Combining Dependence and Data-Flow

Analyses to Optimize Communication

Ken Kennedy

Nenad Nedeljkovié

CRPC-TR94484-S
September, 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892

A modified version of this paper will appear in the
Proceedings of the 9th International Parallel Process-
ing Symposium, IPPS ’95.

Combining Dependence and Data-Flow
Analyses to Optimize Communication *

Ken Kennedy Nenad Nedeljkovic¢

ken@rice.edu nenad@rice.edu

Center for Research on Parallel Computation
Department of Computer Science, Rice University

Abstract

Reducing communication overhead is crucial for improving the performance of pro-
grams on distributed-memory machines. Compilers for data-parallel languages must
perform communication optimizations in order to minimize this overhead. In this
paper, we show how to combine dependence analysis, traditionally used to optimize
regular communication, and a data-flow analysis method originally developed to im-
prove placement of irregular communication. Qur approach allows us to perform more
extensive optimizations — message vectorization, elimination of redundant messages,
and overlapping communication with computation. We also present preliminary ex-
perimental results that demonstrate the benefits of the proposed method.

1 Introduction

Distributed-memory machines are becoming widely accepted as the most promising way
to achieve high performance computing. They scale to hundreds, and even thousands of
processors, thus providing unmatched computing power. However, harnessing this power is
an extremely difficult task. Since these computers lack global address space, communication
has to be inserted whenever a processor needs to access non-local data. Managing this
communication explicitly is a very tedious and error-prone process.

In recent years significant efforts have been made to develop programming languages that
provide shared address space in order to free the programmer from the burden of manipulat-
ing messages directly. Data-parallel languages, such as Fortran D [17], Vienna Fortran [5],
and High Performance Fortran (HPF) [19], provide directives for the programmer to specify
how data should be distributed among processors. Using the distribution directives, compil-
ers for these languages (which are often source-to-source translators) generate SPMD-style

*This work was supported in part by ARPA contract DABT63-92-C-0038. and NSF Cooperative Agreement
Number CCR-9120008. The content of this paper does not necessarily reflect the position or the policy of
the Government and no official endorsement should be inferred.

programs in which the computation is partitioned across processors and the communication
inserted wherever necessary.

The main obstacle in achieving high performance when running these programs on dis-
tributed architectures is the fact that the cost of interprocessor communication in modern
multicomputers is significantly higher than the cost of accessing local data. Therefore, it
is extremely important to reduce the amount of communication inserted by the compiler.
In the Fortran D compiler prototype developed at Rice University, communication resulting
from regular array references (those references where subscripts are linear combinations of
loop induction variables) is optimized based primarily on dependence analysis [16]. The most
important optimizations performed are message vectorization (which hoists communication
out of loops thus combining multiple single-element messages into a single vectorized mes-
sage) and message coalescing (which combines messages resulting from different references
to the same array) [18]. However, the effectiveness of optimizations is limited by the fact
that most of the analysis is performed for a single loop nest at a time, and very little is done
to optimize communication across arbitrary control flow.

On the other hand, communication caused by irregular array references (those where sub-
scripts are not linear combinations of loop induction variables, but for example array lookups)
is optimized via the powerful GIVE-N-TAKE code placement framework [14]. Although this
framework provides global analysis on the control flow graph, its current limitation is the
treatment of arrays as indivisible units. Because of this, it does not take advantage of cer-
tain optimization opportunities that come from the compile-time knowledge about array
references.

In this paper we show how to combine dependence analysis, which provides the infor-
mation about array elements and sections accessed, and data-flow analysis based on the
G1vVE-N-TAKE framework, to propagate this information across arbitrary control flow. The
combined approach allows us to perform more extensive optimizations than either of the two
components would do on its own.

There have been several attempts to use data-flow analysis in order to optimize com-
munication [8, 7, 11]. Most of these efforts have focused on extending the existing data-flow
analysis methods to work with some form of array section descriptors. In contrast, our data-
flow analysis uses bit vectors (with each bit representing an array portion) and is thus likely
to be more efficient. While this approach could result in a less precise analysis, we maintain
high level of precision by examining the relationships among array portions when initializ-
ing the data-flow framework. Our preliminary experiments indicate that this precision is
satisfactory for data-parallel scientific kernels, and that the proposed method is useful for
reducing communication cost.

The remainder of this paper is organized as follows: In Section 2 we provide further
motivation for our work by discussing the benefits and drawbacks of the two current ap-
proaches and outlining possible improvements. Our method for combining dependence and
data-flow analyses is described in detail in Section 3, and preliminary experimental results
are presented in Section 4. We discuss related work in Section 5 and conclude in Section 6
by summarizing our contributions and indicating directions for future work.

2 Motivation

In this section we describe the analyses and optimizations performed in the current Fortran D
compiler prototype. We split our discussion in two parts. First, we briefly describe the pros
and cons of the dependence-based approach, which is used to optimize communication caused
by regular array references. Second, we give an outline of the data-flow framework used to
analyze irregular array accesses and present some problems that arise when this analysis is
applied to regular references.

2.1 Optimizing Regular Communication

We call an array reference regular if its subscripts are linear combinations of loop induction
variables of the loops that enclose the reference. The most important optimization for
these references is message vectorization. It uses the level of loop-carried true dependences
to decide if the communication can be hoisted out of the loop, in which case many small
messages are replaced with one large message. This algorithm was first described in [3] and
[6], and its implementation in the Fortran D compiler is detailed in [20].

In order to avoid communicating redundant data, the compiler applies message coalescing,
which combines messages for different references to the same array. In the absence of data-
flow analysis, this optimization is performed only within a single loop nest, and thus many
opportunities for eliminating redundant messages may be missed.

Overlapping communication and computation is an important technique used to improve
the performance of programs on distributed-memory machines. The Fortran D compiler tries
to achieve this overlap through vector message pipelining, an optimization that moves SEND
and RECV statements towards their definitions and uses respectively. However, the support
for this optimization in the current compiler prototype is very limited.

The program in Figure 1 illustrates the analysis and optimization performed for regular
references. The original Fortran D program with data decomposition and distribution di-
rectives is shown on the left. Since the number of processors is 5, each processor will get 10
elements of each of the arrays a, b, and c. Based on this distribution, the compiler partitions
the computation by applying the owner computes rule and inserts necessary communication,
as shown on the right side. For example, statement Comm 1225 1heans that the array el-
ement b(11) is sent from processor 1 to processor 0. Although the compiler performs loop
bound reduction when translating the Fortran D program into SPMD node program, in the
interest of readability we show all the loops and communication in terms of global indices.

In our example, communication () of the elements of array b is clearly redundant, since
these same elements have already been communicated in (I), in order to satisfy the non-local
references to b in the first DO loop. Because the compiler performs message coalescing only
within a single loop nest, it is not able to remove this redundant communication.

Somewhat more complicated is the case of communication). This communication is
partially redundant, because it is only redundant if the THEN branch of the IF statement is
taken, in which case the same elements of array a will already have been communicated in
@). Because of this partial redundancy, it is desirable to move communication @) inside the
ELSE branch, just after the DO loop that defines elements of a, but the compiler does not
perform the analysis necessary for this kind of optimization.

PROGRAM examplel PROGRAM examplel

REAL a(50), b(50), c(50) REAL a(50), b(50), c(50)
PARAMETER (n$procs = 5) b(11) b(21) b(31) b(41)
DECOMPOSITION template(50) Comm 1 ~—=’0, 2 ~="1, 3 =52, 4 =3[(D
ALIGN a, b, c WITH template DO i=1, 49
DISTRIBUTE template (BLOCK) a(i) = b(i+1) + x
ENDDO
DO i =1, 49
a(i) = b(it1) + x IF (expr) THEN
ENDDO
a(1l1 a(21 a(31 a(41
Comm 12 2D, 56D, 428D, @

IF (expr) THEN

. b(11 b(21 b(31 b4l
DO i =1, 49 Comm 120, 220 3P0, 4PV (3)
c(i) = a(i+1) + b(i+1) DO i = 1, 49
ENDDO c(i) = a(i+1) + b(i+1)
ELSE ENDDO
DO i=1, 50 ELSE
a(i) = a(i) +y D0 i =1, 50
ENDDO a(i) = a(i) + y
ENDIF ENDDO
ENDIF

DO i =1, 49
b(i) = a(i+1) * z 11 21 31 41
al al al al
ENDDO comm 120, 2220y 5200, 428D @
DO i =1, 49
b(i) = a(i+l) * z
ENDDO

END

END

Figure 1 Communication placement based on dependence analysis.

2.2 Give-N-Take Code Placement Framework

Most common examples of irregular array references are those in which an array subscript
itself is a reference to an indirection array. In these cases it is hardly possible to extract any
significant compile-time knowledge about array sections accessed, and therefore dependence
analysis is of little use. Instead, the Fortran D compiler prototype uses the analysis provided
by the GIVE-N-TAKE code placement framework [14]. This very general framework uses
a producer-consumer concept where references to potentially non-local data are viewed as
consumption, and the communication that fetches the data represents the production whose
placement needs to be determined. Additionally, the framework also takes into account that
data may also be destroyed, i.e., redefined, or given for free through side effects.

For each node in the control-flow graph, initial variables of the framework describe con-
sumption (TAKE,,;), destruction (STEAL;,;:), and side effects (GIVE;,;;) at the corresponding
location in the program. The algorithm for data-flow analysis then propagates this infor-
mation globally, by evaluating the complex equations described in [14]. The result of the
analysis is given by output variables that indicate where the production of data should be
placed. If we are only trying to satisfy references to non-local data, the production will be
in the form of global READ (GATHER) statements. If we relax the owner computes rule to
allow definitions of non-owned data, than we also need to find placement for global WRITE

(SCATTER) statements, which will indicate when these data should be sent back to their
owners.

Optimizations performed by the framework include global elimination of redundant pro-
duction (communication) and latency hiding achieved by splitting each production (READ)
in such a way that its start (READg.,q) is placed as early as possible and its end (READg..,)
as late as possible.

Although the GIVE-N-TAKE framework is in principle applicable to analysis of regular
references, its current implementation has several limitations, most of which come from the
fact that the initial focus was on the analysis of array accesses with irregular subscripts. For
example, in the READ problem TAKE,,;; set for each node includes all the array portions
referenced at that point in the program [12]. For irregular problems, determining which of
these references require communication is done at run time through calls to PARTI/CHAOS
library routines (GATHER) [4]. However, in regular codes, it is often possible for the compiler
to extract much more static information and determine at compile time which references are
non-local.

When comparing two portions of the same array, the compiler must assume the most
conservative facts if these portions are accessed via irregular subscripts. For example, when
deciding whether communication of an array portion can be hoisted across a definition of the
other portion, we need to find out whether these two portions have non-empty intersection.
If these are irregular portions of the same array, at compile time we must assume that they
might interfere with each other, since otherwise we might place communication in such a way
that the data are sent before they are defined. Similarly, for two irregular array portions
representing data to be communicated, it is not safe to assume that either one can be
subsumed by the other, unless the portions are identical. In contrast, regular array portions
often provide enough information for the compiler to answer some of these questions more
precisely.

The example in Figure 2 shows the results of applying the analysis developed for irregular
problems to the code in which array references are regular. Communication (I), which
performs a global READ for a(2:50), is delayed until after the execution of the first DO
loop. The reason for this is that the GIVE-N-TAKE framework conservatively assumes
that the definition of array elements in the first DO loop interferes with the data that is
communicated in (I), just because they both use the same array a. Furthermore, even
if the compiler compared regular array sections a(2:50:2) (defined in the first loop) and
a(2:50) (referenced in the second loop), it would find out that these two have non-empty
intersection. The communication would therefore stay at the same place, since the compiler
passes the whole array portion referenced to the run-time library (the READ statement
would actually be converted into a call to the GATHER routine) and lets the run-time system
decide which accesses really require communication. However, if we look more closely at this
communication, we can see that array elementsa(11, 21, 31, 41), which participate in it,
are actually not defined in the first loop. This means that the SEND part of communication
(D could be moved before the first DO loop, and thus the message transfer time could be
overlapped with the execution of that loop.

In the last loop nest communication) is correctly hoisted out of both loops, but the
communication (@) is not. The reason for this is that the framework does not analyze array
references on a per element basis, but instead assumes that the same portion of array c is

PROGRAM example2 PROGRAM example2
REAL a(50), b(50), c(50) REAL a(50), b(50), c(50)

PARAMETER (n$procs = 5)
DECOMPOSITION template(50)

ALIGN a, b, c WITH template DO i = 2, 50, 2
DISTRIBUTE template (BLOCK) a(i) = x
ENDDO

DO i = 2, 50, 2
a(i) = x READ SEND/RECV a(2:50)| @
ENDDO DO i = 1, 49
b(i) = a(i+l) * y
ENDDO

DO i=1, 49
b(i) = a(i+l) * y

ENDDO
|READ SEND/RECV b(1:10)| @
DO i=1, 49 DO i =1, 49
DO j = 1, 10 DO j =1, 10
c(i) = c(i) + c(i+1) * b(j) |READ SEND/RECV c(i+1)| @
ENDDO c(i) = c(i) + c(i+1) * b(j)
ENDDO ENDDO
ENDDO
END
END

Figure 2 Communication placement based on GIVE-N-TAKE analysis.

both defined and used within the loop nest. However, the method based on the level of loop-
carried true dependences (described in the previous section) would place this communication
at the same place as ().

3 Combined Approach

In the previous section we have exposed the shortcomings of each of the two separate analyses
performed by the Fortran D compiler. We now show how to combine these two analyses in
an effort to optimize communication placement for regular computations.

3.1 Initial Communication Annotations

As a first step we perform dependence analysis for all regular references. Results of this
analysis are then used for communication vectorization and coalescing within each loop
nest. By doing this, we are able to avoid the problem that the GIVE-N-TAKE framework
has with hoisting communication out of the loop in the presence of anti dependences.

In contrast to the existing Fortran D compiler, we do not yet generate actual messages,
but instead each node in the control-flow graph is annotated with sets of array elements that
need to be communicated (COMM) at that point in the program. Although messages that
will eventually be generated from these annotations are created using indices local to each
processor, at this point we still represent communication sets in terms of global indices from
the original Fortran D program.

The current Fortran D compiler prototype uses regular section descriptors (RSDs) to
represent the sets of array elements that need to be communicated [15]. These RSDs are
augmented to handle simple forms of boundary conditions [20]. While this representation
is sufficient for one-dimensional BLOCK and CYCLIC distributions currently supported by the
compiler, a more general representation is necessary for communication sets that arise with
BLOCK_CYCLIC and multi-dimensional distributions. However, our approach is independent
of the representation used for communication sets, as long as this representation supports
some basic operations; we should be able to determine if two given sets intersect, and if one
is a subset of the other. Naturally, the increased precision of these operations is likely to
also increase the precision of the overall analysis.

It is important to note that for each communication annotation we need not only record
the set of array elements that should be communicated, but also keep track of the proces-
sors participating in the communication. This information is also produced by the current
compiler, which classifies communication according to the patterns of references that cause
it.

3.2 Computing Data-Flow Variables

After the communication sets are computed based on dependence analysis, we use these sets
to define the input variables for the GIVE-N-TAKE framework. Because we assume that
the owner computes rule is used to partition the computation, we only need to solve global
READ problem. Since the owner computes rule does not allow definitions of non-owned data,
we only need to determine the placement of communication necessary to satisfy non-local
references. In order to do this we initialize the input variables for each node as follows:

READ.TAKE;,;; = Cowmm,
READ.STEAL;,i: := affects(DEF),
READ.GIVE,;; = contains(COMM).

Each variable represents a bit vector in which each bit position corresponds to an array
portion. Consumption that needs to be satisfied at a certain node in the control-flow graph
(TAKE;,i:) is given by the COMM set for that node — it includes all array portions that should
be communicated at that point, as determined by dependence analysis. For example, all
CoMM sets shown in Figure 1, would go into TAKE;,;; sets for their corresponding locations
in the program. In contrast to the original analysis of irregular problems [12], where TAKE;,;;
sets contain all referenced portions of distributed arrays, our consumption sets will be smaller
whenever the elements to be communicated can be determined at compile time. More precise
consumption sets will often open ground for more optimization opportunities, as shown by
the example in Figure 2. Furthermore, since our data-flow variables include only those
bits that represent array portions for which communication is required (instead of all array
portions referenced in the program), this will make bit vectors shorter, and therefore the
analysis will be faster.

STEAL;,;; set for each node includes all COMM sets in the program that could be af-
fected by definitions at that point in the control-flow graph (DEF). In other words, if an
array portion that needs to be communicated somewhere in the program has non-empty

intersection with the array portion defined at the current location, then the former belongs
to the STEAL;,;; set of the current control-flow node. These sets are used to prevent the
moving of communication statements across definitions of data that is to be communicated.
For example, in Figure 1 CoMM set 4) would be stolen by the definition of array portion
a(1:50) in the ELSE branch of the IF statement, which prevents this communication to be
hoisted before the whole IF statement.

GIVE;,;; sets are used to eliminate redundant and partially redundant communication. If
an array portion belongs to a COMM set for a control-flow node, then all array portions that
should be communicated elsewhere in the program, and that are fully contained in the given
portion, belong to the GIVE,,;; set for that node. For example, communication () in Figure 1
would be given by the communication (I) of the same array. By initializing GIVE;,;; sets this
way, we can eliminate messages not only when array portions are identical to those already
communicated (as is the case in Figure 1), but also when they are subsets of previously
communicated data.

As mentioned in Section 3.1, when checking if one communication subsumes another,
it is not enough to look only at the array elements communicated, but we also need to
take into account processors participating in the communication. For example, given a shift

communication
11 21 31 a1
COM1\11a(—>)O, 2 A)1, 3a(—>)2, 4 &) 3
and a broadcast communication
a(11)

Comm1 — 0, 2, 3, 4

the former does not subsume the latter although the set of elements communicated in the
broadcast (a(11)) is fully contained within the set of elements communicated in the shift
(a(11, 21, 32, 41)). To see this, it is enough to note that the shift communication makes
element a(11) available only at processor 0 (and owning processor 1), while the broadcast
makes this element available at all 5 processors.

Once the input variables are initialized, we proceed with the GIVE-N-TAKE analysis as
described in [14]. All lattice operations needed to evaluate data-flow equations are performed
on bit vectors. It would be possible to modify the framework so that it performs lattice
operations on array portions themselves, instead of using just bits that represent those array
portions. Although this approach could in some cases be more precise, we chose not to do so
for two reasons. First, our method is more efficient because we only look at the relationships
among array sections when initializing the framework, and during the data-flow analysis we
perform simple logical operations on bit vectors. On the other hand, evaluating intersection,
union and difference of array portions can be quite non-trivial and possibly time consuming
(depending on the representation used and the precision desired). The second reason for
our approach is that it allows easy integration with already existing analysis for irregular
problems, where compile-time knowledge about array portions is insignificant and an effort
to perform lattice operations on these portions would prove fruitless.

PROGRAM example3
REAL a(50), b(50), c(50), d(50)

Comm 173 o PEL, BB, D
D0 i=1, 30

a(i) = b(i+1) + x
ENDDO

a(31) = b(31)

IF (expr) THEN

a(11 a(21
ComMmMm 1 L—>)0, 2 (—>)1 @
DO i=1, 24
c(i) = c(i) + a(i+1)
ENDDO
ELSE

ComMM 1b£1—1>)0, zbﬂ)l @
DO i=1, 24
c(i) = c(i) - b(i+l)
ENDDO
ENDIF

ComMM 1a£1—1>)0, zaﬂ)l @
DO i=1, 24

b(i) = a(i+l) * y
ENDDO

a(11 a(21 a(31 a(41
Comm 1 L—>)0,2 L—>)1,3 £_>)2’4 {41) o @

PR @

c(11) c(21) c(31)
CoMmMm 1 —"0,2 —"1,3 —"2

»

comm 0222 5 3.4 ©)
D0 i=1, 49
DO j =1, 10
c(i) = c(i) + c(i+1) * d(j) + a(i+1)
ENDDO
ENDDO
END

PROGRAM example3
REAL a(50), b(50), c(50), d(50)

d(1:10
senp 002 5 3.4 D

b(11 b(21 b(31
L—a)O, 2 £—+)1, 3 £—+)2

SEND/RECV 1
DO i =1, 30

a(i) = b(i+1) + x
ENDDO

11 21
senp 1 2o, 223 &)

a(31) = b(31)

IF (expr) THEN

Recy 120, 232Dy @
D0 i=1, 24
c(i) = c(i) + a(i+1)
ENDDO
ELSE
DOi=1, 24
c(i) = c(i) - b(i+1)
ENDDO

a(11 a(21
Recv 12030, 22304 (B)
ENDIF

c(11 c(21 c(31 c(41
SEND 1 £_+)0,2 £_+)1,3 £_+)2,4 £—+)3

D0 i=1, 24
b(i) = a(i+l) * y
ENDDO

SEND/RECV 1 —"0,

Dy 22D, 28D, 428D,

c(11) c(21) c(31) c(41
ReEcv 1 £—>)0,2 £—>)1,3 £—>)2,4 £—>)3

d(1:10
Recv 00229 5 3.4 ©)

DO i=1, 49
D0 j =1, 10

®

c(i) = c(i) + c(i+1) * d(j) + a(i+1)

ENDDO
ENDDO
END

Figure 3 Left: Initial communication annotations based on dependence analysis.
Right: Optimized placement of SENDs and RECVs based on data-flow analysis.

3.3 Optimized Communication Placement

The example shown in Figure 3 illustrates the results of our combined analysis. Redundant
and partially redundant communication is eliminated, and SENDs are separated from their
corresponding RECVs by being moved as far up in the control-flow graph as allowable (up
to the precision of array portion analysis).

Alignment and distribution directives from the original Fortran D program are not shown

in Figure 3, but instead it is assumed that all arrays are perfectly aligned and BLOCK-
distributed over 5 processors. As in our previous examples, loop bounds are shown in their
original form, even though they will be reduced when the compiler performs computation
partitioning. On the left side we show the program with communication sets inserted based
on dependence analysis.

In contrast to Figure 2, where the GIVE-N-TAKE framework did not allow hoisting of
communication @) out of the loop, dependence analysis is sufficient to discover that similar
communication @) on the left side of Figure 3 can be performed before the last loop nest.
After this problem is solved, and TAKE sets are initialized to contain only array portions
that might require communication, annotations to the control-flow graph are propagated to
achieve the placement of SENDs and RECVs, as shown on the right side.

Statement (3) on the left has been eliminated, since the data that it would communicate
are the subset of the data that had already been communicated before the first DO loop
(statement (I) on the left, corresponding to) on the right).

Partial redundancy of communication @) on the left has been removed by moving this
communication into the ELSE branch of the IF statement. Furthermore, the SEND statement
for this communication has been combined with the SEND corresponding to communication
@ on the left. This SEND statement (@) on the right) has then been moved as far as possible
from its matching RECVs (@) and () on the right) in order to overlap communication with
computation.

Similarly, separation of SENDs and RECVs has also been done for communication ()
(SEND — ®), RECV — ®), and communication (1) (SEND —), RECV — (©). It should be
noted that SEND statement (3) that initiates the communication of elements of array a has
been moved across the definition of an element of the same array, since the array section
defined (a(31)) does not intersect the array section communicated (a(11, 21)). However,
statement (3) could not be moved any further up, since the first DO loop defines the array
elements that are communicated.

3.4 Local Scheduling

A seemingly trivial, but in practice important implementation detail is the way that messages
are scheduled at each node in the control-flow graph. Although the resulting annotations
are grouped based on whether the required communication statement is SEND, RECV, or
SEND/RECV, the following simple rule should be used when actually generating code from
these annotations. At each point in the program,

1. Send data that require SEND/RECV at the same control-flow node,
2. Send data that require SEND at this node, but are received elsewhere,
3. Receive data that only have RECV at this point, but are sent at some other node, and

4. Receive data sent in step 1 in the same order that they were sent, in an attempt to
achieve at least some communication/computation overlap even at the local level.

10

3.5 Discussion

While the optimizations described in Section 3.3 represent an improvement over what the
current Fortran D compiler would do, there is still some communication redundancy left. A

part of communication (7) on the right side of Figure 3 is redundant, because the commu-
nication {1ai1>)o, 2a£1>)1} had already taken place (SEND — @), RECV — @, (®)), and array
(31)

elements a(11) and a(21) were not redefined. Therefore, only the communication {3a—>
a(41

2,
4 3} is necessary. Our framework as presented fails to find this redundancy. The rea-
son for this is our treatment of array portions through their representing bits in bit-vector
based flow analysis. We do not analyze relationships among array portions beyond the initial
determination of whether a definition of one interferes with a communication of the other
(STEAL;sit) and whether a communication is fully contained in the other (GIVE,,;).

It is not clear whether partly redundant! communication is a commonly occurring case in
real programs. Furthermore, elimination of these redundancies does not necessarily reduce

the total execution time. In our example, the cost of communicating {1~ iy 2a£1>)1,

3a£1>)2 a<41)3} should be practically the same as the cost of {3™-= adh), 2, ai)s}, since all of
the individual messages can be transferred in parallel. If, however, we wanted to remove even
partly redundant communication, several approaches could be used to address this issue.

A simple way is to find, for each communication statement, all other places in the program
where portions of the same array are communicated and from which there is a control-flow
path to the statement under consideration. Using this information we could split the array
portion communicated into parts corresponding to array portions in reaching communica-
tions. (This is similar to splitting in [7], but we only perform splitting when initializing
the data-flow framework.) Since we are only interested in control-flow reachability without
taking array kill information into account, this approach does not require array data-flow
analysis. In our example on the left side of Figure 3, communication @) reaches commu-
nication (%), which would cause the latter to be split, leading to the elimination of partly
redundant communication described above.

If we are willing to pay the full price of array data-flow analysis, such as that described
in [9], better precision could be achieved by using reaching array section definitions as the
basis for splitting. In that case, communication §) on the left side of Figure 3 would also
be split (into {1 == (11)0 2%, 1} and {30(31) 4Ci1>)3}) and the part Sexp {3 = 31, 4Ci1>)3}
would be moved all the way to the beginning of the program.

We intend to investigate how frequently partly redundant communication occurs in scien-
tific codes, and what the benefits of eliminating it are. Although our current focus is on the
efficient analysis with possible sacrifice of precision, it is possible that our data-flow analysis
will be extended to work with array portions directly. In this light we are also investigat-
ing new array section representation that would be general enough to handle communication
sets that arise from BLOCK_CYCLIC and multidimensional distributions, and yet allow efficient
lattice operations needed for data-flow analysis.

INote the difference between partially redundant communication, which is redundant on some control-
flow paths, and partly redundant communication, for which only some of the participating messages are
redundant.

11

4 Preliminary Experience

The implementation of the GIVE-N-TAKE framework that provides bit-vector based anal-
ysis has been described in [12]. We have modified the existing framework to include the
support for handling array portions that can be represented with RSDs. Although the
framework can now take some advantage of compile-time knowledge about array elements
accessed, full propagation of dependence-based communication analysis has not yet been
implemented. However, we were able to run an experiment to measure the potential benefits
of our approach.

In our experiment we used LIVERMORE 18 explicit hydrodynamics kernel and SHALLOW
weather prediction program written by Paul Swartztrauber, National Center for Atmospheric
Research (NCAR). Both benchmarks are highly data-parallel and significant speedups were
reported when they were compiled with the existing Fortran D compiler [20]. However,
hand-coded versions were still up to 25% faster, with most of the difference coming from
eliminating redundant messages and increasing the overlap of communication with compu-
tation — exactly the optimizations that we propose to automate. (Although hand-coded
versions of some benchmarks described in [20] were up to 50% faster (DGEFA and ER-
LEBACHER), these improvements were due to aggressive program transformations [1], which
are beyond the scope of this paper.)

After translating original Fortran D programs into SPMD-style Fortran code, the result-
ing programs were hand-instrumented to reflect the optimizations that would be performed
using our combined analysis. All programs were then compiled with -O4 option of if77 com-
piler (Release 4.0) for the Intel iPSC/860. We ran our tests on 16 and 32 processors of the
iPSC/860 hypercube at Rice University that has 8Mb of memory per node and runs Release
3.3.2 of the Intel software. Average execution times over 10 runs for each of the programs
(measured using dclock() microsecond timer) are reported in Table 1.

Optimizations made possible by the improved communication analysis reduced the total
execution time by up to 20% compared to the programs compiled with the current Fortran D
compiler prototype. In both of our benchmarks the computation is of the order ©(n?), and
the communication is of the order ©(n), where n is the problem size. Therefore, with the

Execution Time in Seconds

Program Problem Size | Proc | FortD Compiler | Combined Analysis | Improvement
LIVERMORE 18 128 x 128 32 0.017750 0.014061 20.8%
16 0.022239 0.018845 15.3%
Ezxplicil 256 x 256 32 0.044297 0.036262 18.1%
Hydrodynamics 16 0.062649 0.055683 11.1%
SHALLOW 128 x 128 32 0.011121 0.009621 13.5%
16 0.016393 0.014395 12.2%
Weather 256 x 256 32 0.029806 0.027128 9.0%
Prediction 16 0.050530 0.047693 5.6%

Table 1 Intel iPSC/860 execution times for LIVERMORE 18 and SHALLOW.

12

increase in problem size, the communication takes a smaller portion of the total execution
time, and the impact of our communication optimizations becomes less apparent. Similarly,
with the decrease in number of processors, percentage of performance improvement due to
our combined analysis also decreases, because the computation time, which is not affected
by our optimizations, represents more significant part of the total execution time.

There are two important ways in which the proposed analysis can improve the perfor-
mance: elimination of redundant communication and hiding latency by overlapping commu-
nication with computation. Breakdown of improvements due to each of these factors is given
in Table 2.

It should be noted that the Fortran D compiler already eliminates many communication
redundancies that would be naively inserted by a less aggressive compiler. Therefore, al-
though our further analysis reduces the number of communication statements in SHALLOW
from 26 to 17 (per iteration), we only eliminate single-element messages used for periodic
continuation. These messages can have significant impact only when the number of proces-
sors 1s large and the problem size is small, because they can cause load imbalance. With
the increase in either the problem size or the number of processors, more significant portion
of the overall improvement comes from the communication/computation overlap. On the
other hand, eliminated messages in LIVERMORE 18 shift whole rows of boundary elements
between neighboring processors, and since the size of data communicated grows with the
problem size, the performance gain due to the elimination of these messages remains more
or less constant.

Without making any generalizations based on our limited experience, we would like to
point out that opportunities for eliminating partly redundant communication, as described
in Section 3.5, did not come up in either of the two benchmarks we analyzed; instead, all
the performance gain was achieved through methods described in Sections 3.1, 3.2, and 3.4.

While analyzing possibilities for overlapping communication with computation we have
run into an interesting phase-ordering problem concerning the implementation of message
aggregation. This optimization tries to combine multiple messages corresponding to different
arrays into a single message, in an attempt to reduce the startup overhead. Although
aggregation might introduce extra buffering cost, it is claimed in [20] that this optimization

H Program Problem Size ‘ Proc ‘ Elim. Redund. Comm. ‘ Comm/Comp. Overlap H
LIVERMORE 18 | 128 x 128 32 38.0% 62.0%
16 33.3% 66.7%
Explicit 256 x 256 32 39.8% 60.2%
Hydrodynamics 16 36.9% 63.1%
SHALLOW 128 x 128 32 43.7% 56.3%
16 26.2% 73.8%
Weather 256 x 256 32 22.2% 77.8%
Prediction 16 19.6% 80.4%

Table 2 Percentages of improvement due to elimination of redundant
communication and overlapping communication with computation.

13

is always profitable if individual messages are not contiguous, because the buffering is needed
anyway. However, the Fortran D compiler performs aggregation at the level of RSDs after
vectorization and coalescing. Vector message pipelining, which tries to separate SENDs and
RECVs, then works with these aggregated RSDs, and this significantly limits its applicability.
For example, SEND for an aggregated RSD containing elements of arrays a and b would be
blocked by a definition of elements of array a. However, without the aggregation, we would
at least be able to move the SEND of b across this definition, and thus achieve some latency
hiding.

If aggregation of RSDs might prevent opportunities for overlapping communication and
computation, it seems reasonable that this optimization should be applied after our data-flow
analysis. However, while this might be straightforward for messages that have both SEND
and RECV at the same point in the program, in general it is a non-trivial task. Since each
SEND can have multiple RECVs (in Figure 3 SEND () has corresponding RECVs @) and (%)),
and vice versa, ensuring that the aggregation of SENDs goes together with the aggregation of
RECVs can be quite complicated. For this reason we did not perform message aggregation on
our optimized programs, but instead separate messages were generated much like in Figure 3.

5 Related Work

Several researchers have tried to optimize communication placement beyond the traditional
methods based on dependence analysis. Granston and Veidenbaum apply combined flow
and dependence analysis to detect redundant global memory accesses in parallel programs
[8]. Using global flow analysis of array regions they are able to eliminate these redundancies,
but since their global read and write are monolithic operations, they do not try to overlap
communication with computation.

Communication optimization described by Amarasinghe and Lam in [2] is based on the
last write tree representation. While they claim that their technique provides exact data-
flow analysis on individual array elements, they cannot handle arbitrary control flow (loops
within conditional statements, such as those in Figure 3, are not allowed), and they only
optimize communication within a single loop nest.

Gong et al. describe a data-flow analysis algorithm that propagates array portions in
order to determine communication placement [7]. They combine multiple communication
optimizations, but their technique has several restrictions: they handle only singly nested
loops and one-dimensional arrays, and their propagation algorithm is based on the structured
control flow. Furthermore, although they try to overlap communication with computation,
their algorithm only produces locations where SEND statements should be placed, while
RECV statements “should be inserted at the points where the data are actually needed”. If
communication is hoisted out of the loop or if a message is split, as suggested, into several
SEND statements, simply inserting a RECV just before the data are needed is not satisfactory.
In contrast, our approach provides placement points for both SENDs and RECVs, which are
provably balanced [13].

In the most recent work on optimizing communication, Gupta et al. show how partial
redundancy elimination can be applied to available section descriptors [11]. The available
section descriptor extends an array section descriptor with the mapping of the array section

14

onto the virtual processor grid [10]. Since we opt for the efficiency of bit-vector based flow
analysis, and analyze array sections only in the initialization phase, it is possible that their
method will be more precise. However, they do not present any experimental data that would
indicate whether the cost of their analysis would be justified in practice by the need for extra
precision. Much like in [7], their SENDs are performed “as early as legally possible”, but
RECVs (or rather WAITs for non-blocking RECVs) are inserted “at the reference to non-local
data”, causing the same problem as discussed above.

6 Conclusions

We have presented a method for optimizing communication when compiling HP F-like lan-
guages. This method, based on the combination of dependence and data-flow analyses, allows
us to perform message vectorization, elimination of redundant messages, and overlapping of
communication with computation. For the sake of efficiency, we use bit-vector based anal-
ysis and satisfactory precision is achieved by examining relationships among array portions
when initializing the data-flow framework. Our preliminary experience, though limited in
scope, indicates that optimizations based on the proposed method can result in significant
performance improvement.

As mentioned in Section 4 we have modified the existing implementation of the GIVE-
N-TAKE framework so that array portions representable with RSDs are analyzed when
initializing data-flow variables. Dependence analysis will be fully integrated with the code
placement framework once the design and implementation of the new set representation
are finished. This new representation will have to support communication sets that can be
created with BLOCK_CYCLIC and multidimensional distributions. We also plan to investigate
whether data-flow analysis that would use this set representation for all lattice operations
could be more profitable and how big an increase in compile time it would cause.

Communication optimizations described in this paper do not involve program transfor-
mations. However, since aggressive loop transformations (interchange, strip-mining, distri-
bution, fusion) can often improve program’s performance, the interaction of these transfor-
mations and our analysis techniques needs to be studied further.

Finally, placing SENDs as early as possible, and RECVs as late as possible, can potentially
have a negative effect of keeping message buffers full for unnecessarily long time. This
problem could be handled in a postprocessing pass, that would take performance estimation
and machine parameters into account in order to move SENDs closer to their corresponding
RECVs, while still overlapping communication with computation.

Acknowledgments

The authors would like to thank Debbie Campbell and Ajay Sethi for their helpful comments
on an earlier draft of this paper. The iPSC/860 that was used for the experimental studies
in the paper was purchased with funds from NSF Institutional Infrastructure Grant CDA-
86198393 and support from the Keck Foundation.

15

References

(1]

(2]

10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

V. Adve, C. Koelbel, and J. Mellor-Crummey. Performance analysis of data-parallel programs. Technical Report CRPC-
TR94405, Center for Research on Parallel Computation, Rice University, May 1994.

S. Amarasinghe and M. Lam. Communication optimization and code generation for distributed memory machines. In
Proceedings of the SIGPLAN 98 Conference on Programming Language Design and Implementation, Albuquerque, NM,
June 1993.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer. An interactive environment for data partitioning and distribution.
In Proceedings of the 5th Distributed Memory Computing Conference, Charleston, SC, April 1990.

H. Berryman and J. Saltz. A manual for PARTI runtime primitives. ICASE Interim Report 13, Institute for Computer
Application in Science and Engineering, Hampton, VA, September 1990.

B. Chapman, P. Mehrotra, and H. Zima. Vienna Fortran — A Fortran language extension for distributed memory
multiprocessors. In J. Saltz and P. Mehrotra, editors, Languages, Compilers, and Run-Time Environments for Distributed
Memory Machines. North-Holland, Amsterdam, The Netherlands, 1992.

M. Gerndt. Updating distributed variables in local computations. Concurrency: Practice and Ezperience, 2(3):171-193,
September 1990.

C. Gong, R. Gupta, and R. Melhem. Compilation techniques for optimizing communication on distributed-memory
systems. In Proceedings of the 1998 International Conference on Parallel Processing, St. Charles, IL, August 1993.

E. Granston and A. Veidenbaum. Detecting redundant accesses to array data. In Proceedings of Supercomputing ’91,
Albuquerque, NM, November 1991.

T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use in an optimizing compiler. Software—
Practice and Ezperience, 20(2):133-155, February 1990.

M. Gupta and E. Schonberg. A framework for exploiting data availability to optimize communication. In Proceedings of
the Sizth Workshop on Languages and Compilers for Parallel Computing, Portland, OR, August 1993.

M. Gupta, E. Schonberg, and H. Srinivasan. A unified data-flow framework for optimizing communication. In Proceedings
of the Seventh Workshop on Languages and Compilers for Parallel Computing, Ithaca, NY, August 1994.

R. v. Hanxleden. Handling irregular problems with Fortran D — A preliminary report. In Proceedings of the Fourth
Workshop on Compilers for Parallel Computers, Delft, The Netherlands, December 1993.

R. v. Hanxleden and K. Kennedy. A code placement framework and its application to communication generation. Technical
Report CRPC-TR93337-S, Center for Research on Parallel Computation, Rice University, October 1993.

R. v. Hanxleden and K. Kennedy. Give-N-Take — A balanced code placement framework. In Proceedings of the SIGPLAN
’94 Conference on Programming Language Design and Implementation, Orlando, FL, June 1994.

P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis. IEEE Transactions
on Parallel and Distributed Systems, 2(3):350-360, July 1991.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler optimizations for Fortran D on MIMD distributed-memory
machines. In Proceedings of Supercomputing ’91, Albuquerque, NM, November 1991.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for MIMD distributed-memory machines. Commu-
nications of the ACM, 35(8):66—80, August 1992.

S. Hiranandani, K. Kennedy, and C.-W. Tseng. Evaluation of compiler optimizations for Fortran D on MIMD distributed-
memory machines. In Proceedings of the 1992 ACM International Conference on Supercomputing, Washington, DC, July
1992.

C. Koelbel, D. Loveman, R. Schreiber, G. Steele, Jr., and M. Zosel. The High Performance Fortran Handbook. The MIT
Press, Cambridge, MA, 1994.

C.-W. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory Machines. PhD thesis, Dept. of

Computer Science, Rice University, January 1993.

16

