables that single disciplines may be
independently feasible without having multidisciplinary feasibility.

We have multidisciplinary feasibility, or MDF | when, in addition to individual
discipline feasibility, the interdisciplinary variables match. In the residual form this
is

(2) W(Xp,M,U)=0 and M =G(Xp,U).
In the nonresidual form it 1s
(3) U=AXp,M) and M =G(Xp,U).

We can combine each of the residual and nonresidual forms into an equivalent equa-
tion:

(4) W(Xp,G(Xp,U),U)=0 or U=A(Xp,G(Xp,U)) .
For the aeroelastic example, the residual form of (1) is

Wi (Xp, Mi2,Uy)
(5) WZ(XD; ‘M21= UZ) =

and the interdisciplinary constraints are

Mz = G12(Xp,Us)
(6) Mz = Gu(Xp,Uh).

Thus in the residual form of MDF, we simultaneously satisfy (5) and (6). The complete
nonresidual form is

Uy = Ai(Xp, M)
Uy = Ax(Xp, M)
Mz = G12(Xp,Us)
(7) My = Gau(Xp,Ur).

The residual form of the combined equation (4) that expresses multidisciplinary fea-
sibility in terms of just the variables Xp and U is

Wi(Xp,G12(Xp,Us),U1) =
(8) Wa(Xp,G21(Xp,Uh),U2) =

To reiterate, the difference between individual discipline feasibility and multidis-
ciplinary feasibility is the matching of interdisciplinary input and output variables to

9

reflect equilibrium. Since traditional single discipline optimization is just optimiza-
tion under the constraint (1) for one discipline, M = G(Xp, U) is the constraint that
distinguishes both MDA and MDO from their single discipline counterparts.

In some applications it may be expedient always to enforce equilibrium between
specified pairs of disciplines D;, D;. We model this case by coalescing the pair into a
single composite discipline. The term “tight coupling” is sometimes used by engineers
to describe this coalescence at the equation level, in which two disciplines D; and D;
are conjoined to produce a single analysis code that simultaneously solves

Wi(Xp, M;;U;) = 0
W;i(Xp, M;;U;) = 0
Mi; = Gi(Xp,Uj)
(9) Mji = Gji(Xp,Us) .

5. MDO Formulations. Up to this point, we have used our framework for
MDO to discuss various kinds of feasibility for the coupled MDA system. The purpose
of this section is to widen our discussion to include optimization.

It is important to clearly distinguish between what we mean by a “formulation”
and by an “algorithm.” By a formulation we mean specifying the objective, the con-
straints, and the independent or optimization variables. All of our formulations yield
nonlinear programming problems, but they have very different attributes that would
influence the way the optimization problem would be solved. By an algorithm we
mean the specific sequence of steps that would be carried out to solve the resulting
nonlinear programming problem.

The key distinguishing feature in the alternative formulations that we present here
is the kind of discipline feasibility maintained at every objective function, constraint,
or sensitivity evaluation needed during each optimization iteration. In the “multi-
disciplinary feasible” (MDF') approach, complete multidisciplinary analysis problem
feasibility is maintained at every optimization iteration. In the “individual discipline
feasible” (IDF) approach, extra independent variables are introduced so that we can
choose to maintain only individual discipline feasibility (i.e., single discipline feasi-
bility for all of the disciplines). Interdisciplinary equilibrium constraints are added
as optimization constraints in order to force these extra variables to values that give
a full MDA at optimization convergence. In the “all-at-once” (AAO) approach, all
of the analysis variables are optimization variables and all of the analysis discipline
equations are optimization constraints. Thus, feasibility in AAO and IDF is guar-
anteed only at optimization convergence. (We could refer to “all-at-once” as “no
discipline feasible,” but we feel that “all-at-once” better describes the formulation.)
In all formulations, the set of optimization variables includes the design variables.
None of these formulations imposes any requirements on the design constraints until
optimization convergence.

In the following subsections, first we give the general mathematical specification
of the MDO problem formulations and then we give the specialized aeroelastic formu-
lations. The Appendix, Section 8, illustrates the MDF, IDF, and AAO approaches
for a very simple example.

5.1. Formulations for general MDO problems.

5.1.1. Multidisciplinary Feasible (MDF') Formulation. The most common
way of posing MDO problems is, in our terminology, the multidisciplinary feasible, or

10

MDF, formulation. In this formulation, the vector of design variables Xp is provided
by the optimizer to the coupled system of analysis disciplines and a complete MDA
is performed with that value of Xp to obtain the system output variable U(Xp) that
is used in evaluating f(Xp,U(Xp)) and Cp(Xp,U(Xp)). The MDF formulation is

minimize f(Xp,U(Xp))
(10) with respect to Xp
subject to Cp(Xp,U(Xp)) >0

where U(XD) = A(XD,G(XD, U(XD)))

Using traditional terminology derived from linear programming, (see [6] (pg. 253)
or [17]), the reader may recognize MDF as a reduced basis formulation in which Xp
is the nonbasic vector and everything else is a basic vector. Since we will use this
concept in a nested way, to avoid possible conflicts with the normal usage of the terms
basic and nonbasic we will say that Xp is an ezplicit variable and that U and all the
other variables that arise in the MDA part of the problem are implicit.

The reader will see that if a derivative-based method is to be used to solve (10),
then a complete MDA is necessary not just at every iteration, but at every point where
f or Cp or the derivatives are to be evaluated. This can be very expensive, and finite
differences would be especially expensive and tricky because iterative methods for
determining U may need to be converged to an accuracy well beyond that required
for engineering analysis.

5.1.2. The Most General Formulation. For the sake of completeness, we
state here the most general formulation of the MDO problem. This formulation is
only for motivation and is unlikely to be useful for MDO. We state the residual
and nonresidual forms together. In this kitchen sink formulation, the optimization
variables are X = (Xp,Xm,X,, Xv) and all the conditions for a full MDA are
included as auxiliary constraints:

minimize f(Xp,Xv)
with respect to Xp, Xar, X, Xy
(11) subject to Cp(Xp,Xy) >0
and XM—E(XD,XH):O and XH—F(XD,XU)IO,
and either W(Xp, Xy, Xv)=0 or Xy — A(Xp, Xpm)=0.

5.1.3. All-at-Once (AAO) Formulation. Now we will consider some interest-
ing formulations between the two extremes of two preceding MDO formulations. The
first we call the all-at-once (AAQO) approach. In AAQO, we do not seek to obtain feasi-
bility for the analysis problem in any sense (individual discipline, multidisciplinary, or
even for single equations within a discipline) until optimization convergence is reached.
In a way, the optimizer does not “waste” time trying to achieve feasibility when far
from an optimum. We take as explicit variables X = (Xp, Xy) and write the formu-
lation in terms of the implicit variable M (X) with the interdisciplinary mapping G
as its defining relation.

minimize f(X) with respect to X = (Xp, Xy)
(12) subject to Cp(X) >0
Caue(X) 2 W(Xp, M(X),Xy) =0 |
where M(X) = G(X).

11

The drawback to (12) is that for practical problems it will generally involve a very
large number of constraints (the discrete equations from all of the analysis disciplines),
and an even larger number, np+>_; ny,, of optimization variables. Additionally, some
of the constraints may not be very smooth. In AAO the analysis “code” performs a
particularly simple function; it evaluates the residuals of the analysis equations, rather
than solving some set of equations. Ultimately, of course, the optimization method for
AAO must solve the analysis discipline equations W to attain feasibility. Generally,
this means that the solution method must contain all of the special techniques that
every single discipline analysis solver contains. It is unlikely that “equality constraint
satisfaction schemes” (e.g., Newton’s method) present in existing, general purpose
optimization codes would be equal to this task in the case where the constraints
represent extremely nonlinear PDE, as in aerodynamics.

5.1.4. Individual Discipline Feasible (IDF) Formulation. Another way to
avoid a complete MDA every time an objective function, constraint, or sensitivity
evaluation is needed is to use an IDF formulation like (13). IDF occupies an “in-
between” position on a spectrum where the AAO and MDF formulations represent
extremes: for AAQ, no feasibility is enforced at each optimization iteration, whereas
for MDF, complete multidisciplinary feasibility is required. Between these extremes lie
other possibilities that amount to specific decompositions of the work between analysis
codes and the optimizer. One such possibility, the IDF approach, maintains individual
discipline feasibility, while allowing the optimizer to drive the individual disciplines
toward multidisciplinary feasibility and optimality by controlling the interdisciplinary
data.

Note that, in this approach, analysis variables have been “promoted” to become
optimization variables; in fact, they are indistinguishable from design variables from
the point of view of a single analysis discipline solver. In IDF, the specific analysis
variables that have been promoted are those that represent communication, or cou-
pling, between analysis disciplines via interdisciplinary mappings. The rest of this
section describes IDF methods.

The next formulation is the first instance of an IDF approach. The relation that
defines the implicit variable U(X) is just the nonresidual form of (1). Thus, each
individual discipline is feasible at every optimization iteration. In this method, M 1is
replaced by an explicit surrogate Xp; and the interdisciplinary mapping becomes an
auxiliary constraint. The explicit variables are X = (Xp, Xpr).

minimize f(Xp,U(X))
with respect to X = (Xp, Xnm)
(13) subject to Cp(Xp,U(X)) >0

Caua(X) £ Xy — G(Xp,U(X)) =0

where U(X) = A(X). There are np +), ny, optimization variables in this “uncom-
pressed” IDF approach.

Notice that an evaluation of U(X) = A(X) involves executing all the single dis-
cipline analysis codes with simultaneously available multidisciplinary data X. There-
fore, these very expensive computations can be done independently, and communica-
tion costs are likely to be negligible in comparison. Furthermore, the analysis codes
vary widely in the types of computations to be done and will generally be suitable for
different hardware environments. Thus a heterogeneous network of computers may
be particularly well-suited for this formulation.

12

The drawback to the particular IDF method (13) is the large number of optimiza-
tion variables. As mentioned earlier, we can take advantage of the data compression
wij = F;j(Xp,U;) and elevate p rather than M to be explicit variables:

minimize f(Xp,U(X))
with respect to X = (Xp, X,)
(14) subject to Cp(Xp,U(X)) >0
A

Caua(X) 2 X, — F(Xp,U(X))) = 0.

where U(X) = A(Xp, E(X)). Thus, the advantage of this “compressed” or “low-
bandwidth” IDF formulation is that the optimizer controls possibly the fewest explicit
variables of any IDF formulation, namely np + >, n,.

It is possible to write many more permutations, but we will introduce only one
more, the possibility of sequencing the individual disciplines.

5.1.5. Sequenced IDF formulations. In the IDF formulations presented above,
the interdisciplinary mapping (coupling) variables sent to each discipline from the
other disciplines were made optimization variables and associated auxiliary constraints
were imposed. We can create IDF formulations where only some of the coupling vari-
ables are optimization variables and the remainder are the actual computed analysis
values. For example, consider a two discipline problem such as the aeroelastic exam-
ple. The computations in the above IDF method could be sequenced such that one
of the analyses is completed prior to starting the other one. Since the inputs to the
second analysis would then be available, there would be no need for the optimization
variables and constraints for the associated interdisciplinary mapping variables from
the first to the second discipline. The usefulness of such a “sequenced IDF” formu-
lation depends on factors such as the difficulty in satisfying the coupling constraints,
the cost of computing derivatives for the coupling constraints, the relative behavior
of the optimization objective and constraint functions for the two formulations, and
the lost opportunity for parallelism by imposing a specified sequence on the analyses.

Many different IDF formulations can be developed by using the option to sequence
the individual codes. We interpret the formulation represented by equation (12) in
[25] as a sequenced IDF formulation, and so this is not unique to the present work.

5.1.6. Feasible point formulations vs. feasible point algorithms. It is im-
portant to note that the use of some optimization algorithms can blur the distinction
between MDO formulations. For example, an optimization algorithm that ensures
constraint feasibility at each iteration could reduce, or even eliminate, the distinc-
tions between the formulations presented here.

We examine this issue further by briefly discussing the distinction between a
generalized reduced gradient (GRG) approach (see [6] (pg. 221)) that corresponds
to MDF, and an approach applied to a full-space problem like AAO that restores
feasibility at every iteration.

Some nonlinear programming algorithms approach optimality along a feasible
path by following each optimization step with a step to restore feasibility. This is very
different from a generalized reduced gradient approach which maintains feasibility not
just for each iterate, but for any pair Xp, U that ever appears in any context in the
algorithm. In other words, the GRG approach eliminates U from the optimization
calculations by using the implicitly defined function U(Xp) in its stead.

If we apply a feasibility restoration method to an AAO formulation, then at each
optimization iteration the optimization algorithm would first take a step in the full

13

space to obtain a complete new X. This would be followed by a so-called restora-
tion step which would consist here of an MDA to replace the Xy part of the AAO
optimization iterate Xp, Xy with U(Xp). The next optimization iteration is started
from the multidisciplinary feasible point X = (Xp,U(Xp)) satisfying (4).

However, such an approach to the AAO formulation is not the same as MDF be-
cause Xy is treated as independent of Xp for the purpose of setting the new iterate’s
Xp. In the MDF or GRG approach, Xp is the only variable in the optimization
iteration. This means that the derivatives or sensitivities required in the MDF formu-
lation must be computed with arguments Xp and values of all the system variables
that correspond to an MDA solution for that value of Xp.

5.2. Formulations specialized to the aeroelastic MDO problem. To fur-
ther elucidate the formulation ideas and to prepare for a discussion of the sensitivities
needed to apply most NLP algorithms to each formulation, we show how the general
formulations apply to the specific case of aeroelastic MDO.

First is the standard MDF formulation (10)

minimize f(Xp,U1(Xp),U2(Xp)) with respect to Xp
subject to Cp(Xp,U1(Xp),U2(Xp)) > 0,

where Ui(Xp) = A1(Xp,G12(Xp,Uz(Xp)))
Us(Xp) = A2(Xp,Gn(Xp,U1(Xp))) .

(15)

Figure 3 illustrates the MDF formulation. Notice that while Figure 3 provides
some detail about the computations of Us and U;, the aeroelastic analysis is a “black
box” from the perspective of the optimization code.

If analysis residuals are available, then one might try to avoid so many costly MDA
computations by an All-At Once, or AAO, formulation with U; and U; made explicit.
Figure 4 illustrates the the AAO formulation. The AAQO optimization problem is

minimize F(X)
with respect to X = (Xp, Xv,, Xv,)
(16) subject to Cp(X)>0

(XD,Mlz(X) XU1)20
Wa(Xp, M21(X), Xu,) =0

where M12(X) = Glg(XD,XU2) and Mgl(X) = GQl(XD,XUl).

Other “all-at-once” (AAO) formulations for design optimization problems have
been mentioned in the literature for aecrodynamic optimization (e.g., [5, 10, 14, 24]),
structural optimization (e.g., [7]), chemical process control, and control and inverse
problems (e.g., [18, 23, 20]). In [14] this approach is called the “one-shot” method,
and in [7] it is called “simultaneous analysis and design.” In [5] the authors discuss
how AAQO can be remarkably efficient for aerodynamic optimization, provided some
computational difficulties can be overcome.

The rest of this section describes two aeroelastic IDF methods. We reiterate
the essence of IDF': at each optimization iteration we have a “correct” aerodynamic
analysis and a “correct” structural analysis; however, it is only at optimization con-
vergence that the pressures predicted by the aerodynamic analysis correspond to the
loads sent to the structures and the displacements predicted by the structural anal-
ysis correspond to the geometry sent to the aerodynamics code. Again, we remind
the reader that one could follow each optimization step by performing a feasibility

14

Optimizer (Controls calculation of f, Cp)

XD Ula U2

Aeroelastic Analysis Solver

Dq

_ Aerodynamics

Fi1a. 3. Multidisciplinary Feastble (MDF) Method

Optimizer (Controls calculation of f, Cp)

XDa XUl’ XUz XDa XUl’ XUz
Aerodynamics Structures
Residual Residual
Computation Computation
W1 WZ

Fig. 4. All-at-Once (AAO) Method

15

Optimizer (Controls calculation of f, Cp, Cia, Ca1)

XD: XH12 XDa XH21
Aerodynamics Structures
Analysis Analysis
Fyy(Xp, Ui(X)) F1a(Xp, Us(X))
(including, e.g., Uy) (including, e.g., Us

F1G. 5. Low-bandwidth individual discipline feasible (IDF) method

restoring MDA, but the optimization problem being solved would still be an IDF and
not an MDF formulation.
The “uncompressed” IDF formulation is

minimize f(Xp,U1(X),U2(X))
with respect to X = (XD,XMH,XMM)
(17) subject to Cp(Xp,U1(X),U2(X)) >0

Ci2 = Xpp,, — G12(Xp, Ua(X))
Co1 = Xpp,y — G21(Xp, Ur(X))

0
0.

where U1(X) = A1(Xp, Xar,,) and Us(X) = Ax(Xp, Xar,,).
The low-bandwidth IDF formulation is

minimize J(Xp,Ui(X),Uz(X))
with respect to X = (Xp, Xpu,, Xpay)
(18) subject to Cp(Xp,U1(X),Uz(X)) >0

Ciz = XH12 - FlZ(XD; UZ(X)) =
021 = Xuzl - FQI(XD; Ul(X)) =

Where Ul(X) = Al(XD,Elg(XD,qu)) and Uz(X) = Az(XD,E21(XD,XH21)). Flg—

ure 5 shows the flow of information for this low-bandwidth IDF formulation.

6. Derivative Requirements for MDO. We anticipate that most MDO ef-
forts will involve derivative-based optimization algorithms. For this reason we now
will discuss the derivatives required in the MDF, IDF, and AAO formulations that we
have presented. If one looks in the previous section, all the formulations given either
use the analysis residuals as a constraint, or else the analysis code solution mapping
is used to define U as an implicit variable. Thus, any derivative-based algorithm will
require either the derivative of the analysis residuals or of the solution operator.

As mentioned above, AAQO has the disadvantage that the optimization code must
assume the difficult task of simultaneously satisfying all the analysis discipline equa-
tions. The MDF and IDF formulations have the advantage that they use the spe-
cialized software A; that has been developed for solving the individual discipline
equations. But there is a price to be paid for using the existing software; the MDF
and IDF formulations must differentiate the solution operators implemented by the
single discipline solvers.

16

The most daunting task is to obtain these solution sensitivities. Perhaps the most
obvious approach is to use finite difference approximations [16]. This certainly finesses
the issue, but because of problems with accuracy and expense, we believe that a prac-
tical alternative to finite differences must be found if MDO is to become an everyday
engineering tool. There seem to be two alternatives: analytic approaches (implicit
differentiation, sensitivity equations, adjoint equation solution) and automatic differ-
entiation.

Even though there is considerable research interest in analytic methods for sensi-
tivity or gradient calculations [2, 1,9, 7, 8, 11, 12], few analysis codes in engineering
use today provide the required derivatives. We hope that automatic differentiation
will provide tools that will help us retrofit existing codes to produce the derivatives.

Automatic differentiation should not be confused with symbolic differentiation. In
ADIFOR [19], the automatic differentiation tool with which we are the most familiar,
the definition of the function is given as a standard Fortran program. The output
from ADIFOR is a program that duplicates the computation of the original program,
and in addition, it includes code to compute the sensitivities of indicated outputs with
respect to indicated outputs. The sensitivities are computed with the same accuracy
as the quantities whose partial derivatives they represent.

We finish our discussion of the problems of finding derivatives with a brief discus-
sion of the derivatives needed by the various formulations. There seems little point
to laboring through the general case, and so we will restrict ourselves to the aeroe-
lastic example problem. In the subsections that follow we give the derivatives of the
constraints. However, the objective function f and the design constraints C'p depend
on the same parameters. Thus, the gradient of the objective function is just the
transpose of the block row of the constraint Jacobian corresponding to Cp, with Cp
replaced by f.

6.1. Derivatives required for the MDF formulation. For MDF optimiza-
tion, Sobieszczanski-Sobieski [13] gives a complete presentation of the alternative ap-
proaches, but our MDO model includes the fit and evaluate routines and so the form
is slightly different here.

Using the MDF formulation given by (15), the linearized constraint residual is,
noting X = [Xp],

c ac aCp 8U, , 9Cp 28U,
(19) [CE))]‘i‘[x0T 30, axn T 90> 09X 5] [AXp],

where C'g) is the value of the constraints at the current approximation X};) to the
solution of the MDO problem. Remember, for the MDF formulation, X}f) is a full
MDA solution point. The coefficient matrix in (19) represents the Jacobian of Cp
with respect to the design variables Xp.

Computing the partial derivatives df/0Xp, 0f/0U,, 0Cp/0Xp, and dCp /0U,
for @ = 1,2 is generally easy; computing the solution sensitivities U, /0Xp is gener-
ally hard. One way to obtain these sensitivities is to form and solve a linear system as
follows. Notice that since we need the derivatives at a point Xg) for which (7) holds,
we can apply implicit differentiation to the appropriate residual equations to obtain:

AWy (Xp,M12,U1) + W (Xp,M12,U1) | 8G1a 4 8G 15 U5
9Xp OMi2 9Xp oU; 8Xp
_|_3W1(XD7M127U1) U, -0
U, 8 Xp

and
17

OWo(Xp,M21,Us3) + OWo(Xp,M21,Uz) | 8Goy 4 8Go 80U,
80X p OMa X p U, 8Xp

(20) +w oU, =0

U, 9Xp

where we have used the fact that M = G(Xp, U). Every derivative in (20) is assumed
to be available except the derivatives of U. Thus, we can gather terms to obtain a
linear system that can be solved to obtain the sought for U derivatives:

oW, oW, 0G4 U, oW, 4 oW, 0Gi2
U, OM,, 0U, 9Xp O9Xp OMq,5 0Xp
(21) —_
oW, 9Go, OW, U5 OW5 4 oW, 080G 2
oM, 80U, U, 9Xp O9Xp OMqy 0Xp

If the residuals are not available, then in a similar way, we can differentiate (7) and
rearrange terms to obtain:

I _ 90U, 90Gi2 U, oU, 4 U, 98G5
OMq,, 00U, 0Xp 0Xp OMy2 0Xp
(22) = ,
_ 09Uz 8Goy I U5 U5 U, 8G32
oM, 80U, X p X p oM, 0Xp

where we have used (7) to replace partial derivatives of A; and Az by partial deriva-
tives of Uy and Us, respectively. It is important to remember here that all of these
partials must be evaluated at XE)C) and U(X})c)) , a multidisciplinary feasible point.

6.2. Derivatives required for the A AO formulation. The AAO formulation
has much easier derivative requirements because the derivatives do not have to be
evaluated at MDA solutions. In fact, for formulation (12), there is no feasibility
required at arbitrary evaluation points. The linearized constraint residual is, noting
X = [XD,XU] and XU = [XUUXUQ],

(C) 6CD 6CD 6CD
Ch 0Xp 0Xu, OXu, AXp
(c) AW, 8w, 8w,
(23) Wi t | 3xp 9xo, 9Xo, AXy, |,
(c) oW, W, W, AX
W, oXp 09Xy, 0Xu, Ua

where (C}f), Wl(c), WQ(C))T is the residual of the constraints at the current point.

The blocks 0W; /0 Xy, and O0W,/0Xy, in (23) are the Jacobians that would ap-
pear in Newton solvers for the two disciplines, respectively. The derivatives 0W; /0Xp,
OW1/0Xy,, OWa/0Xp, and OWs /0 Xy, represent the sensitivities of the analysis dis-
cipline equation residuals to their inputs from other disciplines. We assume that these
derivatives are available.

6.3. Derivatives required for the IDF formulations. The linearized con-
straint residual for the IDF formulation (17) is

cl) AXp
(24)) | +7 | AXa,
Cg? A)(]u21

18

where

iCp aCp _ U, aCp _aU,
dXp U, 90X niyg 89U, 29Xy
| e 8Gis 8U, _ 8Gi, 08U,
(25) J = 9Xp 08U, 9Xp 1 oUs 09Xty | 0
_8Gay 8Ga OUy 9Gay _3U, 7
8Xp 8U, 8Xp U1 90Xy,

26) dCp _ 0Cp , 9Cp OV, 9Cp Ol
dXp, ~ 9Xp | OU; 0Xp | 0U, 0Xp’

T
and (Cg) Cg), Cé?) is the value of the constraints at the current point. Derivatives

similar to the above can be derived for the low-bandwidth IDF formulation (18).

The expensive derivatives for the IDF method are those of the form oU;/0Xp,
Ui [0Xn,;, and OU;/0Xy,;, which are all sensitivities of the individual discipline
analysis solutions with respect to either uncompressed or compressed analysis inputs.
Note that the derivatives required for the IDF formulation are the same as those
required in (22) and by Sobieszczanski-Sobieski [13] (in his GSE2 approach) for com-
puting MDF problem derivatives. However, in contrast to the MDF method, here
they only need to be evaluated at an individual discipline feasible point.

7. Concluding Remarks. In Table 1 we compare the features of our three
main approaches to MDO formulation. In Table 2 we speculate on the performance
that might be achieved by the approaches. These hypotheses are supported by the
experimental results shown in [26, 21].

The multidisciplinary feasible (MDF) and individual discipline feasible (IDF) ap-
proaches have the advantage of using, with moderate or no modification, existing
single discipline analysis codes. An additional advantage of IDF is that it avoids
the cost of achieving full multidisciplinary feasibility at each optimization iteration, a
procedure that is probably wasteful in MDF when far from optimization convergence.
Furthermore, the IDF method makes it easy to replace one analysis code with another
(as when additional modeling fidelity is required), or to add new disciplines.

On the other hand, the IDF approach requires the explicit imposition in the
optimization of the nonlinear constraints involving the interdisciplinary maps and the
calculation of additional sensitivities corresponding to the variables communicated
between disciplines. If the number of such variables and constraints can be kept
small, we project that the overall cost of IDF optimization will be significantly less
than MDF optimization.

We feel that the all-at-once (AAQO) approach remains theoretically attractive be-
cause of the probability that it will be the least expensive computationally. Unfortu-
nately, it requires a higher degree of software integration than is likely to be achieved
in the near future for realistic applications.

No matter what approach is chosen, the efficient calculation of sensitivities will
be critical for success. In our opinion, with the increasing complexity of analysis
codes and the increasing number of design variables that will probably be used in
future MDO applications, it is unlikely that finite difference sensitivities will be af-
fordable. In this area, the role of automatic differentiation remains to be conclusively
determined. Our guess is that, for very large problems, only some kind of analytic

19

(Compressed)
Individual Multidis-
All-at-once Discipline ciplinary
(AAO) Feasible Feasible
(IDF) (MDF)
Use of existing Full, no direct Full, but must
analysis codes None coupling of couple the
analysis codes analysis codes
Discipline None until Individual Multidisciplin-
feasibility optimal, then discipline ary feasibility
all disciplines feasibility at at each
feasible each optimiz- optimization
ation iteration iteration
Variables the Design variables | Design Variables | Design
optimizer controls. and all analysis | and interdiscip- | variables
(Thus, these are discipline linary mapping
independent variables || unknowns (coupling)
in sensitivities.) parameters
Number of optim-
ization variables.
(Thus, the number np + Y, nu, np + Y, Ny, np
of sensitivities
required.)
Optimization Very large and Moderate, size Small and
problem sparse and sparsity dense
size and sparsity dependent on
coupling
“bandwidth”

TaBLE 1
Comparison of formulation features

or implicit sensitivities will be used. The other alternative, of course, is to use sim-
plified analyses in the optimization and then to correct via iterative refinement. For
example, this approach has been used in multidisciplinary design of helicopter rotors
[15]. We observe that this approach dovetails well with the IDF approach, where an
existing multidisciplinary analysis procedure can be viewed as “one discipline,” and
information of higher fidelity for a single analysis code can be the “second discipline”
[22]. The iterative refinement outer loop could build a simplified model of the higher
fidelity code. The iterative refinement optimization loop would then use the IDF
method with the multidisciplinary analysis as one discipline and the simplified model
as the second discipline.

MDO problems will often involve design over several cases, or design points. In
the aeroelastic problem, for example, there may be stress constraints for several flight
conditions such as pull-up or dive maneuvers. There may also be minimum perfor-
mance requirements for off-design values of velocity, altitude, etc. In fact, different
analysis codes may be used for different design points. For example, a low-fidelity
aerodynamics analysis code may be acceptable for computing pressures for a dive
maneuver, while a high-fidelity aerodynamics analysis code may be required for com-

20

Individual Multidis-
All-at-once Discipline ciplinary
(AAO) Feasible Feasible
(IDF) (MDF)
Probable compute || Low, evaluate | Moderate, Very high,
time for objective || residuals for separately full multidis-
and constraints all disciplines | analyze each | ciplinary
discipline analysis
Expected overall
speed of optim- Fast Medium Slow
ization process
Probability of
unanalyzable Low Medium High
intermediate
designs
Probable
robustness Unknown High Medium
TABLE 2

Comparison of predicted performance

puting drag and lift at cruise. MDO over multiple design points can be readily couched
in the formulations presented here by considering the analyses at each point to be a
separate “discipline”.

Because of the large size and computational cost of solving MDO problems, use
of parallel and distributed computing will probably be required. Clearly, the IDF
formulation approach is particularly well-suited to implementation in a heterogeneous
computing environment consisting of computers that are separately suitable for each
individual disciplinary analysis. Additionally, both the MDF and IDF approaches,
since they leave intact the disciplinary analysis codes, maintain all of the parallelism
that might have been developed by disciplinary specialists within a single discipline’s
solver.

In this paper we did not concentrate on optimization solution methods for MDO.
Although Frank et al. [4] surveyed various optimization techniques that could be
applied to MDO problems, to our knowledge no one has systematically investigated
the application of specific mathematical programming algorithms to various MDO
formulations.

8. Appendix: Simple example. Here we illustrate the fundamental aspects
of MDF, AAO, and IDF by applying these formulations to a simple example. It is
important to note that this example does not exhibit many important characteristics,
like interdisciplinary mappings, inherent in realistic MDO problems.

Let Uy and Uz be scalar analysis variables and let Xp be a scalar design variable.
Consider two “disciplines” defined by

(27) Wl(XD,Uz,Ul):U1+SiHU2—U28iHU1+XDU2:0,

(28) WQ(XD,Ul,Uz)IU2+U1COSU2+COSU1+XDU1IO,

with the objective to minimize f = U?+UZ. When viewed as single disciplines, (27) is

solved for Uy = A1(Xp, Us) and (28) is solved for Uz = A2(Xp, Ur). When viewed as
21

a multidisciplinary system, Xp is given and (27) and (28) are simultaneously solved
for Uy and Us. The three formulations for this example are given below.

8.1. MDF. The MDF formulation is

minimize f= [Ul(XD)]2 + [UZ(XD)]2

9 .
(29) with respect to Xp

Here, for any Xp, f is computed by solving (27) and (28) simultaneously for U; and
Us.

8.2. AAO. Let Xy, and Xy, be surrogates for U; and Us, respectively. The
AAOQO formulation is

minimize f= [XUl]Z + [XU2]2
(30) with respect to Xp, Xy,, Xv,
such that Xy, +sin Xy, — Xy, sin Xy, + Xp Xy, =0

Xy, + Xy, cos Xy, 4+ cos Xy, + Xp Xy, =0.
8.3. IDF. With the above-defined surrogates, the IDF formulation is

minimize f=[U1(Xp, Xv,)] + [U2(Xp, Xu)]
(31) with respect to Xp, Xv,, Xv,
such that Xv, - U1(Xp,Xu,) =0

Xv, — U2(Xp, Xu,) = 0.

Here, U is computed as follows. Given Xp, and with the value of Xy, substituted for
Us, (27) can be solved for the remaining unknown U;. Us is computed similarly, but
independently, from (28). In other words, U; = A;(Xp, Xv,) and Uz = A3(Xp, Xu,).

Acknowledgements. We gratefully acknowledge comments made by Jarek
Sobieszczanski-Sobieski and by an anonymous referee that helped us improve this

paper.

REFERENCES

[1] Baysal, O. and E.M. Eleshaky. Aerodynamic design using sensitivity analysis and computa-
tional fluid dynamics. Technical Report ATAA-91-0471, AIAA, January, 1991. Presented
at the 29th Aerospace Sciences Meeting, January 7-10, 1991, Reno, Nevada.

[2] Borggaard,J., J.A. Burns, E.M. Cliff, and M. Gunzburger. Sensitivity calculations for 2d,
inviscid, supersonic forebody problem. Technical Report 93-13, ICASE, March, 1993.

[3] Cramer, E.J., P.D. Frank, G.R. Shubin, J.E. Dennis, Jr., and R.M. Lewis. On alternative prob-
lem formulations for multidisciplinary design optimization. ATAA-92-4752, 4th Symposium
on Multidisciplinary Analysis and Optimization, September 21-23, 1992, Cleveland, OH.

[4] Frank, P.D., A.J. Booker, T.P. Caudel, and M.J. Healy. Optimization and search methods
for multidisciplinary design. ATAA-92-4827, 4th Symposium on Multidisciplinary Analysis
and Optimization, September 21-23, 1992, Cleveland, OH.

[5] Frank, P.D. and G.R. Shubin. A comparison of optimization-based approaches for a model
computational aerodynamics design problem. Journal of Computational Physics, 98(1):74—
89, 1992.

[6] Gill, P.E., W. Murray, and M.H. Wright. Practical Optimization. Academic Press, 1981.

[7] Haftka, R.T., Z. Gurdal, and M.P. Kamat. Elements of Structural Optimization. Kluwer
Academic Publishers, 1990.

[8] Jameson, A. Aerodynamic design via control theory. Technical Report 88-64, ICASE, Novem-
ber, 1988.

[9] Korivi, V., A. Taylor, III, P. Newman and G. Hou, and H. Jones. An approximately factored
incremental strategy for calculating consistent discrete CFD sensitivity derivatives. AIAA-
92-4746, 4th Symposium on Multidisciplinary Analysis and Optimization, September 21-23,
1992, Cleveland, OH.

22

10]
(11]

(12]

(13]
(14]

(15]

Rizk, M.H. Aerodynamic optimization by simultaneously updating flow variables and design
parameters. AGARD Paper No. 15, May 1989.

Shubin, G.R. Obtaining “cheap” optimization gradients from computational aerodynamics
codes. Technical Report AMS-TR-164, Boeing Computer Services, June, 1991.

Shubin, G.R. and P.D. Frank. A comparison of two closely-related approaches to aerody-
namic design optimization. In G.S. Dulikravich, editor, Proceedings of the Third Interna-
ttonal Conference on Inverse Design Concepts and Optimization in Engineering Sciences
(ICIDES-III), October, 1991.

Sobieszczanski-Sobieski, J. Sensitivity of complex, internally coupled systems. ATAA Journal,
28(1):1537160, 1990.

Ta’asan, S., G. Kuruvila, and M.D. Salas. Aerodynamic design and optimization in one shot.
ATAA Paper 92-0025, 30th Aerospace Sciences Meeting, Reno, NV, January, 1992.

Young, D.K. and F.J. Tarzanian Jr. Structural optimization and Mach scale test validation of
a low vibration rotor. 47th Annual Forum of the American Helicopter Society, Phoenix,
Arizona, 1991.

ATAA Technical Committee on Multidisciplinary Design Optimization (MDO). White paper
on current state of the art. American Institute of Aeronautics and Astronautics, 1991.

Avriel, M. Nonlinear Programming. Prentice-Hall, 1976.

H.T. Banks and K. Kunisch. FEstimation techniques for distributed parameter systems.
Birkhauser, 1989.

C. Bischof, A. Carle, G. Corliss, A. Griewank, and P. Hovland. ADIFOR: generating derivative
codes from Fortran programs. Technical Report CRPC-TR91185, Center for Research on
Parallel Computation, December, 1991.

C.R. Hargraves and S.W. Paris. Direct trajectory optimization using nonlinear programming
and collocation. Journal of Guidance, Control, and Dynamics, 10(4):338, 1987.

J.E. Dennis, Guangye Li, and Karen Williamson. Optimization algorithms for parameteridenti-
fication. Technical Report CRPC-TR92277, Center for Research on Parallel Computation,
January, 1992.

Grose, D.L. private communication.

F.-S. Kupfer and E. W. Sachs. A prospective look at SQP methods for semilinear parabolic
control problems. In Optimal control of partial differential equations: proceedings of the
IFIP WG 7.2 International Conference, pages 145-157, 1991.

C.E. Orozco and O. N. Ghattas. Massively parallel acrodynamic shape optimization. preprint.

R. T. Haftka, J. Sobieszczanski—Sobieski, and S. L.. Padula. On options for interdisciplinary
analysis and design optimization. Structural Optimization, 4(2):65-74, 1992.

Shubin, G.R. Application of alternative multidisciplinary optimization formulations to a model
problem for static aeroelasticity. Technical Report BCSTECH-93-022, Boeing Computer
Services, December, 1993.

Yu, P.L. Multiple criteria decision making: five basic concepts. In Handbooks in Operations
Research and Management Science, vol 1:663-699. Edited by Nemhauser, G.L., A.H.G.
Rinooy Kan, and M.J. Todd, Elsevier(North-Holland), 1989.

23

