A Linear-Time Algorithm for Computing
the Memory Access Sequence in

Data-Parallel Programs

Ken Kennedy
Nenad Nedeljkovié
Ajay Sethi

CRPC-TR94485-S
October, 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

Subimtted to the 5th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP ’95).

A Linear-Time Algorithm for Computing the Memory
Access Sequence in Data-Parallel Programs

Ken Kennedy Nenad Nedeljkovic Ajay Sethi

ken@rice.edu nenad@rice.edu sethi@rice.edu

Center for Research on Parallel Computation
Department of Computer Science, Rice University

Abstract

Data-parallel languages, such as High Performance Fortran, are designed to facilitate writing of
portable programs for distributed-memory machines. Novel features of these languages call for devel-
opment of new techniques in both compilers and run-time support systems. We present an improved
algorithm for finding the local memory access sequence in computations involving regular sections of
arrays with cyclic(k) distribution. Using the fact that regular section elements form an integer lattice
we show how to find a lattice basis that allows for simple and fast enumeration of memory accesses. The
complexity of our algorithm is shown to be lower than that of the previous solution for the same problem.
In addition, the experimental results demonstrate the efficiency of our method in practice.

This work was supported in part by ARPA contract DABT63-92-C-0038 and NSF Cooperative Agreement Number CCR-
9120008. The content of this paper does not necessarily reflect the position or the policy of the Government and no official

endorsement should be inferred.

1 Introduction

High Performance Fortran (HPF) [7, 12] incorporates a set of Fortran extensions for portable data-parallel
programming on distributed-memory machines. The most important of these extensions are align and
distribute directives, which are used to describe how data should be distributed across processors in a
parallel computer. Array elements are first aligned to templates (abstract spaces of indexed positions), and
templates are then distributed onto a processor grid. Using this data mapping specification, the compiler
must partition the arrays and generate SPMD code which will be executed on each processor.

Several variants of data-parallel Fortran that preceded HPF, such as Fortran D [9] and Vienna Fortran [2],
also provided ways for the programmer to specify mapping of array data onto processors. Implementations
of these languages included the support for block and cyclic distributions. Both of these are just special
cases of cyclic(k) distribution in HPF, which first divides a template into contiguous blocks of size k£ and
then assigns these blocks to processors in a round-robin fashion. Obviously, cyclic distribution is equivalent
to cyelic(1), and block distribution of a template of size n onto p processors is equivalent to cyelic([n/p]).

An array A distributed with cyclic(k) distribution is effectively split into p subarrays, each being local
to one processor. For a program involving the array section A(l : u :s) with the lower bound [, upper
bound u, and stride s, the compiler must determine the sequence of local memory addresses that a given
processor must access when performing its share of computation over the array section. This problem and its
solution were first described by Chatterjee et al. [4]. They give an algorithm for solving the memory address
problem in O(k log k +min(log s, log p)) time, and show that any algorithm for this problem takes Q(k) time.
Hiranandani et al. present an algorithm that works in O(k) time, but only if some special conditions are
satisfied (s mod pk < k) [8]. In this paper we describe an improved algorithm that computes the memory
address sequence for the general case in O(k + min(log s,logp)) time. Experimental comparison with the
method presented in [4] shows that the theoretically proven lower complexity of our algorithm is mirrored by
its superior performance in practice. The proposed algorithm allows for simple and efficient implementation
and, as such, is suitable for inclusion in compilers and run-time systems for HPF-like languages.

The remainder of this paper is organized as follows: In Section 2 we describe the problem and the solution
proposed in [4] in some detail. In Section 3 we show how regular section accesses fit in the framework of
integer lattice theory. This is further explored in Section 4, where we lay the theoretical foundation for our
algorithm. The algorithm itself and analysis of its running time are presented in Section 5. We describe
our implementation experience in Section 6, discuss related work in Section 7, and conclude in Section 8 by

summarizing our contributions and indicating directions for future research.

2 Problem Statement

For array A distributed across p processors using cyclic(k) distribution, the layout of its elements in local
processor memories can be visualized as a two-dimensional matrix, with each row divided into p blocks [4].
The location of array element A(i) is determined by the processor holding A(7), the block within this

processor containing A(¢), and the offset of A(7) within the block. For example, in Figure 1 array element

A(108) has offset 4 in block 3 of processor 1 (we assume that array elements, offsets, blocks, and processors
are numbered starting from zero).

The sequence of local memory locations that given processor m must access when performing its share
of computation over the array section A({:u:s) can be described by the starting location and differences
between memory locations of every two successive elements of the array section that belong to processor
m. Given number of processors p, array distribution cyelic(k), and regular section stride s, the offset of an
array section element determines the offset of the next array section element on the same processor, and
also determines the memory gap between those two elements. Since the offsets range from 0 to k£ — 1, the
sequence of offsets, as well as the sequence of memory gaps, must have a cycle whose length is at most k.
Chatterjee et al. visualize the offset and memory gap sequence as the transition diagram of a finite state
machine [4]. State transitions depend only on p, k, and s, whereas a processor’s start state in the transition
table also depends on the lower bound of the array section [and that processor’s number m. Note that the
upper bound u does not play any role in finding the transition table and the starting state, and is only used
to find the last location for each processor.

The starting location for a given processor m is determined by the first element of the array section
A(l:u:s) that belongs to processor m. Since array element A(i) belongs to processor m if and only if its
offset relative to the beginning of its row (i mod pk) lies in the range [km, k(m + 1)), finding the starting

location is equivalent to finding the smallest nonnegative integer j such that
km < (I+ sj) mod pk < k(m+ 1) — 1.
It is shown in [4] that this is equivalent to solving a set of k linear Diophantine equations
{sj—pkq=i|km—-I1<i<km-—I1+k—1}

in variables j and ¢. Each individual equation has solutions if and only if ceD(s, pk) divides i. Furthermore,

all solutions for each equation can be found by using the extended Euclid’s algorithm for computing Gcp.

Processor 0 Processor 1 Processor 2 Processor 3
El 2 3 4 5 6 7 8@10 11 12 13 14 15|16 17 [18] 19 20 21 22 28|24 25 2628 29 30 31

32 33 34 3536 37 38 30|40 41 42 43 44 [45] 46 47|48 49 50 51 52 53 [54] 55(56 57 58 50 60 61 62 [63]
64 65 66 67 68 60 70 71([72] 73 74 75 76 77 78 79|80 [81] &2 8 8 8 8 87|83 89 [90] 91 92 9B M %
9% 97 98 100 101 102 103|104 105 106 107 100 110 111|112 113 114 115 116 118 119]120 121 122 123 124 125 127
128 129 130 131 132 133 134 [135|136 137 133 139 140 141 142 143 145 146 147 148 149 150 151|152 154 155 156 157 158 150
160 161 163 164 165 166 167|168 169 170 172 173 174 175|176 177 178 179 181 182 183|184 185 186 187 183 190 191
192 103 104 195 196 197 100|200 201 202 203 204 205 206 [207]|208 200 210 211 212 213 214 215 217 218 219 220 221 222 223
224 [225] 226 227 228 220 230 231|232 233 235 236 237 238 239|240 241 242 [243 244 245 246 247|248 249 250 251 253 254 255

256 257 258 259 260 262 263|264 265 266 267 268 269 271|272 273 274 275 276 277 278 |279||280 281 282 283 284 285 286 287

288 289 290 291 292 293 294 295|296 298 299 300 301 302 303|304 305 306 307 308 309 310 311|312 313 314 (315 316 317 318 319

Figure 1 Layout of array elements distributed with cyelic(8) distribution over 4 processors.
Rectangles indicate elements of the array section with lower bound ! = 0, and stride s = 9.

For each solvable equation, Chatterjee et al. find the solution having the smallest nonnegative 5 and use the
minimum of these solutions to get the starting array section element A({ + js) [4]. The last array section
element can be found in a similar way using the upper bound u. Since our focus is on finding the memory
gap sequence, and since the sequence itself is independent of u, we choose to deal with array sections for
which only the lower bound [and stride s are specified. Furthermore, we assume that s > 0, as the case
when s is negative can be treated analogously.

While we follow the approach from [4] for finding the starting location, our method differs in the way we
find the offset and memory gap sequences. After finding the set of smallest positive solutions as described
above, Chatterjee et al. sort this set to produce the sequence of array section indices that will be successively
accessed by the processor [4]. Memory gap sequence can then be found by a simple linear scan through
the sorted sequence of array indices. Since sorting the sequence requires O(klogk) time, it represents the
dominating term in the overall complexity of the algorithm. In order to reduce the complexity of finding the
memory gap sequence to O(k), we show how array indices can be enumerated in increasing order without
actually sorting the sequence.

HPF allows affine alignments between arrays and templates. In other words, array element A(7) can be
aligned to a template cell ai+b, for arbitrary @ and b. Perfect alignment of an array to a template is given by
a = 1,b = 0. Chatterjee et al. show that the memory access problem for any affine alignment can be solved
by two applications of the algorithm for the perfect alignment [4]. Therefore, we present our algorithm only
for the case of perfect alignment without loss of generality.

Similarly, since alignments and distributions of each dimension in a multidimensional array are inde-
pendent of one another, memory access problem for d-dimensional array sections reduces to d applications
of the algorithm for one-dimensional case. Consequently, we only need to describe our algorithm for one-

dimensional array sections.

3 The Integer Lattice

Our approach is based on treating each array element as a point in R? space with the origin corresponding
to the array element with index 0, positive y-axis in the direction of increasing row numbers, and positive
z-axis in the direction of increasing offsets with respect to the beginning of a row. For example, in Figure 1
the coordinates of the array element with index 108 are (12,3). Since the access pattern is independent of
the starting location /, in deriving our method for enumerating regular section indices, we will assume { = 0.
This implies that all array section indices (enclosed in rectangles in Figure 1) will be multiples of stride s.
The y-coordinate of an array element is equal to the number of the row to which that element belongs,
and the z-coordinate is equal to its offset within that row. Since each row has pk elements, any regular

section index and its corresponding coordinates in R? satisfy the relationship:
pky+x = is, 1€ Z.

The following theorem gives the useful characterization of the set of all points in R? corresponding to

regular section indices.

Theorem 1 Set A = {(b,a) € Z? |pka+b = is, i € Z} is an integer lattice.

Proof: Every discrete subset of R™ closed under subtraction is a lattice [10]. Let (b1, a1) : pka; +b1 = i1 s
and (bz, az) : pkaz + ba = iz s (i1,i2 € Z) be two arbitrary points in A. Since

pk (a1 —az) + (b1 — b2) = (i1 — iz) s,
point (b1 — b2, a; —ag) is also in A. By construction set A is discrete, and therefore it is an integer lattice. O

Our goal is to find a basis for A, i.e., the maximal set of linearly independent vectors in A from which
we can generate all lattice points using integer linear combinations. Since A C Z2, any basis for A can have
at most two vectors. If A can be generated using only a single vector, it is easy to see that pk must divide
s. This special case can be trivially handled in the algorithm, and therefore we will assume that any basis
for A contains exactly two vectors.

In order for vectors (b1, a1) : pkay + by =41 s and (ba,as) : pkas + by = iz s (i1,iz € Z) to form a basis,
for every lattice point (b,a) : pka+ b =1is in A there have to exist integers o and /3, such that

(b, Cl) =« (bl, al) + 6 (bz, 612).
The solution of the system of equations
bl o+ bz ﬁ = b
apataff = a
is given by
_ ai2 —agi ali—ail
- a1i2 — agil ’ alig — a2i1 '

It can be shown that a and § will be integers for every ¢ € Z, if and only if aj2s — azt; = £1. In

ab2 — azb alb — ab1
a1b2 — (12[)1 ’ (11[)2 — a2b1

@ =
other words, the necessary and sufficient condition for vectors (b1, a1) and (b2, as) to form a basis is given
by |aiis — asii| = 1.

In the example in Figure 2 line segments between lattice points correspond to the vectors (3,3) : 3 x 32+
3=11x9and (-1,2):2x32—-1=T7x9. Since 3 x 7T—2 x 11 = —1, these vectors form a lattice basis.

Although we now have a simple test for deciding whether two given vectors form a basis, we still need a
constructive method for finding a basis of the regular section lattice. If vector (b,a) : pka + b = is belongs
to a basis for A, then the segment joining (0,0) and (b, a) does not contain any other points from A. It can
be shown that (b, a) satisfies this condition, if and only if GcD(a,4) = 1. We can now use this fact to find a
basis of the lattice A.

Take (b1,a1) to be an arbitrary lattice point such that there are no other lattice points between (0, 0)
and (b1, a;); for example, this can be achieved by choosing i1 = 1, @y = s div pk, and b3 = s mod pk. Since

GeD(ag, 1) = 1, we can use the extended Euclid’s algorithm to find as and iz, such that

a1i2 — a2i1 =1.

LA lattice in R™ is the set of all integer linear combinations of a set of linearly independent vectors in R™.

Processor 0 Procr 1 Processor 2 Processor 3
@ 1 3, 4_,.""' 5 6, 7 14 15|16 17 19 20 2 2 23|24 25 2% 28 20 30 31
3333435373839 474849"505152535556'575859606162

64 65 66 67 68 69 70 7| 7 79|80 [e1] 82 83 ‘84 85 86 87|88 89 . o 2 % 94/ 95

%6 97 98 . 100 101 107 103|104 05 106 107 [108] 109 110 F11|112 113 14 15 116 118 119|120 121’ 122 123 124 125 [12q] 127

128 129 130 131 132 133 134 136 137 'i38 139"" 140 141 142 143 15 146 147 148 149 150 151|152 154 155 '156 157"" 158 159

160 161 (167 163 164 165 166 167 163 169 170 172 173 174 175|176 177 178 179 181 182 183|184 185 185 187 188 190 191

192 193"‘ 194 .f[95. 196 197 199 200 201 202 203 204 205 206 (207|| 208 209 210 211 212 213 214 215 217 218 219 220 221 .22._2_ 223

224 [228] 226 227 "228 229 230 231 232 233 [234] 235 236 237 238 239|240 241 242 204 245 “oap 247|248 249 250 251 [252] 253 254 255

256" 257 '"‘2’58 259 260 262 263 264 265 266 '"‘2’61 268 272 "273 274 75 276 277 278 280 281 282 283 284 "‘2‘85. 286 287

26g 280 200 291 207 203 294 295296 [297] 298 299 300 3| 304 305 [306] 307 308 309 310' 311|312 313 314 [a1g 316 317 18 319

Figure 2 Line segments corresponding to basis vectors (3,3) and (—1,2).

By defining by = i2 s — pk as, we complete the construction of (bs, as), which together with (b1,a;), forms a
basis for the lattice A.

Having a lattice basis allows us to construct all lattice points as integer linear combinations of basis
vectors. However, our goal is to enumerate regular section indices within a given processor’s range in
increasing order, and for this not any lattice basis will do. We now describe the construction of the basis for

A that makes this enumeration possible.

4 Constructing the Basis

We choose the first vector to correspond to the smallest regular section access on processor 0 (not counting
index 0 itself). More precisely, we define (b,,a,) : pk a, + b, = i, s to be the lattice point with the smallest
positive i, such that 0 < b, < k. Complementary vector (b;,a;) : pk a; + by = i s is defined by the regular
section index with the largest negative 7;, such that 0 < b; < k. It is clear that ¢, > 0 and a; < 0.
Furthermore, the case when b, = 0 or b; = 0 is easily detected in the algorithm, and therefore we can assume
that b, > 0 and b; > 0. The two points are constructed so that there can be no lattice point with the first
coordinate in the range [0, k) whose corresponding regular section index is smaller than i, s or greater than

i1 s. In other words, the triangle with vertices (0, 0), (b, a,), and (b7, a;) contains no other lattice points.
Theorem 2 Vectors R = (b, a,) and L = (b, a;) form a basis for the lattice A.

Proof: Suppose (b,a) : pka+ b = is is a point in A that cannot be represented as an integer linear
combination of R and L. This means that in the equality (b,a) = a R+ L at least one of «, 3 is not an
integer. Let us now look at the point (b1,a1) = {a} R+ {8} L, where {#} = # — |z] is the fractional part
of z. Since

(b1, a1) = (b,a) = (o] R+ 5] L)

and (b, a) € A, we conclude that (b1, a;) is also in the lattice A.

By definition of the fractional part, we have 0 < {2} < 1, for any # € R. From this, using the fact that

at least one of @, § is not an integer, we get 0 < {a} + {#} < 2. We now consider the following two cases:

1. If 0 < {a} + {8} < 1, then (b1, a;) lies within the triangle with vertices (0,0), (b,,a,), and (b, ar),

which contradicts the construction of R and L.

2. If 1 < {a}+{B} < 2, then we look at the point (ba, as) = R+ L — (b1,a1). Since (b1,a1) is in A, so is

(b2, az). From the definition of (bs, az) we have

(by,az2) = (1 —{a}) R+ (1 - {f}) L.

Using the fact that 1 < {a}+ {8} < 2 we get 0 < (1 —{a})+ (1 —{F}) < 1, which means that (b2, az)
lies within the triangle with vertices (0,0), (b, a,), and (b7, a;), which is again in contradiction with

the way R and L were constructed.
From the above we conclude that every (b, a) € A must be an integer linear combination of R and L. O

Basis vectors R and L for our example are shown in Figure 3. We now describe how to use these vectors
to enumerate the regular section accesses for a given processor m in increasing order.

Let (b1,a1) : pkaj + by = 41 s be an arbitrary regular section index within the range of processor m, i.e.,
mk < by < (m+ 1)k. If by + b, < (m + 1)k, then by the construction of R, index i s, corresponding to the

point
(b2ga2) = (blaal)—i_Ra (1)

is the smallest regular section index in the processor m’s range that is larger than #; s.

Suppose now that b; 4+ b, > (m + 1)k, and let us look at the point (by, az) : pkag + bs = i3 s given by
(bQ,(lg) = (bl,(ll) —L. (2)

Since 778 < 0, we have 198 =118 — ;78 > i1 s.
If b3 > mk, i.e., (b2, az) belongs to processor m, by the construction of L, i5 s is the smallest regular
section index in this processor’s range that is larger than ¢; s.

If (bg, az) is outside the range of processor m, i.e., by < mk, then the point
(bg,ag):(bQ,ag)—}—R:(bl,al)—L+R (3)

is within the given range (b3 = b1 + b, — b; > (m + 1)k — k = mk). Regular section index iz s corresponding
to (bs,as) is obviously larger than iy s, and consequently larger than i; s. Since (bs, as) is the first lattice
point after (bs, a2) that belongs to processor m, we conclude that iz s is the smallest regular section index
in the processor m’s range that is larger than i; s.

Thus, we have effectively proven the following:

Theorem 3 The distance between two points corresponding to consecutive regular section accesses on the

same processor can have one of three possible values: R, —L, or R— L.

Processor 0 Processor 1 Processor 2 Processor 3
Elz 3 4 5 6 7]8. folao 1 12 13 14 15|16 17-[18}-29 20 21 2 23|24 25 26-{27].28 20 B 3

32 33

0 4 2 43 e ::4"":747 48 49 50 51 52 53:sa)Es | 56 57 58 59 60 61 627{63]

::'6;{_’ . 79, 80 e1) 82 83 84 85 8 87 88 8ol el w2 e o o
% 97 55] 105 106 167 {108 109 110 11112 13 14 115 118uriis 110(120 121 122 123 1_2_4__,125111i3'2“i

128 129 130 131 132 133 134135]/136_ 137 138 130 140 141 1_4g__,1.43 i 146 147 148 149 150 151 152°[153154 155 156 157 158 159
169,.16'1?3?1?1‘63:164 165 166 167|168 193__,1'.'7‘6111'7"2:'173 174 175|176 177 178 175°[180 181 182 183|184 185 186 187___(1‘553'11:;:’1'9@;191

192 193 194 195 19@__,i§iiiiifi§§_'2oo 201 202 203 204 205, 26611 508 209 210 211 212 213 214__,23;51 517 218 219 220 221 222 223

A.Z"Z'Ziiiiifé'z'_éf227 228 229 230 231 2‘_3_{2__”233 53 236 237 238 239|240 2_4; 243" 243244 247248 249 250__(i°{252 253 254 255

256 257 258 259_”266111'2"62:263 264 265 266 267 2_@“8__”269 i?é'71 272 213 274 275 216 277 78 380 281 262 283 284 285 286”,:2»5?

580 290 201 202 293 294 205 ééé”"iéé""zgg 300 301 302 303|304 305306307 308 300 310 311|312 313 314731556 317 318 319

Figure 3 Basis vectors R = (4,1) and L = (5, —1).

Vector R can be found in much the same way as the starting location for processor m. We simply find the
minimum of the smallest positive regular section indices over all offsets in the range (0, k) that have at least
one such index. Vector L is computed by finding the maximum of these indices, and taking the coordinates
of this point relative to the point that starts the next sequence, i.e., the first positive index whose offset
equals 0. In the example in Figure 3 the smallest positive index on processor 0 is 36 and therefore R = (4, 1).
The largest index in the first sequence is 261, and since the point that starts the next sequence is 288, we

have L = (5,8) — (0,9) = (5, —1).

5 The Linear-Time Algorithm

The linear-time algorithm to compute the local memory access sequence, which is based on Theorem 3 from
the previous section, is given in Figure 4. As mentioned in Section 2, we use the approach described in [4] to
compute the starting location for a given processor. First, we use the extended form of Euclid’s algorithm [5]
to compute d = GcD(s, pk). Using this value, we can find the smallest regular section index for each offset
in the range of processor m (lines 3-9). Unlike the algorithm in [4], which stores all these locations and later
sorts them, we are only interested in the first location for the processor.

If the length of the sequence is greater than 1, then we compute the basis vectors R and L by considering
the processor 0’s memory access space for [= 0 (lines 16-22). Since we are interested in finding the first
point after (0,0), we start with the loop lower bound 1 (i = 0 gives the first solution: (0,0)). The smallest
location gives us vector R = (b,,a,), while L = (b;,a;) is computed using the coordinates of the largest
location relative to the point that starts the next sequence (lines 23-24).

Once we have found vectors R and L, we begin at the the starting location (line 26) and apply equation 1
from Section 4 until the range of offsets owned by processor m is exceeded (lines 29-33). The distance
R = (br,ar) between two consecutive regular section indices results in the local memory access gap of

ark+ b,.

Input: Distribution parameters (p, k), regular section parameters ({, s) and processor number (m).

Output: The AM table and the length of the table (length).

Method:

1 start = oo; length = 0; min = oo; maz =0

2 (d,z,y) — EXTENDED-EUCLID(s, pk)

3 > Find the starting location for processor m.

4 fori=km—Lkm—1l+k—1do

5 if (¢ mod d = 0) then > Equation has solutions.
6 loc:l+§(iz+pk[—ﬁ])

7 start = min(start, loc); length = length + 1

8 endif

9 endfor

10 if (length = 0) then

11 return 0, length

12 else if (length = 1) then

13 AMI0] = ks/d

14 return AM, length

15 endif

16 > Find the parameters of the two families of lines from processor 0. Assume [= 0.
17 for:=1,k—1do

18 if (¢ mod d = 0) then > Equation has solutions.
19 loc = g(iz—l—pk[—ﬁ])

20 min = min(min, loc); maz = max(maz, loc)

21 endif

22 endfor

23 (br,ar) = (min mod pk, min/pk)
24 (b1, @1) = (maz mod pk, maz [pk — s/d)

25 > Compute the memory access sequence.

26 offset = start mod pk

27 1 =0

28 while (i < length) do

29 while (i < length and offset+ b, < k(m + 1)) do

30 AM[1] = ar k + b, > Apply equation 1
31 offset = offset + b,

32 1=1+1

33 endwhile

34 if (i = length) break > If the whole sequence has been found, stop
35 AM) = —(ark + b)) > Apply equation 2
36 offset = offset — b

37 if (x < km) then

38 AMi] = AM[i]) + ar k + by > Apply equation 3
39 offset = offset + b,

40 endif

41 t=1+1

42 endwhile

43 return AM, length

Figure 4 Algorithm to compute the memory access sequence.

If the range is exceeded we move to the next point using equation 2 (lines 35-36), and compute the
corresponding memory gap. However, it is possible that this point is outside the processor m’s range (line
37), in which case we apply equation 3 and adjust the memory gap accordingly (lines 38-39).

We illustrate the algorithm by showing how it computes the access sequence for processor 1 for the
example in Figure 5. The input parameters are p =4, k =8, =4, s = 9 and m = 1. The lower bound of
the regular section is enclosed in the circle, while the rectangles mark exactly those points that are visited
in the algorithm.

Values returned by EXTENDED-EUCLID are d = 1, x = —7, and y = 2. Lines 4-9 compute start = 13
and set length = 8. Lines 17-22 find min = 36 and maz = 261 (for processor 0 and with [= 0). Therefore,
(br,ar) = (4,1) and (b1, a;) = (5, —1) (lines 23-24). Line 26 finds the offset of the first location on processor
1: offset = 13.

The outer while loop (lines 27-43) is executed five times. In the first iteration of this loop we do not
execute the inner while loop (lines 29-33), because the point (13,0) 4+ (4,1) = (17,1) (corresponding to
index 49) exceeds the offset range of processor 1. Instead we visit the point (13,0) — (5,—1) = (8, 1), which
corresponds to index 40 (line 35-36), and compute AM[0] = —(—1 x 8 +5) = 3. Since this point belongs to
processor 1 no adjustment to AM]0] is necessary. In the next iteration of the outer loop, we visit index 76
in the inner loop, setting AM][1] = 12 (lines 30-31) After terminating the inner loop, the next index visited
is 103, which does not belong to processor 1, and therefore we move to the point 139, setting AM[2] = 15
(lines 38-39). The process is continued until we reach the first point of the next sequence, index 301, and at

the end, AM = [3, 12, 15, 12, 3, 12, 3, 12].

Processor 1
(1) 56 7|8 9 10 11 _12-{13] 14 15|16 17 18 19

36 37 38 39 (40|74l 42 43 44 45 46 47|48 49 50 51

68 69 70 71(72 73 74 _757{76] 77 78 79|80 81 82 83

100 101 102 |103 :id-‘}.,,]'OS 106 107 108 109 110 111112 113 114 115

132 133 134 135|136 137 138'--14_()“»141 142 143|144 145 146 147

164 165 166 167|168 169 170 171 172 173_,__174‘-‘» 176 177 178 179

196 197 198 199200 201 [202°203 204 205 206 207|208 209 210 211

228 229 230 231|232 233 234 235 236 237'-'- 239|240 241 242 243

260 261 262 263|264 2:2"6::267 268 269 270 271|272 273 274 275

292 293 294 295|296 297 298 299 300 ' 302 303|304 305 306 307

Figure 5 Points visited by the algorithm when p =4, k=8, 1=4, s =9, and m = 1.

5.1 Complexity

The running time of the extended Euclid’s algorithm is O(log min(s, pk)) [5]. The loops in lines 4-9 and
17-22 of Figure 4 are both O(k). Finally, the doubly nested loop in lines 28-42 does only O(k) work; in fact,
we show that, in the worst case, at most 2k + 1 points are examined.

The algorithm visits all regular section indices belonging to the initial sequence, plus the first point in
the next sequence. Since the length of the sequence is < k, this means that at most k 4+ 1 points belonging
to processor m are visited. In addition the algorithm could also visit some extra points, i.e., some regular
section indices that are outside the processor m’s range. This happens if after applying equation 2, the
resulting point does not belong to processor m, and therefore we have to apply equation 3 (lines 37-40).
In the worst case, the inner while loop could always be empty, and all points in the initial sequence could
require the application of equation 3. This results in visiting k extra points, which together with £+ 1 indices
belonging to processor m brings the total number of points examined to 2k + 1.

Therefore, we conclude that the running time of the algorithm is O(logmin(s, pk)) + O(k), which re-
duces to O(k 4+ min(logs,logp)). Since it was shown in [4] that the problem is Q(k), our algorithm is
O(min(log s,logp)) away from being theoretically optimal. This term in the complexity equation comes
from the use of the extended Euclid’s algorithm to find the starting memory location for a given proces-
sor, and we believe that, in order to solve this problem for the general case, at least one GCD needs to be

computed.

6 Experimental Results

Despite its theoretical advantage, the algorithm presented in Section 5 cannot be a method of choice for
solving the memory access problem in compilers and run-time systems for HPF-like languages, unless it
allows for an efficient practical implementation. We now describe our implementation experience, which
shows that our algorithm is more efficient in practice than the method described in [4]. We also discuss the

impact that the shape of the node code has on the overall performance.

6.1 Table Construction

The description of the algorithm in Figure 4 provides enough low-level details to directly convert the algorithm
into working code. In order to perform a correct comparison with the algorithm from [4], we modified the
code provided to us by Siddhartha Chatterjee [3] so that the segments common to both methods (lines 3-9
in Figure 4) were coded identically. Moreover, since the method by Chatterjee et al. requires sorting of the
initial sequence of memory accesses, we tried to use the most efficient sorting routines available to us, so as
not to obtain an unfair advantage over the algorithm in [4].

If input parameters p, k, [, and s for our algorithm are compile-time constants, then the compiler could
compute the table of memory gaps (AM) for each processor. In that case the code that computes the
parameters of the two line families (lines 16-24 in Figure 4) would have to be executed only once, and values

of (br,a,) and (b7, ar) could be reused. Furthermore, as noted in [4], if ccD(s, pk) = 1, then the local AM

10

sequences are cyclic shifts of one another, and after computing the table once, only the starting locations for
all the processors need to be found. If values of some of the input parameters are not known at compile time,
then the memory access sequence has to be computed at run time. In other words, every processor would
run the algorithm from Figure 4 by supplying its processor number m. Our experiments were designed to
compare the performance of the two methods in this case, when every processor has to execute the complete
version of either algorithm.

Since the lower bound of the regular section has almost no influence on the running time of the algorithm,
all our experiments were performed with [= 0. Similarly, the effects of varying the number of processors
are only minor, and therefore we always used p = 32. The two varying parameters are block size k& and
stride s. We used powers of 2 for the block size, since these are the most likely values to be encountered in
practice (cases when k = 1 or k = 2 are not reported because the amount of work done by either algorithm is
negligible). We experimented with several values of stride s, and took into consideration two perhaps unusual
cases: s = pk — 1, and s = pk + 1. The reason for this was that these cases result in reversely (s = pk — 1)
and properly (s = pk + 1) sorted access sequences and as such are interesting to test the behavior of the
sorting routine.

Table 1 contains the execution times that our algorithm and the method by Chatterjee et al. take to find
the memory gap sequence (AM table in Figure 4) for different values of k£ and s. In Figure 6 we plot the
execution times for the case when s = 7. All measurements were performed on an Intel iPSC/860 hypercube,
using the icc compiler with —O4 optimization level and delock timer. Reported times represent maximums
over all 32 processors and are given in microseconds.

While the difference in performance of the two algorithms is not significant for small values of k (k = 4,
k = 8), as k increases the algorithm in Figure 4 clearly outperforms the algorithm described by Chatterjee et
al. in [4]. It should be noted here that the implementation from [3] uses the linear-time radix sort for sorting
the initial sequence when k > 64, which causes the relative performance gain achieved by our algorithm to
be constant. However, if a sorting method that sorts the sequence in place were used, for larger values of k

relative performance improvement would also increase.

s=17 s =199 s=k+1 s=pk—1 s=pk+1
Lines | Sorting Lines | Sorting Lines | Sorting Lines | Sorting Lines | Sorting

k=4 48 56 60 68 52 65 44 53 40 48
k=28 58 82 70 94 53 78 49 75 44 70
k=16 60 138 76 145 65 134 60 140 54 133
k=32 83 286 95 295 81 287 81 288 72 276
k=64 122 775 140 749 132 747 124 735 109 727
k=128 183 1384 232 1451 201 1453 203 1385 181 1367
k =256 332 2708 394 2814 340 2730 368 2713 325 2776
k=512 614 5550 679 5281 618 5328 698 5312 617 5262

Table 1 Execution times in microseconds for our algorithm (Lines), and the algorithm in [4] (Sorting).

11

us e --e Sorting K e---e Sorting .
o—e Lines o—e Lines :
s00 L 5000 -
e
200 - 3000 - .
. ,‘.
i) N .
100 F
o e
L ./'———f/' 1000 F .-
.
L ! | Y”’Y/T//T

4 8 16 32 k 64 128 256 512 k

Figure 6 Performance of the two table construction algorithms for the case s = 7.

6.2 Code Generation

After the table of local memory gaps is constructed, each processor uses its table to access the array
section elements that it owns. In order to achieve good performance great care has to be taken when
generating the node code.

In Figure 7 we show four different ways to generate the node code based on the memory sequence table.
The C code fragments correspond to the simple array assignment statement A(/ : u : s) = 100.0. The code
in 7(a) is identical to that proposed in [4]. In an attempt to remove the usually expensive mod operation,
we replace it with a simple test in 7(b). A slight modification of the same idea is shown in 7(c).

While these three code versions require only the table of local memory gaps (deltaM), the code in 7(d)
also requires the offset sequence table (nextoffset) and the offset of the starting memory location for a
given processor. Although our algorithm as presented does not directly provide these values, it is easy to
modify it to get this additional information. All that is needed is to insert stores into an array of offsets at
every point where variable offset (lines 26, 31, 36, and 39 in Figure 4) is updated.

Experiments with different versions of the node code were performed in the same environment as described
in the previous section. The code fragments from Figure 7 were executed on 16 processors. Lower bound [
was always 0, while the upper bound was scaled in proportion to stride s, in order to keep the number of
memory accesses constant. The execution times reported in Table 2 are for the case when each processor
performed assignments to 10,000 array elements.

The most notable is the very poor performance of the code that uses mod operations compared to the
other three versions. The version of the node code in Figure 7(c) is somewhat faster than that in 7(b), with
the difference increasing with larger block sizes. The main reason for this was better instruction scheduling
by the icc compiler in the version 7(c). The best performance was achieved using the code from Figure 7(d).
Although this version requires two table lookups per array access, its simple structure makes it more efficient

than the others, especially for smaller values of £.

12

base = startmem; i = 0;
while (base <= lastmem) {
*base = 100.0;
base += deltaM[i];
i = (i+1) % tablesize;

(a)

base = startmem; i = 0;

base = startmem; i = 0;

while (base <= lastmem) {
*base = 100.0;
base += deltaM[i++];
if (i == tablesize) i = 0;

(b)

base = startmem;

while (TRUE) { i = startoffset;
for (i = 0; i < tablesize; i++) { while (base <= lastmem) {
*base = 100.0; *base = 100.0;

base += deltaM[i];
if (base > lastmem) goto done;

base += deltaM[i];

i = nextoffset[i];

} }
}

done:

() (d)

Figure 7 Possible versions of the node code.

It was noted by Knies et al. that the code based on table lookup makes a time versus space tradeoff [11].
This is particularly true for the code in Figure 7(d), which while being the fastest, requires two tables to be
stored. However an important feature of our method is that the algorithm can be modified to return only
vectors R = (by,a,) and L = (b, a;), without storing any tables. Using these values, every processor can
generate the memory addresses as needed, using simple tests similar to those in lines 29 and 37 in Figure 4.
In this way the memory overhead is eliminated, but the performance will still be much better than if we

used the full run-time generation of addresses as described in [11].

[Code shape || 7(a) [7(b) I 7(c) [7(d) |

s=3 17976 3217 3095 2292

k=14 s=15 18060 3450 3326 2532

s =99 18541 3916 3823 3065

s=3 17980 3276 2606 2299

k=32 | s=15 18070 3504 2845 2547

s =199 18533 3983 3335 3083

s=3 18122 3316 2573 2357

k=256 | s=15 18081 3533 2797 2598

s =99 18567 4000 3294 3149

Table 2 Execution times in microseconds for different node code versions.

13

7 Related Work

Besides the work by Chatterjee et al. [4] that has been extensively cited throughout this paper, several other
researchers have also dealt with issues of compiling programs with eyclic(k) distribution.

Gupta et al. address the problem of array statements (A(l4:uq:84) = B(lp:up:sp)) involving block-cyclic
distributions [6]. In their virtual-cyclic scheme, array elements are accessed in an order different from the
order in a sequential program. While this is not a problem in perfectly parallel array assignments, the scheme
cannot be used for arbitrary loops accessing block-cyclically distributed arrays. In the virtual-block scheme
array accesses are not reordered, but if the array section stride is larger than the block size, their method
effectively reduces to run-time address resolution.

In an approach similar to the virtual-cyclic scheme Stichnoth et al. use intersections of array slices for
communication generation [13]. As mentioned above, a disadvantage of this method is that array accesses
are reordered.

Ancourt et al. use a linear algebra framework for compiling independent loops in HPF [1]. Because of
the independent parallelism they assume that loop iterations can be enumerated in any order. Generated

loop bounds and local array subscripts can be quite complex, and thus introduce a significant overhead.

8 Conclusions

Widespread use of data-parallel languages, such as High Performance Fortran, will not come about until
fast compilers and efficient run-time support systems are developed. In this paper, we have presented a new
algorithm for generating the local memory access sequence for computations over regular sections of arrays
that are distributed using HPF cyelic(k) distribution. We have shown that the theoretical complexity of our
method is superior to the previously known solution for the same problem. Furthermore, our implementation
experience indicates that the proposed algorithm is also more efficient in practice, which makes it a preferred
choice for compilers and run-time systems for HPF-like languages.

Although we know how to efficiently compile codes that access regular sections of arrays with cyelic(k)
distributions, many questions in HPF compilation remain unresolved. Some of the problems that need to
be investigated are compiling programs that access diagonal or trapezoidal array sections and optimizing
communication resulting from non-local accesses of array elements, both in the presence of cyelic(k) distri-
bution. Only after these problems are fully and efficiently solved, can the use of such novel features of HPF

become commonplace.

Acknowledgments

We would like to thank Siddhartha Chatterjee for providing us the code that implements the algorithm
described in [4] and for insightful comments on an earlier draft of this paper. We also thank Debbie Campbell

and Lani Granston for their help in proofreading various drafts of the paper.

14

References

C. Ancourt, F. Coelho, F. Irigoin, and R. Keryell. A linear algebra framework for static HPF code distribution. In
Proceedings of the Fourth Workshop on Compilers for Parallel Computers, Delft, The Netherlands, December 1993.

B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming, 1(1):31-50, Fall 1992.
S. Chatterjee. Private communication, October 1994.

S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S. Teng. Generating local addresses and communication sets for
data-parallel programs. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Diego, CA, May 1993.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. The MIT Press, Cambridge, MA, 1990.

S.K.S. Gupta, S.D. Kaushik, C.-H. Huang, and P. Sadayappan. On compiling array expressions for efficient execution
on distributed-memory machines. Technical Report OSE-CISRC-4/94-TR19, Department of Computer and Information
Science, The Ohio State University, April 1994.

High Performance Fortran Forum. High Performance Fortran language specification. Scientific Programming, 2(1-2):1-170,
1993.

S. Hiranandani, K. Kennedy, J. Mellor-Crummey, and A. Sethi. Compilation techniques for block-cyclic distributions. In
Proceedings of the 1994 ACM International Conference on Supercomputing, Manchester, England, July 1994.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD distributed-memory machines. Commu-
nications of the ACM, 35(8):66—-80, August 1992.

R. Kannan. Algorithmic geometry of numbers. In J. Traub, editor, Annual Review of Computer Science. Annual Reviews

Inc., Palo Alto, CA, 1987.

A. Knies, M. O’Keefe, and T. MacDonald. High Performance Fortran: A practical analysis. Scientific Programming,
3(3):187-199, Fall 1994,

C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance Fortran Handbook. The MIT
Press, Cambridge, MA, 1994.

J. Stichnoth, D. O’Hallaron, and T. Gross. Generating communication for array statements: Design, implementation, and
evaluation. Journal of Parallel and Distributed Computing, 21(1):150-159, April 1994.

15

