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Abstract

Two trust-region interior—point algorithms for the solution of minimization problems
with simple bounds are presented. The algorithms scale the local model in a way proposed
by Coleman and Li [1], but they are new otherwise. The first algorithm is more usual in
that the trust region and the local quadratic model are consistently scaled. The second
algorithm proposed here uses an unscaled trust region. A first-order convergence result for
these algorithms is given and dogleg and conjugate—gradient algorithms to compute trial
steps are introduced. Some numerical examples that show the advantages of the the second
algorithm are presented.

Keywords. trust-region methods, interior—point algorithms, Dikin-Karmarkar ellipsoid,
Coleman and Li scaling, simple bounds.
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1 Introduction

In this note we consider the box—constrained minimization problem

minimize f(xz) (1)
subject to a <z <0,

where z € R, a € (RU{-00})", b € (RU{400})" and f maps R" into R. We assume that f
is continuously differentiable in the box B = {z € R" : a < z < b}.

Coleman and Li [1] give an elegant diagonal scaling for this problem. It has the flavor of the
Dikin—Karmarkar scaling, but it has a direct connection to the first—order necessary optimality
conditions. A diagonal element corresponding to what appears to be a constraining bound is
the same as in the Dikin—Karmarkar scaling. In their algorithms, they allow the elliptical trust
region thus defined to have trust radius greater than one, so that some infeasible points are
inside the trust region. As is usual, in their algorithms the trust region and the quadratic model
are consistently scaled.

We adopt a version of the Coleman and Li scaling for the local quadratic model in both our
algorithms. The first algorithm that we propose here uses the same scaling for the trust region,
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and so it is similar to the Coleman and Li algorithms. However, the trial steps are computed
completely differently. The second algorithm that we suggest maintains the trust region in the
unscaled variables. In both algorithms, the trial step computation is very simple and convenient
with respect to staying strictly inside B. We present some numerical examples to illustrate the
advantages of the second algorithm.

There are three points of novelty here:

1. An improved interior—point algorithm for the solution of (1).

2. A trust-region convergence analysis for a fraction of Cauchy decrease condition in which
the scaling of the direction that defines the Cauchy step does not come from the ellipsoidal
norm that defines the trust region.

3. A new way of extending dogleg and conjugate—gradient algorithms for the solution of trust—
region subproblems that arise in unconstrained optimization, to trust—region subproblems
that appear when the simple bounds are included.

A point z, in B is said to be a first-order Karush-Kuhn-Tucker (KKT) point if
a; < (z4); < by = (Vf(z.)), =0,
(24); = a; = (Vf(24)); >0 and
(z4)i = b = (Vf(z4)), <0,
or equivalently if,
D(z.)"V f(zs) =0,
where p > 0 is arbitrary and D(z) is a diagonal matrix whose diagonal elements are given by

(b—=); if (Vf(z)), <0andb; <400
1 if (Vf(z)); <0andb; =400
(D(w))ii = (z—a); if (Vf(z)),>0and a; > -0

1 if (Vf(z)); > 0anda; =—o0,

fore=1,...,n.
We show that a sequence {z} generated by either of our algorithms satisfies

lim (| D(2)"V f(zk)l| = 0,

for any p > % It is important to note that these results are obtained under very mild assumptions
on the trial steps, and that the sequence of approximations to the Hessian matrix of f is assumed
only to be bounded.

This paper is organized as follows. In Section 2 we introduce the conditions that we need to
impose on the trial steps for the algorithms mentioned before. These are described in Section 3.
In Section 4 we give a unified first—order convergence result for the trust-region interior—point
algorithms. In Section 5 we describe dogleg and conjugate—gradient algorithms to compute the
trial steps. Finally, in Section 6 we present some numerical examples and some final conclusions.
In this paper || - || represents the {3 norm, and [; the identity matrix of order I.



2 Trust-region subproblems and trial steps

In this section we motivate the computation of the trial steps and present the conditions that
these trial steps have to satisfy. The algorithms generate a sequence of iterates {z;} where z
is strictly feasible, in other words where a < z; < b. Given z; we compute a trial step si, and
decide whether to accept it or not. If s is accepted then zx4q1 = zj + si, otherwise zx41 = .

2.1 Motivation

Our approach begins like sequential quadratic programming (SQP). Before we think about
globalization of SQP, we look at the local quadratic programming (QP) subproblem

minimize  Wg(s)
subject to op(zr —a) < s < op(b— xy),

gotten by building a quadratic model ¥i(s) = f(zx) + ggs + %STH]CS, of f(zr + s) about zy,

where g, = V f(z), and Hy, is an approximation to the Hessian matrix V2 f(zy) of f evaluated
at 2. Here oy, € [0,1) and o € (0,1) is fixed for all k. Enforcing these bounds at every iteration
ensures that the solutions to the subproblems remains strictly feasible for the original problem.

For this quadratic problem, we like the idea of the affine—scaling algorithm, i.e., we rewrite
the quadratic problem in a basis § = D;ls, for which the distances to the constraints of the
current iterate z; are the same in order that all directions be equally free for use in decreasing
the objective function from z;. Here we follow the concept of Coleman and Li [1] and choose
Dy, as D(zy). They actually use Dy = D(xk)% However, either choice has the effect of only
rescaling those components that appear, from the sign of the gradient, to threaten to restrict
the step. This gives the local QP subproblem:

minimize  Wy(D8)
subject to Ulezl(xk —a) <8< UkD,;I(b — L),

gotten by building a quadratic model W, (Dy3) = f(zx) + (Drgr)Ts + %§TDkaDk§. In this
subproblem there is an explicit scaling given by Dy in the § basis. For instance, the 5 steepest—
descent direction in the {3 norm is given by —Dygy.

Thus, we would like to minimize this quadratic function over a trust region with the require-
ment that z; + sy = Dp(Zk + 8x) has to be strictly feasible. Although we do this in the original
basis s so that we can work always with the same variables, we bring the scaling that is used
in the basis §. The reference trust-region subproblem that we consider, written in the original
basis, is the following;:

minimize  W(s) (2)
subject to || s|| < éx, (3)
or(zr —a) < s < op(b—zp), (4)

where 6y, is the trust radius, and Sg is a n X n nonsingular matrix. This subproblem is implicitly
scaled by D,% so that the direction — Dy gy defined in the § variables is now given by — Dy (Dygi) =
—D3gy in the s variables.



The two algorithms suggested here differ mainly in their choice of S%. We discuss that issue
now.

If we continue to follow the affine—scaling idea, then we use the ellipse defined at each iterate
in the original s coordinates by the {5 norm on these new coordinates § to help to enforce the
bounds. In other words, we would choose S;, = Dy, and the shape of the trust region (3) would
be ellipsoidal in the original basis. We note that the choice made by Coleman and Li [1] is

1
Sp = D

This substitution of one ellipsoidal constraints for all the bound constraints was a prime
motivation for interior—point methods. However from the beginning of the computational study
of interior—point methods, it was found to be important to allow steps past the boundary of this
ellipsoid, as long as they still satisfy the subproblem bound constraints. This translates here to
saying that if the trust region is to have the ellipsoidal shape, then the trust radius should be
allowed to exceed one, and so the trust region really is not used to enforce the bound constraints.
Sometimes, the subproblem is further biased away from the bounds by adding a barrier term to
the model (2).

The motivation for the second algorithm is that there is no reason to use the ellipsoid to
define the shape of the trust region if it is not useful for enforcing the bounds. In fact, there
are even more good reasons not to use it here than in the linear programming problem. One of
the most important is that for nonlinear programs z, may lie strictly inside B. This happens
in problems where the bounds are really to define the region of interest. If z is near a bound
which is not active at z,, then many iterations may be required to move off that bound.

Hence we choose S to be the identity in the second algorithm.

It is important to point out that Coleman and Li [1] present a different motivation to their
algorithms. They see their algorithms as applying Newton’s method to the system of nonlinear
(and nondifferentiable equations) D(z)V f(z) = 0. As result, they add to Hy a diagonal matrix
defined to overcome the nondifferentiability. See their paper for more details.

The first-order convergence result given in Section 4 holds for any Dy of the form D} with
p > % We motivated the algorithms by using p = 1 but for the rest of this paper we assume
that p is any number greater or equal than %

2.2 What to impose on the trial steps

We need to define the Cauchy step associated with the trust-region subproblem (2)—(4). This
Cauchy step ¢ is defined as the solution of

minimize  W(s)
subject to HSk_ISH < by, s€ span{—Dipgk},
or(zy —a) < s < op(b— zp). (5)

As in many trust-region algorithms, sj is required to give a decrease on ¥y(s) smaller than a
uniform fraction of the decrease given by ¢ for the same function W(s). This condition is often
called fraction of Cauchy decrease, and in this case is

Ui(0) — Wi(sk) > B(¥k(0) — Yr(cx)), (6)

where (§ is positive and fixed across all the iterations.



Coleman and Li [1] define the fraction of Cauchy decrease condition in a different way by
using o, = 1 in (5) although they suggest o} € (0,1) in the computation of the trial step sy.
Our definition leads naturally to the condition (6) holding for any trial step generated by the
algorithms that we propose in Section 5.

3 TRIP algorithms

To decide whether to accept or reject a trial step sg, how ever it is computed, we need to
evaluate the ratio rp = ared(sy)/pred(sy), where ared(sy) = f(zr) — f(@k41) is the actual
decrease and pred(si) = Wi(0) — Vi(sy) is the predicted decrease. We describe next the steps
of the algorithms leaving the computation of the trial steps for Section 5.

Trust—region interior—point (TRIP) algorithms

1

1. Choose ég > 0, zg such that a < 9 < b, and p, €, o0, @ and 7 such that p > 5, € > 0 and

0<o,a,n<1.
2. For k=0,1,2,...do

2.1. If ||D}gk|| < €, stop and return zj as a solution for (1).

2.2. Compute a trial step s satisfying (6), HS;lskH < 8 and o (zp—a) < sp < op(b—2p),
where o, € [0,1).

2.3. If rp < n reject sg, set dpy1 = a|sk||, zxk+1 = zx and choose Hyyq (for instance
Hppr = Hy).
If rp > 1 accept sg, choose dg41 > 6k, set 41 = z + s and compute Hy4q.

Of course the rules to update the trust radius can be much more involved but the above

suffices to prove convergence results and to understand the trust-region mechanism.
The choices S = DY and Sy, = I,, correspond respectively to the first and second algorithms.

4 First—order convergence result

To analyze the convergence properties of the TRIP algorithms, all we need to do is to express
(6) in a more useful form. We do this in the following technical lemma, and it is not a surprise
to see that the proof follows the proof given by Powell (see [5, Theorem 4] and [3, Lemma 4.8])
for the unconstrained minimization case.

Lemma 4.1 If s;, salisfies (6) then

]min{ ‘({k”,min{ _lgk]’% 0,0 [ }}7
(| H x|l 155 " Dygwll [l Fukloo

where §r = DY gy, Hy = DYH DY and hy, is a vector in R" defined by

L)

U(0) — Ui(se) > 3

gk

|(gr )il
h Z = ,
" min{(zy, — a);" 7, (b — 2 ), 7}

fori=1,...,n.



Proof. Define ¢ : Rt — R as o(t) = Up(—1D? di) — W, (0). Then (1) = —

kgl

~ 2
grllt + %t

ATHA' g . . . . . .
where v = gﬁgkﬁg’“_ Now we need to minimize ¢ in [0,T}] where T} is given by
T = min { ||S;1D£§k||5’f"”f”g’“” i o (k)i > 0p,

. . —r z.(1—217)
ok ||§k|| min {—% Hgr)i < O}} .

2

Let ¢} be the minimizer of ¢ in [0,7}]. If ¢} € (0,7}) then

. 1 [|g]? 1 ]|g|l®
) = - Wkl o D9k 7
) = —5 o < -5 )
If t; = T}, then either vy > 0 in which case ”g:” > Ty or v < 0 in which case v, Ty < ||gkl|. In

either event,

U(ty) = ¥(Tk) = Tk i

Now we can combine (7) and (8) and get

Uip(0) — Ui(se) > B(¥K(0) — Yiler)) = —B9(t;)

174 : gk
L3l min { 2L 7, |

- (8)

. Vk 109 Ty
gk” + 9 RS 9

v

> 18||gs|| min { 12l min 16l oMl 0
> 3019l ATk 195 Dyael]F* 7 MThallos

Now the following result is a consequence of Lemma 4.1. The proof follows the same steps
as the proof of Theorem 3.5 of Coleman and Li [1].

Theorem 4.1 Lel [ be continuously differentiable and bounded below on L(zg) = {z € B :
f(z) < f(wzo)}, where {z1} is a sequence generated by the TRIP algorithms. If Hy and Sk_lDi
are uniformly bounded and L(zq) is compact then

liin | DYgr|| = 0.

The choices S; = DY and Sy = I, produce bounded sequences {Sk_lDi}, under the assump-
tion that L£(zg) is compact. They correspond to the algorithms that we propose.

5 Algorithms to compute trial steps

As in unconstrained minimization we have dogleg and conjugate—gradient algorithms to compute
a trial step s; that satisfies the fraction of Cauchy decrease condition (6).

The conjugate—gradient algorithm to compute a trial step sj is very similar to the conjugate—
gradient algorithm proposed by Steihaug [6] and Toint [7] for unconstrained minimization. The
only difference is caused by the fact that x; + s has to be strictly feasible.



Conjugate—gradient algorithm for the computation of s

1. Set s =0, 70 = —g, go = Dip'ro and dy = ¢o. Choose small positive tolerances ¢y and €.
If 'rgqo < €p stop the algorithm and set s; = dp.

2. For:=10,1,2,...do

T_.
T, 9

dT Hyd;

2.1. Compute v; =

z’k—l—si—a)J

2.2. If 9; < 0 compute 71 such that Hsk_l(si + nd;)|| = 6 and T = min{(W,
) i)
(d;); < 0} and 73 = min{%, (di); > 0}. Set 7 = min{ry, 07, 0k73} and
. e

stop with sy = s* + 7d;.

2.3. Tterate s't1 = s+ yid;. I || s T > 6, or min {%, (di); < 0} > 1/0y or
min {%, (di); > O} > 1/0y, then stop with s, = s* + 7d;, where T is given as

Qi )y

in 2.2

T
2.4. Update the residuals r;41 = r; — v;Hyd; and g;41 = DipTH_l. If 4/ % < ¢ then
0

. . rLT g . .
stop and set s, = s'T!. Otherwise compute a; = ﬂ% and update the direction

dit1 = Giy1 + a;d;.

As before we have the choices 53 = Di and S, = I,.

A dogleg algorithm to compute a trial step s similar to the dogleg algorithm proposed
by Powell [4] for unconstrained minimization can also be applied. Since both dogleg and the
conjugate-gradient algorithms start by minimizing the quadratic function ¥y(s) along the di-
rection —Dipgk, it is a simple matter to see that any trial step sp computed by using these
algorithms satisfies the fraction of Cauchy decrease (6) with g = 1.

Now we briefly describe how Coleman and Li [1] compute the trial steps. They define pj as
the solution of the trust-region subproblem

minimize  Wg(s)

_1
subject to || D, *s|| < &,

and compute the Cauchy point ¢; for some o € (0,1). They propose two algorithms. In the
first, called double trust—region method, they scale py into the interior of B and accept or reject
s based on actual versus predicted decrease and fraction of Cauchy decrease. In the second,
called practical trust-region algorithm, they choose s; to be either ¢ or the scaled pr according
to a fraction of Cauchy decrease condition. Then they accept or reject si based on actual versus
predicted decrease.

6 Numerical examples and conclusions

We have implemented the TRIP algorithms using MATLAB 4.2a in a Sun (Sparc) workstation.
We have used 65 = 1, p=1, 0 = 0 = 0.99995 for all k, ¢¢ = 1071°, ¢, = 107® and € = 1077,



We have tested the algorithms in a set of problems given in Conn, Gould and Toint [2]. This
set of problems is divided in two groups, labeled by U and C (see Table 1). In problems U,
the solution lies in the interior of B and therefore these problems correspond to the situation
described in Section 2.1. In the cases where the initial point given in [2] is not strictly feasible,
we scale it back into the interior of B according to the rules used in [1]. The scheme 2.3 (see
Section 3) used to update the trust radius is the following:

o If ) < 1074, reject s;, and set &pyq = O.5H5k_15kH.

o If 107 < 7, < 0.1, reject s;, and set fpqq = 0-5HSk_15kH-
o If 0.1 <7y <0.75, accept s; and set dgp41 = O

o If ri > 0.75, accept si and set dp41 = 20%.

We also stopped the algorithms when the trust radius was reduced below 10716, These
failures are indicated by # in Table 1. Our stopping criteria is different from the stopping
criteria used by Coleman and Li. We stop if either || DV f(zx)|| < 1072 or the trust radius is

1 1

reduced below 107'¢. They stop when DngDg is positive definite and Wy (sg) < 0.5* 10712
Our stopping criteria is of the type given in [2].

The results are given in Table 1. In Table 2 we list the total number of function and gradient
evaluations taken by both approaches to solve problems U and C. From this table we observe
that the second algorithm (S} = I,,) performed better. We believe that this will be more clearly
the case in larger problems.
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Sy = Dy, Sy =1,

Problem n | geval | feval | geval | feval
GENROSE U 8 24 35 28 36
GENROSE C 8 9 9 8 8

CHAINROSE U | 25 15 17 16 20
CHAINROSE C | 25| 22 29 22 26
DEGENROSE U | 25 | 31 39 28 29

DEGENROSE C | 25 33 42 27 32
GENSING U 20 25 25 25 25
GENSING C 20 17 17 17 17

CHAINSING U | 20 25 25 25 25

CHAINSING C | 20 28 28 29 29

DEGENSING U | 20 33 33 34 34

DEGENSING C | 20 33 33 32 32
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GENWOOD C 8 9 9 8 8
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BROWN3 C 10 10 10 9 9
BVP U 10 9 9 9 9
BVP C 10 9 9 10 10
VAR U 20 9 9 9 9
VAR C 20 8 8 8 8

Table 1: Numerical solution of small test problems. n — number of variables, geval —
number of gradient evaluations, feval — numbergof function evaluations.
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