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Abstract
Fortran D and High Performance Fortran are languages designed
to support efficient data-parallel programming on a variety of par-
allel architectures. The goal of the D Editor is to provide a tool
that allows scientists to use these languages efficiently. The D Edi-
tor combines analyses for shared-memory machines and compiler
optimizations for distributed-memory machines. By cooperating
with the underlying compiler, it can provide novel information on
partitioning, parallelism, and communication based on compile-
time analysis at the level of the original Fortran program. The
D Editor uses color coding and a collection of graphical displays
to help the user to zoom in on portions of the program containing
sequentialized code or expensive communication. The prototype
implementation is useful for interactively displaying the results
of compile-time analysis; however, it has a number of shortcom-
ings that must be addressed. Future enhancements will provide
additional advice and transformation capabilities. We believe the
D Editor is representative of a new generation of tools that will be
needed to assist scientists to fully exploit languages such as High
Performance Fortran.

1 Introduction
When MIMD distributed-memory machines such as the Intel
Paragon, Thinking Machines CM-5, and IBM SP-1 were first
introduced, to achieve good performance scientists were required
to write message-passing programs that dealt with separate ad-
dress spaces, communication, and synchronization. The devel-
opment process was tedious, error-prone, and the results were
not very portable. To solve this problem, researchers, vendors,
and users together informally created High Performance Fortran
(HPF), a version of Fortran designed to provide a simple yet ef-
ficient data-parallel programming model across a wide range of
modern architectures [16].

HPF was based on a number of existing languages such as
Fortran 90 [1], CM Fortran [25], Fortran D [11], and Vienna
Fortran [7]. It simplifies programming by providing a global name
space for the user, along with a variety of useful data-parallel array
operations. One of the novel features found in HPF are annotations
that allow users or automatic tools to specify data placement, the
partitioning of data onto processors.

Using these annotations, in many cases advanced compilers can
automatically generate efficient programs for MIMD distributed-
memory machines [17] or even networks of workstations [2].

This research was sponsored by ARPA under contract #DABT63-91-
K-0005 & DABT63-92-C-0038 and the IBM Corporation. Additional
support was provided by the Center for Research on Parallel Computa-
tion (CRPC), a Science and Technology Center funded by NSF through
Cooperative Agreement Number CCR-9120008. Chau-Wen Tseng was
supported in part by an NSF CISE Postdoctoral Fellowship in Experimen-
tal Science.

However, experience with parallelizing compilers for shared-
memory machines has shown that no automatic system will work
perfectly in all (some say most) cases. When automatic systems
fail due to imperfect analysis or incorrect heuristics, compiler
feedback [27] or interactive parallelization systems [13, 21] can
prove helpful.

1.1 Feedback for High Performance Fortran
We believe that user feedback and interaction will be very im-
portant for languages such as HPF, because on massively parallel
systems small mistakes may cause large degradations in perfor-
mance. What is needed is a way to help the user understand how
changes to the source code affect performance.

Unfortunately, this task is much harder for HPF than for pre-
vious languages. The reason is that HPF compilers transform the
program to a great extent, especially on distributed-memory ma-
chines where the output programs operate in local name spaces and
perform explicit communication through messages. This trans-
formation process makes it quite difficult to determine how the
program can be improved and relate it back to the user in the con-
text of the original program. In particular, a small change in the
manner data is partitioned in an HPF program will likely result
in major changes in both the form of the compiler-generated code
and its resulting performance.

For instance, consider the kernels in Figure 1 performing
Successive-Over-Relaxation (SOR), a technique for solving par-
tial differential equations. The array A is distributed block-wise
by columns in both kernels. The computation traverses columns
of A in the first kernel and rows of A in the second. Assume that
the computation is assigned to processors according to the owner
computes rule, where each processor calculates values only for
data it owns. Once communication is introduced, the first kernel
will be sequentialized (unless additional program transformations
such as strip-mining and loop interchange are applied by the com-
piler). In comparison, the second kernel will execute mostly in
parallel, exploiting pipeline parallelism [17]. If the array A is
distributed block-wise by rows instead, the situation is reversed.

All four versions of SOR are shown in Figure 2. Arrows repre-
sent execution order; communication is required at the boundaries.
With a naive compiler, the kernels in Figure 2(a) and (c) are se-
quentialized because each processor must complete most of its
local computation before it can communicate data needed by the
next processor. The kernels in Figure 2(b) and (d) are able to
exploit pipeline parallelism because their execution order allows
data needed by other processors to be computed and communi-
cated earlier, rather than at the very end.

It should be evident from this example that determining perfor-
mance is difficult at the source HPF level for non-experts. Exam-
ining the message-passing output does not help much, and even
profiling information will only report poor performance, not sug-
gest ways to improve the program. It will thus be much easier for
scientists using languages such as HPF if programming tools can
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Sequential SOR
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REAL A(100,100)
DISTRIBUTE A(:,BLOCK)
do j=2,99

do i=2,99
A(i,j) = 0.7*(A(i-1,j)+A(i,j-1)+

A(i+1,j)+A(i,j+1))+0.3*A(i,j)
enddo

enddo ¦£*¤
Compiler Output for 4 Processors
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REAL A(100,0:26)
myid = myproc()

£*¤
0 §k§|§ 3 ¤*¥

if (myid ¨ 0) send A() to P ©«ªx¬v
if (myid ® 3) recv A() from P ¯�°²±x³ 
if (myid ¨ 0) recv A() from P ©«ªx¬v
do j=lb1,ub1

do i=2,99
A(i,j) = 0.7*(A(i-1,j)+A(i,j-1)+

A(i+1,j)+A(i,j+1))+0.3*A(i,j)
enddo

enddo
if (myid ® 3) send A() to P ¯�°´±k³ 
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REAL A(100,100)
DISTRIBUTE A(:,BLOCK)
do i=2,99

do j=2,99
A(i,j) = 0.7*(A(i-1,j)+A(i,j-1)+

A(i+1,j)+A(i,j+1))+0.3*A(i,j)
enddo

enddo ¦£t¤
Compiler Output for 4 Processors
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REAL A(100,0:26)
myid = myproc()
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if (myid ¨ 0) send A() to P ©«ªx¬v
if (myid ® 3) recv A() from P ¯�°²±k³ 
do i=2,99
if (myid ¨ 0) recv A() from P ©«ªx¬v
do j=lb1,ub1
A(i,j) = 0.7*(A(i-1,j)+A(i,j-1)+

A(i+1,j)+A(i,j+1))+0.3*A(i,j)
enddo
if (myid ® 3) send A() to P ¯�°²±k³ 

enddo

Figure 1: SOR
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Figure 2: Execution Order of Four Versions of SOR

statically or dynamically distinguish when performance is poor,
and offer advice on how the program may be enhanced.

1.2 The D System

To address this lack of understanding, the D System project at
Rice University is developing a collection of tools designed to
help scientists to use languages like HPF. The D System supports
Fortran D, a precursor and contributor to HPF that contains a subset
of features found in HPF as well as support for capabilities not
currently in HPF. The system contains FIAT, an interprocedural
analysis framework [15], the Fortran D compiler [17], and tools for
performing automatic data decomposition [3], data-race detection,
static performance estimation [4, 20], and performance profiling.
All these components will be integrated in the D Editor, the core
of the D system.

The goal of the D Editor is to help users develop efficient For-
tran D or HPF programs by providing feedback and guidance at the
source level, based on analysis and measurement of performance
of the compiler output. To achieve this end the D Editor must be

able to explain to the user how changes in the high-level program
will affect both the output code and its performance, especially
changes to the data decomposition.

1.3 Contributions
In previous work, we described the design, implementation, and
evaluation of a prototype Fortran D compiler [14, 17, 18, 19]. The
original contributions of this paper are to describe:

µ A work model for using an interactive programming tool to
improve the performance of HPF programs on distributed-
memory machines.µ The information an interactive programming tool needs from
the underlying compiler.µ Techniques used to process compiler information so it makes
sense to the user.µ Methods used in the prototype editor to display information
to the user in an accessible and natural manner.
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Figure 3: D Editor and Fortran D Compiler Interaction

In this paper we present the prototype D Editor, focusing on
the interaction between the editor and the Fortran D compiler.
We begin with a review of the Fortran D language and compiler,
then describe the work model for using the D Editor. We list the
information the compiler must provide to the editor at each level
of the program and show how this information is processed and
displayed, as well as additional options the editor provides the
user. We discuss limitations of the prototype editor and possible
solutions and future extensions. We conclude with a discussion of
related work.

2 Background
2.1 Fortran D Language

In Fortran D, the DECOMPOSITION statement declares an abstract
problem or index domain. The ALIGN statement maps each ar-
ray element onto the decomposition. The DISTRIBUTE statement
groups elements of the decomposition and aligned arrays, map-
ping them to a parallel machine. Each dimension is distributed
in a BLOCK, CYCLIC, or BLOCK CYCLIC manner; the symbol “:”
marks dimensions that are not distributed. Because the alignment
and distribution statements are executable, dynamic data decom-
position is possible. The complete language is described in detail
elsewhere [11].

Apart from minor syntactic differences, HPF provides data de-
composition specifications virtually identical to those in Fortran D.
Our experiences with the Fortran D compiler and D Editor are thus
immediately applicable to HPF. HPF provides additional array in-
trinsics, procedure interfaces, and external interfaces not found in
Fortran D. We continue to call our target language Fortran D to
emphasize that it is a research version of HPF designed to support
research on interprocedural compilation and irregular computa-
tions.

2.2 Fortran D Compiler

To validate the feasibility and usefulness of the Fortran D and HPF
programming model, we have designed and implemented a proto-
type Fortran D compiler for MIMD distributed-memory machines.
Preliminary results show that for many programs, it is able to pro-
duce output that approaches the quality of hand-optimized code
[18]. Given a data decomposition, the prototype compiler can
automatically translate sequential programs into efficient parallel
programs using the owner computes rule. The two major steps
it performs in targeting MIMD distributed-memory machines are
partitioning the data and computation across processors, then in-
troducing communication for nonlocal accesses where needed.
The compiler applies the following passes in order: analyze pro-
gram, partition data, partition computation, analyze communi-
cation, optimize communication, manage storage, and generate
code. Details are presented elsewhere [14, 17, 19, 26].

2.3 The ParaScope Programming Environment

The Fortran D compiler is implemented as a part of ParaScope,
a programming environment that pioneered research on inter-
procedural optimization in an efficient compilation system [8, 9].

Its interprocedural compilation framework has been encapsulated
into a system called FIAT (Framework for Interprocedural Analy-
sis and Transformation) [15] and used to solve a number of inter-
procedural problems in both ParaScope and the Stanford SUIF
compiler.

A key component of the ParaScope environment is the Para-
Scope Editor (PED), an intelligent interactive editor for shared-
memory machines [13, 21, 22]. The ParaScope Editor provides
the results of sophisticated program analyses and a variety of
powerful program transformations that have been shown useful in
converting programs to parallel form. The ParaScope Editor also
supports general user editing through a hybrid text and structure
editing facility that incrementally analyzes the modified program
for potential hazards. The D Editor is built on top of the ParaScope
Editor and possesses all of its analysis capabilities. In addition, the
D Editor incorporates additional features required for supporting
languages such as Fortran D and HPF.

3 Work Model
We begin by describing how we believe an advanced program-
ming tool can be used to analyze and tune the performance of a
program. This work model was developed as a group effort in
discussions with other members of the D System group at Rice
University. First, Fortran D or HPF data decomposition specifi-
cations are inserted by the user or automatic tools. The resulting
program is loaded into a graphical tool; analysis is performed to
statically calculate parallelism and communication. A summary
of the program consisting of subroutines and loop headers is then
presented. Sections of low parallelism or high communication are
highlighted.

The user selects one such region, causing the tool to zoom in
and provide detailed information. The program text in the region is
displayed. References causing nonlocal accesses are colored, with
the color indicating its effect on parallelism. Additional informa-
tion on data dependences, messages and variable data mappings
are also provided. If the user is dissatisfied, he or she may at-
tempt to improve the program’s performance by making changes
to the data decomposition or program structure. The tool can then
present the updated result and allow the user to evaluate the effect
on either parallelism or communication.

As the description of the work session shows, the user is able
to quickly zoom in on portions of the program causing commu-
nication and restricting parallelism. The key here is that since
the tool presents results using static analysis at the source level,
feedback should be both quick and easy to understand.

4 Fortran D Compiler Interface
Now that we have sketched the features we hope to provide in
the D Editor, we can show how the prototype is constructed. To
ease the burden on programmers, the D Editor needs to provide
feedback and guidance at the Fortran D or HPF language level.
However, since Fortran D programs undergo major transforma-
tions during compilation, it would be very difficult for the editor
to simply examine the source and output program. Instead, we



Program Information Type Source
Location of data decomposition specifications affecting reference compute

Reference Messages caused by reference record
Level Alignment, distribution, and decomposition of array available

Overlaps for array available
Statement type (parallel, replicated, single-processor, reduction) compute
Cross-processor dependences caused by statement compute

Statement Nonlocal references in statement record
Level Messages caused by statement record

Does statement assign to a private variable? available
List of uses of assignment to private variable available
Loop type (replicated, parallel, pipelined, sequential, single-processor) compute
Cross-processor dependences carried by loop record

Loop Nonlocal references in loop record
Level Statements with nonlocal references record

Lists of messages caused by loop (independent, carried-all, carried-part) record
All loop statements executed identically? available
Number of iterations executed by each processor available
Messages caused by procedure record

Procedure Nonlocal references record
Level Statements with nonlocal references record

Lists of loops by parallelism type (replicated, parallel, pipelined, sequential) record
Lists of loops by message type (shift, broadcast, gather, reduction, run-time) record
Messages in program record

Program Nonlocal references record
Level Statements with nonlocal references record

All loops and procedures in program record
Message type (independent, carried-all, carried-part, reduction) record
Communication type (shift, broadcast, gather, reduction, inspector, run-time) record
Reduction type (sum, prod, min, max, minloc, maxloc, logical AND, OR) record

Message List of processors sending/receiving data record
Level List of array sections sent/received record

List of array sections communicated in message available
Location of message in program available
Loop level of message available

Table 1: Fortran D Compiler Interface to the D Editor

have designed the D Editor so that it can request information di-
rectly from the Fortran D compiler through an interface. This
section describes the design and implementation of the interface
between the compiler and the D Editor; the manner in which the
editor displays the information is presented later in Section 5.

Figure 3 illustrates how the D Editor and Fortran D compiler
are designed to interact. Users employ the D Editor to examine
Fortran D programs. The Fortran D compiler analyzes and opti-
mizes these input programs, providing feedback to the D Editor
through the compiler interface. The D Editor processes this infor-
mation and presents it to the user in an easily accessible manner
through its graphical interface. Future versions of the editor will
provide editing and transformation capabilities, but these features
are not available in current prototype. When the user is satisfied,
the Fortran D compiler produces a message-passing program that
can be compiled using native Fortran compilers and linked with
the underlying run-time system to create executables.

4.1 Information Presented

The Fortran D compiler interface provides information about the
program at several levels: individual variable references, state-
ments, loops, procedures, and the entire program. Information
on communication is encapsulated in message objects that can be
queried for additional information.

Table 1 lists the information provided by the Fortran D com-
piler interface at each level of the program. In the column labeled
Source, we describe the method used to collect the information
gathered by the interface. Items labeled compute require the most

effort. This group represents new information that must be calcu-
lated by additional analysis in the Fortran D compiler; examples
include classification of statements and loops by degree of paral-
lelism. New algorithms were designed to compute the appropriate
information and are described later.

A second group of data labeled record represents information
produced but not normally recorded by the compiler. Examples
include the list of messages caused by a particular statement or
reference. The compiler does not maintain such information,
since it only determines where messages need to be inserted, not
exactly where they are caused. The D Editor, however, needs
the information to provide more feedback to the user. To support
the D Editor, the compiler has been modified to either record
information in this category when it is produced or dynamically
collect and cache it the first time it is requested. The final group
of data labeled available is produced and retained by the compiler
as part of its standard analysis. This category includes the data
decomposition for each array and nonlocal references.

4.2 Data Decomposition

The main factors affecting performance on MIMD distributed-
memory machines are the data decomposition, parallelism, and
communication. To be useful, the D Editor must relate parallelism
and communication back to the structure of the data decomposi-
tion and computation for the original program, using information
from the compiler. Here we describe data collected for data de-
compositions; later sections describe the interface for the other
two classes.



Recall that the Fortran D compiler partitions computation
among the processors using the owner computes rule. The way
computation is partitioned in turn determines both parallelism
and communication. As a result, the manner in which data is
partitioned in a Fortran D or HPF program crucially affects per-
formance. It is important that the compiler interface provides
information on how data is partitioned at each point in the pro-
gram, as well as which HPF statements are responsible.

This process is complicated by the fact that Fortran D supports
dynamic data decomposition, allowing data decompositions to be
changed at different points in the program. Furthermore, in For-
tran D, data decompositions are propagated between procedures.
For each procedure invocation, the formal parameters of the called
procedure inherit the decompositions of the corresponding actual
parameters passed at the call [14]. Global variables retain their
decomposition from the caller. Since a program may span multi-
ple modules (files), the actual Fortran D statements that describe
the data decomposition for the reference may reside in another
module.

InterproceduralReaching Decompositions. Reaching decom-
positions refers to the problem of determining the data decompo-
sition of a variable at a given point in the program [14]; the
Fortran D compiler solves this problem using FIAT [15]. Since
FIAT’s interprocedural analysis strategy is based upon a demand-
driven paradigm, the compiler interface is able to obtain the so-
lution to the reaching decomposition problem at any node in the
call graph by demanding the annotation that corresponds to our
problem. If the solution was computed earlier, then the system
returns the annotation without recomputing it. Details on how the
interprocedural reaching decomposition solution is computed are
discussed elsewhere [14].

After the interprocedural reaching decomposition annotation
is computed by FIAT, the compiler performs local reaching de-
composition to determine if an array’s decomposition has been
re-defined within the procedure. The resulting details on the de-
composition, alignment, and distribution that reach every refer-
ence in the procedure are then stored.

Location of Fortran D Statements. A desirable feature for the
D Editor is to point the user to the actual Fortran D or HPF data
decomposition statements that affect a given variable. To provide
this information, the compiler interface computes a mapping from
each array reference to the Fortran D statements that specify the
decomposition of the array reference. The compiler computes
during the local phase a unique ID for each data decomposition
statement and the context of the module containing the statement.
There is a bi-directional one-to-one mapping from the ID to the
statement that it refers to. This information is propagated in-
terprocedurally when reaching decompositions are computed and
stored for each reference in the procedure. Given the context and
the ID, the mapping to the actual Fortran D statements may be
found. Additional information may be readily calculated, includ-
ing the size, name, and declaration of the decomposition, inter and
intra-dimensional alignment, and the distribution chosen.

4.3 Parallelism
The second important class of information provided by the D Ed-
itor is parallelism. The Fortran D compiler interface calculates
parallelism information at both the statement and loop level; the
loop level information is more direct and significant. The com-
piler interface also gathers information about data dependences
that may impede parallelism.

Because Fortran D and HPF compilers generate SPMD pro-
grams with explicit messages serving as synchronization, tech-
niques for determining the amount of parallelism in a program are

REAL A(256,256,256)
DISTRIBUTE A(BLOCK,:,:)
do 10 k=2,N
do 10 j=1,N
do 10 i=1,N
A(i,j,k) = ¶ (A(i,j,k),A(i,j,k-1))

10 continue

Figure 4: Internalized Dependences

somewhat different from standard methods for shared-memory
programs. For shared-memory programs, the primary criteria
for exploiting parallelism was partitioning the computation so that
each processor performs a portion of the work. However, this con-
dition no longer implies parallel execution for SPMD programs,
because messages may act as synchronization to sequentialize all
or part of the computation.

We showed an example of this phenomenon for the SOR ex-
ample in Figure 1. The computation is always partitioned and
executed on multiple processors due to the owner computes rule;
however, without advanced compiler transformations processors
are able to work concurrently in only half the cases. In this section
we describe how the compiler interface determines whether paral-
lelism is exploited by considering the effects of synchronization.

Cross-Processor Dependences. Shared-memory parallelizing
compilers detect parallelism by calculating the data dependences
present in a program. A true (flow) data dependence represents
a definition (write) that must take place before a corresponding
use (read). It is the fundamental constraint on execution order. In
addition, a true dependence is said to be carried by a loop if its
source (write reference) and sink (read reference) take place on
different iterations of the loop. A loop can only be executed in
parallel if it does not carry any dependences.

Data dependence information is provided by traditional pro-
gramming tools such as the ParaScope Editor [21]. Because the
D Editor is built on the ParaScope Editor, it can calculate and dis-
play data dependences in the same manner. Unfortunately, simply
reporting occurrences of parallel loops is insufficient for deter-
mining the amount of parallelism exploited for languages such as
Fortran D and HPF. For a given partition, parallelism is only af-
fected by synchronization between nodes; data dependences local
to a node no longer affect large-scale parallelism.

For instance, consider the example shown in Figure 4. The only
data dependence in the loop nest is a true dependence between iter-
ations of the k loop. Standard analysis would thus label the k loop
as sequential and thej and i loops as parallel. However, the D Ed-
itor can and needs to analyze additional information. From Fortran
D statements we find array A is distributed block-wise in the first
dimension. Since the data dependence occurs only between ele-
ments of the third dimension, the endpoints of the dependence are
on the same processor. The dependence is thus internalized and
does not affect node-level parallelism [3]. The entire loop nest is
thus executed in parallel without synchronization.

In order to avoid reporting these internalized data dependences,
the Fortran D compiler applies algorithms to distinguish depen-
dences causing synchronization between nodes as cross-processor
dependences [17]. They are calculated by examining the pat-
tern of data accesses of both endpoints of the dependence to de-
termine whether they occur on separate processors. Non-time-
step loops that can carry cross-processor dependences are labeled
cross-processor loops; they help guide program transformations
to exploit pipeline parallelism. Cross-processor dependences can
also be used to point out specific references that cause synchro-
nization.



Parallel and Pipelined Loops. Using information from cross-
processor dependencesand loops, the Fortran D compiler can clas-
sify computations as parallel, pipelined, or sequential [17]. Us-
ing our definitions, parallel loop nests contain no cross-processor
loops, sequential computations have an outermost cross-processor
loop, and pipelined computations have a cross-processor loop in
an inner position. For the D Editor we classify any loop enclosed
in a cross-processor loop to be sequential.

Note that unlike shared-memory compilers, we no longer con-
sider the amount of parallelism of each loop separately. Instead,
we calculate the parallelism for each loop nest together as a single
unit. For instance, if all the computation enclosed in a loop is
executed in parallel, we do not mark it as a sequential loop even
if the iterations of the loop are executed sequentially. Conversely,
we may mark a loop with no data dependences as sequential or
pipelined depending on outer loops, even if the loop could poten-
tially be executed in parallel. Our classification system is moti-
vated by the desire to only bring loops that actually sequentialize
computation to the user’s attention.

In addition to classifying loops based on their contributions to
parallelism, we also label a loop as partitioned if its iterations are
spread out and executed on multiple processors.

Parallel Statements. Users may also desire to know how in-
dividual statements will be executed in the resulting program.
The compiler interface classifies statements as parallel, pipelined,
or sequential by finding the deepest loop enclosing each state-
ment. The statement is then assigned the same classification as the
loop. In addition, the compiler provides information on how state-
ments have been partitioned; whether its instances are executed
by one processor, partitioned across all processors, or replicated
on all processors. By classifying loops and statements as parallel,
pipelined or sequential, the user is able to quickly find loops and
statements that constitute bottlenecks in the program.

4.4 Communication

The third and final class of information concerns the communi-
cation a Fortran D or HPF program will generate. Because com-
munication can be expensive, it has an important effect on program
performance. Unlike information on data decompositions or par-
allelism, the compiler interface does not need to perform extra
record-keeping or analysis to provide information on messages.
Message-passing libraries require precise information on data to
be communicated, so the compiler already collects information
needed by the D Editor. The interface simply needs to gather the
information used to generate each message.

The interface constructs message information during the com-
munication analysis and optimization phases of the Fortran D
compiler. All array references are examined to determine if they
cause any communication. When communication is found, de-
tailed information about the message is constructed and attached
at both the individual reference and at the loop where it is inserted.
The D Editor will later extract this information and translate it into
text containing the details on the messages.

For each message, the compiler interface provides information
on its type, size, location, and destination. With respect to a loop,
a message is classified as independent if it is communicated once
before the loop, carried-all if it is executed by all processors at
the beginning of each iteration of the loop, and carried-part if
it is executed before and after the loop to synchronize pipelined
computations [17]. Figure 5 shows examples of the three message
types and references that cause each message. Note that the mes-
sage type is selected based on the fundamental ordering constraint
imposed by data dependence of the program, and is not an artifact
of the Fortran D compiler.

REAL A(256), B(256), C(256)
DECOMPOSITION D(256)
ALIGN A, B, C WITH D
DISTRIBUTE D(BLOCK)
do 10 k = 1,M
do 20 i = 1,N
B(i) = A(i-1)+B(i+1)
C(i) = C(i-1)

20 continue
10 continue ¦ £t¤

After Compilation
¤t¥

if ( §|§|§ ) send & recv A
£*¤

Independent
¤*¥

do 10 k = 1,M
if ( §|§|§ ) send & recv B

£*¤
Carried-all

¤*¥
if ( §|§|§ ) recv C

£*¤
Carried-part

¤t¥
do 20 i = 1,N
B(i) = A(i-1)+B(i+1)
C(i) = C(i-1)

20 continue
if ( §|§|§ ) send C

£*¤
Carried-part

¤t¥
10 continue

Figure 5: Message Types

The communication type of a message may be either a simple
point-to-point send/receive or one of a number of collective com-
munication patterns such as broadcast, gather, or reduction. If
the communication is for a reduction, the type of the reduction is
determined. In addition to the message and communication type,
the compiler interface can also easily determine the position of
the message in the code, the size and location data being sent, and
the processors participating in the communication. For architec-
tures that require message data to be contiguous, the amount of
buffering required can also be calculated.

5 D Editor Interface
Now that the sources of compiler information are clear, we de-
scribe how the D Editor displays this data in a natural, easily
understood manner. There are several reasons why a Fortran D
program may not perform well on a parallel machine, but it is usu-
ally the case that there is either insufficient parallelism inherent
in the program or communication costs are very high. The opti-
mizations performed by the Fortran D compiler are aimed largely
at exploiting parallelism and reducing communication overhead.

The D Editor display is designed to help the user understand
the implications of the compiler optimizations on the behavior of
the program at the level of the original Fortran D program. We
first examine features of the graphical display, then show how it
works on an example program. The D Editor display is derived
from the display of the ParaScope Editor [13, 21, 22], but contains
significantly more information. Figure 6 provides an example of
the user interface of the D Editor for different versions of SOR.
The display is separated into five panes.

To assist users in understanding the performance implications
of their programs, we have provided a coloring scheme that char-
acterizes references, statements, dependences and loops based on
their impact on communication and parallelism. The coloring
scheme is analogous to the colors of the traffic light. Code high-
lighted in red indicate computation that has been sequentialized.
Yellow implies partial parallelism is exploited using pipelining.
Green implies the computation is performed completely in paral-
lel. Communication is colored in the same manner to indicate its
effect on parallelism. The color generally corresponds to the ex-
pense of communication as well. Code that is not colored (black)
does not affect either communication or parallelism.



Figure 6: D Editor with SOR in Session

5.1 Overview Pane

The first component of the D Editor display is the overview pane;
it provides a summary of the procedures and loops in the program.
Procedures and loop headers are displayed and colored based on
their parallelism. The overview pane is useful for quickly finding
sequentialized computation or loops causing communication. The
user can inspect the loop by selecting it in the overview pane. The
D Editor marks the currently selected loop with the > symbol in
the overview pane; it determines which dependences, messages,
and arrays are displayed in the other panes.

In Figure 6, the overview pane in the top left corner summarizes
the three loop nests present in the example SOR program. The
color of the three loop nests (green, yellow, red) show that they
are parallel, pipelined, and sequentialized, respectively. The >
symbol is next to the loop at line 23, indicating the third loop nest
has been selected by the user.

5.2 Dependence Pane

Positioned immediately below the overview pane, the dependence
pane displays the data dependences carried on the selected loop.
These dependences are classified as true (flow), anti, or output
dependences. Cross-processor dependences point out values that
are defined and used on different processors; they are marked red,
yellow, or green depending on their effect on parallelism. Depen-

dences selected in the dependence pane are displayed as arrows
in the source pane. The D Editor allows the user to selectively
display arrows for individual dependences, all cross-processor de-
pendences, or all loop-carried dependences.

Because the Fortran D compiler uses the owner computes rule,
only a single processor writes to each array element. There are thus
no colored (i.e., cross-processor) output dependences. There are
also no red-colored anti-dependences; they never impede paral-
lelism since message vectorization will automatically move com-
munication caused by cross-processor anti-dependences out of
loop nests. As a result, all cross-processor dependences colored
red in the D Editor are true dependences.

In the SOR example, dependences for the selected loop j (the
first loop in third loop nest, at line 23) are displayed in the depen-
dence pane. There are two data dependences carried on loop j.
The first is an anti-dependence betweena(i,j) anda(i+1,j).
Since the communication caused by this anti-dependence is ex-
tracted out of the loop nest completely by message vectorization, it
has no effect on parallelism and is not colored (black). In compar-
ison, the true data dependence between a(i,j) and a(i-1,j)
results in communication that sequentializes the entire loop nest.
It is therefore colored red, alerting users to its significance.



5.3 Communication Pane
Next we have the communication pane, which displays all com-
munication associated with the selected loop. For each message
caused by the loop, the D Editor displays its location, type, and
other information in two lines. Messages of type independent are
labeled outside because they take place once for the entire loop
nest and are placed outside the loop. Messages of type carried-all
are labeled inside because they take place once per iteration and
are placed inside the loop. Recall that both message types allow
execution to occur fully in parallel. In comparison, messages of
type carried-part are labeled pipelined because they cause either
pipelined or sequentialized execution, depending on whether the
loop carrying the message is outermost.

The communication type (e.g., shift, broadcast, reduction) of
each message is displayed after the message type, followed by the
sets of sending/receiving processors and section of data communi-
cated. If the communication is a global reduction, the type of the
reduction (e.g., plus, times, min, max) is shown. By examining
the communication pane, the user can thus quickly determine the
number, type, and sizes of the messages executed at the level of a
particular loop.

In Figure 6, the communication pane shows two messages oc-
curring at the level of thej loop at line 23. The first message corre-
sponds to the communication caused by the referencea(i-1,j).
The message is labeled pipelined because it causes processors to
execute in order, normally inducing pipelined execution. How-
ever, since the messages are inserted at the level of the outermost
loop, in this case the computation is actually sequentialized. In
comparison, the second message corresponding to the reference
a(i+1,j) is inserted outside the entire loop nest and does not
impede parallel execution.

5.4 Data Layout Pane
At the bottom of the D Editor display is the data layout pane. Here
the editor displays the data decomposition information for each
array in the loop. For each variable, the D Editor lists the decom-
position to which it is mapped. The alignment between the array
and decomposition is shown next; the lack of alignment annota-
tions means the array is aligned perfectly with the decomposition.
The distribution of the decomposition is next, followed by the size
and dimensions of the decomposition. Arrays that are not parti-
tioned are listed without alignment and distribution specifications.
Unfortunately, the prototype D Editor does not provide users with
the ability to navigate between the variable and its corresponding
Fortran D data decomposition statement. In the SOR example, the
array a is shown to be identically aligned with the decomposition
d, which is distributed block-wise in the third dimension.

5.5 Source Code Pane
Finally, a separate source code pane displays the actual program
code. As in the overview pane, loops are colored based on their
parallelism. However, only their line numbers are colored to allow
greater emphasis on actual references in the program. The header
of the selected loop is marked with the > symbol next to its line
number. As mentioned earlier, data dependences selected in the
dependence pane are displayed in the source pane with an arrow
pointing from the source to the sink of the dependence.

In the source pane, every variable reference that causes mes-
sages to be inserted in the output program is colored red, yellow, or
green depending on its effect on parallelism. As a result, the user
can quickly determine the causes of nonlocal accesses in the pro-
gram. A loop nest may contain a number of nonlocal references,
only some of which cause the computation to be sequentialized.
The hierarchical design of the D Editor, combined with its use of
color coding, makes it easy for users to zoom in on the problematic

portions of their code.
In the current implementation of the D Editor, the source pane

scrolls to the loop selected by the user in the overview pane. Other
navigational aids include the ability to automatically scroll to the
source or sink of a dependence by selecting it in the dependence
pane. We are working on adding editing capabilities that will allow
the user to modify a section of his or her program and interactively
analyze the effects of the changes on performance.

In Figure 6, the source pane displays the entire SOR example
program. The line numbers 11–14 are colored green, indicating
the loop nest can be executed in parallel. No reference enclosed
by the loop is colored, so no communication is required for this
loop nest. The line numbers 17–20 are colored yellow, signify-
ing the loop nest is executed in a pipelined fashion. The reference
a(i,j-1)at line 19 is colored yellow, showing that it is responsi-
ble for the cross-processor data dependence that causes pipelining.
The reference a(i,j+1) at line 19 is colored green; indicating
it causes communication but does not affect parallelism.

The third loop nest is the most interesting. The lines 23–26
are colored red, designating the computation in the loop nest as
sequentialized. The referencea(i,j-1)at line 25 is colored red,
betraying it as the impediment to parallel execution. Because the j
loop at line 23 is also the selected loop (marked by the > symbol),
cross-processor data dependences on the loop are displayed using
colored arrows. The red arrow from a(i,j) to a(i,j-1)
at line 25 shows the endpoints of the dependence. Since the
arrow represents a true data dependence, values produced by the
assignment to a(i,j) are used on later iterations of the j loop
by the reference a(i,j-1). Additionally, because the arrow
is colored, the user knows that those values are consumed by
processors other than the producing processor, with the color red
signifying the communication sequentializes the computation in
the loop nest. The reference a(i,j+1) at line 25 is colored
green; as before, it causes communication but does not affect
parallelism.

6 Prototype D Editor Evaluation

So far, we have described the status of the prototype D Editor
demonstrated in November 1993 at Supercomputing’93. As we
have seen, this implementation can be a valuable tool for interac-
tively displaying the results of compile-time analysis. However, it
also has a number of weaknesses and limitations. In this section
we discuss some limitations of the current prototype and possible
solutions, as well as some new features planned for the D Editor.

6.1 Limitations

Compiler Transformations. The prototype D Editor assumes
that the underlying compiler does not perform program transfor-
mations such as loop interchange and strip-mining [21]. As a
result, the information it presents may be inaccurate for an auto-
matically transformed program. For instance, for kernels such as
SOR the Fortran D compiler can apply loop interchange to convert
sequential computations into pipelined computations; these loops
should be colored yellow rather than red. The D Editor also does
not provide information on the granularity of pipelining selected
by the underlying compiler if strip-mining is enabled.

A possible solution to this problem is to extend the editor in-
terface with a control panel for all the optimizations performed
by the underlying compiler. Then the compiler interface can re-
turn the correct parallelism and granularity information depending
on whether loop interchange and strip-mining are enabled in the
control panel. As an added advantage, expert users can use the
control panel to enable or disable various compiler optimizations
and select the granularity for pipelining [17].



Unfortunately, providing a control panel for optimizations only
solves part of the problem. Mapping performance and debugging
information from the transformed program back to the original
source is an open research problem; compiler assistance is likely
to be essential.

Communication Information. Another limitation is that de-
tailed communication information is supplied only for the cur-
rently selected loop. As a result, it is not possible to examine
messages generated for all loops in the program at once,or for mes-
sages caused by nonlocal references not in loops. The overview
pane also does not provide an indication of where communication
occurs in the program. Since this information is available from
the compiler interface, we can solve the problem by extending the
current editor interface. One possibility is inserting icons into the
overview and source panes to indicate the presence of communi-
cation; selecting an icon will cause messages represented by the
icon to be displayed in detail in the communication pane.

Parallelism Classification. Some users were perplexed by the
parallelism classification system used by the D Editor because they
expected parallel loops to be executed in parallel and sequential
loops to be executed on a single processor. Instead, the prototype
editor classified loops based on whether the enclosed computation
is executed concurrently. One possible solution is to only classify
loops whose iterations are partitioned across multiple processors,
marking them as parallel, pipelined, or sequential. All other loops
are simply classified as replicated, indicating that they are executed
on all processors. More experience is needed to determine what
classification system is more understandable for users.

Multiple Subroutines. The current prototype is able to display
only one subroutine at a time. As a result, it cannot relate informa-
tion between procedures, particularly reaching decompositions.
Adding navigation support between variable references and their
Fortran D data decomposition statements would ameliorate this
problem.

Editing. Editing is not permitted in the current D Editor, but
can easily be enabled. After program modifications users will
be required to save edits and hit the reanalyze button to update
parallelism and communication information.

Underlying Compiler. Finally, we found that the prototype ed-
itor is limited by the robustness of the underlying Fortran D com-
piler. As the compiler is also a research prototype, there are many
programs it is unable to compile, reducing the applicability of the
D Editor. This shortcoming will ease as the compiler improves.

6.2 Future Enhancements
Researchers in the D System group at Rice University are working
on enhancements to the D Editor to provide additional advice and
transformation capabilities. These new features either display new
information or suggest actions to improve program performance.

Interactive Program Transformations. The ParaScope Editor
provides a number of automatic structured program transforma-
tions targeting shared-memory machines, as well as advice as
to the legality and profitability of each transformation [21]. We
believe the same transformations can be useful in the D Editor.
Legality may be determined in the same manner, but profitability
may be quite different. The D Editor can use the same algorithms
as the ParaScope Editor to incrementally update dependence in-
formation after transformations [22], but new techniques for up-
dating parallelism, partitioning, and communication information
are needed. Researchers are also studying the problem of incre-
mental interprocedural analysis. New transformations to Fortran
D or HPF data decomposition statements can also benefit the user.

Automatic Data Decomposition. The D Editor currently pro-
vides information for the data decomposition specified in the pro-
gram. Instead of evaluating each data decomposition and present-
ing its effect on parallelism and communication, the D Editor can
incorporate heuristics for automatically selecting data decompo-
sitions [3]. The resulting choices can then be presented to the
user as a list of possible selections, or be used to suggest data
decompositions that provide better overall performance.

Performance Statistics. Another useful feature for the D Editor
is providing performance data. Ranking procedures and loops by
expected or measured execution time would allow users to more
easily focus on critical portions of the program. Execution times
would also make it easier to evaluate the effectiveness of automatic
data decomposition or program transformations. Performance
statistics may either be collected at compile time through static
performance estimation [4, 20] or at run time via profiling [10].

Graphic User Interfaces. Additional facilities for presenting
analyses and performance data graphically can improve the use-
fulness of the D Editor. Information such as the program call
graph, data decompositions, load balance, communication pat-
tern, and recurrences (cycles in the data dependence graph) can all
be displayed through a graphic interface for easier user compre-
hension. Integration with systems such as PABLO from Reed et al.
at the University of Illinois would greatly simplify the construction
of a graphic user interface.

7 Related Work
There is a large amount of work in both compiling for distributed-
memory architectures and interactive programming environments.
The D Editor is one of the first to combine both features in a single
parallel programming tool. The Fortran D compiler is similar to
CALLAHAN-KENNEDY [6], SUPERB [12], and KALI [23] in that the
compilation process is based on the decomposition of data in the
program. In comparison with these and other systems, the For-
tran D compiler performs significantly more compile-time analy-
sis and optimization and relies less on program transformations,
language extensions or an extensive run-time system.

The D Editor is based on the ParaScope Editor [13, 21, 22].
They share many features, including the underlying hybrid
text/structure editor, graphics utilities, and dependence display.
The ParaScope Editor is distinguished by its incremental analysis
and ability to provide guidance on a large number of interactive
program transformations. SIGMACS is another interactive system
targeting shared-memory systems; it can display call graphs, pro-
cess graphs, and a statement dependence graph [24]. TINY is a
system that provides precise data dependence analysis and pro-
gram transformations for a core subset of Fortran [28].

FORGE 90 is an interactive parallelization system that per-
forms data-flow and dependence analyses and also supports loop-
level transformations [2]. Associated tools graphically display
call graph, control flow, dependence, and profiling information.
FORGE 90 can be used to generate parallel programs for both
shared and distributed-memory machines. The VIENNA FORTRAN

compilation system, a successor to SUPERB, can display the pro-
gram after different stages of compilation to distributed-memory
machines [7]. It incorporates a performance estimation system
that relies on profiling information [10].

The FORTRAN 90D compiler is a closely related project that
shares many of the design and implementation strategies of the
Fortran D compiler [5]. It takes Fortran 90 as input, provides ro-
bust run-time support, but does not attempt automatic paralleliza-
tion. The FORTRAN 90D compiler can also graphically display
data decompositions in a program.



8 Conclusions

Languages such as Fortran D and High Performance Fortran can
potentially make it much easier for scientists to program MIMD
distributed-memory machines. However, evaluating the perfor-
mance of a Fortran D program can be difficult. In this paper
we introduce the D Editor, an intelligent interactive editor that
statically evaluates the parallelism and data movement of paral-
lel Fortran programs. It forms the centerpiece of the D System,
an integrated collection of tools to help scientists use these new
languages.

This paper describes the variety of information that must be
collected and displayed by the D Editor. By cooperating with
the underlying compiler, it can provide novel information on data
partitioning, parallelism, and communication. Because informa-
tion is collected through static program analysis and presented at
the level of the original Fortran D program, the D Editor is both
efficient and easy to use. Though the prototype editor contains a
number of limitations that need to be corrected, it is valuable for
experimenting with techniques to provide advanced user feedback
in an interactive programming tool. We believe the D Editor is
representative of a new generation of tools that will be needed to
assist scientists programming scalable parallel machines.
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