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Abstract

Using Problem Topology in Parallelization
by

Lorie M. Liebrock

Problem topology is the key to efficient parallelization support for partially regular
applications. Specifically, problem topology provides the information necessary for
automatic data distribution and regular application optimization of partially regular
applications. Problem topology is the dimensionality, size, and connectivity of the
problem. Problem topology has traditionally been used in explicit parallelization
of regular problems such as physical simulation applications. In languages such as
High Performance Fortran, problems that are regular allow many optimizations not
applicable to irregular application codes. Unfortunately, many applications must
sacrifice regularity to some extent for computational efficiency. This research focuses
on partially regular problems and strives to take advantage of partial regularity in
the parallelization and compilation process.

This dissertation uses topology for automatic, natural-topology, data distribu-
tion in linearized and composite grid (or multiblock) applications. For linearized
applications, Fortran D is extended with logical topology and index array specifica-
tions. With the information provided in these specifications, it is shown how regu-
lar, linearized applications can be parallelized automatically in Fortran D as regular
computations using their natural topology. In composite grid problems, meshes are
coupled to form larger, more complex topology structures. Composite grid prob-
lems arise in important application areas such as fluid flow simulation, aecrodynamic
simulation, electric circuit simulation, and nuclear reactor simulation. Such phys-
ical phenomenon are inherently parallel and their simulations are computationally
intensive. This dissertation presents a programming style and template for writing
High Performance Fortran programs for these applications, algorithms for automatic

distribution of composite grid applications with mesh configurations included in the
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input, and a discussion of compiler issues for composite grid problems. The auto-
matically generated distributions for composite grid applications guarantee that all
communication associated with the distribution of any given mesh will remain reg-
ular and nearest-neighbor in the mapping to processors. This research allows High
Performance Fortran compilers to perform regular application optimizations on the
codes for this class of partially regular applications. Finally, the research is supported
by experimental results, which indicate that substantial performance improvements
are possible when topology is used in the parallelization of partially regular applica-

tions.
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Chapter 1

Uses of Problem Topology in Parallelization

Problem topology is the key to efficient parallelization support for partially regular
applications. Specifically, problem topology provides the information necessary for
automatic data distribution and regular application optimization of partially regular
applications. Problem topology consists of the dimensionality, size, and connectivity
of the problem. In the simulation of physical phenomenon, the dimensionality and
connectivity of the phenomenon are a part of the essence of the problem. Researchers
in simulation of specific physical phenomenon use their understanding of the topol-
ogy of the problem in most, if not all, stages of their research. This is reflected in
the algorithms they develop and the programs they write. The topology of problems
has traditionally been useful in parallelization of regular problems in that it is often
taken advantage of explicitly whenever a physical simulation application is paral-
lelized for a distributed memory machine [HB91]. In regular problems, each problem
element is directly dependent on only a fixed set of neighbors. In languages such
as Fortran D [FHK*90] and High Performance Fortran [KLS*94], problems that are
regular allow many communication optimizations including generation of blocked and
parallel communications. Unfortunately, many applications must sacrifice regularity
to some extent for computational efficiency. Two examples of such sacrifices are:
on vector machines, multi-dimensional arrays have traditionally been linearized to
increase the length of vectors; and in complex topology problems, such as the simula-
tion of airflow over an aircraft, many regular meshes are connected together to allow
use of efficient algorithms without requiring the simulation of inactive space. Such
applications exhibit partial regularity. In the past, problems that were not completely
regular were treated as irregular for purposes of parallelization. Irregular treatment
has typically led to less efficient execution on parallel machines than regular treat-
ment does. In particular, compile time optimizations such as communication blocking
and parallelization of communication can not be applied. Strategies that exploit the
partial regularity of linearized and composite grid applications are illustrated in this

dissertation. The two primary goals of this research are to reduce the amount of work



that a user with a partially regular problem must do to parallelize their application
and to take advantage of optimizations developed for regular applications on these
partially regular applications. This dissertation shows that significant progress has
been made toward both of these goals.

In the linearization research, the regularity of the problem is hidden by the lin-
earization of arrays and the use of index arrays. In this case, topology specification
is used to recover the obscured topology of the linearized arrays and distribute them
accordingly. In order for the application programmer to use this same kind of reg-
ular multi-dimensional distribution, the application would have to be delinearized
and have all uses of index arrays removed. Hence the user is required to do less
work. Further, communication optimization developed for regular applications with
regular distributions can be applied to the resulting program. In Section 1.1, regu-
lar linearized applications are introduced, contributions to support regular linearized
applications are discussed, and a short summary of related work is presented.

For composite grid research, the problem topology includes the connectivity be-
tween the meshes. In this case, problem topology is used to automate distribution
of the coupled meshes, which, when combined with the automatic High Performance
Fortran (HPF) program transformation procedure, allows regular application opti-
mization. In order for the application programmer to obtain the same results, he/she
would have to determine the distribution for each mesh and perform the entire trans-
formation procedure, including generation and modification of the appropriate clones
of all of the computation and coupling update routines. Here, again, the user is
required to do less work and the compiler can perform the optimizations developed
for regular applications with regular distributions. In Section 1.2, regular composite
grid applications are introduced, research contributions to support composite grid

applications are briefly discussed, and a short summary of related work is presented.

1.1 Linearized Applications and their Parallelization
1.1.1 Linearized Applications

When vector processors came to dominate the supercomputer market in the late
seventies and early eighties, vector length was the main factor in determining per-
formance on those machines—longer vectors meant better performance, a rule that

holds for these machines even today. To increase the length of vector operations,



many programmers “linearized” multi-dimensional arrays in vectorized applications;
the multiple dimensions of arrays were collapsed to a single dimension.

Many application codes have been linearized to improve performance on vector
processors. Some examples of these codes are UTCOMP and UTCHEM from the
University of Texas, and reservoir simulation codes such as VIP-COMP, MORE, and
ECLIPSE [Ram93]. Another such linearized code is KIVA, for simulation of chemi-
cally reacting flow [Mou93]. All of these applications are computationally intensive
and were linearized because supercomputing power was necessary to obtain solutions
in a reasonable amount of time.

As recently as last year, linearization was still being performed by hand on super-
computer applications. A global ocean model simulation code at Los Alamos National
Laboratories has recently been ported from the Thinking Machines CM-2 to the Cray
YMP. This porting was done by linearizing all three of the physical dimensions of the
arrays and breaking the long resulting vectors over the eight processors. The re-
searchers found that direct inline computation of linearized addresses was faster than
using index arrays [Lub93]. Linearization was a recommended technique for vector-
ization on the early vector processors such as the CDC Cyber 205 and the Hitachi-S9
with integrated array processor [Wol84]. The Los Alamos porting experience indicates
that linearization is still in use for modern vector computers.

This practice of linearization improved performance on vector processors at the
cost of obscuring the function of the application code and, in many cases, making
efficient parallelization more difficult. In particular, when regular problems are lin-
earized their topology becomes obscured. Languages such as Fortran D and High
Performance Fortran do not support linearized applications, with the natural multi-
dimensional distribution of data as regular application.

Since most, if not all, supercomputers today are vector processors, the science
and engineering community will encounter many linearized arrays when converting
these codes to parallel systems. In the long term, the best approach would be to “de-
linearize” the application before attempting parallelization. This would permit the
user to specify a natural multi-dimensional decomposition and allow the compiler to
provide the regular application performance advantages on scalable parallel systems.
In addition, the user could maintain a single source image if the compiler linearized
multi-dimensional arrays when compiling to a vector machine (a fairly straightfor-
ward technical problem). Unfortunately, as M. Ramé and U. Kremer learned while

attempting to delinearize part of UTCOMP, this is not always an easy task. Often



the functionality of the code is obscured during linearization and further obscured
during subsequent development of the linearized code. Such was the case with
UTCOMP [Ram93]. Consideration of UTCOMP lead to this use of topology for
parallelization.

To support applications coded in this linearized style, extensions to Fortran D and
compiler technology are developed in this dissertation to handle linearized arrays more
efficiently. The extensions are based on the notion of problem topology. In particular,
the user is allowed to map linearized arrays to parallel processors according to the
logical topology of the problem (logical dimensions of the linearized arrays) rather
than the single declared dimension of the linearized arrays. The knowledge of the
logical dimensions is used during subscript analysis and communication generation
to eliminate the need for runtime interpretation to carry out communication.

This work deals only with the so-called regular applications, for which regular
communication stencils exist. In a regular communication stencil, each element is di-
rectly dependent only on a fixed subset of neighbors in the problem topology. Hence,
the compiler only needs to recognize a limited set of linearized index computation
patterns for support of direct index computation. However, many of these applica-
tions use index arrays. To reduce (in many cases eliminate) reliance on run-time
interpretation for index array processing, specifications of special-case index arrays
are also developed. These specifications significantly simplify communication analy-
sis for the special-case index arrays. The combination of topology and index array
specifications allow regular application optimizations to be performed in the compiler
on linearized applications.

The contributions this dissertation makes in the area of parallelization of linearized

regular applications are:
e language extensions for topology and index array specifications,

e technology to support linearized applications with multi-dimensional distribu-

tions of linearized arrays as regular,

e experiments to obtain results that validate this approach to handling linearized

applications.

Chapter 2 will present the details on this linearized application work. Further,
the theoretical results presented in the same chapter help to guide the distribution
algorithms that are developed in the rest of the thesis.



1.1.2 Related Work

When this research began, there were only two approaches to providing support for
parallelization of linearized applications. In both of these approaches, the user is
required to provide all of the data layout specifications. One approach is to treat
these problems as regular, but with one parallel dimension. This approach takes
no advantage of the problem structure, as there is no way to express the natural
data distribution and make communication efficient. Fortran D is an example of
the languages that allowed such support. This approach is applicable only when all
indices are directly computed and no index arrays are used.

The other approach treats these problems as irregular. This approach takes little
advantage of the problem structure, as opposed to regular support, to make commu-
nication efficient. Here again the user provides the distribution specifications. With
the irregular approach, communication analysis is performed at runtime. The PARTI
system is an example of such support software [SGCS93]. At the time this work was
done, the user had to insert all of the calls to the PARTI primitives. A detailed discus-
sion of the extensive application modifications that the user was required to perform
is presented in Section 2.4.3.

The approach presented in Chapter 2 supports linearized applications by allowing
the programmer to specify their distributions in the natural topology, by requiring
only minor application modification, and by facilitating regular application optimiza-

tion in the compiler.

1.2 Composite Grid Applications and their Parallelization
1.2.1 Composite Grid Applications

In composite grid, irregularly coupled regular mesh (ICRM), or multiblock problems,
multiple meshes are connected together to form a larger, more complex topology
structure. I[CRM problems arise in important and computationally intensive applica-
tion areas such as fluid flow simulation, aerodynamic simulation, and nuclear reactor
simulation. Indeed, many composite grid problems require the use of the fastest
computers available, even for simplified simulations. For the solution of the grand
challenge simulations in these problems, it is clear that parallelization will be nec-
essary. Again, these simulations are computationally intensive and the phenomena

being simulated are inherently parallel. Note that not all of the algorithms for sim-



ulating these phenomena are inherently parallel, but the phenomena themselves are.
Unfortunately, even when the simulation algorithms are inherently parallel, parallel
programming languages such as High Performance Fortran and Fortran D provide
little explicit support for these problems.

Early in this research, problems were solicited from scientists working on com-
posite grid applications. The selection criteria for accepting data sets was that the
topology and program statistics come from real applications and that the specifica-
tions could be obtained in a timely manner. Test problem descriptions come from
two different application areas. In the first application area, the meshes are all large
with essentially the same computation being performed on each element of each mesh.
Three test problems from this application area will be presented in Section 3.1. To
illustrate the computational complexity of this class of problems, consider the simula-
tion of HOPE. HOPE [Yam90] is a winged vehicle for space transportation called the
H-IT Orbiting Plane planned by the National Space Development Agency of Japan. To
make accurate simulation of re-entry feasible, hypersonic aerodynamics and aerother-
modynamic characteristics must be precisely evaluated. Simulation of one model of
a HOPE vehicle provides an indication of the number of grid points used in such
computations. In one unsymmetrical calculation of the HOPE 63 model, a total of
approximately 9,000,000 grid points were used in the 3-dimensional grids. In many
ICRM problems from this application area, the mesh configurations are now gener-
ated automatically [SW92, SKC88, SGW88, All88, SE87, Tho87, SG92]. All three of
the fluid flow and aerodynamic test problems are composed of meshes that were gen-
erated automatically. Without automatic distribution, the application programmer
would have to decipher the automatically generated mesh configuration and specify
the data distribution explicitly. It is essential that these applications be automatically
parallelized when the mesh configurations are generated automatically.

In the second application area, the mesh sizes vary greatly and the amount and
type of computation varies greatly between different meshes. Four test problems from
this application area are presented in Section 3.2. To illustrate the computational
complexity of this class of problems, consider the simulation of the AP600. The AP600
is a new reactor design from Westinghouse. To verify the design criteria of the AP600,
that it be capable of unsupervised operation for three days, simulations of many test
cases need to be run. Since simulation of the AP600 reactor takes approximately
40 times real time using two communicating workstations (one running RELAP-5

and the other running Contain), each test case takes approximately 120 days to



run [Kel94]. In these complex topology problems, the configuration is generated by
hand and many iterations of the design and simulation testing steps may be needed
to obtain a good model for the system being simulated. This iterative process makes
it important to have an automatic approach for distribution. Further, although the
topology of reactor simulations is static, the computations are not and the distribution
algorithms presented could be reapplied periodically at runtime using dynamically
collected statistics to redistribute data as the simulation progresses.

Since the problems that this research focuses on are all partially regular, the
algorithms presented are required to preserve the problem regularity in each mesh for
which a distribution is generated. The reason for this requirement is that it allows
the compiler to take advantage of the vast collection of work that has been done
on optimizations for regular distributions of regular problems [HKT91a]. If irregular
distributions were generated, there would be much less advantage gained via compiler
optimization.

Further, in the case of simple stencils, such as the 3-dimensional seven point
stencil and a tori architecture, the description of communication that results from
the distributions generated can be strengthened. In this case, the distribution for any
single mesh generated by any of the automatic distribution algorithms presented here
causes only nearest-neighbor communication. Some people have argued that this is
not important as the cost of communicating between distant processors is falling. The
problem with this argument is that there is not just a single communication to do
in these problems. In general, there is a large number of communications associated
with each iteration of the algorithm for any distribution of meshes. By requiring that
all communication for a single mesh is regular and nearest-neighbor, no contention is
introduced in the network when only the communication associated with a single mesh
is considered. There may be contention in the network for communication between
different meshes, but there will be none for any single mesh, unless the algorithm
used is not a regular nearest-neighbor algorithm.

From an understanding of problem topology, with the requirement that regular-
ity and nearest-neighbor communication be maintained, algorithms are developed for
automatically determining data distribution for composite grid problems. This ap-
proach allows the compiler to apply all of the available optimization techniques for

regular applications to these partially regular applications.



The contributions that this dissertation makes in the area of parallelization of

composite grid applications are:

e collection of a test suite of topological descriptions of two classes of composite

grid applications;

o design of a template and style recommendations for HPF composite grid appli-

cations;

e development of a transformation procedure for converting applications, written
in the recommended style using the template, into standard HPF programs that

can be optimized as regular application programs;

e design and implementation of algorithms, based on grid size relative to the num-
ber of processors in use and problem and architecture topology to automatically

distribute data for composite grid applications; and

e execution of experiments to obtain computational load balance and communi-

cation measures to validate these algorithms and the overall approach.

Chapters 3—6 present details of this work on parallelization of composite grid

applications.

1.2.2 Related Work

Problem topology has been used by computational scientists for parallelization of
their applications for many years. For most simulations involving regular geome-
try and spatially limited interactions, domain decomposition or geometric (topology-
based) parallelization is the most efficient and natural approach to parallelization. In
their chapter on geometrically parallel algorithms, the parallelization approach most
stressed in their book [HB91], Heerman and Burkitt state:

The method of parallelization that we address in this chapter of geomet-
rically distributing the lattice over the available processing elements is an
entirely natural one since the processor array then has the same geometry
as the system being simulated. It clearly achieves an efficient load bal-
ancing if the system is reasonably homogeneous and has only short-range
interactions and if each processor has the same fraction of the volume of
the original system.



When this research began there were only two approaches to providing support
for parallelization of this general class of applications. In both of those approaches,
the user provides all of the data layout specifications. One approach is to treat these
problems as irregular. This approach takes little advantage of the problem structure,
as opposed to regular support, to make communication efficient. Standard Fortran
D is an example of the languages in this category. The other approach was to treat
each mesh as a regular computation but do communication analysis at runtime. The
PARTI system is an example of such support software [SGCS93]. Neither of these
approaches save the programmer from having to decipher the grid assembly and
determine data distributions. Further, neither of these approches allow the compiler
to perform regular problem optimizations on composite grid applications.

Recently, a number of algorithms have been developed that could be used to
automatically determine data distributions for composite grids. These approaches
are mostly variations on graph partitioning. To list just a few of the approaches
that might, possibly with modifications, be used here: simulated annealing, neural
networks, genetic algorithms, incremental graph partitioning, recursive single tree
bisection, recursive dual tree bisection, greedy algorithms, minimum bandwidth al-
gorithms, inertia algorithms, and spectral partitioning [MF94, Z193, OR94a, OR94b,
FL93, Dag93, PSLI0]. Many more references may be found in these papers. There
are two major problems with the use of these approaches to automatically distribute

data in composite grid applications.

e Graph based approaches are inefficient for most of these applications as each
mesh element (of which there are often many thousands) becomes a vertex in
the graph. Even with graph contraction applied, these approaches are still

expensive.

e More importantly, these approaches generate irregular distributions. This im-
plies that the compiler optimizations developed for regular applications can not

be used.

One other support development for composite grid applications must be men-
tioned. Researchers at IBM’s T.J. Watson Research Center are extending IBM’s sci-
entific database package to support composite grid application parallelization. These
extensions allow the user to specify array partitioning into sub-blocks and the pack-
age then provides automatic distribution of array sub-blocks to processors in a bin

packing manner. The user is also required to insert calls to database package routines
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to manage data exchange [CN93]. This approach is somewhat similar to that used in
PARTI with the exception of the bin packing distribution support. Using a bin pack-
ing approach at runtime to distribution of sub-blocks implies the loss of regularity of
communication inside of the meshes and that the compiler can not perform regular
optimizations.

The automatic distribution algorithms that will be presented in this dissertation
do not determine distribution on an element-wise basis. The automatic distribution
algorithm runtimes are primarily functions of the number and dimensionality of the
meshes and the number of processors. The one exception to this is discussed in
Chapter 6 where the runtime of the linear optimization procedure can increase with
the mesh sizes. As for the second point, one of my primary goals was to be able
to generate data distributions and a program that can be optimized as a regular
application at compile time. I have achieved that goal.

The one type of ICRM problem for which automatic distribution has been explored
is multigrid. In multigrid computations, fine granularity meshes are placed over
subgrids of larger granularity meshes to refine the computation in areas of interest.
Thuné has been working on automatic distribution of data structures for multigrid

computations [Thu93].

1.3 Overview of Dissertation

Chapter 2 begins with extensions to Fortran D to allow the use of problem topology in
parallelization of linearized applications. Following that, the specification of problem
topology is used to support the natural topology parallelization of applications with
linearized arrays and the use of index arrays.

Chapter 3 presents an introduction to the test problems used in the composite grid
application parallelization research. That chapter also provides HPF programming
style recommendations and a composite grid application template.

Chapters 4-6 present algorithms to map regular ICRM problems onto parallel
computers. Chapter 4 develops an algorithm for automatic data distribution of com-
posite grid problems that have only large meshes. Chapter 4 also discusses auto-
matic modification/generation of Fortran D for this class of problems. Chapter 5
develops algorithms for automatic data distribution in the presence of small meshes.
Chapter 6 develops an algorithm for automatic data distribution in the presence of

arbitrary (mixed) size meshes. Each of these chapters presents the experimental re-
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sults obtained by applying the algorithms to some of the test problems. Discussion
of compiler issues, discussion of HPF program transformation, and presentation of
transformation of examples are defered until Chapter 6. Therefore, Chapter 6 will
also: 1) outline transformation of HPF composite grid applications, 2) discuss the
HPF compiler technology needed to support the transformed programs, and 3) show
excerpts from abstracted applications (written in HPF) before and after transforma-
tion.

Chapter 7 concludes the main part of this dissertation with a review of the con-
tributions of the dissertation and a discussion of intended future research.

Appendix A presents the details of the model for parallel computation that was
used throughout this research. The model and related theorems provide insight that
was applied throughout this research.
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Chapter 2

Parallelization of Linearized Applications in
Fortran D

Users would like porting to parallel processors to be easy but the result must provide
efficient execution to be acceptable. Some applications programmers are considering
Fortran D [FHK*90] or similar languages for this conversion. If all of the linearized ad-
dress computations are done directly (via inline computation such as A(i)=f(A(i+ni)))
then the code can be parallelized using a 1-dimensional data distribution in Fortran
D. However, this might not provide the best performance, as will be illustrated with
an example. It is well known [FO84, RAP87] that the computation to communica-
tion ratio is one of the most important numbers there is in determining the efficacy
of a parallelization. For this reason, the relationship between parallelization topology
and the computation to communication ratio for two parallelization topologies, the
natural problem topology and a 1-dimensional topology, will be examined.

Define a standard computation/communication stencil to be one in which any
given element is dependent only on the element before it and the element after it in
each dimension (the 2-dimensional stencil is a five point stencil and the 3-dimensional
stencil is a seven point stencil). Now, consider a regular application with large lin-
earized meshes that uses a standard computation/communication stencil. When par-
allelized in a 1-dimensional fashion, as required for regular support in Fortran D,
the same size boundary must be exchanged no matter how many processors are used
(with fewer processors than columns). If the same application is parallelized in the
natural topology of the problem, the size of the boundaries to be exchanged decreases
with increasing number of processors. See Figure 2.1 for a graphical illustration of
this well known phenomenon. Since the communication per processor decreases as
the computation per processor decreases instead of remaining fixed as it does in
the 1-dimensional parallelization, the multi-dimensional parallelization is preferable.

For a more precise treatment of the merits of natural topology parallelization, see
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Figure 2.1 Mesh divided into slices versus sub-grids for communication.

Section 2.1. The experimental results in Section 2.4 for both examples agree with
these theoretical results.

Thus, it is established that using 1-dimensional data distributions on a problem
with a natural multi-dimensional topology is not a good idea. Unfortunately, there is
no way in the original Fortran D or in HPF to distribute a linearized array according
to its natural topology without treating the computation as an irregular one. With
the current definition of Fortran D, the computation can either be distributed one
dimensionally and treated as a regular computation or distributed according to a user-
defined function and processed via an inspector/executor approach, which requires
that communication be determined at run time. Hence, you lose efficiency by not
using the proper topology for distribution or you lose efficiency by paying the overhead
associated with handling irregular problems.

This loss of efficiency is overcome by extending Fortran D to support paralleliza-
tion according to the natural problem topology in the presence of linearized arrays.
This extension involves two new statements. The LOGICAL DIMENSIONS statement
provides information that will allow the Fortran D compiler to optimize the nat-
ural topology parallelization as a regular computation without the user having to
“delinearize” the arrays in the application. In particular, the LOGICAL DIMENSIONS

statement provides the topology description, which is sufficient to determine, at com-
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pile time, what communication is necessary when linearized array index computations
are computed inline.

The second extension is designed to help optimize accesses via index arrays that
are often used in conjunction with linearization. When index arrays are used, the
Fortran D compiler cannot compile the code as regular. As the data reference pat-
tern is not analyzable at compile time, the only support for this case is via an in-
spector/executor strategy [vVIKK*92, BSS90]. There are a number of problems with
this approach. To begin with, current compilers cannot yet generate the inspec-
tor/executor automatically. Hence, this conversion must be done by hand. To do
this, the user must modity declarations, determine the new loop bounds, figure out
how each processor computes the local portion of the index arrays (in global terms)
and finally insert calls to localize the index arrays and calls to perform communi-
cation. If double indirection is used, then the user must be careful to gather the
nonlocal values of the appropriate index array(s) before they are localized (including
the newly gathered values). If values from index arrays are used in comparisons, then
the user must save a copy of the global version of the index array and replace all uses
of index values in comparisons with uses of values from the global version.

A new version of the Fortran D compiler is under development that will be able
to generate the inspector and executor automatically [Sal93]. Even if the complete
inspector/executor can be generated automatically, there is still extra execution time
associated with the resulting parallelization. Communication requirements must be
determined at runtime and communication satisfying those requirements must be
generated. The overhead associated with determining the communication pattern is
proportional to the number of index arrays present. Since the applications under
consideration are regular calculations when considered in the natural topology, this
is an unnecessary overhead.

To maximize the efficiency of execution of these linearized applications, INDEX
ARRAY specifications are proposed. The INDEX ARRAY statement specifies the rela-
tionship between indices of arrays and their values. This allows compile time analysis
of indirections for optimization as a regular application. Experimental results in
Section 2.4.4 for Example 2 compare the performance of using this new approach to
using a block-structured version of the PARTI inspector/executor approach.

Before details of the Fortran D extensions and their use are presented, theoretical
motivations are developed, which will be used throughout the rest of the disserta-

tion. After the extensions are presented, use of the extensions to allow the compiler
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to support multi-dimensional distributions, and thereby provide more efficient paral-

lelization, will be presented.

2.1 Theoretical Motivation

Here I consider applications with standard computation/communication stencils and
prove some theorems that motivate my approach to distribution. These results can
be extended for other symmetric stencils.

First, a result is proven for applications with large 2-dimensional meshes using

many processors.

Theorem 2.1 Let P = p;*p; be the number of processors with p;, p; >>
1. Let the size of the application mesh be m-by-n (m < n) where m >> %,
P divides m and n, and pmi = p%. If the application uses a standard
2-dimensional stencil then a sub-block (2-dimensional) partition of the
problem onto the processors will yield less communication than a linear

(1-dimensional) partitioning.

Proof: Let a be the number of computations per element and 3 be the number of
communications (sends) per element in each direction of each dimension.

The minimum cuts possible with a linear partitioning is m(P — 1) and is achieved
by cutting into P slices of shape m-by-%. Since each cut requires two elements
to perform sends in one direction of the dimension, the total communication is
Crp = 28m(P — 1). The total computation is amn. Hence the communication

to computation ratio for linear partitioning is:

28m(P —1) 28(P—1)

amn an

The minimum cuts possible with a sub-block partitioning is m(p;—1)+n(p;—1) and
is achieved by cutting into P sub-blocks of shape Z—:—by—%. Since each of the vertical
cuts requires two elements to perform sends in one direction of the second dimension,
the total vertical communication is 28m(p; — 1). Since each of the horizontal cuts
requires two elements to perform sends in one direction of the first dimension, the total
horizontal communication is 26n(p; — 1). Hence, the total communication is Csp =
2B(m(p; — 1) +n(p; —1)). The total computation is amn. Hence the communication
to computation ratio for sub-block partitioning is:

2(m(p; — 1) + nlpi — 1))

amn
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This leads to a communication ratio of
Cop m(P —1)
Csp m(p; — 1) +n(p—1)

which can be reduced to
C Pi — =
CLP = 5 1 - - (2-1)
SP T wm

Since both p; and p; are much larger than one, the communication to computation
ratio is worse for the linear partitioning than for the sub-block partitioning. [ ]

Although the result of Theorem 2.1 is quite general, it may not be obvious to the
casual reader just how bad the linear partitioning can be relative to the sub-block

partitioning. Corollary 2.1 makes this clear.

Corollary 2.1 If m = n in Theorem 2.1 then the communication ratio

1S:
CLP_pi‘|‘1_pj‘|‘1_\/F‘|‘1
Csp 2 2 2

Proof: Follows from Theorem 2.1.

Next, a similar result is proved for the 3-dimensional case.

Theorem 2.2 Let P = p; x p; * p; be the number of processors with

pi,Pj,pr >> 1. Let the size of the application mesh be l-by-m-by-n

(I < m < n)) where P divides [ and m and n, and L -2 1f
P Dy Pk

the application uses a standard 3-dimensional stencil then a sub-cube (3-

dimensional) partition of the problem onto the processors will yield less

communication than a linear partition.

Proof: Let a be the number of computations per element and 3 be the number of
communications (sends) per element in each direction of each dimension.

The minimum cuts possible with a linear partitioning is Im(P — 1) and is achieved
by cutting into P slices of shape l-by-m-by-%. Since each cut requires two ele-
ments to perform sends in one direction of the dimension, the total communication
is Cp = 28lm(P — 1). The total computation is almn. Hence the communication

to computation ratio for linear partitioning is:

28lm(P —1) 28(P—1)

almn an
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The minimum cuts possible with a sub-cube partitioning is mn(p;—1)+In(p;—1)+
Im(pr — 1) and is achieved by cutting into P sub-cubes of shape pii—by—%—by—ﬁ. Since
each of the horizontal cuts requires two elements to perform sends in one direction of
the first dimension, the total horizontal communication is 28mn(p; —1). Since each of
the vertical cuts requires two elements to perform sends in one direction of the second
dimension, the total vertical communication is 28In(p; — 1). Since each of the level
cuts requires two elements to perform sends in one direction of the third dimension,
the total level communication is 28Im(py, — 1). Hence, the total communication is
Csp = 2B(mn(p;, — 1) 4+ In(p; — 1) + Im(pr — 1)). The total computation is almn.
Hence the communication to computation ratio for sub-cube partitioning is:

28(mn(pi — 1) + In(p; — 1) + Im(px — 1))

almn

Then the communication ratio is

CrLp Im(P—1)

Csp (mn(pi — 1)+ In(p; — 1) + Im(pe — 1))’

which can be reduced to

Crp _ pi(l — %) (2.2)
CSP 2_%_i _I_ pi—1
i p?

Since the denominator is less than one and p; is much larger than one, the com-
munication to computation ratio is much worse for the linear partitioning than for
the sub-cube partioning. [ ]

Although the result of Theorem 2.2 is quite general, it may not be obvious just how
bad the linear partitioning can be relative to the sub-block partitioning. Corollary 2.2

makes this clear.

Corollary 2.2 If / = m = n in Theorem 2.2 then the communication
ratio is: ) ,

Cop 1+ P35+ P53

Csp 3

Proof: Follows from Theorem 2.2.

Finally, a result for n-dimensional hypercube meshes will be proven.

Theorem 2.3 For an n-dimensional mesh having s elements in each di-
mension using the standard n-dimensional stencil, the linear to n-dimensional
communication ratio is

14+ Px 4+ Pr ..+ P

n
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Proof: Let s be the length of the sides of the hypercube and [ be the number of
communications (sends) per element in each direction of each dimension.

If the hypercube is partitioned linearly, then the total area of the cuts is s"~*(P—1)
yielding a total communication of Cpp = 285" (P — 1).

If the hypercube is partitioned into ¢" = P sub-hypercubes, then the total area
of the cuts is ns" (¢ — 1) = ns" (P — 1) yielding a total communication of
CrLp = 2,3713”_1({1/]_3 —1).

Hence the communication ratio is

Cir 2B (P—1)
Csp 28ns"=1(/P — 1)
s HP —1)

ns"1( P — 1)
14+ Pn+ Pr+..+P5%

= - ]

Theorem 2.3 shows that as the dimensionality of the problem and the number of

processors increases the natural topology parallelization has ever greater advantage
over the linear parallelization.

For a concrete illustration, consider using 1024 processors in parallelization of a
problem with meshes of size 1024x1024. The linear parallelization would then have
1024 elements per processor (one column of the logically 2-dimensional meshes) with
2048 boundary values to send and receive on each “internal” processor. Note that the
two outside (first and last) processors would only send 1024 boundary values, they
would not even be computing any results. The sub-block parallelization would also
have 1024 elements per processor, but they would form a 32x32 sub-block with 128
boundary values to communicate on “internal” processors. External processors would
be computing between 93 and 97 percent as much as internal ones. This example
makes it clear that not only is communication per processor reduced by using the
natural topology for parallelization but load balancing may also be improved. Hence,
the computation to communication ratio is improved by parallelizing according to the

natural problem topology. This result is used as motivation throughout the research.

2.2 The Fortran D Language and Extensions

Fortran D supports both alignment and distribution specifications. A DECOMPOSI-

TION statement specifies an abstract problem or index domain. An ALIGN statement
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maps array elements onto one or more elements of a decomposition. This provides the
minimal information necessary for reducing data movement for the program, given
an unlimited number of processors. A DISTRIBUTE statement groups decomposition
elements and maps them to the finite resources of the physical machine. Sample data

alignment and distributions are shown in Figure 2.2.

A R P1

P I I D2
R wl L] 73
U RO O n pz]; § pP4
P D P8l 1
R Pl B D2

S I I 73
P4

DECOMPOSITION REAL A(N,N) DISTRIBUTE DISTRIBUTE
D(N,N) ALIGN A(I,J) D(:,BLOCK) D(CYCLIC,:)
with D(J-2,I+3)

Figure 2.2 Fortran D Data Decomposition Specifications

Fortran D also supports irregular data distributions and dynamic data decompo-
sition, i.e., changing the alignment to or distribution of a decomposition at any point
in the program. To permit a modular programming style, the effects of data decom-
position specifications are limited to the scope of the enclosing procedure. However,
procedures do inherit the decompositions of their callers. The complete language is
described in detail elsewhere [FHK*90].

Note that the original Fortran D language specification does not support align-
ment of linearized arrays according to their logical topology and that irregular data
distributions require runtime support. This work makes it possible to more efficiently
compile the class of linearized regular application codes.

In an attempt to provide better support for linearized applications, Fortran D is
extended in two ways. Dimension specification provides the basis for loop bounds
updates and communication generation. Index array specifications further simplify

communication analysis and in many cases eliminate the need for runtime support.
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2.2.1 Logical Dimension Specification

The logical dimensions of the linearized dimensions of an index array are provided
in the LOGICAL DIMENSIONS statement. This allows the 2-dimensional array z to be
aligned as if it were declared to be 3-dimensional, i.e.,

real z(ni*nj,np)

C logical dimensions z((ni,nj),np)
C align z(i,j,*) with d(j,i).

In this example (ni,nj) are the logical dimensions for the first declared dimension of
the array z. The linearized array is then indexed according to the logical dimensions in
the ALIGN statement. The array is still indexed elsewhere according to its declaration.
Hence, the program body does not have to be rewritten to parallelize the application
according to its natural topology.

For a more complete example, the logical layout and distribution of x from Figure 2.3

is shown in Figure 2.4, where nx=ny=8.

function a()

parameter ($nprocs = 4)

real x(nx*ny), y(nx*ny)

decomposition d(nx,ny)

logical dimensions x((nx,ny)), y((ny,nx))
align x with d

align y(i,j) with d(j,i)

distribute d(block,block)

oNoNoONON®!

return

Figure 2.3 Alignment Statements for Linearized Arrays.

Once a linearized array has been aligned to a DECOMPOSITION of the correct
dimensionality, the DECOMPOSITION can be distributed as is most appropriate for
the problem. This allows greater flexibility in distribution. For example, in the code
fragment of Figure 2.3, the (block,block) distribution of array x and the transposed
(block,block) distribution of array y cannot be accomplished in the current version of

High Performance Fortran or as a regular computation in Fortran D.
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19 17 25]33 41 49 57
2 10 18 26|34 42 50 58
3 11 19 27|35 43 51 59
4 12 20 28|36 44 52 60
5 13 21 29|37 45 53 61
6
7
8

14 22 30138 46 54 62
15 23 31|39 47 55 63
16 24 32140 48 56 64

Figure 2.4 Distribution of 64 element (logical 8x8) array x.

2.2.2 Index Array Specification

Linearized arrays are typically indexed in one of two ways. The most straightfor-
ward indexing method is direct inline computation of linearized indices according to
Fortran’s standard array storage allocation. The other common indexing approach is

to use an index array to store the index of the neighbor, e.g.,
west(12) = 4

in array x of Figure 2.4.

Index array specifications are added to Fortran D as part of the support mechanism
for linearized arrays.

The code in Figure 2.5 specifies that in the logical topology: A(ind(i,1)) is the
element of A north of element A(i), A(ind(i,2)) is the element of A at position
i, A(ind(1,3)) is the element of A south of element A(i), and A(ind(i,4)) is the
element of A west of element A(1), A(ind(i,5)) is either the element of A at position
i or the element of A east of element A(i). This multiple use of ind(i,5) is allowed
for applications such as UTCOMP, which has an index array where the element
pointed to depends on the value in another array, but it is always one of a small set of
elements. With this type of specification such conditional indirections are supported.
A(ind(i,6)) is the element of A south and east of the element of A at position 1.

In general, for a specification [(1,c),d;,04,dy,0,,...], the 1 indicates the index

location to consider where d; has an offset of o;. Since ind(i,4) is one entry left
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parameter (ni = 10, nj = 10)

real A(ni*nj)

integer ind(ni*nj,6)

decomposition d(ni,nj)

logical dimensions A((ni,nj)), ind ((ni,nj),6)

index array 2D ind [(i,1),1,-1], [(i,2),1,0],
[(i73)717+1]7 [(i74)727'1]7
(.5)2.4+1], [(:5).2.0],
[(1,6),1,41,2,41]

align A with d

align ind(i,j,k) with d(i,j,*)

distribute d(block,block)

oNoNoNoNoNONONON®!

return

Figure 2.5 Logical Topology Specification.

of center in the second dimension, A(ind(i,4)) refers to A(i-ni) in the linearized
array where ni is the number of elements in the first dimension. The syntax of index
array specifications may be modified as applications with more general communication

stencils are studied.

2.3 Compilation

This section begins with an outline of the strategy used to compile linearized applica-
tions. After that, the compilation strategy is illustrated with an example. Note that
the constants are actual sizes, not just declared sizes.

In this work, it is assumed that all of the arrays in a given loop are similarly
linearized, aligned (mapped), and distributed. The first example deals with the use
of directly computed indices for linearized arrays. The second example deals with
index arrays. Finally, only unit (41 or -1) loop step sizes and step sizes that are
multiples of the number of elements in the first dimension are allowed. Relaxation of

these restrictions will be discussed after the basic compilation strategy is presented.
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The examples used for illustration in this work come from UTCOMP. UTCOMP

is a University of Texas code that simulates 3-dimensional miscible gas displacements.

This problem of parallelization of linearized applications and UTCOMP were brought

to my attention by M. Ramé.

2.3.1

Strategy

As in the example of Figure 2.6, all logical dimension specifications for linearized ar-

oNoNoNON®!

C
C

program main

parameter (nip=1, njp=1, n$proc=nip*njp)

parameter (nim = 1024, njm = 244, nijm = nim * njm)
real x(nijm), y(nijm), c(nijm), n(nijm), s(nijm), e(nijm), w(nijm)
decomposition d(ni,nj)

logical dimensions n((ni,nj)),s((ni,nj)),e((ni,nj)),w((ni,nj))
logical dimensions x((ni,nj)),y((ni,nj)),c((ni,nj))

align x, y, n, s, e, w with d

distribute d(block,block)

read(*,*)ni,nj

nij=ni*nj

call compute(ni, nj, nij, x, y, ¢, n, e, w)

return

subroutine compute(ni, nj, nij, x, y, ¢, n, s, e, w)
parameter (nim = 1024, njm = 244, nijm = nim * njm)
real x(nijm), y(nijm), c(nijm), n(nijm), s(nijm), e(nijm), w(nijm)
align x, y, n, s, e, w with d
distribute d(block,block)
do i = ni+1,nij-ni
y(i) = x(Q)*c(i) + x(i-1)*n(i) + x(i+1)*s(i) + x(i-ni)*e(i) + x(i4ni)*w(i)
enddo

return

Figure 2.6 Example 1: Linearized Array Computation.

rays should use variables that are compile time constants or input runtime constants.
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These annotations could then be used for index analysis to support communication
generation.

To support direct computation of linearized indices, such as via a function call,
the compiler would need to be capable of evaluating the index computation to de-
termine ownership of data for communication. The logical dimension specifications
support this analysis. This would eliminate the need to execute an inspector. Details
on how such index computations may be evaluated by the compiler are available
elsewhere [Koe90]. Once such computations are recognized, the compiler can deter-
mine whether the indirection implies a communication from the distribution in effect.
Communication can be generated at this point because the indices of the source and
sink of the dependence are known, as are the processors that store the values. In
the cases where communication is necessary, the compiler can generate and insert
communication for getting the correct element(s) of the linearized array.

To support the use of index arrays, the index array specification supplies the
information necessary for communication generation.

Other considerations for compilation include resizing arrays in declarations and
updating loop bounds based on the processor id. Loop bound computations are
more complicated than for non-linearized computations as each processor has a set
of linearized array indices. This corresponds to one contiguous block of the logical

array but it is not a contiguous block of the linearized array.

modify declarations
compute loop bounds for each processor
exchange standard pattern phantom boundaries
exchange specialized phantom boundaries
modify loop
use new loop bounds
put correct north/south neighbors in temporaries
modify computation to use temporaries

Figure 2.7 Road Map for Linearized
Application Modification (Example 1)
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subroutine compute(x, y, ¢, n, s, e, w)
modify declarations
parameter (nip=1, njp=1, n$proc=nip*njp, ni=1024, nj=244, nij=ni*nj)
parameter (n$dip=ni/nip+1, n$djp=nj/njp+1,n$dij=n$dip*n$djp,n$sp=-(n$dip+n$djp))
real x(n$sp:n$dij-nfsp), y(n$dij), c(n$dij),n(n$dij), s(n$dij), e(n$dij), w(n$dij)
integer 1b$1, ub$1
common /buf$s/ buf$1(-n$sp), buf$2(-n$sp),buf$3(-n$sp),buf$4(-n$sp)
common /proc$c/ my$proc,my$col, my$row,in$p,is$p,ie$p,iw$p,ine$p,inw$p,ise$p,iswsp,
n$ip,n$jp,n$di,n$dj,n$i,n$j,in$st,in$nd,is$st,is$nd ie$st ie$nd,iwdst,iw$nd , n$s n$f
compute loop bounds for each processor
Ib$1 = i$bnd2(ni+1,1,1)
ub$1 = i$bnd2(nij-ni,-1,-1)
exchange standard pattern phantom boundaries
call exc$b1(x,n$sp,n$dij-n$sp,101)
exchange specialized phantom boundaries
if (n$jp .gt. 1) then
if (my$row .eq. 1) then
call b$f_dt2(x(1),2,n$di,1,1,buf$1)
call csend(105,buf$1,8*(n$dj-1),nip-14+nip*(my$col-1),my$pid)
if (my$col .gt. 1) call csend(106,x,8,n$ip-1+n$ip*(my$col-1),myS$pid)
call crecv(107,x(in$st+1),8*(n$dj-1))
if (my$col .gt. 1) call crecv(108,x(inst),8)
elseif (my$row .eq. n¥ip) then
call b$f_dt2(x(1),n$di,n$di,1,n$dj-1,buf$1)
call csend(107,buf$1,8*(n$dj-1),1-14+n$ip* (myScol-1),myS$pid)
if (my$col .1t. n$jp) call csend(108,x(n$di*n$d;j),8,1-1+n$ip*(n$jp+1-1),myS$pid)
call crecv(105,x(is$st),8%(n$dj-1))
if (my$col .1t. n$jp) call crecv(106,x(is$nd),8)
endif
endif
modify loop — use new loop bounds
do i = 1b$1, ub$1
put correct north/south neighbors in temporaries
if (1 .eq. mod(i,n$di)) xim$1 = x(in$st+i%$n-1)
if (1 .ne. mod(i,n$di)) xim$1 = x(i-1)
if (0 .eq. mod(i,n$di)) xip$l = x(is¥st+i$n-1)
if (0 .eq. mod(i,n$di)) xip$1 = x(i+1)
modify computation to use temporaries
y(i) = x(i)*e(i) + xi$1*n(i) + xipl*s(i) + x(i - n$di)*e(i) + x(i + n$di)*w(i)
enddo

end

Figure 2.8 Example 1: Linearized Array Computation.
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2.3.2 Illustration of Strategy

The compilation strategy is now illustrated with an example. Figure 2.6 shows the
Fortran D source code for a linearized computation similar to some of the direct
linearized address computation code in UTCOMP. This example is a 2-dimensional
code similar to a part of one of the 3-dimensional routines from UTCOMP.

For good performance in an application implementation, the user or an automatic
alignment and distribution system [LHKD91, BFKK90] would align each array to
minimize communication. In the example of Figure 2.6, all of the arrays are perfectly
aligned with decomposition D.

Code modification for this simple example is outlined in Figure 2.7. This outline
serves as a roadmap for the code, shown in Figure 2.8, that was generated via hand
compilation. A setup routine was called in the main program to initialize the variables
in the common block proc$c.

The function b$f_dt2, called as

call b$f dt2(x(1),il,ih,jl,jh,buf),

copies from the n$di by n$dj array x the sub-array x(il:1ih,j1l:jh) into buf.

A single function is written to compute lower and upper bounds of loops based
on linearized 2-dimensional arrays distributed in two dimensions. First, the bounds
computation function determines the location, in the logical 2-dimensional array, of
the input bound. Then, the first location that the calling processor owns in the
direction that the loop iterates is determined via the known mapping of elements to
processors. This same basic procedure can be followed for linearized n-dimensional
arrays distributed in n dimensions.

One of the disadvantages of linearization of arrays is that communication overlap
arrays are more complicated. For efficiency, starting and ending indices of overlaps
are computed in the setup routine then used throughout the program to access bound-
ary values. One advantage to this approach is that, with careful packaging during
buffering for sends, most communications do not require unpackaging for receives.

Boundary messages can be received directly into their linearized storage.

2.3.3 Details of Compilation

There are three stages in the compilation process: analysis, interprocedural propa-

gation, and code generation. Fach of these stages will be examined in detail. Each



27

stage is discussed in terms of the needed modifications/additions to the Rice Fortran D

compiler [HKT91b]. An outline of the compilation process is shown in Figure 2.9.

Analysis
collect index information
note potential index/indirection arrays
note potential multiple indirections
store logical dimensions of linearized arrays
store index array specifications

Propagation
propagate specifications down the call chain
propagate index array notes up the call chain

Code Generation
modify declarations
insert call to setup routine
modify initialization of index arrays
update loop step sizes and loop bounds
modify direct linearized address computations
modify logical statements using values of index arrays
generate communication

Figure 2.9 Compilation Process Outline

2.3.4 Analysis

Index information is collected on a per loop basis for later communication genera-
tion. Information is also collected about the use of potential index/indirection arrays.
Multiple indirection candidates must be noted in the symbol table so that boundary
indices can be computed if necessary.

Specifications for logical dimensions of arrays and specification of index arrays
need to be collected along with the alignment and distribution information collected
in the Rice Fortran D compiler. Actual dimension size names are collected for each
logically distributed dimension of the linearized arrays. This information is available

directly from the LOGICAL DIMENSIONS statements in symbolic form.
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Logical tests involving values from potential index arrays are marked for later

processing.

2.3.5 Propagation

All of the specification information collected during analysis (e.g., logical dimensions
of arrays, index arrays, and dimension sizes) is propagated down the call chain. If
different index array specifications are associated with the same dummy parameter
in a subroutine, the subroutine must be cloned for each different specification. In
this case, clone names must be propagated up the call chain to allow selection of the

correct clone.

2.3.6 Code Generation

In each routine, array declarations for all distributed linearized arrays are modified
to be the largest size needed by any processor plus the size needed for storing the
phantom boundary values.

Immediately after the initialization of the actual dimension sizes (assignment or
input), a call to a setup routine with the sizes as parameters is inserted. The setup
routine identifies the processor, its location in the logical processor array, the processor
identifiers of all logical neighbors in the logical processor array, and the offsets for
storage of boundary values.

In Figure 2.10, the neighboring processors are indicated in a 3-dimensional logical
processor array for a seven point stencil application. The diagram also indicates
what boundary allocation is necessary. For each of the boundaries, starting and
ending allocation addresses are computed in the setup routine. These addresses are
then used to simplify and improve the efficiency of communication.

If index arrays are used, then their computation must be modified so that bound-
ary addresses are used. This is straightforward when there is at most one indirection
in any data access and there are only references to indices of the form i-1, 1, or i+1 in
any dimension. Otherwise multiple layers of phantom boundaries must be supplied.
When double indirection is used, the boundary elements of the index array must be
computed and filled in. Fortunately, the more complicated cases having many com-
pound indirections and/or distant elements as neighbors are not the norm for these

regular computations. The second example, in the routine called disper, does use
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Figure 2.10 3-Dimensional Processor Layout

one form of double indirection. Note that the double indirection discussion implies
relaxation of the “owner computes rule” for index arrays.

Loop modification begins with step and bounds updates. Consider the simplest
case, where the step is one. To find a processor’s lower bound, its first index (in the
original array indexing) greater than or equal to the original lower bound is found
and translated into the (smaller) processor’s array index space. Since the mapping
of elements to processors is known and fixed, this not difficult. Let ér and éc¢ be the
number of rows and columns that a processor owns. Basically, in the 2-dimensional
case, to find the lower bound on any processor, assuming the step size is positive, the

following steps are performed:
e Determine the row and column of the bound in the original array.

e If the bound’s column is greater than the last column the processor owns a
portion of, then set lbr to 6r 4+ 1 and [bc to dc+ 1.

e Else if the bound’s column is less than the first column the processor owns a

portion of, then set lbr to 1 and [bc to 1.

o Flse
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— Set [bc to the bound’s column minus the index of the first column the

processor owns a portion of plus one.

— If the bound’s row is greater than the last row that the processor owns a
portion of, then add 1 to lbec and set [br to 1.

— Else if the bound’s row is less than the first row that the processor owns a

portion of, then set lbr to 1.
— EKlse set [br to the bound’s row minus the index of the first row that the

processor own’s a portion of plus one.

e Compute the new lower bound as (lbc — 1) * éc + lbr.

The process for the upper bound is similar. Indeed one routine was written and
—1 *sign(step) was passed for the step to compute the upper bound. Non unit steps
complicate the computation. Fortunately, typical non-unit steps are fairly straight-
forward. In particular, probably the most common non-unit step is the size of the
first dimension. In this case, bounds are found as above but the step size is modified
to be the number of elements in the first dimension of the sub-array owned by the pro-
cessor. In the completely general case, a different starting position could be needed
for each logical column of the sub-matrix owned by each processor. After bounds
have been computed, the body of the loop is considered. If linearized addresses are
computed directly in the loop, as were seen in the first example, a case structure must
be built that moves a neighbor value from either normal neighbor storage or phan-
tom boundary storage in the processor’s sub-array to a temporary. The temporary is
then used in place of the variable with its direct linearized address computation. If
index arrays are used, this modification is not needed because the index array values
have already been modified to handle the boundaries. This may give an execution
time advantage to parallelization of linearized applications that use index arrays for
indirection rather than direct computation of linearized addresses.

Logical statements that involve tests of actual index array values require modifi-

cation. An example of such usage is:

iwst = ind(i,4)

if (iwst .ne. 0) A(i) = f(A(iwst))

where 0 is out of bounds for A. Because A(iwst) may now be an internal boundary

value, this computation must be modified to something like
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iwst = ind(i,4)

if (iwst .ne. A$0) A(i) = £(A(iwst))

where A$0 is a special (invalid) index value that is also used during initialization in
place of zeros. If such uses can not be deciphered at compile time, runtime checks
must be added for correctness or the user must supply further information.

The final code modification involves communication generation. With direct lin-
earized address computation, communication generation involves a simple modifica-
tion to the Rice Fortran D compiler. The only difference is in recognizing and using
the higher dimensional nature of the arrays and their indexing. For example, recog-
nition of a reference to A(i-ni) as a reference to the element to the west of element
i in the logically 2-dimensional (or higher) array A implies communication is only
needed in a west to east pattern along the boundary faces in the processor array.

With the use of index arrays, communication generation is even simpler as a refer-
ence to A(ind(i,4)) is specified to be a reference to the element to the west of A(1).
Hence, the index array specifications provide an upper bound on the communication
needed for an indirection through an index array. This is an upper bound due to

entries such as

(ind2(i),.,ind2(1)),

which indicates that ind2(i) refers to either element i-1 or element i+1 in the
appropriate dimension. In the cases where such multiple entries occur, communication
must be generated at compile time to satisfy all entries or runtime support must be
provided to determine what communication is necessary and perform it. In regular
applications there will only be one communication direction associated with most
index array usage. With this exception, communication optimization is essentially

the same as that needed in any good Fortran D compiler [HKT91a].

2.3.7 Relaxation of Restrictions

Certain restrictions were placed on the codes that were considered for compilation in
this work. This section discusses how to handle codes that do not adhere to those

restrictions.
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Using Arrays with Different Linearizations

If different arrays have been linearized in different ways, this multiplicity must be
accommodated. One way to handle this would be to call a setup routine for each
type of linearization and allocate common blocks for each. In bounds computations
and generated communication, information would be selected from the appropriate
common block. For communication between arrays with different linearizations, the

analysis is essentially the same analysis done in the Rice Fortran D compiler for arrays

with different distributions [HKT91c¢].

Arbitrary Step Sizes

To support arbitrary step sizes, the step size is first computed for the sub-blocks. A
starting and ending position must be computed for each sub-column on each processor.
Finally, the loop must be modified to iterate over the columns with a nested loop that

iterates from that sub-column’s starting to ending positions by the sub-block step size.

2.3.8 Optimization for Linearized Array Computations

Sometimes linearization for vectorization introduces extraneous computations. This
is usually due to computing boundary values in the same manner (as part of the vector
computation) as interior points. The boundary conditions are then recomputed cor-
rectly after the vector-based computation. Typically, this also implies non-productive
communication if the code is parallelized based on the linearized code. A good com-
piler should recognize that the boundary values are stored twice but not used between
the stores. Once this has been recognized, the compiler can eliminate the useless first
computation. The compiler should then recognize that the communication associated
with the first computation is also superfluous and may be eliminated as well. Even
if the extraneous computations are not eliminated, the communication may still be
eliminated and maintain correctness (with proper initialization).

In the example of Figure 2.6, only the interior points loop has been shown. In
the complete implementation, there would be boundary updates following the loop
shown. The computations for elements 9, 16, 17, etc. would all be recomputed as
boundary values without ever having been used. Hence their computation in this

loop is superfluous.
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2.4 Experimental Performance Results

In order to demonstrate the performance achievable when using the techniques de-
scribed in this chapter, two example applications were hand translated. The codes
were then compiled with release 3.3 of the Intel iPSC/860 Fortran compiler.

Timing experiments were run on the Intel iPSC/860 at Rice University. The
machine has 32 processors, each with 8Mbytes of memory and a vector processor.
Actual run times are presented for both of the example application codes. All of the
times presented are the minimum of at least three executions. Timings are in seconds

and are rounded to five significant digits.

2.4.1 2-d Direct Linearized Address Computation Application

The original (sequential linearized) compute routine for this example is shown in
Figure 2.6. This application was parallelized in three ways. First, the approach de-
scribed in this chapter was used to achieve the natural 2-dimensional parallelization.
Next, the procedure, described in Section 2.3.8, is used to optimize the communica-
tion of this 2-dimensional parallelization. Finally, the Fortran D compiler was used
to generate a linear (1-dimensional) parallelization, the only type of regular paral-
lelization possible with the original definition of Fortran D. In all cases, the meshes
(each of which was 1024x244) were divided evenly across the processors.

Upon computing efficiencies for this example, it was found that the new parallel
code ran at better than 100 percent efficiency. Some time was spent tracking down the
cause of this anomaly. The actual runtime of the code generated for this application
is highly dependent on the precise memory allocation used. The declarations were
changed (and nothing else) in the original program to be the same as those in the
parallel program. The original sequential code ran in 1.0050 seconds while the “real-
located” code ran in 0.53127 seconds. This illustrates how much difference memory
allocation can make on small, simple, programs. On large programs with many data
structures, changes in memory allocation do not appear to make significant differ-
ences in runtime. For all speedup comparisons, the timings of the “reallocated” code
are used. Hence comparisons are made against the “best” known sequential code.

The timings for the first two parallelizations are shown in Table 2.11. These
timings provide an example of the type of performance improvement possible when
the communication optimization procedure in Section 2.3.8 is performed on a small

simple application.



Num. Procs || Unoptimized | Optimized | unopt./opt.
2 2.5932E-01 | 2.4425E-01 1.06
4 1.2532E-01 | 1.1585E-01 1.08
8 6.4001E-02 | 5.9694E-02 1.07
16 4.0701E-02 | 3.1243E-02 1.30
32 3.7446E-02 | 1.6700E-02 2.24
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Figure 2.11 Communication Optimization Timing Comparison

In the following comparisons with Fortran D, the optimized code is used. Table 2.12
presents runtimes and speedup factors comparing the results of my approach to the
runtime of the reallocated sequential code. These results illustrate that the techniques
described here are capable of providing an improvement in performance even for such

a simple computation as Example 1.

1-d Fortran D Logical 2-d
Num. Procs. runtime speedup runtime speedup
2 5.5696E-01 0.95 2.4425E-01 2.18
4 2.7976E-01 1.90 1.1585E-01 4.59
8 1.2224E-01 4.35 5.9694E-02 8.90
16 4.7520E-02 | 11.18 3.1243E-02 | 17.00
32 2.3309E-02 | 22.79 1.6700E-02 | 31.81

Figure 2.12 Example 1 Timing Results

Next, consider the superlinear speedups in Table 2.12. The Intel i860 has a 2
way, set associative, 8Kbyte cache with a write-back policy. This cache is the cause
of the superlinear speedups. In this trivial example, there are only a few arrays and
a very simple memory access pattern. The cache makes a tremendous difference for
this application. To illustrate this the sequential program was run on the same size
problem that was run on each of the parallel processors. Since the original problem
had 1024x244 meshes, size (1024x244)/P meshes for P = 2, 4, 8, 16, and 32 were

used. Table 2.13 illustrates runtime efficiencies with cache effect factored out.
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Sequential 1-d Fortran D Logical 2-d
P runtime runtime speedup | eff. runtime speedup | eff.
2| 1.7928E-01 || 5.5696E-01 0.64 32.2 || 2.4425E-01 1.47 73.4
4 || 8.5883E-02 || 2.7976E-01 1.23 30.1 | 1.1585E-01 2.97 74.1
8 || 4.3315E-02 | 1.2224E-01 2.83 35.4 || 5.9694E-02 5.80 72.6
16 || 2.1925E-02 || 4.7520E-02 7.38 46.1 || 3.1243E-02 | 11.23 | 70.2
32 || 1.0182E-02 || 2.3309E-02 | 13.98 |43.7 || 1.6700E-02| 19.51 |61.0

Figure 2.13 Example 1 Cache Effect Timing
Results (Mesh size: (1024x244)/P)

Since it appears that there could be a memory allocation imbalance between the
Fortran D code and the logically 2-dimensional code, it can not be stated categorically
that this procedure outperforms Fortran D on this application. It can be said that an
old (a preliminary compilation procedure was used to generate it) version of the code,
with similar memory allocation performance to the Fortran D code, also outperformed
the Fortran D code.

performance results.

Next a more realistic application provides a better look at

2.4.2 3-d Index Array Application

The second example consists of three routines from UTCOMP. Two of the routines
are index array computations, one of which must be modified to support double
indirection usage. The third routine, disper, which computes the dispersion term
for UTCOMP, is over one thousand lines long, uses index arrays including double
indirection, and is representative of the code throughout UTCOMP [Ram92].

This code was not parallelized using standard Fortran D as that would require
runtime support. The requirement for runtime support is due to the indirections that
use index arrays. This support is not available in the current version of the Rice
Fortran D project. The results of a hand parallelization using the inspector/executor
approach for regular problems supported by the PARTI routines are used for compar-
ison. This parallelization will be discussed first, in Section 2.4.3, then I will return to

a discussion of the performance results in Section 2.4.4.
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2.4.3 PARTI Parallelization of 3-d Index Array Application

In the original treatment of applications using the PARTI routines, the data element to
processor mapping was determined by having the user set up an array on each proces-
sor with global indices of the elements the processor owned. The inspector then built
a distributed translation table that described the mapping of global indices to pro-
cessors and the offsets in the array. This approach is still used for irregular problems
that do not have standard distributions. For irregular problems with standard dis-
tributions, the indices are now “dereferenced” via a function. The elimination of the
distributed translation table provides up to a factor of five improvement in runtime
of the inspector [Sal93]. Standard distributions (supplied as part of PARTI) are BLOCK
and CYCLIC. Note that the BLOCK distribution will provide the linear distribution that
was discussed in conjunction with the Fortran D results. The user may also modify
the PARTI routines to support other regular distributions. To begin with, only the
application modifications necessary to use the standard distributions are discussed.

First, consider the inspector. This is a new addition to the application code that
must be written to support the initialization of the PARTI data structures. For simple
programs, using only single indirections, it is only necessary to call a routine that
localizes index array values (converts the global array indices to indices for the specific
processor) and constructs a communication schedule for the index array(s). This is
easy to do, but disper uses double indirection. When double indirection is used, the
inspector is more complicated. For a double indirection like A(a(3(1))), where a and
(3 are index arrays, after 3 is localized and a schedule for 3-induced communication has
been computed, the off processor values of « that will be referenced are collected (via
a call to a gather routine). Next, localization and communication schedule generation
is performed for « including the gathered elements. But the application is still not
quite done. The values of index arrays are used in comparisons in disper. To handle
this properly, a copy of the index arrays (before they were localized) must be kept to
use in the comparisons.

Now, consider what needs to be done in the executor portion of the code. Firts,
declarations must be modified so that storage is declared only for the portion of each
array that a processors owns. Index array computations must be modified so that each
processor computes only its set of index values (in terms of the global index space).
The program must be analyzed and calls inserted at the appropriate places to perform

communication. Loop bounds must be correctly computed for each processor based
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on the portion of the arrays that the processor owns. Logical comparisons must be
modified to use the values of the global index arrays (recall that they were saved by
the inspector).

Finally, the application is ready to run using a PARTI supplied regular distribution.
In the comparisons of Section 2.4.4, the standard block distribution was used and is
refered to as “PARTI/1-4d".

In order to run the application using its natural topology parallelization in PARTI,
the user must modify one of the PARTI routines. In particular, the user must write
code that, when given a vector of indices in the global index space, will generate
vectors of owning processor numbers and offsets. The routine was modified to sup-
port a 3-dimensional distribution of the linearized arrays. In the comparisons of
Section 2.4.4, this code is refered to as “PARTI/3-4".

Work is being done on a compiler to automatically generate inspector/executor
programs for a restricted type of source program. The version of that compiler in
progress should be able to handle the double indirection and/or the logical compar-
isons with global index values [Sal93].

Also, note that I am not claiming that the approach presented can be used to solve
all of the problems that can be solved using PARTI routines. The PARTI system is used
for comparison because it is capable of handling the problems under consideration

(as well as much more general problems, with more user work).

2.4.4 3-d Index Array Application Results

I now return to the runtime results for UTCOMP. The runtime for the original se-
quential code is 109.76 seconds.

As expected, the natural topology parallelization using PARTI significantly out-
performs the linear parallelization using PARTI. The results in Table 2.14 illustrate
this.

An efficiency experiment was done to see what part of the apparent good perfor-
mance in Table 2.14 was due to cache effect. Table 2.15 compares the timings for
the sequential program on the mesh sizes (10x24x24)/P for P = 2, 4, 8 16, and 32
to the timings for the parallel programs. This table shows that the time for running
a problem of size (10x24x24)/P is near 1/P times the time for running a problem of
size 10x24x24. It is clear that there is much less cache effect in this application than

was present in the first example.
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PARTI/1-4 PARTI/3-4d Logical 3-d
Num. Procs. || runtime | speedup || runtime | speedup || runtime | speedup
2 69.339 1.58 60.271 1.82 57.206 1.92
4 34.868 3.15 30.186 3.64 28.597 3.84
8 17.070 6.43 15.134 7.25 14.268 7.69
16 8.3085 13.21 7.5702 14.5 7.1471 15.36
32 4.2477 25.84 3.8696 28.36 3.6997 29.67

Figure 2.14 UTCOMP Timing Results for disper

From the timing results, this new compilation approach slightly outperforms the
results achieved by the best hand-coded use of the PARTI routines. The difference in
performance combined with the difference in the amount of work that the user must

do makes this a preferable approach to parallelization of linearized applications.

Sequential PARTI/1-d PARTI/3-d Logical 3-d
P runtime runtime | eff. || runtime | eff. || runtime | eff.
2 54.106 69.339 | 78.0 60.271 | 89.8 57.206 | 94.6
4 26.654 34.867 | 76.4 30.186 | 88.3 28.597 | 93.2
8 12.935 17.070 | 75.8 15.134 | 85.5 14.268 | 90.7
16 6.2814 8.3085 | 75.6 7.5702 | 83.0 7.1471 | 87.9
32 3.0237 4.2477 | 71.2 3.8696 | 78.1 3.6997 | 81.7

Figure 2.15 UTCOMP Cache Effect Timing
Results (Mesh size: (10x24x24)/P)

2.5 Chapter Summary

Neither Fortran D nor High Performance Fortran provide regular support for the
natural topology parallelization of linearized applications codes. I have presented ex-
tensions to Fortran D that permit specification of the logical dimensions of linearized
arrays and the use of index arrays to specify regular communication in linearized

array references, along with an approach to compiling the resulting programs. Hand
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simulation of the compilation algorithm shows that runtime support is not necessary
for many linearized applications even if indirection is used.

Better performance and, in comparison to the inspector/executor approach, re-
duced manual recoding effort make this new approach preferable to using the original

Fortran D, HPF, or inspector/executor approaches for regular linearized applications.
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Chapter 3

Composite Grid Problems

This chapter introduces: 1) the problems that are used to test the automatic distribu-
tion algorithms for composite grid applications, 2) a program template for composite
grid programs, and 3) a style guideline for development of composite grid programs.

The test problems are first presented. Early in this research, problems were so-
licited from scientists working on composite grid problems. The selection criteria was
that the topology and program statistics come from real applications and that the
specifications could be obtained in a timely manner. The ICRM problem descrip-
tions come from two different application areas. Recently, new data sets have been
obtained that will be used in the continuation of this research.

The discussion of these problems is concluded with a discussion of programming
issues for parallelization. This discussion includes recommendations on programming

style for these applications in HPF and a program template.

3.1 Fluid Flow and Aerodynamic Simulations

In these applications, the meshes are large and the computation being done is the same
for every element of every mesh. A simple example of a large mesh ICRM problem is
the simulation of the material flow through an elbow with two parallel vanes inside.
Hugh Thornburg at Mississippi State University generated coupled meshes for this
simulation, which are shown in Figure 3.1. There are five 3-dimensional meshes
ranging in size from 44,772 to 70,520 elements with a total of 275,356 elements and
six couplings in this problem.

Perhaps one of the best known application areas for composite grids is aerodynam-
ics. In aerodynamic simulations, different grids are used to resolve flow in the space
surrounding the fuselage, wings, foreplane, pylons, etc. [Yam90, Eri87, SB87, SE87].

In recent years, it has become possible to automatically generate the grids used in

some ICRM problems [SW92, SKC88, SGW88, AlI88, SE87, Tho87, SG92]. Shaw



41

Figure 3.1 Automatically Generated Grids for Flow through an Elbow

and Weatherill [SW92] provide an introduction to the problem of automatic grid

generation and illustrates difficulties associated with multiblock problems:

The fundamental problem that is encountered in the construction of
structured, body-conforming meshes for general aerodynamic configura-
tions is that each component of the configuration has its own natural
type of grid topology and that these topologies are usually incompatible
with each other. In other words, in attempting to discretize the flow do-
main around an arbitrary set of 2-dimensional shapes, or some complex
3-dimensional shape, a direct conflict arises between the maintenance of
a globally structured grid and the preservation of a grid which naturally
aligns itself with the local geometric features of a configuration.

This inconsistency has motivated the development of a general cat-
egory of mesh construction techniques know as multiblock or composite
grid generation. Here, the single set of curvilinear coordinates, inher-
ent to a globally structured grid, is replaced by an arbitrary number of
coordinate sets that interface node to node with each other at notional
boundaries within the physical domain. Returning to the mapping con-
cept, the approach can be viewed as the decomposition of the flow domain
into subregions, which are referred to as blocks, each of which is trans-
formed into its own unit cube in computational space. Global structure
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within a grid is sacrificed, but the concept proves the flexibility of con-
nections required to construct a grid whose topological structure, local
to each component of a complex configuration, is compatible with the
particular geometric characteristics of the component. All points that are
connected by a common coordinate system can be directly referenced with
respect to each other, but bear no direct structured relationship to any of
the grid points that lie in coordinate-sets in other blocks.

Thus, the multiblock technique necessitates information to be defined
describing how the blocks connect together...

Both of the aerodynamic test problems that are used for distribution algorithm vali-
dation were generated semi-automatically. These examples of grids for such aerody-
namic simulations are shown in Figure 3.2 and Figure 3.3. The grid descriptions for
both of these examples were provided by Paul Craft working with Dr. Brahat Soni
at Mississippi State University. The Fuselage-Inlet-Nozzle problem has 10 meshes
ranging in size from 540 to 179,820 elements with a total of 713,766 elements and
25 couplings. In the full F15e simulation there are 32 meshes ranging in size from
540 to 230,688 elements with a total of 1,269,845 elements with 106 couplings. When
grids are generated automatically, it is particularly important that distribution is
done automatically. The applications programmer must not be required to decipher
the automatically generated grid assembly and parallelize the simulation code for a

specific configuration by hand.

3.2 Water-Cooled Nuclear Reactor Simulations

In these simulations, not only does the size of the meshes vary greatly but the
computation performed varies with the mesh. There are thirteen different types
of components associated with reactor simulations: ACCUM, BREAK, FILL, PIPE,
PLENUM, PRIZER, PUMP, ROD(or SLAB), STGEN, TEE, TURB, VALVE and
VESSEL. Table 3.4 shows the approximate number of additions/multiplications, and
divisions* for each element of 1-dimensional, 2-dimensional(ROD), and 3-dimensional
(VESSEL) components [JWL94|. Note that these values are an average over all the

elements of each component type for a specific problem. The actual values also vary

*These figures were obtained from information collected using the CRAY Hardware Performance
Monitor by Susan Woodruff using data sets generated by Jim Lime at Los Alamos National
Laboratories.



43

n,

SN
N

"\

/ﬂ //. /VA. s ,vm\ / )
,.VA//A *, \/\A/\A/W

MR

v
U

Figure 3.2 F15e Volume Grid Configuration for Fuselage-Inlet-Nozzle
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Figure 3.3 Fl15e Volume Grid Configuration for Full Aircraft
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Component Type || # Add/Mults | # Divides
1-D 11,798 704
2-D 64,427 888
3-D 117,057 1073

Figure 3.4 Operation counts for all component types.

by component type. In nuclear reactor simulations, different grids are used for each
of the reactor vessels, pipes, pumps, etc. [BSL85].

The first two reactor test problems come from the LOFT model. The LOFT
model is a small model that has been used to illustrate concepts in the Los Alamos
TRAC manuals. The LOFT reactor model nodalization came from the TRAC man-
ual [LMS93]. There are two versions of this model. The only difference between the
versions is that the second version replaces the 3-d reactor vessel with a set of 1-d
components and changes the heat structures.

The 3-d version of this model has 28 components (192 3-d cells and 128 1-d cells)
and 11 heat structures. Table 3.5 shows the number of each type of component and

the number of elements for each type of component.

Component Type || # Components | # Elements
BREAK 1 1
FILL 2 2
PIPE 4 9
PRIZER 2 8
PUMP 2 4
SLABS 11 88
STGEN 1 23
TEE 11 68
VALVE 4 13
VESSEL 1 192

Figure 3.5 Component and element counts for LOFT 3-d reactor model.
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The 1-d version of this model has 40 components (169 1-d cells) and 1 heat struc-
ture. Table 3.6 shows the number of each type of component and the number of

elements for each type of component.

Component Type || # Components | # Elements
BREAK 1 1
FILL 3 3
PIPE 5 12
PUMP 2 4
PRIZER 2 8
SLAB 1 4
STGEN 1 23
TEE 22 105
VALVE 4 13

Figure 3.6 Component and element
counts for the LOFT 1-d reactor model.

The next test problem comes from the H.B. Robinson reactor model. Like the
LOFT model, the H.B. Robinson model is a small model that has been used to
illustrate concepts in the Los Alamos TRAC manuals. The H.B. Robinson reactor
model nodalization came from the TRAC manual [BSL85]. This model has 100
components (144 3-d cells and 433 1-d cells) and 21 heat structures. Table 3.7 shows
the number of each type of component and the number of elements for each type of
component.

The final reactor test problem comes from the Westinghouse AP600 reactor model.
The Westinghouse AP600 reactor model nodalization was developed by Jim Lime
at Los Alamos National Laboratories with support from the Nuclear Regulatory
Commission [LB94]. This model has 173 hydro components (1060 3-d cells and 865 1-
d cells) and 47 heat structures. Table 3.8 shows the number of each type of component
and the number of elements for each type of component.

These test problems are used in the validation experiments for the small and
mixed mesh distribution algorithms. To provide an indication of the complexity of
the topology(dimensionality, size, and connectivity) of these problems, Figures 3.9-
3.13 show five of the diagrams from the Westinghouse AP600 advanced reactor design.

The AP600 design has two loops with one hot leg, one steam generator, two reactor



Component Type || # Components | # Elements
ACCUM 3 12
BREAK 1 1
FILL 27 27
PIPE 17 142
PLENUM 2 8
PUMP 2 6
SLAB 21 126
TEE 32 188
VALVE 15 49
VESSEL 1 144

Figure 3.7 Component and element counts
for H.B. Robinson reactor model.

Component Type || # Components | # Elements
ACCUM 2 10
BREAK 10 10
FILL 11 11
PIPE 70 385
PLENUM 3 3
PUMP 20
SLAB A7 917
TEE 41 256
VALVE 29 170
VESSEL 3 1060

Figure 3.8 Component and element counts for

Westinghouse AP600 reactor model.
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Figure 3.9 Plan view of AP600 model.

pumps, and two cold legs in each loop. Figure 3.9 shows the overall plan of the reactor
cooling system, automatic depressurization system, and the passive safety injection
system. Figure 3.10 illustrates the relationship of the components in the reactor vessel
model. Figure 3.11 shows the relationship of the heat structures to the rest of the
components in the reactor vessel model. Figure 3.12 illustrates the relationship of the
components in the first coolant loop of the AP600 model. Figure 3.13 illustrates the
relationship of the components in the safety systems of the model. The complexity

of the AP600 topology illustrates the need for automatic distribution.

3.3 Using Problem Topology for ICRM Parallelization

The composite grid applications considered here have regular computations with reg-
ular communication patterns inside of each mesh, but arbitrary connections between
meshes. For efficient parallelization in high level languages, such as Fortran D or
High Performance Fortran, the mapping of the various meshes to processors must
be specified by the user. With this information, the compiler generates a machine

dependent parallel program. The work performed by the compiler includes: storage
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Figure 3.11 APG600 reactor vessel heat structure model.

allocation modification, loop bounds updates, and communication generation. This
work uses the regularity of the meshes along with the connectivity between meshes to
eliminate the need for user specification of distribution of data. It is important to note
that the definition of the High Performance Fortran language does not require the
compiler to do interprocedural analysis. Therefore, each subroutine must explicitly
specify the distribution for all distributed data structures. This further implies that
cloning of routines would be necessary for each type of distribution that a parameter
may have. Therefore, for High Performance Fortran, this work eliminates the need
for user provided distribution information in subroutines and, hence, cloning.
Automatic distribution begins with the classification of the meshes in [CRM prob-
lems according to their size relative to the number of processors being used in the
application parallelization. Large meshes can be efficiently distributed over all the
processors. Small meshes have to be packed together to provide enough work for
a single processor. Medium size meshes are too large to put on a single processor,

but too small to distribute over all of the processors. Hence, medium size meshes
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must be distributed over a subset of the processors. An algorithm for distribution
of each of these mesh classes is presented. To simplify the development of the al-
gorithms, I focus on one mesh size classification at a time. In Chapter 4, problems
with only large meshes are considered. In Chapter 5, problems with small meshes
are considered. The chapter also discusses how to automatically distribute problems
with both large and small meshes. Finally, Chapter 6 develops an algorithm for auto-
matic distribution of medium size meshes, discusses how to automatically distribute
problems with all sizes of mesh, and describes the transformation procedure. My
automatic distribution system is composed of the transformation procedure that will
be discussed in Section 6.3.2 and the automatic distribution algorithms that will be
described in Chapters 4-6. In order to use my automatic distribution system, the

application program must be written in a specific form.
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Programming Style

This section outlines a programming style that is natural to I[CRM applications such
as aerodynamic or nuclear reactor simulations, and does not inhibit dependence anal-
ysis. The guiding principles in determining the programming style that should be

used for these applications are:

e the programming style must be natural for the application to reduce develop-
ment and support costs;

e the programming style must lead to machine independent user programs [Kel94];

e the programming style must be relatively easy to analyze to reduce the cost of
compilation and increase the the level of performance the compiler can provide;

e the program structure that the programmer uses should be similar to the pro-
gram structure that precompiler generates to better support debugging;

e the precompilation should be machine independent to allow its use with the
machine dependent compiler for any parallel processor.

This style is described in terms of HPF [KLST94]. Indeed, from this chapter on,
High Performance Fortran is used for all of the code examples. A template for HPF
composite grid applications is shown in Figure 3.14.

The template shows the “contains” nesting that is required in the user programs
to ensure that the number of processors and mesh sizes are constant at the level that
alignment and distribution take place. This is a requirement of the HPF language.
Hence the programmer writes a routine, subroutine main, that does everything
except for the input, which is done in the main program before calling subroutine
main. By using this two level approach, the need for recompilation based on the
input is eliminated and recompilation is only needed when changes are made to the
application.

Two of the most important features of a modern language, for the current discus-
sion, are dynamic memory allocation and user-defined data types. The user-defined
data types allow all of the arrays and scalars for a given mesh to be grouped into
one data structure with the actual storage for the arrays being allocatable at runtime
according to the input. Further, an allocatable array of such structures can be used
to represent all of the meshes of a given type, i.e., all meshes with the same ba-
sic computation (the same component type in reactor simulations) or, more likely, all

meshes of the same dimensionality (as used in the abstracted HPF program presented
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module composite

-- user defined data types go here

-- global declarations go here

contains

subroutine main

-- calls to allocation routines based on input go here
-- non-runtime-constant input goes here

-- initialization goes here

-- all computation goes here

-- output goes here

contains

all subroutines except runtime constant input go here
end subroutine main

runtime constant input routines go here

end module composite

program icrm

use module composite

-- calls to runtime constant input routines go here
call main()

end program icrm

Figure 3.14 Template for composite grid HPF programs.
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in Chapter 6). For example, in many aerodynamics simulations there would be one
allocatable array of structures for all of the meshes surrounding the aircraft as the
same basic computation is performed for each mesh. This implies that the program
has one allocatable array of structures for each type of mesh or dimensionality. The

basic ideas for data structure creation are:

e arrays for each mesh are dynamically allocated;

e all arrays and scalars for each mesh type are grouped into a user defined data

structure;
e arrays of user defined structures are allocated dynamically;
e all arrays in user defined structures are to be distributed;
e all arrays in the same user defined structure are distributed the same way; and

e thereis an array of user defined data structures for each type (or dimensionality)

of mesh.

Associated with each type of mesh there is also a compute routine that is called
with each structure on every time step. In addition there must be a routine for
internal boundary data exchange for each pair of coupled mesh types. These routines
need to be written using a structured programming style; e.g., via the use of select
case not computed gotos.

A few notes about the structure of user defined data types and associated storage
allocation. First, all calls for routines that read data that is to be distributed must
occur in the main program. The actual allocation for data distribution must occur
in subroutine main. Further, since HPF does not allow distribution of elements of
user defined data structures, the programmer is required to use a pointer to allocate
all arrays that are to be distributed and then set the structure array to point to
the correct memory. The program could be allowed to use allocatable arrays in the
user defined data structure as well, but note that these arrays must be allocatable
because the sizes are not available until runtime. Hence the input, allocation, and
placement in the program can server as flags to notify the precompiler that these are
to be distributed data structures. Then the entire structure for each mesh is passed
to any subroutine. The elements of a structure could be passed instead, but that
requires more work from the user, and from the compiler, without providing obvious

advantages.
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Given a program written in this style and an understanding of how the input
file relates to the allocation of these structures, the analysis necessary for execution
of the automatic distribution algorithm is similar to the interprocedural analysis
performed by the Fortran D compiler at Rice University [HHKT92]. This will be
discussed further in Chapter 6. Further, this allows the precompiler to be machine
independent. The only thing that must be done when the input changes is run the
distribution algorithm on the new data set to generate the distribution information

in the supplementary input file.
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Chapter 4

Mapping Algorithm for Large Mesh Composite
Grid Problems

In this chapter, the automatic distribution of ICRM problems that have only large
meshes is discussed. The three applications problems shown in Figures 3.1, 3.2,
and 3.3 will be used as test problems in validation of the large mesh distribution

algorithm developed here.

4.1 Intuition

For any mesh in an ICRM problem to be considered large, the mesh must have
enough elements so that distribution across all processors is feasible. This classifica-
tion provides the basic premise for large mesh distribution. All large meshes will be
distributed over all processors. To provide a uniform framework for distribution, the
number of dimensions that will be parallel is set to the minimum number of dimen-
sions in any large mesh. This is the number of dimensions that will be distributed in
a block fashion for every large mesh.

Many architectures provide communication support for more than one configu-
ration with the specified number of dimensions and the product of the number of
processors in the various dimensions equal to the total number of processors to be
used. Call this set of configurations the standard processor configurations (SPCs).

For each large mesh, the model, described in Appendix A, is used to predict the
runtime for one iteration or time-step of computation on the mesh for each mapping
of mesh dimensions to processor dimensions. The dimension alignment mapping with
the minimum predicted runtime is selected for each standard processor configuration.
Next, select the standard processor configuration that minimizes the total predicted
runtime. This provides preliminary distribution specification. The meshes could all be
mapped to the selected standard processor configuration in a block fashion according

to the dimension alignment found above.
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Up to this point, no use of the coupling between meshes has been made. Now,
the couplings are used to reduce the amount of communication between coupled
meshes that is imposed by the distribution. The basic idea for offset alignment is
to align the centers of the coupled array sections for the coupling with the most
expensive communication associated with each mesh. This results in full distribution

specifications.

4.2 Automatic Distribution Algorithm

Minimally, for this algorithm to be used, in addition to the coupling specifications,

measures of the following are needed:
e the amount of computation per element in each mesh,
e the amount of communication in each dimension of each large mesh, and

e the amount of communication between each coupled pair of elements in each
coupling between meshes.

For most large mesh applications, the nature of the computation is the same on
all meshes; the nature of the communication is the same in each dimension; and
the coupling cost is the same for each pair of coupled elements. An estimate of
these statistics could be provided by the user, but that alone does not eliminate the
communication analysis needed in a Fortran D or HPF compiler or a runtime system
such as PARTI. To save the user as much work as possible, most of the analysis is
moved into the compiler.

This algorithm is to be used only for ICRM applications in which:
e all meshes are large enough to be efficiently distributed over all processors, and

e computations inside of each mesh are regular. (This implies regular communi-
cation for each mesh after distribution.)

The distributions generated are targeted to a torus based communications topology.
This seems reasonable because most available machines either are tori or can have
tori efficiently embedded in the machine topology. For these experiments, application
characteristics were provided by the application developers.

I now begin with an overview of the automatic distribution algorithm and then

consider each step of the algorithm in more detail. Fortran D modification/generation
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is also presented in this chapter. The chapter will conclude with a discussion of the
limitations and advantages of this approach.

For efficient parallelization of ICRM applications, each mesh should be distributed
according to its dimensionality (recall the results of Chapter 2). On the other hand,
compilation of the resulting code is easier if the program has uniform memory alloca-
tion. Let n be the dimensionality of the mesh with the fewest number of dimensions.
All meshes are distributed over all of the processors in an n-dimensional processor
topology. Some of the dimensions of higher dimensional meshes will be serialized. In
this manner, the algorithm balances the tradeoffs between the computation to com-
munication ratio considerations relating to using the natural topology parallelization
for every mesh and the memory allocation issues in SPMD Fortran codes.

The user provides mesh and coupling specifications along with how many proces-
sors to use on the target machine. These will normally be runtime input.

The automatic distribution algorithm must take into consideration the user pro-
vided information, the program, and the topology of the target machine. Since the
number of processors to use on the target machine is fixed, there are only a fixed
number of possible m-dimensional processor configurations that can be used, where
1 < m < maximum processor dimensionality. This set is limited to only those
configurations with at most n dimensions (recall n is the number of dimensions in
the mesh with fewest dimensions) and is called the standard processor configurations.
The final mapping of decompositions will be to the standard processor configuration
with the smallest total predicted runtime.

The automatic distribution algorithm performs the following steps.

1. Analysis: The program is analyzed to determine the approximate computation
associated with each decomposition, the approximate communication associated
with each dimension of each decomposition, and the approximate communica-
tion associated with each pair of coupled decompositions. This analysis is part
of the precompilation stage in processing. The analysis only needs to be redone
when changes are made to the application program. Alternatively, for applica-
tions where these computation and communication measures are a single set of

numbers, the measures can be input by the user.

2. Table Generation: The best mapping and predicted runtime for each decompo-
sition on each standard processor configuration is found independently, ignoring

coupling communication cost. While an exhaustive search could be used to find
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the best mapping to each standard processor configuration, my implementation

uses heuristics to limit the search space.

3. Global Minimization: The standard processor configuration that produces the
minimum total runtime for all decompositions is found, ignoring coupling com-
munication cost. To find the best standard processor configuration, the pre-
dicted runtimes for each standard processor configuration are summed over all
of the decompositions and the one with the minimum total predicted runtime

is selected.

4. Coupling Communication Reduction: The decompositions are aligned with re-
spect to each other in the distribution to reduce coupling communication cost.
The heuristic used is to reduce the maximum coupling communication cost for
each decomposition via transposing, shifting, or folding around the torus. This
is done by aligning the coupled subsections of coupled dimensions of different

decompositions.

5. HPF Program Modification: Perform cloning of routines for each possible di-
mension alignment order, declare variables for alignment order and offsets, add
input statements for alignment order and offsets, and insert TEMPLATE, ALIGN,
and DISTRIBUTE statements. This will be discussed in Chapter 6.

The distribution decision procedure for selecting a data distribution uses the com-
putational model presented in Appendix A. The model provides expected runtimes
based on application and machine parameters as well as the selected data distribu-
tion. Any model could be used that will predict approximate runtimes of different
mappings on the target machine.

For the presentation of algorithmic details, denote variables associated with a
particular decomposition using a decomposition name dot vartable name notation,
e.g., D,,.size[i] is the number of elements in the :** dimension of decomposition D,,.
For illustrative purposes, two simple composite grid problems are presented. The 3-d
CFD configuration® is shown in Figure 4.1. This problem consists of two meshes,

A and B, each of which are 40x40x40 with one coupled face. The 2-d Multiblock

configuration is shown in Figure 4.2. This problem involves a computation associated

TThis was the test problem used by J. Saltz [CCSR92] to show the feasibility of the PARTI multiblock
approach to parallelization of ICRM problems.
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Figure 4.1 3-d CFD Multiblock Configuration.
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Figure 4.2 2-d Multiblock Configuration.

with the trio of coupled 2-dimensional grids. This problem illustrates some features

of the distribution algorithm that are not evident with the first example.

4.2.1 Table Generation

In this first stage, for each standard processor configuration, the model could be
evaluated for all mappings of the decomposition’s dimensions onto the dimensions
of each standard processor configuration. This is an exhaustive search for the best
mapping of a decomposition onto each standard processor configuration.

A table of entries is built, with one entry per standard processor configuration.
Each entry consists of an assignment of decomposition dimensions to processor dimen-
sions and a predicted runtime. Only one decomposition dimension may be assigned
to any processor dimension and all unassigned dimensions are sequentialized.

For each standard processor configuration, all assignments of decomposition di-

mensions to processor dimensions can be tried and the one with the best predicted
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runtime is stored. When two mappings produce the same predicted time, one is
selected arbitrarily.

In the worst case, for each standard processor configuration, the algorithm consid-
ers all partitions of the decomposition’s dimensions, dg, into the processor’s dimen-

. 1 o .
sions, pg. There are % such partitions.

d
Since Fortran alloxss at most seven dimensions in arrays, d; and py are less than
or equal to seven. From this, for all problems there are most at 7! partitions for
any standard processor configuration. More typically, d; < 4 and pg < 3 so that the
number of partitions is less than or equal to 24.
The total number of standard processor configurations with py or fewer dimensions
is:
Mpa(1) = Npy—1(n) + np,(n — pa)
Mpa(0) =1
m(n) =1
where 2" is the number of processors. The total number of standard processor con-

figurations is the same as the number of partitions of an integer, n, into py or fewer

summands [Com74, NZ80]. Consider a machine with 2'* processors that is config-

Decomposition A Decomposition B
SPC Time Map SPC Time Map
(32,1,1) | 3483 | (2,1,3) (32,1,1) | 3483 | (2,1,3)
(16,2,1) | 2571 | (2,3,1) (16,2,1) | 2571 | (2,3,1)
(8,4,1) | 2128 | (2,3,1) (8,4,1) | 2128 (2,3,1)
(8,2,2) | 2119 (2,1,3) (8,2,2) | 2119 (2,1,3)
(4,4,2) | 2113 (2,3,1) (4,4,2) | 2113 (2,3,1)

Figure 4.3 3-d CFD Tables

urable in up to seven dimensions. For such a machine, there would be 105 standard
processor configurations. As a more realistic example, for a machine with 2! pro-
cessors that can be configured with one, two, or three dimensions, the number of
standard processor configurations is 24. For this machine, there are 40 evaluations
of the model for each decomposition when all meshes are 3-dimensional. Hence, even
when all possible mappings are evaluated, there is a constant upper bound on the

number of evaluations to be done for each mesh.
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Decomposition C Decomposition D Decomposition E

SPC Time | Map SPC Time | Map SPC Time | Map
(32,1) | 7144 | (1,2) (32,1) | 7144 | (2,1) (32,1) | 7144 | (1,2)
(16,2) | 7126 | (1,2) (16,2) | 7126 | (2,1) (16,2) | 7126 | (1,2)
(8,4) | 7124 | (1,2) (8,4) | 7124 | (2,1) (8,4) | 7124 | (1,2)

Figure 4.4 2-d Multiblock Tables

The tables generated for the 3-d CFD and 2-d Multiblock examples are shown
in Figures 4.3 and 4.4 for the case when 32 processors are used. In the tables, each
standard processor configuration (SPC) is specified by the number of elements in each
dimension. The mapping (MAP) specifies which dimension of the decomposition is
mapped to the corresponding dimension of the standard processor configuration. The
predicted runtime (Time) is presented in second. For example, (2,1) specifies that the
second dimension of the decomposition is mapped to the first processor dimension
and vice versa. In the 3-d CFD problem, the number of bytes of communication is
higher in the first dimension than in the other two. This makes it more favorable
to use fewer processors in the first dimension than in the others. This leads to a

heuristic for reducing the number of mappings that are considered.

Heuristic 1 When one dimension of a decomposition has more com-
munication than the other dimensions, if the standard processor configu-
ration has fewer processors in one dimension than the other dimensions,
then map the decomposition dimension having greater communication to

the processor dimension with fewer processors.

In the 2-d Multiblock problem, the number of bytes of communication is the same in
each dimension of each mesh. This makes the number of elements to be communicated
be the only communication factor that influences the choice of mapping. Surface to
volume effects [LK94b] imply that each communication “edge” should be the same
length. This leads to the second heuristic for reducing the number of evaluations of
the model.

Heuristic 2 When every dimension of a decomposition has the same

amount of communication, if the standard processor configuration has
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fewer processors in one dimension than the other dimensions, then map
the decomposition dimension having the fewest elements to the processor

dimension with the fewest processors.

Finally, consider the case when two dimensions of a mesh are the same size and
have the same amount of communication, e.g., the second and third dimension in the
3-d CFD example. This consideration leads to the final heuristic.

Heuristic 3 When two dimensions of a mesh have the same size and
communication, for each pair of mappings with these dimensions inter-
changed only one of the mappings needs to be evaluated. Pairs of equiv-
alent dimensions are recorded for possible use during coupling communi-

cation reduction.

In practice, the heuristics are applied only when the number of elements in each
dimension of the decomposition is divisible by the number of processors in each dimen-
sion. With this qualification, the heuristics usually produce the same results as the
exhaustive search. The only exception to this is caused by the use of the last heuristic,
where the heuristic provides better performance because it allows interchange and the

exhaustive search does not.

4.2.2 Global Minimization

In the global minimization step, the standard processor configuration that will pro-
duce the best runtime for the entire problem is selected. To do this, a sum over the
predicted runtimes in the decomposition tables for each SPC is found and the stan-
dard processor configuration with minimum total predicted runtime is selected. At
this point, the optimal mapping has been found if there is no communication between
the different decompositions.

Next, create a new standard processor configuration table with each entry ini-
tialized to zero. Iterating over all of the standard processor configurations, for each
decomposition’s table, add the decomposition’s predicted runtime to the total runtime
for the standard processor configuration. The minimum value in the total runtime
table is indexed by the best standard processor configuration.

This stage of the algorithm takes time on the order of the number of standard pro-
cessor configurations times the number of decompositions. This step of the procedure

puts the greatest accuracy requirements on the model because predicted runtimes are
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added. For a discussion of the model of parallel computation used in this research,
refer to Appendix A.

For the 3-d CFD problem, the best standard processor configuration using 32
processors is (4,4,2) and for the 2-d Multiblock problem it is (8,4).

4.2.3 Coupling Communication Reduction

The purpose of coupling communication reduction is to use the knowledge of topology
to reduce communication costs associated with coupling. The heuristic used attempts
to minimize the maximum cost coupling communication for each decomposition sub-
ject to the dimension mapping already selected. This is done by aligning the centers of
the coupled subranges of dimensions and setting directions (increasing or decreasing)
to be the same for each processor dimension. Further, if interchanging two equivalent
dimensions will reduce coupling cost, the interchange is performed.

For each dimension of every decomposition, a starting processor index and a di-
rection is selected. The processor index (between one and the number of processors
in the processor dimension that the decomposition’s dimension is mapped to) spec-
ifies which processor contains the first block of elements for the given dimension of
the decomposition. The direction, (+1 or -1), specifies whether the elements in the
decomposition’s dimension will be mapped in increasing or decreasing order.

Begin by selecting the decomposition with the single highest coupling communi-
cation cost and call it D;. Set the processor index for D; to 1 and the direction to
increasing in every parallel dimension. D; is now completely mapped to the best stan-
dard processor configuration. Make D the only element in the set MAPPED. Create a
max heap of all couplings involving Dy with order determined by the coupling costs.

The following steps are repeated until all decompositions are in the set MAPPED.
1. Delete the maximum element from the coupling heap.
2. If both decompositions in the coupling are in MAPPED, then return to step 1.

Otherwise, call the unmapped decomposition in the coupling D, and call the

mapped decomposition D,,.

3. If interchanging equivalent dimensions of D, decreases coupling cost, then do
it.

4. Consider each pair of dimensions, where dimension D,,.t is the dimension of

D, coupled to dimension k& of D, and the dimensions are both mapped to
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the same processor dimension. Related to coupling specification for dimen-

sion ¢ of D,, are D,,.start, D, .end, and D,,.stride. Related to dimension k

of D, are D,.start, D,.end, and D,.stride. Since D,, is already mapped, the

D, .direction and D,,.start_proc for each dimension are already defined. To

map dimension k of D,, its direction and starting processor must be found.

The direction for dimension & of D, is the same as that of dimension
v of D, if the stride for the coupling for each decomposition is either
increasing or decreasing. If one decomposition’s stride is increasing and
the other decomposition’s stride is decreasing, then the direction for D, is

the opposite of the direction for D,,.

Determine the offset of the processor that owns the middle entry of the
coupling in dimension ¢ of D,,, call it D,,.Poffset.

Determine the offset of the processor that owns the middle entry of the
coupling in dimension k of D, call it D,.Poffset (computed as if D, was
mapped beginning in processor 1).

Determine the processor that should own the first element of dimension &

of Dy. It is D,,.start_proc[D,,.1| + D,,.Poffset - D,.Poffset.

5. For each pair of coupled dimensions that are not mapped to the same processor

dimension, the direction and starting processor are found for D, as follows,

where k is the dimension of D, being mapped.

The direction for D, in dimension k is positive (this is arbitrary).

Find the dimension of D,, that is mapped to the same processor dimension

as dimension k of D,, label it D,, ..

Let j be the index in the coupling specification that involves dimension

D, .o of D,,.

Determine the offset of the processor that owns the middle element of the
-t

4" coupling entry for D,,, call it D,,.Poffset.

Determine the offset of the processor that owns the middle entry of the
coupling in dimension k of D,, call it D,.Poffset (computed as if D, was
mapped beginning in processor 1).

Determine the processor that should own the first element of dimension &

of Dy. It is D,,.start_proc[D,,.1| + D,,.Poffset - D,.Poffset.
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6. For each coupling involving D,, which has not already been put into the heap,

insert it.

7. Add D, to the set MAPPED.

Decomposition | Direction | Starting Processor
A (L,1,1) (L,1,1)
B (1,1,1) (1,1,1)

Figure 4.5 3-d CFD Directions and Starting Processors

Decomposition | Direction | Starting Processor
C (L,1,1) (8,1,1)
D (1,1,1) (L,1,1)
E (1,1,1) (1,1.4)

Figure 4.6 2-d Multiblock Directions and Starting Processors

The time for this stage of the algorithm is bounded by the number of distributed
dimensions multiplied by ¢ log ¢, where ¢ is the number of couplings in the system
(¢ > number of meshes — 1).

Figures 4.5 and 4.6 show the directions and starting processors that result from the
application of coupling communication reduction for the 3-d CFD and 2-d Multiblock

problems respectively.

4.2.4 Limitations -vs- Advantages

This approach to ICRM parallelization is limited to those problems for which it makes
sense to distribute every mesh over all processors. This limits the use of this approach
for some problems. For example, in many Nuclear Reactor Simulations [BSL85]
many of the meshes have few elements (~ 10 — 100) and hence cannot reasonably be
distributed over many processors. Further, if enough processors are used, even large
meshes can not be distributed over all processors. Chapter 6 presents an approach to

dealing with this situation.
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This limitation does not say that every mesh must have many more elements
than processors. The real requirement is that for every processor the computation
outweighs the communication. Hence, this approach may work even when some of
the meshes have about the same number of elements as the number of processors.

Offsetting these limitations are a number of advantages to using this approach.
Unlike other currently available approaches, all analysis and communication genera-
tion may be performed at compile-time. To do this, runtime constant data (coupling
information) is required. Compile-time analysis and communication generation may
provide a significant savings in time when the same mesh/coupling configuration is
used with different initial data sets. For example, the same multiblock represen-
tation of an aircraft may be used for simulation of the flow over the aircraft with
many different initial conditions. Furthermore, once cloning has been done and the
HPF program is generated and compiled, the algorithm can be applied to different
configurations without recompilation.

Not only does this approach result in a program that fits the SPMD model, but
the code also fits a uniform memory model. Each processor uses (approximately)
the same amount of memory for each array and the declarations for each processor
are identical. When different decompositions are assigned to different processors, the
memory allocation and access may be complicated. This uniform memory model
conformance implies that the approach is easy applicable on SIMD architectures such
as the SNAP-32¢

In some application codes, it may be difficult or even impossible to automatically
verify that the computations associated with all of the different meshes can be ex-
ecuted in parallel. In this case, even if the decompositions are assigned to different
processors, their computations will be executed sequentially. The approach presented
here does not rely on being able to prove this high level parallelism, but instead relies
on the parallelism inside each mesh.

Compiling these ICRM applications with a standard HPF compiler is straight
forward. In addition, optimization developed for regular applications can be applied.
The only extension that might be helpful in a good HPF compiler is using the coupling

specifications as an upper bound for communication associated with couplings.

tRobert Means, Bret Wallach, David Busby, and Robert Lengel Jr. won the 1993 Gordon Bell Prize
for price/performance using a SIMD Numerical Array Processor (SNAP) with 32 processors. The
price/performance index was 7,554 flops per dollar. This indicates that SIMD machines may still
have a future with some applications.
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The final and possibly most important advantage is that, for the first time, the

distribution can be found automatically for this class of complex topology problems.

4.2.5 Fortran D Modification/Generation

In this section, I assume that a Fortran D program that includes DECOMPOSITION
and ALIGN statements for each mesh was provided by the user. This section therefore
applies only when there is a fixed topology encoded in the program and not when
the topology is part of the input. This limitation is due primarily to the fact that
Fortran D does not support the contains statement and modules. Without this
the processor, alignment, and distribution specification in the input are not constant
on entry to the module entry level. Hence, this section applies only to programs
with statically encoded topology. The modification of DECOMPOSITION and ALIGN
statements and the generation of DISTRIBUTE statements are discussed next. The final
output of these modification/generation steps will be a standard Fortran D program.
Since the Fortran D compiler needs to perform the cloning procedure automatically,
the precompiler is not required to perform cloning when working with Fortran D.
Therefore, the precompiler just modifies decomposition and alignment specifications
at the levels given by the programmer and adds distribution specifications at the
same levels. At some point the Fortran D language will probably be extended to
include contains. The original ALIGN and DISTRIBUTE specifications for the 3-d CFD

problem are:

decomposition A(40,40,40), B(40,40,40)
align wa(i,j,k) with A(i,j,k)

align xa(i,j,k) with A(i,j,k)

align ya(i,j,k) with A(i,j,k)

align za(i,j,k) with A(i,j,k)

align wb,xb,yb,zb with B

The original ALIGN and DISTRIBUTE specifications for the 2-d Multiblock problem

are:

decomposition C(640,320), D(320,640), E(640,320)
align vc(i,j) with C(i,j)

align wc(i,j) with C(j,1)

align xc(i,j) with C(i-1,j-1)

align yc(i,j) with C(i-1,j+1)

align zc(i,j) with C(i+1,j+1)
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align vd,wd,xd,yd,zd with D
align ve,we,xe,ye,ze with E

Decomposition Modification

The original DECOMPOSITION statements must be replaced with new ones that reflect
the intended mapping of data to processors. To reflect this, the precompiler reorders
the dimensions according to the mapping. Hence, for each decomposition D the

specification

DECOMPOSITION D(sizey, sizey, Stz€s, ..., SIZED dimensions)
becomes
DECOMPOSITION D(812€p,4,-1(1)5 812 €pmap=1(2)s -+ 512 €map=1(D.dimensions) )

where map~! is the inverse of the map that was found for decomposition D.

For the 3-d CFD problem the modified decomposition declarations are:
DECOMPOSITION A(40,40,40), B(40,40,40)
For the 2-d Multiblock problem the modified decomposition declarations are:

DECOMPOSITION C'(640,320), D(640,320), £(640,320)

Alignment Modification

Next, ALIGN statements are transformed according to the mapping to processors,
alignment to processors, and the original alignment offsets. For each ALIGN statement

associated with a decomposition D

ALIGN X(]17[27]37]47 ---;ID.dimensions)
WITH D(I1 + offsety, I3 + offsets, Iz + offset,, [y + offset,, ...,

]D.dimensions + OﬁsetD.dimensions)
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becomes

ALIGN X (WRAP((1 — D.direction[1]) * (—1) * D.size[l] + D.direction[1] x (I)),
1
2

WRAP((1 — D.direction|[2]) * (—35) * D.size[2] + D.direction|2] * (13)),

WRAP((1 — D.direction|D.dimensions])
*(—3) * D.size[D.dimensions]
+D.direction|D.dimensions] * (Ip dimensions)))
WITH — D(Iyap-1(1) + D.elt_per_proc[map™"(1)] * (start_proc[map=(1)] — 1)
—I_Oﬁsetmap_l(l)?

Lpap—1(3) + D.elt_per_proc[map™(3)] * (start_proc[map='(3)] — 1)

map
—I_Oﬁsetmap—l(S)?

Lap—1(2) + D.elt_per_proc[map™(2)] * (start_proc[map™(2)] — 1)

+Oﬁsetmap_1(2)7

Lpap—1(2) + D.elt_per_proc[map™(4)] * (start_proc[map="(4)] — 1)

map
+Oﬁ56tmap—1(4), ceey

Lap=1(D dimensions) + D-€lt_per_proc[map™ (D.dimenstons)]

*(start_proc[map™(D.dimensions)] — 1)

+ Oﬁsetmap—l (D.dimensions) )

For the 3-d CFD problem the alignment that results is:

ALIGN wa(wrap(t),wrap(j), wrap(k)) WITH A(j, k,1)
ALIGN za(wrap(i), '

S

3

Q
=
<

ALIGN ya(wrap(z),

ALIGN za(wrap(z), wrap(y
ALIGN wb(wrap(t), wrap(j), wrap(k)) WITH B(j, k, %)
ALIGN xb(wrap(i), wrap(y) (k)) ki)
ALIGN yb(wrap(e), wrap(j), wrap(k)) WITH B(j, k, 1)
ALIGN zb(wrap(z), wrap(y) (k)) (7, k, 1)
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For the 2-d Multiblock problem the alignment that results is:

ALIGN ve(wrap(e), wrap(j)) WITH C(e+ 8017, 7)

ALIGN we(wrap(t), wrap(j)) WITH C(j,¢+ 80 * 7)

ALIGN zc(wrap(i), wrap(y)) WITH C(1 +80 %7 — 1,5 — 1)
ALIGN ye(wrap(e),wrap(j)) WITH C(e + 807 — 1,7 + 1)
ALIGN zc(wrap(e), wrap(y)) WITH C(¢ + 80«7+ 1,5 + 1)
ALIGN vd(wrap(e), wrap(j)) WITH D(j,1)

ALIGN wd(wrap(t), wrap(j)) WITH D(j,1)

ALIGN zd(wrap(i),wrap(j)) WITH D(j,1)

ALIGN yd(wrap(e), wrap(j)) WITH D(j,1)

ALIGN zd(wrap(i), wrap(y)) WITH D(j,1)

ALIGN ve(wrap(i), wrap(y)) WITH E(i,5 + 80 * 3)

ALIGN we(wrap(t), wrap(y)) WITH E(z,j + 80 * 3)

ALIGN ze(wrap(e), wrap(y)) WITH E(¢,7 + 80 * 3)

(wrap( (7)) (¢
ALIGN ye(wrap(i), wrap(y)) WITH E(7,j + 80  3)
(wrap(s (7)) (

);
) WITH FE(2,7 + 80 * 3)

ALIGN ze(wrap(t), wrap(y

In HPF, the alignments must be shifted as HPF does not support wrap alignment.

Distribution Generation

Finally, DISTRIBUTE statements are generated for each decomposition D of the form

DISTRIBUTE D(BLOCK(SPC.procs[l]), BLOCK(SPC.procs[2]), ...
BLOCK (S PC.procs[D.dimensions]))

where SPC.procs[t] is set to one for 1 > SPC.dimensions.
For the 3-d CFD problem the distribution that results is:

DISTRIBUTE A(BLOCK(4), BLOCK(4), BLOCK(2))
DISTRIBUTE B(BLOCK(4), BLOCK(4), BLOCK(2))

For the 2-d Multiblock problem the distribution that results is:

DISTRIBUTE C(BLOCK(8), BLOCK(4))
DISTRIBUTE D(BLOCK(8), BLOCK(4))
DISTRIBUTE F(BLOCK(8), BLOCK(4))
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4.3 Algorithm Validation

The two primary goals that I am trying to achieve with this algorithm are: 1) re-
duce the programmer burden for parallelization of ICRM problems, and 2) support
regular problem optimization in the compiler via program transformation, as will be
described in Section 6.3, in order to provide acceptable performance in the resulting
parallelization.

Since there is not yet an HPF compiler that can correctly generate code for these
applications, measures of load balance and communication are presented in place
of timing results. The measure of load balance presented is the total number of
floating point additions, multiplications, and divisions. This load balance measure is
compared for the processor with the most work (Comp,.;) and the processor with
the least work (Comppi,). The following measures of communication are presented:

o distance is the maximum distance between any pair of communicating proces-
sors;

e neighbors is the maximum number of processors communicated with for any
processor;

o Commy,qy, 1s the maximum amount of communication, in bytes, for any pro-
cess3or;

o Commy,qy, 1s the maximum communication, in bytes, between any pair of pro-
cessors; and

o Commyyg is the total communication, in bytes, for the simulation.

In the tables of results, the selected processor configuration is shown below the number
of processors.
The speedup bound, Distg, is the speedup, with the data distribution supplied,

that would be achieved if there were no communication, i.e.,

, Compa: for n processors
Disty =

Comppa: for one processor

The speedup bound is rounded to two decimal places.

4.3.1 Simulation of Material Flow in an Elbow with Vanes

The Elbow problem, shown in Figure 3.1, has five 3-dimensional meshes with a total

of 275,356 3-dimensional cells. The results of experiments for this problem are shown

in Table 4.7.
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Note that while the processor utilization drops off as more processors are added,
the speedup bound, Distg, does continue to increase. The large increase in the
total communicationin going from 128 processors to 256 processor for the Elbow

problem is due to the increase in Comm,qz,. The increase in C'omm, .., comes about

Number of Processors
2 4 8 16 32
(2) (2x2) (2x2x2) (4x2x2) (4x4x2)
distance 1 1 1 1 2
netghbors 1 2 3 4 7
C’O??”L??”Lm,m1 161,696 205,128 147,552 167,664 109,314
COmmmaz2 161,696 123,000 61,440 61,440 30,216
Commiotal 161,696 410,028 585,192 | 1,326,264 | 1,674,224
Compoin 5,231,764 | 2,615,882 | 1,276,040 593,560 258,704
Compmas 5,231,764 | 2,615,882 | 1,339,842 685,482 354,882
Duistgy, 2.00 4.00 7.81 15.26 29.48
Number of Processors
64 128 256 512 1024

(8x4x2) (16x4x2) (32x4x2) (32x4x4) | (16x16%4)
distance 3 4 8 8 3
netghbors 9 9 8 9 8
OO?TL?TLT,L,M1 66,399 47,013 44 872 23,036 9,933
00m7nmaz2 19,416 14,472 19,656 9,792 2,280
Commiptal 2,108,444 | 2,990,154 | 5,674,404 | 5,828,004 | 5,062,386
Compoin 80,256 7,600 0 0 0
Compas 185,592 96,786 50,274 26,334 14,022
Daistgy, 56.38 108.11 208.13 397.34 746 .22

Figure 4.7 Validation results from flow through an elbow with 2 vanes.

because the interface between adjacent processors in the third processor dimension
is significantly larger for 256 processors than for 128 processors. This interface size
has increased due to the change in mapping decomposition dimensions to processor
dimensions. The reverse situation occurs in the same problem when going from 512

processors to 1024 processors.
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4.3.2 Simulation of Aerodynamics over Fuselage-Inlet-Nozzle of an F15e
Aircraft

The Fuselage-Inlet-Nozzle aerodynamic simulation, shown in Figure 3.2, has ten 3-
dimensional meshes with a total of 713,766 3-dimensional cells. The results of exper-

iments for this problem are shown in Table 4.8. Notice that the number of processors

Number of Processors
2 4 8 16 32
(2) (2x2) (4x2) (4x2x2) (4x4x2)
distance 1 2 3 4 4
netghbors 1 3 7 11 20
OO?TL?TLWMI1 241,652 316,004 252,254 259,010 212,637
CO??I?TLmM2 241,652 159,012 85,776 80,328 55,080
Commiotal 241,652 630,546 997,068 | 2,043,732 | 3,351,132
Compoin 13,561,554 | 6,757,464 | 3,337,692 | 1,621,878 741,000
Compmas 13,561,554 | 6,804,090 | 3,414,984 | 1,750,242 888,288
Dastgy 2.00 3.99 7.94 15.50 30.53
Number of Processors
64 128 256 512 1024
O (8x4x2) (8x4x4) (32x4x2) (32x8x2) (32x8x4)
distance 5 4 19 20 19
netghbors 23 18 25 29 24
OOTTL?nmfMl 134,711 103,386 72,567 38,822 28,404
OO?TL?TLWWI2 33,068 21,300 26,544 13,776 7,000
Commiotal 4,205,268 | 6,224,450 | 9,201,546 | 9,783,744 | 14,118,076
Compoin 271,434 120,574 0 0 0
Comprar 454,518 233,016 117,686 60,306 30,856
Dastgy 59.67 116.40 230.47 449.76 879.02

Figure 4.8 Validation results from F15e
Fuselage-Inlet-Nozzle aerodynamic simulation.

in the last dimension is reduced by a factor of 2 in the step from 128 processors to 256

processor. The increase in C'omm,qz, is due to this change in the processor topology.
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4.3.3 Simulation of Aerodynamics over a Complete F15e Aircraft

The full F15e aerodynamic simulation, shown in Figure 3.3, has 32 3-dimensional

meshes with a total of 1,269,845 3-dimensional cells. The results of experiments for

this problem are shown in Table 4.9.

Number of Processors
2 4 8 16 32
(2) (4) (4x2) (8x2) (16x2)
distance 1 2 3 5 9
netghbors 1 3 7 15 29
Commumaz, 809,432 1,009,132 830,304 464,802 376,244
Commuaz, 809,432 504,100 302,816 161,846 135,192
Commiota 809,432 | 2,018,064 | 3,295,830 | 3,670,234 | 5,991,572
Compoin 24,043,018 | 11,710,954 | 5,779,230 | 2,269,056 964,136
Compax 24,211,092 | 12,181,052 | 6,152,656 | 3,150,428 | 1,589,578
Disty 1.99 3.96 7.84 15.32 30.36
Number of Processors
64 128 256 512 1024
(16x4x1) (16x4x2) (16x8x2) (16x8x4) (32x8x4)
distance 10 11 12 13 20
netghbors 56 83 110 115 114
Commuaz, 293,874 229,931 118,518 84,483 56,260
Commaz, 77,640 46,128 25,752 14,952 11,392
Commyora || 9,353,564 | 14,419,578 | 14,968,986 | 21,278,067 | 28,141,528
Compoin 428,184 214,054 65,664 27,626 5,434
Compaz 811,642 415,720 218,500 114,000 59,850
Distg 59.45 116.07 220.84 423.28 806.25

Figure 4.9 Validation results from full F15e aerodynamic simulation.

Comm,q,, decreases as the number of processors increases (after 4 processors).

The increase from 2 to 4 processors is due to having two neighbors with which to

communicate instead of one. Commaz,, Comppin, and Comp,,q, are monotonically

decreasing. The total communication, Commyy,;, and the speedup bound, Distg,

are monotonically increasing.



7

4.4 Chapter Summary

An algorithm that automatically finds a distribution of data in ICRM problems given
a well-structured HPF program and topological connection specifications has been
presented. When meshes are generated automatically, automatic distribution of large-

mesh ICRM problems is critical. This algorithm provides an important first step.
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Chapter 5

Mapping Algorithm for Small Mesh Composite
Grid Problems

In this chapter, the automatic distribution of ICRM problems that use only large
and small meshes is discussed. Two random distribution algorithms are introduced
for use as a basis of comparison for the algorithm in the experimental results of this

chapter.

5.1 Intuition

For any mesh in an ICRM problem to be considered small, the mesh must have few
enough elements so it has at most enough work to fill a single processor. This classi-
fication provides the basic premise for small mesh distribution. All small meshes will
be packed into the processors trying to achieve load balance while using the problem
topology to put meshes with the most expensive coupling on the same processor when

possible.

5.2 Automatic Distribution Algorithm

Minimally, for the algorithm being presented, the following are needed (in addition

to the information in coupling specifications):
e the amount of computation per element in each mesh,
e the amount of communication in each dimension of each large mesh, and

e the amount of communication between each coupled pair of elements in each
coupling between meshes.

The coupling specifications are used to determine which meshes must communicate.
The amount of computation for each element of each mesh is used to attempt to
balance the computational load. The amount of communication in each dimension

of each large mesh is used to attempt to minimize the cost of communication for
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distribution of the large mesh. The amount of communication for each coupling is
used to prioritize the mapping order of coupled meshes and to determine the place-
ment of coupled meshes. In nuclear reactor simulations, these measures may vary by
component type, but the nature of the computation carried out for each mesh of the
same type is similar. The computation can also vary by cell according to the material
in the cell and the phase of the material.

For this chapter, only composite grid applications with the following properties

are considered.

o All of the meshes are either large enough to be efficiently distributed over all
processors or small enough to be assigned to a single processor.

e Computations inside of each mesh are regular (this implies regular internal com-
munication for each mesh for each distribution generated by these algorithms).

A torus based communications topology is being targeted. This seems reasonable as
many available machines either are tori or can have them efficiently embedded in the
machine topology.

First, descriptions of both of the random distribution algorithms and the topology-
based small mesh distribution algorithm will be presented. This section ends with a
discussion of the limitations and advantages of the topology-based small mesh distri-
bution approach.

For efficient parallelization of composite grid applications, each mesh should be
distributed according to its dimensionality [LK94b]. Hence, all of the large meshes
are distributed over all of the processors in the same dimensionality as discussed
in [LK94a]. During the mapping of the large meshes, a processor configuration is
selected for distribution of the entire problem. When there are no large meshes in
the problem, m-dimensional processor topology closest to being “square” is selected,
where m is the dimensionality of the largest dimensionality processor mesh of the

specified size on the host architecture.

5.2.1 Random Algorithm

For each mesh, a pseudorandom number is used to select the processor that will
own the mesh. No restriction is placed on assignment of meshes to processors. This
approach has been advocated by applications developers. This algorithm takes O(M)

time to generate a distribution specification, where M is the number of small meshes.
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5.2.2 Load-Balanced Random Algorithm

For a load-balanced random distribution, the meshes are randomly distributed, as
above, but they are distributed in highest computation cost first order. Further,
there is an upper bound on the amount of computation that may be allocated to a
processor. This bound is overridden only after a number of failures to allocate. The
number of failures is set to be on the order of the number of processors. Therefore, to
map the largest unmapped mesh, a processor is randomly selected. If the processor
can accommodate the mesh’s computation, then map the mesh to the processor,
otherwise try again up to some set number of times. If no processor with enough
room is found, just assign the mesh to a processor because, even if the load balance
is poor, the problem must be solved. This approach produces better worst case load
balance than the random algorithm but is more expensive. This algorithm takes
O(P M log(M)) time due to the sorting of the meshes by computational cost and
the possible number of failures, where M is the number of small meshes and P is the

number of processors.

5.2.3 Topoloby-based Small Mesh Algorithm

Next, a brief description of the topology-based small mesh distribution algorithm is
presented. The associated data structures are described and an outline of the steps
in the algorithm is shown in Figures 5.1 and 5.2.

It is assumed that before this algorithm begins any large meshes have been
mapped. As a result of this mapping, a processor configuration is chosen. Further,
all communications involving large size meshes are scheduled. If there are no large
meshes, then 1) the largest dimensionality nearly square processor configuration pos-
sible is chosen, 2) the highest computation cost small mesh is mapped to an arbitrary
processor, and 3) all communications to this mapped small mesh are scheduled.

The basic idea used in this algorithm is that meshes that communicate should be
mapped to the same processor or to processors as close together as possible. If meshes
were simply mapped to the processor with the greatest coupling cost, there would be
few processors with small meshes allocated to them. The number of processors used
in that case would be bounded by the number of couplings between large and small
meshes (one in the case of a single premapped small mesh). Therefore, a load-balance
measure is used to determine when a processor has too much computation already

allocated to accommodate the work associated with an unmapped mesh. When this
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happens, the algorithm tries to allocate the mesh to a neighbor processor. If all of
the neighbors are too full, the algorithm finds the closest processor with no work
allocated. If this also fails, the mesh is saved as a “fill” element to be used after
all other meshes are mapped. These “fill” elements are then used in a final load
balancing step by assigning them to under-utilized processors.

Small mesh distribution begins by determining the amount of computation, for
the small meshes only, that should be assigned to each processor for perfect small
mesh load balance. Small meshes are statically distributed by trying to obtain load
balance within +e of perfect balance. If the large meshes are not perfectly load
balanced, then their computation cost could be added to this consideration to improve
the overall load balance. This is not currently being done, but will be in future
work. This algorithm could also be used at runtime for dynamic load balancing
if computation/communication statistics are collected in the program and the new
alignment /distribution specifications are used for data redistribution. This may be
useful for problems where the amount of computation per cell changes dramatically
over time (e.g., reactor simulation with phase changes).

Two types of heaps are used in this mapping algorithm. The mesh heap contains
all of the unmapped meshes that have scheduled communication. Communication
is scheduled, between a mapped mesh, a, and each coupled unmapped mesh, 3, by
adding the coupling communication cost to 3’s communication for the processor to
which « is mapped. This introduces the second type of heap. A processor heap is
associated with each mesh in the mesh heap. Each entry in a processor heap gives
the current coupling cost of the associated mesh to that specific processor. From this
two level structure the mesh with highest computation cost and the processor that
it is coupled to are found. First, from the mesh heap, the mesh is found with the
maximum communication scheduled to a single processor. Then, from the mesh’s
processor heap, the associated processor is found. In the final cleanup stage of the
algorithm, two heaps are also used, one being a maximum heap of meshes sorted
according to the amount of computation in the mesh and the other being a minimum
heap of processors sorted according to the amount of computation assigned to the
processor.

For each mapped large mesh, all communications to small meshes are scheduled
initially. Alternatively, the small mesh with the most computation may be mapped
to a processor and all communication to other small meshes is scheduled. The details

of the topology-based algorithm are now presented. Figure 5.1 gives an outline of the
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add M’s computation to P’s computation
delete M’s processor heap
For each unscheduled coupling involving;:
the mapped mesh, M, and an unmapped mesh, N, with weight W
If N is not in the mesh heap
create a processor heap with one entry for P having weight W
add N to the mesh heap with weight W
else
if there is not entry for P in N’s processor heap
create an entry for P with weight W and add it to N’s processor heap
add W to N’s weight in the mesh heap and bubble N’s entry up
else
add W to P’s weight in N’s processor heap and bubble P’s entry up
add W to N’s weight in the mesh heap and bubble N’s entry up
endif
endif

Figure 5.1 Pseudocode for mapping mesh M onto processor P

steps needed to map or assign a mesh to a processor. Figure 5.2 gives an outline of
the steps in the topology-based small mesh distribution algorithm. One point that
needs to be mentioned is that, from studying the types of coupling communication
that occurs in the test problems, I learned that there are often many couplings with
the same communication cost. This led me to explore further ordering options in
the mesh heap. In the end, a combination of maximum coupling cost to a processor
and the computation cost associated with the mesh was used to select the next mesh
to map. The coupling cost is still the primary selection criteria with the higher
computation cost only used to make the selection when there are multiple entries
with the same communication cost.

The runtime of this algorithm is:
O(M log(M) C log(C) P log(P)),

where M is the number of small meshes, C' is the maximum number of couplings
involving a single mesh, and P is the number of processors. The P log(P) term

comes from sometimes finding the nearest empty processor.



83

maz distance = one half of the diameter of selected processor configuration
search distance = 1
While there are unconsidered meshes
proc = null
delete the maximum entry, M, from the mesh heap
best proc = processor in the maximum entry of M’s processor heap
While ((proc is null) && (processor heap is not empty))
delete the maximum entry, P, from M’s processor heap
If P has room for M

proc = P

else if there is a neighbor of P, P/, within search distance with room for M
proc = P’

endwhile

if (proc is null) reset M’s processor heap
While ((proc is null) && (processor heap is not empty))
delete the maximum entry, P, from M’s processor heap
if there is any neighbor of P, P/, within maxz distance with room for M
proc = P’
endwhile
if ((proc is null) && (there is an empty processor))
proc = empty processor nearest best proc
mark M considered
if (proc is null)
save M for filler
else
map M onto P (see Figure 5.1)
endwhile
create a minimum (by computation allocated) heap of processors
create a maximum (by computation to perform) heap of filler meshes
while there are filler meshes in the max heap
delete maximum mesh from max heap
delete minimum proc from min heap
map M onto P
insert P with new computation cost into the minimum processor heap

endwhile

Figure 5.2 Topology-based Distribution Algorithm for Small Meshes
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5.2.4 Limitations -vs- Advantages

This approach to ICRM parallelization is limited to those problems in which it makes
sense to distribute every mesh either over all processors or place it on just one. This
limits the use of the approach for some problems. For example, this approach does
not work when there are too many elements in some meshes to allow them to fit on a
single processor, but too few to distribute over all processors. In Chapter 6, another
approach for automatic distribution of such problems is explored.

The most important advantage to this approach is that the parallelization burden
to the developer of such codes as TRAC is greatly reduced while the applicable com-
munication optimization technology is increased (regular distribution optimizations
can be applied). In particular, the developer does not have to explicitly parallelize
for a specific machine. Further, the code is not parallelized for a specific input set
(reactor configuration). This is particularly important for codes such as TRAC where
many users do not work on code development and many code developers do not work
on reactor model development. Finally, for the scientist trying to analyze the prop-
erties of a specific reactor, the parallelization is specific to their reactor design and,
hence, should run significantly faster than a parallelization that is only code and not

configuration specific.

5.3 Algorithm Validation

The two primary goals of this research are: 1) reduce the programmer burden for par-
allelization of composite grid problems, and 2) take advantage of the partial regularity
of composite grid problems to provide acceptable performance in the resulting paral-
lelization. The first goal is achieved via the automatic distribution algorithm which re-
moves the burden of grid mapping from the user. The second goal is achieved through
the transformation process, which will be described and illustrated in Section 6.3.
Since the applications focused on in this work are not written in a form that can
be worked with directly, measures of load balance and communication are presented
in place of timing results. The measure of load balance that is presented is the
total number of floating point additions, multiplications, and divisions. This load
balance measure is compared for the processor with the most work (Compum.;) and
the processor with the least work (Compyin,). This number is also presented for
the highest computation small mesh in each problem. None of these algorithms can

produce a mapping with less computation on every processor than that of the highest
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computation small mesh. Consideration of this fact provides a practical upper bound
on the number of processors for a problem when using any of these algorithms. The

following measures of communication will be presented:

o distance is the maximum distance between any pair of communicating proces-
sors;

e neighbors is the maximum number of processors communicated with for any
processor;

o Commy,qy, 1s the maximum amount of communication, in bytes, for any pro-
cessJor;

o Commy,qy, 1s the maximum communication, in bytes, between any pair of pro-
cessors; and

o Commyyq is the total communication, in bytes, for the simulation.

With these measures of load balance and communication, the results of the three
distribution algorithms are compared for four different problems. In all of these mea-
sures, only the computation and communication associated with the small meshes in
the problem are included. In the tables of results, the selected processor configuration
is shown below the number of processors.

The speedup bound, Distg, is the speedup, with the data distribution supplied,

that would be achieved if there were no communication, i.e.,

Comppaz for n processors

Disty = .
’ Comppa: for one processor
The speedup bound is rounded to two decimal places.

For each test problem, the two random algorithms were run three times and
complete results are shown for all runs to provide a minimal feel for the range of

results.

5.3.1 LOFT 3-d Reactor Model

The validation results for the 3-d LOFT reactor model are shown in Figure 5.3. There
are 1,567,560 floating point computations for each cycle associated with the largest
mesh in the 3-d LOFT reactor model used as input for this experiment. This implies

that 4.85 is the maximum speedup bound, Disty, achievable using these algorithms.
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Figure 5.3 Validation results for 3-d LOFT reactor model.
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In the 3-d LOFT results, the maximum computation for a processor can not
be reduced by using more than 8 processors for the topology-based distribution algo-
rithm. The random distribution never minimizes the maximum computation mapped
to a processor, even when 32 processors are used. The balanced random sometimes
minimizes the maximum computation mapped to a processor, but it generates nearly
twice as much total communication as the topology-based distribution algorithm does.
These results illustrate the earlier point that the cost of the total small mesh compu-
tation divided by the cost of the highest computation small mesh bounds the number
of processors that can be used effectively. It is interesting to note that using more
processors than this bound can reduce the communication as in the case of going
from 8 to 16 processors for the 3-d LOFT data set.

In the rest of the validation results, only the cases up to the number of processors

indicated by the bound imposed by the highest computation small mesh are presented.

5.3.2 LOFT 1-d Reactor Model

The validation results for the 1-d LOFT reactor model are shown in Figure 5.4. There
are 287,546 floating point computations for each cycle associated with the largest
mesh in the 1-d LOFT reactor model used as input for this experiment. This implies
that 5.91 is the maximum speedup bound, Disty,, that can be achieved using these
algorithms.

In the 1-d LOFT results, the topology-based distribution algorithm produces good
load balance until the maximum number of processors is used. Both random algo-
rithms induce nearly twice as much total communication as the topology-based algo-

rithm does and do not minimize the maximum computation mapped to a processor.

5.3.3 H.B. Robinson Reactor Model

The validation results for the H.B. Robinson reactor model are shown in Figure 5.5.
There are 979,725 floating point computations for each cycle associated with the
largest mesh in the H.B. Robinson reactor model used as input for this experiment.
This implies that 13.93 is the maximum speedup bound, Distg, that can be achieved
using these algorithms.

In the H.B. Robinson results, the topology-based distribution algorithm produces
good load balance until the maximum number of processors is used. Both random al-

gorithms induce from three to ten times as much total communication as the topology-
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Figure 5.4 Validation results for 1-d LOFT reactor model.
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Figure 5.5 Validation results for H.B. Robinson reactor model.



90

based algorithm does and never a smaller maximum amount of computation mapped

to a processor.

5.3.4 Westinghouse AP600 Reactor Model

The validation results for the Westinghouse AP600 reactor model are shown in Figures
5.6 and 5.7. There are 3,396,380 floating point computations for each cycle associated
with the largest mesh in the AP600 reactor model used as input for this experiment.
This implies that 20.82 is the maximum speedup bound, Distg, that can be achieved
using these algorithms.

In the AP600 results for 8 processors, the first case where the balanced random
distribution algorithm produces a better load balance than the topology-based algo-
rithm occurs. This occurs because the topology-based distribution algorithm saves
meshes for mapping at the end when it can not find a good placement quickly. This
could be improved by keeping a minimum heap of processors and placing the meshes
on the least loaded processor when good placement is not found quickly. In this
particular case, the total communication is more than a factor of two better for the
topology-based distribution algorithm and there is one less neighbor for the topology-
based distribution algorithm. From this it appears that the distribution generated
by the topology-based distribution algorithm would probably outperform the distri-
bution generated by the balanced random algorithm. This point will be explored in
the future to improve the topology-based algorithm. Both random algorithms induce
from one and a half to five times as much total communication as the topology-based

distribution algorithm does.

5.4 Chapter Summary

An algorithm that automatically finds a distribution of data in ICRM problems given
a well-structured HPF program and topological connection specifications has been
presented. When models are being developed via iteration of modification of the
model and experimentation with the model, automatic distribution of small mesh

ICRM problems is critical. This algorithm provides an important first step.
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Figure 5.6 Validation results for Westinghouse AP600 reactor model.
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Figure 5.7 Validation results for Westinghouse AP600 reactor model.
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Chapter 6

Mapping Algorithm and Precompiler Support for
Medium and Mixed Size Mesh Composite Grid
Problems

So far, algorithms have been discussed to automatically distribute problems with
meshes that are large or small relative to the number of processors. Now, an algorithm
is presented for automatic distribution of problems with meshes that are too large to
fit on a single processor and too small to distribute over all processors. This becomes
more common as more processors are used.

In the first section of this chapter, the intuition behind the approach is presented.
The next section presents the algorithm used to distribute ICRM problems that con-
tain medium and mixed size meshes. The following section describes and illustrates
the transformation that an HPF precompiler would perform. Next, algorithm valida-
tion is achieved by increasing the number of processors used on all of the problems
that have been used to validate the previous algorithms. Finally, the results of this

chapter are summarized.

6.1 Intuition

When meshes are too large to fit on a single processor and too small to distribute
over all of the processors, they should be mapped, not necessarily uniformly, to a
subset of the processors. For example, it may be best to map 3/4 of the elements
to one processor, thereby completely filling that processor, and the remaining 1/4 to
another processor that will need further computation to achieve load balance.

One approach would be to break the medium size meshes into pieces that have at
most the amount of computation that is to be allocated to an individual processor
and then distribute the pieces via a small mesh distribution algorithm. The problem
with this approach is that there is no longer a guarantee that the communication
within a single mesh will be nearest neighbor. For this reason, a different approach

is used. Here, packing medium size meshes into large size bins is explored. The large
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size bins are then distributed using the large mesh distribution algorithm previously
described. This approach ensures that all communication within a single mesh is
nearest neighbor in the mapping.

Basically, I want to find the packing of medium size meshes into large bins that
minimizes the total volume of the bins, with the restriction that each bin must be
big enough to distribute over all processors. To do this, the number of bins, the size
of the bins, and the packing of the meshes into the bins are optimized.

This problem is an extension to the nonlinear optimization problem 3-dimensional
bin packing. The extension to 3-dimensional bin packing for this problem is that the

sizes of the bins are variable and unknown.

6.2 Automatic Distribution Algorithm

Now consider how to pack medium size meshes into bins and how the packing of
medium size meshes and their subsequent distribution affects the distribution of other
meshes. The overall distribution algorithm is described for problems with medium
size meshes in three stages. First, the basic distribution procedure when there are
only medium size meshes in the problem is described. Next, the basic distribution
procedure is modified when large meshes are present in addition to the medium size
meshes. Finally, the full automatic distribution procedure for the case where small
size meshes are added to the mix of meshes in the problem is presented. Section 6.2.1
will present the details of the mesh packing algorithm. This is followed by a discussion
of the limitations of the approach.

Medium Meshes Only: First, consider the case when there are only medium size
meshes in the problem. All of the meshes are packed into some number of large

bins for distribution. This is done as follows.

Pack Medium: Medium size mesh packing consists of the following steps.

Find Bin Bound: An upper bound on the number of bins is found by
adding up the number of elements in the meshes and dividing by the
number of processors (assuming the same computation is taking place
on each mesh).

Perform Packing: Now for each number of bins, up to the maximum,
the optimal packing of the meshes into the bins is found, with each bin

being at least big enough to distribute over all processors. To do this, a
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model was developed for this nonlinear optimization problem. To solve
the packing problem, a local linear approximation to the nonlinear
problem is solved iteratively. The best solution is the number of bins

that produce the minimum total volume over all of the bins.

Build Large: From the best solution, a large mesh is created to represent
each composite bin. The size of the large mesh is the size of the
composite bin. The computation per element is the maximum of the
computation costs for the medium meshes that were packed into the

composite.

Translate Couplings: Each new large mesh has all of the couplings trans-
lated from the medium size meshes it contains into their corresponding
positions in the large composite mesh. This translation involves di-
mension alignment and offset alignment. The direction of alignment is
always increasing, but that could be modified to reduce coupling com-

munication cost between two meshes packed in the same composite.

Distribute Large: The large composite meshes are distributed and have cou-
pling communication reduction performed exactly as with the original large
distribution algorithm. During this distribution, each large mesh is as-
sumed to have the same computation being performed for each element,
i.e., the new composite meshes are distributed according to the assumption

that they are regular.

Add Large Meshes: Next, let’s consider the case where there are both large and

medium size meshes.

Sort: Before composite bins can be built, the meshes must be sorted to deter-
mine which meshes are large and which are medium. The current separat-
ing heuristic is that each processor should have at least four computational
elements for each distributed dimension. This is somewhat arbitrary and

will be studied in future work.
Pack Medium: Perform packing as described above.

Distribute Large: In this case, large mesh distribution is performed for the
new large composite meshes and the original large size meshes at the same

time using the large mesh distribution algorithm described in Chapter 4.
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Add Small Meshes: Finally, consider the case where there are meshes of all three

size classifications in the problem.

Sort: The first step is to sort the meshes by size and separate them into the
three size classifications. Large meshes are separated out first. Then, to
classitfy small meshes, the amount of computation from non-large meshes
that should be assigned to each processor is determined. A small mesh
is one that has less than one half of that amount. This could be further
refined after having obtained an initial separation of medium and small
sized meshes. This separation criteria will be studied further in future

research.
Pack Medium: Perform packing as described above.

Distribute Large: Distribute all (original and composite) large meshes as de-

scribed above.

Distribute Small: Small meshes are mapped by repeatedly putting the un-
mapped small mesh, with the most computation, onto the least computa-

tionally loaded processor.

Now the overall distribution algorithm has been described for problems with

medium size meshes, some of the details of the packing algorithm will be discussed.

6.2.1 Algorithm Details

All of the meshes are packed into some number of large bins for distribution. This
allows distribution of all meshes with nearest neighbor communication for all commu-
nications that involve only one mesh. Only meshes having three or fewer dimensions
are packed. All of the test problems involve meshes with at most three dimensions,
so this does not restrict the algorithm for the test problems. Further, all of the phys-
ical phenomena simulations that are being targeted here use at most 3-dimensional
meshes. This work can be extended to higher dimension with the effect that the
optimization problem becomes even more difficult and expensive.

First, an upper bound on the number of bins is found by summing up the number
of elements in the meshes and dividing by the number of processors. This assumes
that the same computation is taking place on each mesh. If this is not the case, the
meshes should be separated into groups according to computational load and then

packed. Now, for each number of bins, up to the maximum, an optimal packing of the
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meshes into the bins is sought, with each bin being at least big enough to distribute
over all processors. To do this, a model is developed for this nonlinear optimization
problem.

The model says to minimize the sum of the volumes of the bins subject to the

following constraints:
e all bin volumes must be at least as large as a precomputed lower bound;
e all meshes must be completely contained in one and only one bin;
e no two meshes assigned to the same bin may overlap; and

e cach dimension of a mesh assigned to a bin must be assigned to exactly one

dimension of the bin.

To achieve the last constraint, all of the meshes are converted to 3-dimensional meshes
by padding out with dimensions having a single element.

Since this nonlinear optimization problem is not computationally tractable, the
packing problem is solved iteratively via a local linear approximation using the
CPLEX callable library [CPLEX 094]. The best solution is the set of bins and
associated packing that produces the minimum total volume over all of the bins.

From the best solution, a large mesh is created to represent each composite bin.
This large mesh has all of the couplings translated from the medium size meshes into
their positions in the composite mesh. This process is outlined in 6.1. Finally, the
large meshes are distributed and have coupling communication reduction performed
exactly as with the original large meshes. During this distribution, each large mesh
is distributed according to the assumption that the all meshes, including the large
composite meshes, are regular.

The one modification that was made to this basic optimization procedure is that
meshes are prepacked when possible. A prepacking makes a single n-dimensional
larger mesh out of two n-dimensional smaller meshes when the sizes in n — 1 of the
dimensions are the same. In this case there are no “holes” introduced in the new
larger mesh. This was done because the optimization-based packing algorithm is
expensive. This modification comes into play in the reactor simulation problems in
particular. In the simulation of the AP600, with only 64 processors, this prepacking
reduces the number of meshes that are to be packed using CPLEX from 32 to 11.
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compute the maximum number of usable bins
For each number of bins, b, up to the number of usable bins
find a feasible solution as a starting point
while not converged
prepare the linear programming problem for CPLEX
call CPLEX routines to solve the local linear problem
check to see if the solution has converged
1f not converged
update the variables for next iteration
else 1f the solution is better than any previous solution
save 1t
create a large mesh for each bin in the best solution
fill in each large mesh’s information from the meshes packed in it
translate the couplings from medium mesh to large mesh with offsets

Figure 6.1 Medium Mesh Packing Algorithm

Linear Optimization Model

Now, the linear optimization problem is described in detail. It is presented here in
a form that allows for easy generation of input files for CPLEX. In the following,
1 <i:<band 1 <j < N, where N is the number of meshes and b is the number of
composite ‘bins’. All values are integers and every variable in font FONT is a constant
that will appear as an integer in the input file for CPLEX. Further, all 6 and in
variables can have only value 0 or 1.

The following relationships hold:
e 1n;; = 1 <= mesh j is in composite bin ;
e MAX is an upper bound on z,y, and z for all meshes;

e X, Y, and Z; are the sizes of composite bin ;

X0C;,Y0C;, and ZOC; are the initial sizes of composite bin ;

DX;,DY;, and DZ; are the sizes for mesh j;

20;,90;, and 20; are the starting locations for mesh 7 in the final packing;
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e xm;,ym;, and zm; are the ending locations for mesh j in the final packing;
e bap; = 1 <= mesh k starts after mesh j ends in dimension a (a € {z,y,z});

o 6ab; = 1 <= dimension a of mesh j is mapped to dimension b of the composite

bin it is packed into (a,b € {x,y,z}).

X0C;, YOC;, and ZOC; are used, with X0;, Y0;, and Z0;, to limit the amount of change
allowed in X;,Y;, and Z; for the iterative local linear approximation.

What should be minimized is

but CPLEX can only deal with linear problems. Therefore, an iterative local linear
optimization is performed to solve, approximately, the nonlinear problem of interest.
Hence, the following model results. This description is not in CPLEX input form,
but does reflect the type of problem that can be solved using CPLEX.

Minimize \
> X, - YOC; - ZOC; + XOC; - Y; - ZOC; + XO0C; - YOC; - Z;
1=1
Subject to  X;-Y0C; - Z0C; + XOC; - Y; - ZOC; + XOC; - YOC; - Z; > LB (6.1)
X0; = X0C;
Y 0; = YOC;
Z0; = Z0C;
X0; — X; <= TRUST% of XOC;
Y0; —Y; <= TRUST% of YOC; (6.2)

Z0; — Z; <= TRUST% of Z0C;
X; — X0; <= TRUST% of XOC;
Y; — Y0; <= TRUST% of YOC;
Z; — Z0; <= TRUST% of Z0C;



z0; > 1
y0; > 1
20; > 1
xm; > 1
ym; > 1

zm; > 1

T ; + MAX - m” S MAX + XZ
ym; + MAX - m” S MAX + K
215 + MAX - m” S MAX + ZZ

xmyg; — MAX - 6z <0

—xmj; + xmyg; <0

rm; — xmy; + MAX - dxy; < MAX
0 — 0z > Tmyy;

ka — MAX - (Sfl/‘kj S T

ymyg; — MAX - dyg; < 0

—ymj + ymyg; <0

ymj — ymyk; + MAX - yy; < MAX
Y0k — 0yr; > ymy;

Y0, — MAX - Oyi; < ym;

zmyg; — MAX - 0z <0

—zm; + zmyg; <0

zm; — zmyg; + MAX - 0z;; < MAX
20, — Oz > 2myk;

z0; — MAX - (5ij < zm;
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(6.3)

(6.4)

(6.5)

(6.6)



—inij + ingr <0
—inig + i <0
'émj + ank - m”k S 1

—5$kj - (Sijk - (S‘ykj —_ (Sy]'k —_ 5zkj —_ (Sij + m”k S O

ym; = y0; + éyx; - DX; + dyy; - DY; + dyz; - DZ; — 1

oxx; + dxy; + dxz; =1
byx; + byy; + 0yz; =1
Oza;+ ozy; + 6zz; =1

oxx; + oyx; + bzxj; =1
dwy; + oyy; + dozy; = 1
Oxzj+ 0yz; + 6zz; =1

b
Z m” =1
=1
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(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

Each of the following comments pertains to a group of constraints and each group

of constraints has a single label.

e Constraint 6.1 states that the volume for each composite bin must be at least

as great as an input constant lower bound.

e The constraints in 6.2, limit the change that can occur in the various dimensions

of the bins. This is necessary due to the use of the iterative local linear opti-

mization for the globally nonlinear problem. TRUST is the current trust region

size factor [JS83].

e The constraints in 6.3 and 6.4 ensure that each mesh packed in any composite

bin is completely inside of that composite bin.
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e No two meshes in the same composite bin are allowed to overlap. This require-
ment is represented in four groups of constraints: one for each dimension of the
problem (the constraints in 6.5-6.7) and one that specifies that there must be
no overlap in at least one dimension between each pair of meshes packed in the

same composite bin (the constraints in 6.8).

e The constraints in 6.9 define the upper bounds in the three dimensions for mesh
e The constraints in 6.10 and 6.11 enforce that each mesh dimension is mapped

to exactly one dimension of the composite bin and that no two dimensions of

the mesh are mapped to the same dimension of the composite bin.

e Finally, constraint 6.12 ensures sure that each mesh gets assigned to exactly

one composite bin.

In generating input for CPLEX from this model, all of the equations for all of the

meshes and bins must be listed explicitly.

Small Mesh Distribution

To improve load balance via small mesh distribution, the algorithm begins by deter-
mining the amount of computation that has been assigned to each processor.

Next, the algorithm sorts processors in increasing computation order using a min
heap and sorts small meshes in decreasing computation order using a max heap.
While there are unmapped small meshes, the algorithm repeatedly maps the mesh
with the most computation onto the processor with the least computation.

In future work, I will use the ideas developed for the general small mesh distri-
bution algorithm in mapping small meshes according to coupling requirements while

trying to improve load balance.

6.2.2 Limitations

Because of the high cost of solving the linear optimization problems, this mapping
technique is quite expensive. This is illustrated by the number of variables in the
optimization problem. If m is the number of meshes and & is the number of bins,

then there are approximately

m2x b+ Tm*+ mb+ 15m + 6b
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variables in a given instance of the iterative procedure, e.g., for 10 meshes and 1 bin
there are 966 variables. For this reason, future work will explore the use of heuristics

to obtain more quickly an acceptable solution.

6.3 Support for High Performance Fortran Programs

Since the HPF language definition does not require the interprocedural analysis that
is needed to perform the transformations that are about to be discussed, precompiler
support must be added for HPF. Interprocedural analysis is needed in order to allow
the user to write programs in the form described in Section 3.3 rather than in the
style that will be illustrated in the post-transformation excerpts. With the use of a
precompiler, which is completely machine independent, any full HPF compiler that

is available for the machine that the user is interested in running on can be used.

6.3.1 Original High Performance Fortran Program

Figures 6.3-6.9 illustrate an abstracted application outline of the form described in
Section 3.3. This represents the code to be developed by the application programmer.
Figure 6.2 shows the original HPF module and main program. Figure 6.3 shows the
original input routine for 1-, 2-, and 3-dimensional meshes. Figure 6.4 shows all of
the original allocation routines for the abstracted application. Figures 6.5 and 6.6
show the original HPF main subroutine. Figure 6.7 shows the original outlines for the
compute routines. Figure 6.8 shows the original HPF input routines for the couplings.
Figure 6.9 shows one of the original coupling update routines.

Figure 6.9 and its translation will serve to illustrate how coupling update routines
are modified for use with the automatic distribution scheme. I do not illustrate how
user codes perform couplings between different dimensions of different meshes. This
is because it would add to the length of the examples, but it would not change the

HPF transformation process in any way.

6.3.2 Transformation and Final High Performance Fortran Program

The example from the previous section is now transformed and the resulting code is
shown. An outline of the steps needed for transformation is provided in Figure 6.10.
To illustrate these steps, parts of an abstracted application, as it would look after

transformation, are provided.
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module mesh_module
type mesh_3d
integer size(3), mesh_id

real, pointer, dimension(:,:,:) :: p, q, u, v, zm, X, ¥,

end type mesh_3d
type mesh_2d

integer size(2), mesh_id

real, pointer, dimension(:,:) :: p, q, u, v, zm, X,
end type mesh_2d
type mesh_1d

integer size(1), mesh_id

real, pointer, dimension(:) :: p, q, u, v, zm, x, y,
end type mesh_1d
type coupling

integer id_A, id_B, lo_A(3), hi_A(3), lo_B(3), hi_B(3)

end type coupling

type (mesh_3d), allocatable, dimension(:)::Meshes_3d
type (mesh_2d), allocatable, dimension(:)::Meshes_2d
type (mesh_1d), allocatable, dimension(:)::Meshes_1d

integer Num_3d_meshes, Num_2d_meshes, Num_1d_meshes, Num_couplings

type (coupling), allocatable, dimension(:)::Couplings
integer, allocatable, dimension(:)::dims
contains

subroutine main_routine goes here
. runtime constant input routines go here

end module mesh_module

program big_mesh

use mesh_module

The computation/communication reflect the CFD codes
at Mississippi State for aerodynamic simulatiomns.
read(*,*) Num_steps, Num_Meshes

allocate(dims (Num_Meshes))

call read_meshes_3d()

call read_meshes_2d()

call read_meshes_1d()

call read_couplings()

call main_routine()

end program big_mesh

Figure 6.2 Original HPF module and main program.
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Note: mesh ids run from 1 to number of meshes total.

subroutine read_meshes_3d()

read(*,*) Num_3d_meshes

allocate(Meshes_3d(Num_3d_meshes))

do i = 1, Num_3d_meshes
read(*,*) Meshes_3d(i)%mesh_id, Meshes_3d(i)%size
dims (Meshes_3d(i)%id) = 3

end do

end subroutine read_meshes_3d

subroutine read_meshes_2d4()

read(*,*) Num_2d_meshes

allocate(Meshes_2d(Num_2d_meshes))

do i = 1, Num_2d_meshes
read(*,*) Meshes_2d(i)%mesh_id, Meshes_2d(i)%size
dims (Meshes_2d(i)%id) = 2

end do

end subroutine read_meshes_2d

subroutine read_meshes_1d4()

read(*,*) Num_1d_meshes

allocate(Meshes_1d(Num_1d_meshes))

do i = 1, Num_1d_meshes
read(*,*) Meshes_1d(i)%mesh_id, Meshes_1d(i)%size
dims (Meshes_1d(i)%id) = 1

end do

end subroutine read_meshes_1d

Figure 6.3 Original HPF example input routines for all meshes.
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subroutine allocate_3d(Mesh_info)
type (mesh_3d) Mesh_info
real, pointer :: all_array(:,:,:)
allocate(all_array(Mesh_info%size(1),Mesh_info¥%size(2),Mesh_infoYsize(3)))
Mesh_info%p => all_array
nullify(all_array)
. repeat allocation for q, u, v, zm, x, y, Z
end subroutine allocate_3d

subroutine allocate_2d(Mesh_info)
type (mesh_2d) Mesh_info
real, pointer :: all_array(:,:)
allocate(all_array(Mesh_info%size(1),Mesh_infoYsize(2)))
Mesh_info%p => all_array
nullify(all_array)
. repeat allocation for q, u, v, zm, x, y, Z
end subroutine allocate_2d

subroutine allocate_1id(Mesh_info)
type (mesh_1d) Mesh_info
real, pointer :: all_array(:,:)
allocate(all_array(Mesh_info%size(1)))
Mesh_info¥%p => all_array
nullify(all_array)

. repeat allocation for q, u, v, zm, x, y, 2z
end subroutine allocate_1d

subroutine allocate_all_meshes()
do i = 1, Num_3d_meshes

call allocate_3d(Meshes_3d(i))
end do
do i = 1, Num_2d_meshes

call allocate_2d(Meshes_2d(i))
end do
do i = 1, Num_1d_meshes

call allocate_1d(Meshes_1d4(i))
end do
end subroutine allocate_all_meshes

Figure 6.4 Original HPF example allocation routines for all meshes.
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subroutine main_routine
call allocate_all_meshes
forall i=1, Num_3d_meshes

call initial_3d(Meshes_3d(i),dthlf,dt)
end forall

C ... similar loops for 1- and 2-dimensional initialization

do i_step = 1, Num_steps

forall i=1, Num_3d_meshes

call update_mesh_3d(Meshes_3d(i),dthlf,dt)

end forall
C ... similar loops for 1- and 2-dimensional mesh updates
C coupling update loop from next figure goes here
end do
C ... print results, etc.
C all subroutines except input go here

end subroutine main_routine

Figure 6.5 Original HPF main subroutine.

Before the actual transformations are presented, recall that the distribution al-
gorithms have three size classifications for meshes: small, medium, and large. In
the HPF transformation process, only two size classifications need to be consider:
small and large. This simplification is possible because the type of information the
algorithm provides for medium and large size meshes is the same. With a specific
size classification for meshes, which is dependent only on the dimensionality of the
mesh, cloning may be performed. Since only three or fewer parallel dimension are
supported, each 3-dimensional mesh can be distributed in any of the six dimension
alignment permutations or it can be mapped to a specific processor. Therefore, each
original routine that takes only one mesh as input is replaced with seven clones. The
coupling update routines, which take multiple meshes as input, get many more clones.
For example, if one of the meshes is 3-dimensional and the other is 2-dimensional,
then there are forty-nine different clones of the coupling update_3d2d routine.

The first modification to the user’s HPF program is the addition of the distribution
specifications to the user defined data types that contain arrays to be distributed
(compare Figures 6.2 and 6.11). For large and medium meshes, a distribution order

specification is needed along with the decomposition size and the alignment offsets.
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forall i=1, Num_couplings
id_A = Couplings(i)%id_A
id_B = Couplings(i)%id_B
select case (dims(id_A))
case (1)
id_A = id_A - Num_3d_meshes - Num_2d_meshes
id_B = id_B - Num_3d_meshes - Num_2d_meshes
call update_couplings_1idid(Meshes_1d(id_A),
Couplings(i),Meshes_1d(id_B))
case (2)
id_A = id_A - Num_3d_meshes
select case (dims(id_B))
case (1)
id_B = id_B - Num_3d_meshes — Num_2d_meshes
call update_couplings_2did(Meshes_2d(id_4),
Couplings(i),Meshes_1d(id_B))
case (2)
id_B = id_B - Num_3d_meshes
call update_couplings_2d2d(Meshes_2d(id_4),
Couplings(i),Meshes_2d(id_B))
end select

case (3)
select case (dims(id_B))
case (1)

id_B = id_B - Num_3d_meshes - Num_2d_meshes
call update_couplings_3did(Meshes_3d(id_4),
Couplings(i),Meshes_1d(id_B))
case (2)
id_B = id_B - Num_3d_meshes
call update_couplings_3d2d(Meshes_3d(id_4),
Couplings(i),Meshes_2d(id_B))
case (3)
call update_couplings_3d3d(Meshes_3d(id_4),
Couplings(i),Meshes_3d(id_B))
end select
end select
end forall

Figure 6.6 Original coupling update insert for the main routine.
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subroutine update_mesh_3d(Mesh_info,dthlf,dt)
use physics
type (mesh_3d) Mesh_info
real dthlf, dt
. updates for arrays associated with current mesh
end subroutine update_mesh_3d

subroutine update_mesh_2d(Mesh_info,dthlf,dt)
use physics
type (mesh_2d) Mesh_info
real dthlf, dt
. updates for arrays associated with current mesh
end subroutine update_mesh_2d

subroutine update_mesh_1d(Mesh_info,dthlf,dt)
use physics
type (mesh_1d) Mesh_info
real dthlf, dt
. updates for arrays associated with current mesh
end subroutine update_mesh_1d

Figure 6.7 Original HPF example compute routines for all meshes.
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subroutine read_couplings()
read(*,*) Num_couplings
allocate(Couplings (Num_couplings))
do i = 1, Num_couplings
read(*,*) Couplings(i)%id_A,Couplings(i)%id_B
select case (dims(id_4)
case (1)
read(*,*) Couplings(i)%lo_A[1],Couplings(i)¥%hi_A[1]
case (2)
read(*,*) Couplings(i)%lo_A[1],Couplings(i)%lo_A[2],
Couplings(i)%hi_A[1],Couplings(i)%hi_A[2]
case (3)
read(*,*) Couplings(i)%lo_A[1],Couplings(i)%lo_A[2],
Couplings(i)%lo_A[3],Couplings(i)%hi_A[1],
Couplings(i)%hi_A[2],Couplings(i)%hi_A[3]
end select
select case (dims(id_B)
case (1)
read(*,*) Couplings(i)%lo_B[1],Couplings(i)%hi_B[1]
case (2)
read(*,*) Couplings(i)%lo_B[1],Couplings(i)%lo_B[2],
Couplings(i)%hi_B[1],Couplings(i)%hi_B[2]
case (3)
read(*,*) Couplings(i)%lo_B[1],Couplings(i)%lo_B[2],
Couplings(i)%lo_B[3],Couplings(i)%hi_B[1],
Couplings(i)%hi_B[2],Couplings(i)%hi_B[3]
end select
end do
end subroutine read_couplings

Figure 6.8 Original HPF input routine for couplings
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subroutine update_couplings_3d2d(Mesh_A,Couple,Mesh_B)
type (mesh_3d) Mesh_A
type (mesh_2d) Mesh_B
type (coupling) Couple
real p_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couplelhi_B(2)-Couple¥lo_B(2)+1)
real q_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couplelhi_B(2)-Couple¥lo_B(2)+1)
real u_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couple¥lo_B(2)+1)
real v_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couple¥lo_B(2)+1)
real zm_tmp(Couple%hi_B(1)-Couple’lo_B(1)+1,Couple%hi_B(2)-Couple’lo_B(2)+1)
real x_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couplello_B(2)+1)
real y_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couplello_B(2)+1)
real z_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couplello_B(2)+1)
p_tmp(1:Couplelhi_B(1)-Couple¥lo_B(1)+1,1:Couple}hi_B(2)-Couple¥%lo_B(2)+1)
= Mesh_AY%p(Couple%lo_A(1):Couple’hi_A(1),Couplello_A(2):Couplefhi_A(2),
Couple%lo_A(3):Couplefhi_A(3))
. save all the temporaries
Mesh_A%p(Couple¥lo_A(1):Couplelhi_A(1),Couplello_A(2):Couplefhi_A(2),
Couple%lo_A(3):Couplefhi_A(3))
= Mesh_BYp(Couple%lo_B(1):Couple’hi_B(1),Couplello_B(2):Couple)hi_B(2))
* alpha
+ Mesh_AY%p(Couple%lo_A(1):Couplefhi_A(1),Couplelo_A(2):Couplekhi_A(2),
Couple%lo_A(3):Couple%hi_A(3))*(1-alpha)
. update all of the ‘‘A’’ variables
Mesh_BY%p(Couple%lo_B(1):Couple%hi_B(1),Couplelo_B(2):Couplehi_B(2))
& = p_tmp(1:Couple%hi_B(1)-Couplelo_B(1)+1,1:Couplelhi_B(2)-Couplello_B(2)+1)
& + Mesh_BYp(Couple’lo_B(1):Couplehi_B(1),Couplelo_B(2):Couple}hi_B(2))
& * (1-alpha)
. update all of the ‘‘B’’ variables
end subroutine update_couplings_3d2d

&
&

P P X

Figure 6.9 Original HPF example update routine for 3d to 2d couplings.
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Add distribution specifications to user defined types (UDTs).
Insert code to read distribution specifications.
Modify storage allocation to implement data distribution.
Add a ‘‘processors’’ statement to the main subroutine.
For each subroutine with distributed data:
For each set of distribution types for the various parameters:
Clone the subroutine.
Replace all UDT parameters with their elements.
Insert distribution specifications for all distributed data.
For each call to a subroutine with distributed parameters:
Replace all UDT parameters in the call with their elements.
Add a control structure to select the clone of the callee with the
proper distribution specifications.

Insert parameters with distribution information.

Figure 6.10 Transformation steps for composite grid HPF programs.

For small meshes, only the processor identification is needed. In order to distinguish
between these two types of the distribution, a mesh type is added.

The input routine (read mesh_3d) is modified to read the existing data distribu-
tion information from a file (compare Figures 6.3 and 6.12). Part of this input is
dependent on the type of distribution used for the mesh. This case structured depen-
dence will be seen throughout the transformed program. The distribution informa-
tion is read from a secondary file that has been created by the automatic distribution
system. Alternatively, a user could specify their own distributions in a properly for-
matted file. Also notice that all runtime constant topology specifications are read
in before any storage is allocated for any distributed data. Other input routines are
modified in a similar manner.

The array allocation routines (e.g., allocate 2d) are cloned for each possible
distribution type including each alignment dimension order. After cloning, template,
align, and distribute statements are added (compare Figures 6.4 and 6.13). Note
that if the programmer had declared all of the arrays in the data structure to be

allocatable, but not pointers, then the transformation would require that they be
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module mesh_module
type mesh_3d
integer size(3), mesh_id

integer mesh_type, dist_order, decomp_size(3), align_offset(3), proc(3)

real, pointer, dimension(:,:,:) :: p, q, u, v, zm, X, y, Z
end type mesh_3d
type mesh_2d

integer size(2), mesh_id

integer mesh_type, dist_order, decomp_size(3), align_offset(3), proc(3)

real, pointer, dimension(:,:) :: p, q, u, v, zm, X, y, Z
end type mesh_2d
type mesh_1d

integer size(1), mesh_id

integer mesh_type, dist_order, decomp_size(3), align_offset(3), proc(3)

real, pointer, dimension(:) :: p, q, u, v, zZm, X, y, 2
end type mesh_1d
type coupling
integer id_A, id_B, lo_A(3), hi_A(3), lo_B(3), hi_B(3)
end type coupling
integer Num_Proc_i,Num_Proc_j,Num_Proc_k
integer Num_3d_meshes,Num_2d_meshes,Num_1d_meshes,Num_couplings
type (mesh_3d), allocatable, dimension(:) :: Meshes_3d
type (mesh_2d), allocatable, dimension(:) :: Meshes_2d
type (mesh_1d), allocatable, dimension(:) :: Meshes_1d

type (coupling), allocatable, dimension(:) :: Couplings
integer, allocatable, dimension(:) :: dims
contains

subroutine main_routine goes here
runtime constant input routines go here
end module mesh_module

program big_mesh

use mesh_module

read(*,*) Num_steps, Num_Meshes
allocate(dims (Num_Meshes))
open(unit=8,file=’dist.large’)
read(8,*) Num_Proc_i, Num_Proc_j, Num_Proc_k
call read_meshes_3d()

call read_meshes_2d()

call read_meshes_1d()

call read_couplings()

call main_routine()

end program big_mesh

Figure 6.11 Transformed HPF module and main program.
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subroutine read_meshes_3d()
read(*,*) Num_3d_meshes
allocate(Meshes_3d(Num_3d_meshes))
do i = 1, Num_3d_meshes
read(*,*) Meshes_3d(i)%mesh_id, Meshes_3d(i)%size
dims (Meshes_3d(i)%id) = 3
read(8,*) Meshes_3d(i)%mesh_type
select case (Meshes_3d(i)’%mesh_type)
case (0)
read(8,*) Meshes_3d(i)¥%proc
case (1)
read(8,*) Meshes_3d(i)%dist_order
read(8,*) Meshes_3d(i)%decomp_size, Meshes_3d(i)%align_offset
end select
end do
end subroutine read_meshes_2d

Figure 6.12 Transformed HPF example input routine.

changed to pointers and that the pointers be generated as in the figure. This form
is necessary, as HPF does not allow distribution of elements of user defined data
structures. The routine to allocate all of the meshes in all of the user defined data
structures (allocate_all meshes) has a case structure added to select the correct
cloned allocation routine for mesh according to the distribution order read from the
input file (compare Figures 6.13 and 6.14).

In the calling routine (main_routine) the processor layout is added (compare
Figures 6.5 and 6.6 with Figures 6.15-6.18). The parameters to the update routines
are changed to match the changes in the called routines. Further, a case structure is
added which, based on the distribution type, selects the correct clone of the subroutine
to call. In Figures 6.17 and 6.18, the real variables between p and z in the parameter
lists are eliminated to save space.

Each routine to perform mesh updates (update mesh_3d) is cloned for each possi-
ble distribution type including all possible dimension alignment orders. Distribution
specifications are added to each clone, i.e., template, align, and distribute state-
ments. Where user defined structures with arrays were passed, the arrays must be
passed explicitly and all of their uses must be modified to explicit array use rather
than structure use. This is a result of the fact that HPF does not allow distribution of
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subroutine allocate_2d_ijk(Mesh_info)
type (mesh_2d) Mesh_info
IHPF$ template decomp(Mesh_info%dist_size(1),Mesh_info)dist_size(2),

|HPF$& Mesh_infoldist_size(3))

IHPF$ align all_array(i,j) with decomp(i+Mesh_infoY%align_offset(1),

IHPF$ j+Mesh_infol%align_offset(2),Mesh_infolalign_offset(3))

IHPF$ distribute(cyclic(Mesh_infoldist_size(1)/Num_Proc_i),

IHPF$& cyclic(Mesh_infoldist_size(2)/Num_Proc_j),

IHPF$& cyclic(Mesh_infoldist_size(3)/Num_Proc_k)) onto procs::decomp
real, pointer :: all_array(:,:)

allocate(all_array(Mesh_info%size(1),Mesh_infoYsize(2)))
Mesh_info%p => all_array
nullify(all_array)
C ... repeat allocation for q, u, v, zm, x, y, 2
end subroutine allocate_2d_ijk
C ... similar subroutines for other permutations

subroutine allocate_2d_small(Mesh_info)
type (mesh_2d) Mesh_info
IHPF$ template decomp(Num_Proc_i,Num_Proc_j,Num_Proc_k)
IHPF$ align all_array(i,j) with decomp(Mesh_infolproc(1),
IHPF$ Mesh_info¥%proc(2),Mesh_infoYproc(3))
IHPF$ distribute(cyclic(1),cyclic(1),cyclic(1)) onto procs::decomp
real, pointer :: all_array(:,:)
allocate(all_array(Mesh_info%size(1),Mesh_infoYsize(2)))
Mesh_info¥%p => all_array
nullify(all_array)
C ... repeat allocation for q, u, v, zm, x, y, 2
end subroutine allocate_2d_small
C ... similar sets of routines for 1- and 3-dimensional mesh allocation

Figure 6.13 Transformed HPF example
allocation routines for 2-d meshes.
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subroutine allocate_all_meshes()
do i = 1, Num_2d_meshes
select case (Meshes_2d(i)&mesh_type)

case (0)
call allocate_2d_small(Meshes_2d(i))
case (1)
select case (Meshes_2d(i)%dist_order)
case (123)
call allocate_2d_ijk(Meshes_2d(i))
case (213)
call allocate_2d_jik(Meshes_2d(i))
C ... similar for other cases

end select
end select
end do
C ... similar loops for 1- and 3-dimensional mesh allocation
end subroutine allocate_all_meshes

Figure 6.14 Transformed HPF example master allocation routine.

elements of user defined types. Further, parameters are added for distribution spec-
ifications. These distribution specification values are used in the HPF statements
and must therefore be constants at the subprogram entry. For an example of the
transformations to update routines, compare Figures 6.7 and 6.19.

Since the routine to read couplings is not modified in the translation process, it
is not shown again.

The transformation of coupling update routines is the same as that for mesh
update routines except that more clones are generated. This cloning explosion is
due to the number of possible combinations of mesh distributions that can be passed
as parameters. For an example of the transformations to coupling update routines,
compare Figure 6.9 with Figures and 6.20— 6.22.

This transformation procedure allows each clone to be optimized based on the
distribution information required by HPF compilers while allowing the user to ignore
such details as cloning and parameter expansion.

This section has shown how to transform the user program into a machine inde-
pendent form that is not dependent on the specific problem topology. The resulting
code reads in alignment and distribution specifications along with the user input.

Hence, when the input changes, the user only needs to run the distribution algorithm
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subroutine main_routine

IHPF$ Processors procs(Num_Proc_i,Num_Proc_j,Num_Proc_k)

call allocate_all_meshes

do i=1, Num_3d_meshes
select case (Meshes_3d(i)%)mesh_type)
case (0)

call initial_3d_small(Meshes_3d(i)%proc(1),Meshes_3d(i)%proc(2),
&Meshes_3d(i)%proc(3),Meshes_3d(i)%p,Meshes_3d(i)%q,Meshes_3d(i)%u,

&Meshes_3d(i)%v,Meshes_3d(i)%zm,Meshes_3d(i)%x,Meshes_3d(i)%y,
&Meshes_3d(i)%z,dthlf,dt)
case (1)
select case (Meshes_3d(i)%dist_order)
case (123)
call initial 3d_ijk(Meshes_3d(i)%decomp_size(1),
&Meshes_3d(i)%decomp_size(2),Meshes_3d(i)%decomp_size(3),
&Meshes_3d(i)%align_offset(1),Meshes_3d(i)%align_offset(2),
&Meshes_3d(i)%align_offset(3),Meshes_3d(i)%p,Meshes_3d(i)%q,
&Meshes_3d(i)%u,Meshes_3d(i)%v,Meshes_3d(i)%zm,Meshes_3d(i)%x,
&Meshes_3d(i)%y,Meshes_3d(i)%z,dthlf,dt)
similar case for each distribution order
end select
end select
end do
similar loop for 2d and 1d mesh initialization

Figure 6.15 Transformed HPF main routine example.
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C

subroutine main_routine continued
do i_step = 1, Num_steps
do i=1, Num_3d_meshes
select case (Meshes_3d(i)%)mesh_type)
case (0)
call update_mesh_3d_ijk(Meshes_3d(i)%proc(1),
&Meshes_3d(i)%proc(2),Meshes_3d(i)%proc(3),Meshes_3d(i)%p,
&Meshes_3d(i)%q,Meshes_3d(i)%u,Meshes_3d(i)%v,Meshes_3d(i)%zm,
&Meshes_3d(i)%x,Meshes_3d(1i)%y,Meshes_3d(i)%z,dthlf,dt)
case (1)
select case (Meshes_3d(i)%distribution_order)
case (123)
call update_mesh_3d_ijk(Meshes_3d(i)%decomp_size(1),
&Meshes_3d(i)%decomp_size(2),Meshes_3d(i)%decomp_size(3),
&Meshes_3d(i)%align_offset(1),Meshes_3d(i)%align_offset(2),
&Meshes_3d(i)%align_offset(3),Meshes_3d(i)%p,Meshes_3d(i)%q,
&Meshes_3d(i)%u,Meshes_3d(i)%v,Meshes_3d(i)%zm,Meshes_3d(i)%x,
&Meshes_3d(i)%y,Meshes_3d(i)%z,dthlf,dt)
similar case for each distribution order
end select
end select
end do
similar loop for 2d and 1d mesh updates

Figure 6.16 Transformed HPF main routine example continued.
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do i=1, Num_couplings
id_A = Couplings_3d(i)%id_A; id_B = Couplings_3d(i)%id_B
select case (dims(id_A))
case (1)
id_A=id_A-Num_3d_meshes-Num_2d_meshes
id_B=id_B-Num_3d_meshes-Num_2d_meshes
if ((Meshes_1d(id_A)%mesh_type==1).and.
(Meshes_1d(id_B)%mesh_type==1))then
if ((Meshes_1d(id_A)%dist_order.eq.123) .and.
& (Meshes_1d(id_B)%dist_order.eq.123)) then
call update_couplings_1d_1d_ijk_ijk(
&Meshes_1d(id_A)%decomp_size(1) ,Meshes_1d(id_A)%decomp_size(2),
&Meshes_1d(id_A)%decomp_size(1) ,Meshes_1d(id_A)%align_offset(1),
&Meshes_1d(id_A)%align_offset(2),Meshes_1d(id_A)%align_offset(3),
&Meshes_1d(id_A)%p, ... ,Meshes_1d(id_A)%z,Couplings(i)%lo_A(1),
&Couplings(i)%hi_A(1),Couplings(i)%lo_B(1),Couplings(i)%hi_B(1),
&Meshes_1d(id_B)Y%decomp_size(1) ,Meshes_1d(id_B)%decomp_size(2),
&Meshes_1d(id_B)%decomp_size(3),Meshes_1d(id_B)%align_offset(1),
&Meshes_1d(id_B)%align_offset(2),Meshes_1d(id_B)%align_offset(3),
&Meshes_1d(id_B)%p, ..,Meshes_1d(id_B)%z,dthlf,dt)
similar cases for other distribution order pairs
endif

Figure 6.17 Transformed HPF main routine example continued.
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elseif ((Meshes_1d(id_A)%mesh_type==1).and.
(Meshes_1d(id_B)%mesh_type==0))then
if (Meshes_1d(id_A)%dist_order.eq.123) then
call update_couplings_1d_1d_ijk_small(
&Meshes_1d(id_A)%decomp_size(1) ,Meshes_1d(id_A)%decomp_size(2),
&Meshes_1d(id_A)%decomp_size(3),Meshes_1d(id_A)%align_offset(1),
&Meshes_1d(id_A)%align_offset(2),Meshes_1d(id_A)%align_offset(3),
&Meshes_1d(id_A)%p, ... ,Meshes_1d(id_A)%z,Couplings(i)%lo_A(1),
&Couplings(i)%hi_A(1),Couplings(i)%lo_B(1),Couplings(i)¥%hi_B(1),
&Meshes_1d(id_B)%proc(1),Meshes_1d(id_B)%proc(2),Meshes_1d(id_B)%proc(3),
&Meshes_1d(id_B)%p,Meshes_1d(id_B)%z,dthlf,dt)
similar cases for other distribution orders for A
endif
elseif ((Meshes_1d(id_A)%mesh_type==0).and.
(Meshes_1d(id_B)%mesh_type==1))then
similar to above except that A and B are swapped
elseif ((Meshes_1d(id_A)%mesh_type==0).and.
(Meshes_1d(id_B)%mesh_type==0))then
call update_couplings_1d_1d_small_small(
&Meshes_1d(id_A)%proc(1),Meshes_1d(id_A)%proc(2),Meshes_1d(id_A4)%proc(3),
&Meshes_1d(id_A)%p, ... ,Meshes_1d(id_A)%z,Couplings(i)%lo_A(1),
&Couplings(i)%hi_A(1),Couplings(i)%lo_B(1),Couplings(i)%hi_B(1),
&Meshes_1d(id_B)Y%proc(1),Meshes_1d(id_B)Y%proc(2) ,Meshes_1d(id_B)%proc(3),
&Meshes_1d(id_B)%p, ... ,Meshes_1d4(id_B)%z,dthlf,dt)
endif
similar cases for 2- and 3-dimensional As except that there is
also a case for B’s dimension
end select
end do
end do
. print results, etc.
contains
all subroutines except input routines
end subroutine main_routine

Figure 6.18 Transformed HPF main routine example continued.
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subroutine update_mesh_3d_ijk(i_size,j_size,k_size,i_off,j_off,k_off,
& p,q,u,v,zm,x,y,z,dthlf,dt)
use physics
IHPF$ template decomp(i_size,j_size,k_size)
IHPF$ align (i,j,k) with *decomp(i+i_off,j+j_off,k+k_off)::p,q,u,v,zm,x,y,z
IHPF$ distribute (cyclic(i_size/Num_Proc_i),cyclic(j_size/Num_Proc_j),
IHPF$& cyclic(k_size/Num_Proc_k)) onto procs :: decomp
real p(:,:,:),u(:,:,:),v(:,:,:),9C,:, ) zmCe, 0,00 ,xCey 0, 0),yCe, 0,00 ,2(0,0,2)
real dthlf, dt

C ... updates for arrays associated with current mesh
end subroutine update_mesh_3d_ijk

Figure 6.19 Transformed HPF example compute routine for 3-d meshes.

to generate the new input alignment and distribution specifications. The code does
not have to be recompiled. Further, the explicit distribution specifications generated
in the transformation process allow the use of regular communication optimizations
such as communication blocking and parallelization.

This transformation procedure requires the same type of interprocedural analy-
sis that is used for Fortran D compilers for cloning and communication optimiza-
tion [HHKT92]. The only other requirements for these transformations is that the

program be written as described in Section 3.3.

6.3.3 HPF Compiler Support

Given the form of the program that is output by the precompiler, as described in the
previous section on HPF program transformation, the HPF compilation step is now
considered. Since HPF compilers are not required to do interprocedural analysis and
cloning for communication, the transformations were necessary in order to provide
complete alignment and distribution information to the HPF compiler in every sub-
routine with distributed data structures. Further, the transformations are sufficient
to generate a standard HPF program from a program written using the template and
style recommendations of Section 3.3. Since the end product of the transformation
procedure just described is a standard HPF program, there are no further compiler
enhancements necessary for correct code generation (for either a MIMD or SIMD ma-
chine). However, there are three areas where special attention in the compiler may

improve performance. Two of these concerns are related to the boundary data ex-
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subroutine update_couplings_3d2d_ijk_ijk(i_A_size,j_A_size,k_A_size,i_A_off,
& j_A_off , k_A_off,A p,A g,A u,A_v,A zZm,A x,A_y,A _z,i A lo,j_A _lo,k_A_lo,
& i_A_hi,j_A_hi,k_A_hi,i B_lo,j_B_lo,i_B_hi,j_B_hi,i B_size,j_B_size,
& k_B_size,i_B_off,j_B_off,k B_off,B_p,B_q,B_u,B_v,B_zm,B_x,B_y,B_z,dthlf,dt)
IHPF$ template decompA(i_A_size,j_A_size,k_A_size)

IHPF$ template decompB(i_B_size,j_B_size,k_B_size)
'HPF$ align (i,j,k) with *decompA(i+i_A_off,j+j_A_off,k+k_A_off)

IHPF$&

A p,A_q,A u,A v,A zZm,A x,A y,A =z

'HPF$ align (i,j) with *decompB(i+i_B_off,j+j_B_off,k_B_off)

|HPF$&

B_p,B_q,B_u,B_v,B_zm,B_x,B_y,B_z

IHPF$ distribute (cyclic(i_A_size/Num_Proc_i),cyclic(j_A_size/Num_Proc_j),
IHPF$& cyclic(k_A_size/Num_Proc_k))onto procs::decompAh

IHPF$ distribute (cyclic(i_B_size/Num_Proc_i),cyclic(j_B_size/Num_Proc_j),

IHPF$& cyclic(k_B_size/Num_Proc_k)) onto procs::decompB

real
real
real
real
real
real
real
real
real
real
real

A pCiy:,), A uCe, o, ), A v(e,:,:),A qC,:,0),A zm(e, 0, 0) A x(:,:,0)

A y(C:y:,:),A 2z(C:,:,:),B_p(:,:),B_u(:,:),B_v(:,:),B_q(:,:)
B_zm(:,:)B_x(:,:),B_y(:,:),B_z(:,:),dthlf,dt
p_tmp(Couple%hi_B(1)-Couple’lo_B(1)+1,Couple%hi_B(2)-Couple’lo_B(2)+1)
q_tmp(Couplelhi_B(1)-Couple¥%lo_B(1)+1,Couplelhi_B(2)-Couple%lo_B(2)+1)
u_tmp(Couple%hi_B(1)-Couple’lo_B(1)+1,Couple%hi_B(2)-Couple’lo_B(2)+1)
v_tmp(Couple¥hi_B(1)-Couple’lo_B(1)+1,Couple¥%hi_B(2)-Couple’lo_B(2)+1)
zm_tmp(Couplelhi_B(1)-Couple¥%lo_B(1)+1,Couplelhi_B(2)-Couple¥%lo_B(2)+1)
x_tmp(Couple¥hi_B(1)-Couplello_B(1)+1,Couple%hi_B(2)-Couple’lo_B(2)+1)
y_tmp(Couple¥hi_B(1)-Couple’lo_B(1)+1,Couple%hi_B(2)-Couple’lo_B(2)+1)
z_tmp(Couple¥hi_B(1)-Couple’lo_B(1)+1,Couple%hi_B(2)-Couple’lo_B(2)+1)

p_tmp(1:Couplelhi_B(1)-Couple¥lo_B(1)+1,1:Couple)hi_B(2)-Couple%lo_B(2)+1)

s

A p(i_A_lo:i A hi,j A lo:j_A_hi,k_A lo:k_A_hi)
ave all the temporaries

A q(i_A_lo:i_ A hi,j_ A lo:j_A hi,k A lo:k_A_hi) =
&A_q(i_A_lo:i_A hi,j_A lo:j_A_hi,k A_lo:k_A_hi) * frac
&+ B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) * (1.0-frac)

. update all of the ‘‘A’’ variables

B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) =
&B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) * frac + q_tmp * (1.0-frac)

. update all of the ‘‘B’’ variables

end subroutine update_couplings_3d2d_ijk_ijk

Figure 6.20 Transformed HPF example update
routine for 3d ijk to 2d ijk couplings.
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subroutine update_couplings_3d2d_ijk_small(i_A_size,j_A_size,k_A_size,i_A_off,
& Jj_A_off,k_ A off,A p,A_q,A u,A_v,A zZm,A_x,A y,A =z,i A _lo,j_A lo,k_A_lo,
& 1i_A_hi,j_A_hi,k A_hi,i B_lo,j_B_lo,i_B_hi,j_B_hi,i_B_proc,j_B_proc,
& k_B_proc,B_p,B_q,B_u,B_v,B_zm,B_x,B_y,B_z,dthlf,dt)
IHPF$ template decompA(i_A_size,j_A_size,k_A_size)
IHPF$ template decompB(Num_Proc_i,Num_Proc_j,Num_Proc_k)
'HPF$ align (i,j,k) with *decompA(i+i_A_off,j+j_A_off ,k+k_A_off)::A_p,A _q,A_u,
'HPF$& A v,A zm,A_x,A_y,A z
'HPF$ align (i,j) with *decompB(i_B_proc,j_B_proc,k_B_proc)::B_p,B_q,B_u,B_v,
'HPF$& B_zm,B_x,B_y,B_z
IHPF$ distribute (cyclic(i_A_size/Num_Proc_i),cyclic(j_A_size/Num_Proc_j),
|HPF$& cyclic(k_A_size/Num_Proc_k)) onto procs::decomph
IHPF$ distribute (cyclic(1),cyclic(1),cyclic(1)) onto procs::decompB
real A_p(:,:,:),A uC:,:,:),A_v(:,:,:),A_qC:,:,:) A zm(e, 0, ) A x(:, 0, )
real A_y(:,:,:),A_z(:,:,:),B_p(:,:),B_u(:,:),B_v(:,:),B_q(:,:)
real B_zm(:,:)B_x(:,:),B_y(:,:),B_z(:,:),dthlf,dt
real p_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couplello_B(2)+1)
real q_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couplello_B(2)+1)
real u_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couplello_B(2)+1)
real v_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couplello_B(2)+1)
real zm_tmp(Couple%hi_B(1)-Couple’lo_B(1)+1,Couple%hi_B(2)-Couple’lo_B(2)+1)
real x_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couplelhi_B(2)-Couple¥lo_B(2)+1)
real y_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couple¥lo_B(2)+1)
real z_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couple¥lo_B(2)+1)
p_tmp(1:Couplelhi_B(1)-Couple¥lo_B(1)+1,1:Couple}hi_B(2)-Couple%lo_B(2)+1)
& = A p(i_A_lo:i A hi,j_A lo:j_A hi,k A lo:k_A_hi)
C ... save all the temporaries
A q(i_A_lo:i A hi,j_ A lo:j_A hi,k A lo:k_A_hi) =
&A_q(i_A_lo:i_A hi,j_A lo:j_A_hi,k A_lo:k_A_hi) * frac
&+ B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) * (1.0-frac)
C ... update all of the ‘‘A’’ variables
B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) =
&B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) * frac + q_tmp * (1.0-frac)
C ... update all of the ‘‘B’’ variables
end subroutine update_couplings_3d2d_ijk_small

Figure 6.21 Transformed HPF example update
routine for 3d ijk to 2d small couplings.
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subroutine update_couplings_3d2d_small_small(i_A_proc,j_A_proc,k_A_proc,
& A p,A q,Au,A v,A zm,A x,A y,A z,i A lo,j_A_lo,k_A lo,i_A_ hi,
& j_A_hi,k_A_hi,i B_lo,j_B_lo,i_B_hi,j_B_hi,i_B_proc,j_B_proc,k_B_proc,
& B_p,B_q,B_u,B_v,B_zm,B_x,B_y,B_z,dthlf,dt)
IHPF$ template decomp(Num_Proc_i,Num_Proc_j,Num_Proc_k)
'HPF$ align (i,j,k) with *decomp(i_A_proc,j_A_proc,k_A_proc)::A_p,A_q,A _u,A_v,
'HPF$& A_zm,A_x,A_y,A_z
'HPF$ align (i,j) with *decomp(i_B_proc,j_B_proc,k_B_proc)::B_p,B_q,B_u,B_v,
'HPF$& B_zm,B_x,B_y,B_z
IHPF$ distribute (cyclic(1),cyclic(1),cyclic(1)) onto procs::decomp
real A_p(:,:,:),A u(:,:,:),A v(:,:,:),A_qC:,:,:),A zm(e, 0, ) A x(:,:0,2)
real A_y(:,:,:),A_z(:,:,:),B_p(:,:),B_u(:,:),B_v(:,:),B_q(:,:)
real B_zm(:,:)B_x(:,:),B_y(:,:),B_z(:,:),dthlf,dt

real p_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couplelhi_B(2)-Couple¥lo_B(2)+1)
real q_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couple¥lo_B(2)+1)
real u_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couplello_B(2)+1)
real v_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couple¥lo_B(2)+1)
real zm_tmp(Couple%hi_B(1)-Couple’lo_B(1)+1,Couple%hi_B(2)-Couple’lo_B(2)+1)
real x_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couple¥lo_B(2)+1)
real y_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couple’hi_B(2)-Couple¥lo_B(2)+1)
real z_tmp(Couple%hi_B(1)-Couplello_B(1)+1,Couplelhi_B(2)-Couple¥lo_B(2)+1)
p_tmp(1:Couplelhi_B(1)-Couple¥lo_B(1)+1,1:Couple}hi_B(2)-Couple%lo_B(2)+1)

& = A p(i_A_ lo:i A hi,j_A lo:j_A hi,k A lo:k_A_hi)
C ... save all the temporaries
A q(i_A_lo:i A hi,j_ A lo:j_A hi,k A lo:k_A_hi) =
&A_q(i_A_lo:i_A hi,j_A lo:j_A_hi,k A_lo:k_A_hi) * frac
&+ B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) * (1.0-frac)
C ... update all of the ‘‘A’’ variables
B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) =
&B_q(i_B_lo:i_B_hi,j_B_lo:j_B_hi) * frac + q_tmp * (1.0-frac)
C ... update all of the ‘‘B’’ variables
end subroutine update_couplings_3d2d_small_small

Figure 6.22 Transformed HPF example update
routine for 3d small to 2d small couplings.
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change associated with the coupling of the regular meshes. The third area is separate
compilation.

Boundary iterations are those iterations of loops that perform updates to the
boundary elements of a mesh. If these iterations are peeled from a loop, then the com-
munication associated with coupling can be moved outside of the loop. This implies
that there should not be as much time spent waiting to get values from other proces-
sors. This same approach is seen in hand parallelized material dynamics calculations.
Unfortunately, the recognition of this interaction crosses subroutine boundaries. The
compiler must recognize that the iterations for boundaries should be peeled in the
routine to update meshes and that the send portion of the coupling communication
updates should be lifted out of the coupling update routines and set down in the
mesh update routine. Another option would be a form of optimistic communication.
In this case, the coupling specifications can be used to insert communication for the
coupled elements every time they are updated and the reception of messages can be
verified in the coupling update routine.

The second boundary communication optimization does not require interprocedu-
ral analysis. The coupling specification may also be used as an explicit upper bound
on the necessary communication by compilers that can not determine more precise
communication bounds. This use of the coupling directive is analogous to the use
of the independent specification for loops in High Performance Fortran. Although it
is not an executable statement, it allows optimization that would be incorrect if the
specification is incorrect.

The third issue deals with efficiency in compilation. Due the the large number of
clones generated for coupling update routines, it is essential that separate compilation
is available. With separate compilation, when a routine is modified and recompiled,
the preprocessor must transform the edited routine, including generation of all the
necessary clones, and then the compiler must compile all of the clones. If the routines
are not separately compiled, then every routine that is passed a distributed mesh
would have to be transformed, including generation of all the necessary clones and
then the compiler would have to recompile the entire program with its multitude of
clones. At this point, it is clear why the transformations to the program should be
independent of the specific mesh specifications and distributions and why separate

compilation is necessary.

6.4 Algorithm Validation

Since there is not yet an HPF compiler that can correctly generate code for these

applications, measures of load balance and communication are presented in place of
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timing results. The measure of load balance that is presented is the total number of
floating point additions, multiplications, and divisions. The load balance measure is
compared for the processor with the most work (Comp,,,,) and the processor with the

least work (Compy,in). The following measures of communication will be presented:

o distance is the maximum distance between any pair of communicating proces-
sors;

e neighbors is the maximum number of processors communicated with for any
processor;

o Commy,qy, 1s the maximum amount of communication, in bytes, for any pro-
cessJor;

o Commy,qy, 1s the maximum communication, in bytes, between any pair of pro-
cessors; and

o Commyyq is the total communication, in bytes, for the simulation.

For each of these measures, I present the value obtained without use of the packing
algorithm, the value obtained with use of the packing algorithm and finally, where
appropriate, the percentage improvement. Note that to improve Comp,,;, it must be
increased. The entries labeled large and small refer to the results obtained when not
using the packing algorithm depending on whether the primary algorithm used was
the large mesh distribution algorithm or the topology-based small mesh distribution
algorithm, respectively. The entries labeled packed refer to the results obtained when
packing was applied. All entries present values for all meshes, therefore, the results
for the small mesh distribution algorithm will not be the same as those presented
in Chapter 5. One further note on the small mesh algorithm, when packing is not
in effect and the size of the mesh gets too big relative to the number of processors
being used, then the mesh is distributed over all processors as a large mesh. This can
make the speedup smaller as the coupling alignment algorithm shifts big meshes to
overlap. This does reduce communication, but it increases the percentage of the work
on some processors. In the tables of results, the selected processor configuration is
shown below the algorithm identification.

The speedup bound, Distg, is the speedup, with the data distribution supplied,

that would be achieved if there were no communication, i.e.,

Compaz for n processors

D‘istsb = .
Comppa: for one processor

The speedup bound is rounded to two decimal places. Disty;,,.. is the execution time

of the algorithm being used to solve the problem.
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6.4.1 Simulation of Material Flow in an Elbow with Vanes

This first data set provides a hint of one thing about the packing algorithm. Packing

can improve the speedup bounds. In fluid/aerodynamics simulations, the improve-

Number of Processors
1024 2048
large packed % large packed %

(16x16x4) | (16x16x4) | emp. || (32x16x4) | (32x32x2) | imp
distance 3 18 15 23
netghbors 8 9 9 14
Comminaz, 9,933 7,834 | 21.1 5,613 5,052 | 10.0
Commaz, 2,280 1,776 | 22.1 2,016 1,176 | 41.7
Commysa || 5,062,386 | 3,835,926 | 24.2 || 5,690,376 | 4,697,616 | 17.4
Compumin 0 0 0 0 0 0
Compuax 14,022 12,768 | 8.9 7,182 6,612 | 7.9
Dustg, 746.22 759.99 1456.91 1582.51
Distiime 0.399 0.142 0.034 3.1906
Figure 6.23 Validation results from flow through an elbow with 2 vanes.

ments are not as impressive as will be seen for the reactor simulations because there
are no small meshes to put in the holes that are left after packing. The speedup

bound, Distg,, improvement will be further illustrated with the other test problems.

6.4.2 Simulation of Aerodyanmics over Fuselage-Inlet-Nozzle of an F15e
Aircraft

In the case of the Fuselage-Inlet-Nozzle simulation of the F15e, there are too few
processors for the packing algorithm to come into practical use. In fact, the load
balance gets worse with the use of the packing algorithm until 2,048 processors are
used. This is due to the fact that five meshes have been packed. Those meshes could
not be evenly distributed individually. When they are packed into two larger ones, the
larger ones are less evenly distributed. For the larger mesh the number of elements
per processor on busy processors is greater than the sum of the elements assigned
from the smaller meshes.

The algorithm can be expensive. This applies in particular to higher dimensional
meshes with large sizes. This is the only situation where the size of a mesh changes

the execution time of one of the automatic distribution algorithms. This long and
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Number of Processors
256 512
large packed % large packed %
(32x4x2) | (32x4x2) | emp. || (32x8x2) | (32x8x2) | tmp.
distance 19 16 20 19
netghbors 25 26 29 34
Commuaz, 72,567 72,402 | 0.2 38,822 40370 | -4.0
Comm ez, 26,544 26,976 | -1.6 13,776 13,752 | 1.5
Commysg || 9,201,546 | 9,167,698 | 0.4 || 9,783,744 | 10,148,412 | -3.7
Compin 0 0 0 0 0 0
Comppaz 117,686 117,914 | -0.3 60,306 60,724 | -0.7
Daistg, 230.47 230.02 449.76 446.66
Distiime 0.08 1.88 0.102 4.39
Number of Processors
1024 2048
large packed % large packed %
(32x8x4) (32x8x4) | emp. || (32x32x2) | (64x8x4) | imp
distance 19 18 30 33
netghbors 21 19 31 24
Comm ez, 28,404 29,013 | -2.1 11,918 19,832 | -66.4
Commaz, 7,000 7,000 0 3,048 5,428 | -78.1
Commyeq || 14,118,076 | 14,370,702 | -1.8 || 11,771,085 | 20,103,130 | -82.1
Compoin 0 0 0 0 0
Compraz 30,856 31,160 | -1.0 16,758 15,694 6.3
Dastg, 879.02 870.45 1,618.52 1,728.25
Distiime 0.112 3.58 0.197 54.6
Figure 6.24 Validation results from F15e

Fuselage-Inlet-Nozzle aerodynamic simulation.
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size dependent runtime of the automatic distribution algorithm is due directly to the
difficulty of the problem being solved and the use of CPLEX to obtain a solution.

6.4.3 Simulation of Aerodyanmics over a Complete F15e Aircraft

From the runtimes presented for 32 to 256 processor runs, the execution time for
the packing algorithm is seen to be prohibitive on this problem for more processors.
Also notice that more processors need to be used before packing becomes effective
on this problem. This indicates that more algorithmic development is needed. If the
prepacking heuristic can be extended to significantly reduce the number of meshes
that are input to the local linear optimization procedure in cases such as this one
where the meshes are essentially all different odd sizes, then it would be reasonable

to apply this approach to these general aerodynamic simulation data sets.

6.4.4 3-d LOFT Reactor Model

This first reactor simulation data set indicates two important trends that will be
seen in the other three reactor simulation data sets. First, in the 128 processor case,
a 2-dimensional distribution is selected even though the reactor core is 3-dimensional.
This is because the packing of the meshes favors a 2-dimensional distribution for this
problem. There will be more significant illustrations of the performance implications
of this phenomenon shortly. Second, when this conflict is overcome, there is signif-
icant improvement in not only the speedup bound, Disty, but also communication

measures.

6.4.5 1-d LOFT Reactor Model

For 1-d LOFT, the packing algorithm packs into a 1-dimensional mesh. This is perfect
for improving the performance on this problem. Not only does the speedup bound,
Distg,, improve, but also the communication measures improve. This particular
problem illustrates the potential for these algorithms when the dimensionality of the
packing matches the dimensionality of the large meshes.

This particular data set also illustrates a problem that was mentioned earlier.
Since a greater percentage of the work gets shifted onto the same processors (as part
of the large mesh distribution algorithm), the speedup bound, Disty,, decreases as

more processors are added when packing is not used.
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Number of Processors
32 64
large packed % large packed %
(16x2) (16x2) | imp (16x4) (16x4) tmp
distance 9 9 10 10
netghbors 29 29 56 29
Comm ez, 376,244 | 372,834 0.9 293,874 293,768 | < 0.1
Comm ez, 135,192 136,800 | -1.2 77,640 76,992 0.8
Commysr || 5,991,572 | 5,939,256 0.9 || 9,353,564 | 9,330,136 | 64.4
Compuin 964,136 961,856 | < -.1 428,184 | 428,754 0.1
Compaz 1,589,578 | 1,594,138 | -0.3 811,642 814,264 | -0.3
Daistg, 30.36 30.27 59.45 59.26
Distiime 0.239 50.17 0.403 | 14,735.8
Number of Processors
128 256
large packed % large packed %
(16x4x2) (16x4x2) | emp. | (16x8x2) (32x4x2) | imp
distance 11 11 12 19
netghbors 83 83 119 91
Comm ez, 229,931 235,003 | -2.2 118,518 166,931 | -40.8
Comm ez, 46,128 46,128 0 25,752 45,264 | -75.8
Commye || 14,419,578 | 14,706,807 | -2.0 || 14,968,986 | 20,916,801 | -39.7
Compumin 214,054 210,596 | -1.6 65,664 50,046 | -31.2
Compraz 415,720 428,260 | -3.0 218,500 227,848 | -4.3
Dastg, 116.07 112.67 220.84 211.78
Distiime 0.39 18,276.6 0.367 34,018.3

Figure 6.25

Validation results from full F15e aerodynamic simulation.



Number of Processors

64 128

small packed % small packed %

(16x4) (16x4) | smp. || (16x4x2) | (32x4) | emp
distance 9 10 9 18
netghbors 9 23 14 34
Commuaz, 50,402 | 88,242 | -75.1 38,130 | 50,582 | -32.6
Commuaz, 12,622 | 25,050 | -100.7 12,722 | 12,534 1.5
Commysa 386,281 | 420,857 -9.0 273,106 | 343,925 | -25.9
Compoin 0| 87,514 0 0
Compaz 1,328,507 | 929,725 30.0 || 1,142,255 | 799,095 | 30.0
Distg, 22.79 32.57 26.51 37.89
Distyime 2.465 8.836 1.132 5.993

Number of Processors
256 512

small packed % small packed %

(16x4x4) | (64x4x1) | smp. || (32x4x4) | (64x4x2) | tmp
distance 8 33 17 30
netghbors 22 52 26 63
Commaz, 38,261 37,942 | 0.8 25,900 571 | 97.8
Commiaz, 12,774 12,518 | 2.0 12,834 56 | 99.6
Commysa 235,261 | 173,657 | 26.2 273,007 | 102,495 | 62.5
Compoin 0 0 0 0
Compyaz 1,074,133 | 668,465 | 34.3 || 1,099,137 | 432,205 | 60.7
Dastyg, 28.19 45.29 27.55 70.05
Distyime 1.113 6.167 3.319 13.262

Figure 6.26

Validation results for 3-D LOFT reactor model.
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Number of Processors

32 64
small | packed | % small | packed | %
(32) (32) | tmp. (64) (64) mp
distance 6 16 22 32
netghbors 16 15 12 30
Commynez, || 100,400 | 62,654 | 37.6 || 88,390 | 50,240 | 43.2
Commpaz, || 25,172 | 25,032 | -0.6 || 25,412 | 12,534 | 49.3
Commyeea || 542,745 | 551,955 | -1.7 || 325,691 | 393,921 | -20.9
Compin 12,502 | 50,008 | 75.0 0] 12,502
Comppar 268,154 | 155,636 | 57.7 || 430,680 | 248,762 | 42.2
Dastyg, 8.85 15.25 5.51 9.54
Distiime 0.499 0.084 0.381 0.093
Number of Processors
128 256
small | packed | % small | packed | %
(128) (128) | imp (256) (256) | imp
distance 22 62 13 124
netghbors 17 56 18 84
Commy,qz, || 38,630 | 37,870 2.0 1,416 452 | 68.1
Commy,ag, | 13,026 | 12,522 3.9 656 16 | 97.6
Commyeg || 157,261 | 196,351 | -24.9 || 179,244 | 56,540 | 68.5
Compin 0 0 0 0 0 0
Compuax 518,194 | 130,632 | 74.8 || 618,210 | 118,130 | 80.9
Daistyg, 4.58 18.17 3.84 20.10
Distiime 0.531 0.109 0.161 0.076

Figure 6.27

Validation results for 1-D LOFT reactor model.
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6.4.6 H.B. Robinson Reactor Model

Improving the speedup bound, Disty, does not necessarily produce improved
runtime. In the 16 processor case of the H.B.Robinson model simulation, the 156%
increase in total communication may cost more than the 22.5% improvement in load
balance yields. One way that this problem may be addressed is by improving the
small mesh distribution algorithm when medium meshes are present. This will be
discussed in Chapter 7.

The results for H.B.Robinson model are poor on 64 processors as packing of the
1-dimensional meshes favors a 1-dimensional distribution, but a 3-dimensional distri-
bution is favored for reactor core consideration. This suggests an extension to the

algorithm that will be discussed briefly in the future work section of Chapter 7.

6.4.7 Westinghouse AP600 Reactor Model

The results for the AP600 simulation are somewhat disappointing, but in hind-
sight understandable. The packing algorithm does a 2-dimensional packing if there
are no meshes to pack of higher dimensionality. For this reason, when 64 or 128
processors are used, there is a direct conflict between the processor layout that is
preferred for the reactor core and the one that is preferred for the large packed mesh.
Although the problem is present with the unpacked algorithm (as indicated by the
limited speedups), it is amplified by packing. To lessen this effect, the packing algo-
rithm should be extended to give substantial preference to 3-dimensional packings.
Actually, substantial preference should be given to n-dimensional packings where n
is the dimensionality of the highest dimensionality large mesh. If there are no large
meshes, then the easiest packing should be done.

Even without this extension, the use of the packing algorithm can improve the
speedup bound, Distg, by as much as 10 on this problem. As more processors are
applied, the packing algorithm should improve over the results for the non-packing
algorithm since it will pass the point where the 2-dimensional distribution becomes
more effective. Further, as more processors are applied to the problem, the packing

algorithm can take advantage of more wasted processors.

6.5 Chapter Summary

Distribution algorithms for all combinations of different sizes of meshes have now been
presented. The performance measures for the medium mesh results make a discussion
of the applicability of packing desirable. There are three factors that determine how

well the packing approach will work for medium size meshes. The first factor is
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Number of Processors
8 16

small packed % small packed %

(4x2) (4x2) mp. (8x2) (8x2) tmp
distance 3 3 5 D
netghbors 4 7 11 11
Commuaz, 276,088 | 1,157,791 | -319.4 363,962 773,400 | -112.5
Commuaz, 100,516 374,318 | -272.4 65,403 221,261 | -238.3
Commysa 741,358 | 2,966,240 | -300.1 || 1,058,385 | 2,709,363 | -156.0
Compin 3,825,812 | 3,827,094 | < 0.1 665,652 | 1,913,553 65.2
Compaz 3,836,791 | 3.838.073 | -0.03 || 2,484,558 | 1,926,055 22.5
Dustg 7.98 7.99 12.34 15.92
Distyime 4.689 0.129 3.061 0.383

Number of Processors
32 64

small packed % small packed %

(8x4) (8x4) imp. || (16x2x2) (32x2) | imp.
distance 6 9 7 17
netghbors 9 13 11 21
Commaz, 314,350 567,666 | -80.6 168,528 263,434 | -56.3
Commaz, 88,110 208,651 | -136.8 65,439 25,112 | 61.6
Commye || 1,327,335 | 2,510,668 | -89.2 || 1,385,777 | 1,631,238 | -17.7
Compin 262,542 908,812 71.1 0 112,518
Compmar 1,801,023 | 1,035,355 42.5 || 1,409,127 | 2,024,295 | -43.7
Dastg, 17.02 29.61 21.75 15.14
Distyyme 1.654 0.07 1.566 0.198

Figure 6.28 Validation results for H.B. Robinson reactor model.
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Number of Processors
32 64
small packed % small packed %
(8x4) (4x2x2) | imp (16x4) (16x4) | emp.
distance 6 6 10 10
netghbors 22 26 20 20
Commuez, | 2,697,672 | 2,567,018 4.8 || 1,184,538 | 1,373,460 | -15.9
Commuaz, 208,511 208,671 | < -0.1 522,648 535,166 | -2.4
Commysg || 10,638,084 | 9,977,937 6.8 || 8,067,823 | 7,982,898 1.1
Compumin 3,929,684 | 5,915,914 34.6 100,016 | 1,071,338 | 90.7
Comppaz 7,624,060 | 7,493,430 1.7 ]| 6,218,763 | 815,4690 | -31.1
Dastg, 25.69 26.15 31.51 24.03
Distyime 0.162 8,654.0 0.09 | 8,124.15
Number of Processors
128 256
small packed % small packed %
(16x8) (16x8) | imp. || (16x8x2) (32x8) | imp
distance 12 12 10 20
netghbors 18 20 30 82
Commynez, || 1,095,998 | 1,171,780 | -6.9 || 1,083,482 523714 | 51.7
Commiaz, 261,326 273,842 | 4.8 196,044 65,347 | 66.7
Commygq | 8,066,357 | 8,120,377 | -0.7 || 4,060,758 | 4,185,695 | -3.1
Compin 0 535,030 0 75,012
Compyaz 4,176,105 | 5,567,090 | -33.3 || 3,247,654 | 2,789,175 | 14.11
Dustg, 46.92 35.19 60.33 70.25
Distyime 0.056 | 18,332.6 0.521 | 4,463.35

Figure 6.29

Validation results for Westinghouse AP600 reactor model.



136

whether the meshes being packed are the same dimensionality as any large meshes in
the problem. If the medium size meshes have the same dimensionality as the large
meshes, then the packed mesh(es) will also. This implies that there will not be a
conflict between the dimensionalities of the preferred distributions for the meshes.

The second factor in determining the effectiveness of the packing approach is how
well the meshes pack. One measure of how well meshes pack is the number and size
of the holes left in the bin once it is packed. Packing performs particularly well when
subsets of the meshes to be packed are the same size in n — 1 (or n) dimensions. In
this case, the prepacking algorithm packs the subsets of meshes with no wasted space.
Thus, prepacking reduces the number of meshes to be packed and this in turn makes
packing take less time.

The final factor in determining the effectiveness of packing is whether there are
small meshes in the problem. In problems with small meshes, the small meshes are
used to fill up the holes left during packing of medium meshes. This factor can even
help to improve poor load balance that is due to the other two factors.

All of my autmatic distribution algorithms produce mappings that maintain the
regularity of communication involving a single mesh. All of the algorithms guarantee
nearest neighbor communication in the specified processor topology for communica-
tion involving a single mesh. Further, I have shown how a user program, with no
notion of data layout, can be transformed into a standard, machine specific, HPF

program with full distribution specifications.
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Chapter 7

Conclusion

This chapter reviews the contributions of the research presented in this dissertation,
describes future research that addresses the limitations of the results, and sums up

the research progress.

7.1 Contributions of the Dissertation

This dissertation has shown that topology is a key to efficient parallelization support
for partially regular applications. For linearized applications, this dissertation has

provided:

e an example of language extensions that supply sufficient information to the

compiler for deciphering linearized array and index array usage;

e compiler technology to support, via the language extensions, the natural topol-
ogy (multi-dimensional) data distribution of linearized arrays with regular ap-

plication optimization; and

e experimental results that illustrate the actual performance gains that can be

achieved via this linearized application support.
For composite grid application, this dissertation has provided:

e descriptions of a set of composite grid applications that may be used (with the
exception of the AP600 data, which is proprietary and therefore can not be
released) as a test suite for ICRM support;

e a template for HPF composite grid code development that, along with the style
guideline, specifies a form for applications to allow use of the transformation

and automatic distribution support;

e a transformation procedure that converts HPF composite grid applications, with
the proper form but no data layout specifications, into standard HPF programs
with fully specified data layout;
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e a final HPF form for composite grid programs that allows input of distribution
specifications in the program and all regular application optimization in the

HPF compiler;

e a set of distribution algorithms that determine how to map composite grid appli-

cations onto parallel architectures based on the problem and machine topology;

e experimental results that illustrate the applicability, potential, and limitations

of the automatic distribution algorithms.

Next, future research is described that addresses the limitation that these experiments

have revealed.

7.2 Future Research

The general observation that the data mappings automatically generated are com-
plicated to understand leads me to consider the development of a visualization tool.
One possibility for such a tool would be to create a “virtual” processor environment
that a user can explore with each room in the environment being a processor. Inside
of each room could be displayed graphical statistics about the computation and com-
munication associated with the processor. The couplings between computations on
the various processors could be represented as virtual doorways that lead to coupled
processors with statistics attached to each virtual doorway on the cost associated
with the “trip through the door”.

For problems like nuclear reactor simulation, the computational load is dynamic.
This implies that future research should include dynamic load balancing. To this end,
parallel versions of all of the distribution algorithms should be developed. In addition,
statistics on computation associated with meshes should be gathered to allow load
rebalancing according to the execution of the problem as it progresses.

My other plans for future research involve specific parts of the distribution algo-
rithms. For this reason, the remaining future research will be discussed in the context

of medium and small size meshes separately.

7.2.1 Future Medium Mesh Algorithm Research

Medium size meshes can occur in another form in applications such as water-cooled
nuclear reactor simulations, where meshes are often grouped into subsystems. For
example, there are eleven meshes (including heat structures) grouped together in
the the Passive Residual Heat Removal System in the AP600 [LB94]. For problems

with subsystem specifications, this grouping may be taken advantage of as an extra
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level of topological information. Subsystems are normally much more tightly coupled
internally than the coupling between the subsystems. In this case, each subsystem
might be considered as a single medium size mesh. Using this information, locality
may be improved by allocating a block of processors to each subsystem. The small
meshes in the subsystem could then be allocated to those processors using one of the
small mesh ICRM distribution algorithms. This might be implemented as a two level
packing problem. First meshes in a subsystem are packed into a single mesh. Then
the subsystem meshes are packed into large meshes, which can finally be distributed
over all processors.

One of the lessons learned in this research was that using the iterative local linear
optimization to solve the non-linear packing problem is expensive. Future work will
include exploration of heuristics for packing. The first step of one such heuristic is
to pack together any pair of n-dimensional meshes with n — 1 dimensions that are
the same size by stacking the other dimension. This first step in a general packing
heuristic was used to reduce the number of meshes packed in the optimization ap-
proach described in Chapter 6. Along with the development of heuristics for packing,
efficacy of the heuristics versus the optimization approach should be studied. This
might lead to insight that would allow for automatic selection of the most appropriate
version of packing algorithms according to the input.

There is a direct conflict between the processor layout that is preferred for the
3-dimensional large meshes and the one that is preferred for the large packed meshes
when the packed meshes are 1- or 2-dimensional. Although the problem is present
with the unpacked algorithm, it is amplified by packing. To lessen this effect, the
packing algorithm should be extended to give substantial preference to n-dimensional
packings where n is the minimum dimensionality of the large meshes. This obser-
vation would also apply to heuristic approaches. By packing into bins of the same
dimensionality as the large meshes, the only algorithmic factor in applicability of
packing is eliminated. It must be noted, however, that packing into a specific dimen-
sionality can effect how well the meshes pack. For example, two 1-dimensional meshes
of size 17 and 22 pack perfectly into a 1-dimensional bin. They do not, however, pack
perfectly into a 2-dimensional bin. This is the reason that a substantial preference
is given to packing into an n-dimensional bin, rather than making it a requirement.
With a fast heuristic packing approach, the tradeoff between better packing (less
wasted space) and better dimensionality (matching the n-dimensional meshes) could
be evaluated and the solution with the best predicted runtime could be chosen.

Although packing has some drawbacks, it is still the only way to parallelize these

applications for large numbers of processors (relative to mesh size) that generates a
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regular distribution. This makes compilation in HPF possible. This also allows the

program to be optimized using all of the regular application optimizations.

7.2.2 Future Small Mesh Algorithm Research

In some cases, load imbalance occurs when using the general small mesh mapping
algorithm because it saves meshes for mapping at the end when it can not find a good
placement quickly. This could be improved by keeping a minimum heap of processors
and placing the meshes on the least loaded processor when a good placement is not
found quickly. This would probably only be applied in the case when the mesh is
relatively large compared to other small meshes. Truly small meshes should still be
kept for load balance fillers.

As can be seen by the increase in communication for nuclear reactor problems,
when the packing algorithm is used, there is a need to extend the general small
mesh algorithm so it can be used to reduce coupling communication costs while
balancing the load after large (and packed medium) meshes are distributed. There
are straightforward and expensive ways to incorporate the coupling based distribution
with the load balance measures from large mesh distribution. More efficient ways

should be explored.

7.3 Final Remarks

Although there is still a great deal of research to be done in the area of efficient
parallelization support for composite grid problems, I have made significant progress
in moving from user-distributed irregular support to automatically-distributed regular

support and optimization.
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Appendix A

Modeling Parallel Computation

A.1 Introduction

Parallel computations that are composed of one or more irregularly coupled regular
meshes (ICRMs) are modeled. This model is used to determine whether a distribution
of an ICRM problem is a good one. Further, it was used to evaluate and improve
algorithms for finding distributions of [CRM problems.

A.2 Assumptions

Assumptions for the model are as follows. First, the simulation problem in the com-
putation must be static. The amount of computation is the same for each element
of each DECOMPOSITION. The computation does not have to be uniform across all
DECOMPOSITIONS, just internally for each individual DECOMPOSITION. It is further
assumed that all of the various operations can be grouped into at most three groups
with all components of each group having approximately the same runtime. Each
pair of “neighbors” in each dimension of a DECOMPOSITION performs the same set of
communications. This does not imply that the communication is the same in rows
and columns, but that the amount of communication in each row is the same as that
in every other row and similarly for the columns. Further, each pair of “neighbors” in
a given coupling between any fixed pair of DECOMPOSITIONs perform the same set of
communications. Index arrays will always be mapped the same way as the arrays they
are used to index if they are used to index intra-DECOMPOSITION variables. This does
not imply that communication will not be necessary for intra-DECOMPOSITION index
arrays. If index arrays are used to index inter-DECOMPOSITION variables, then they
may be mapped differently than the variables they index and some communication

may be required.

A.3 Notation

Given a set of coupled DECOMPOSITIONs, D = {Dq, Dy, ..., Dy} and a set of proces-
sors, P = { Py, Py, ..., Py}, the following notation is used in the model.
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For each DECOMPOSITION, D;, define the following quantities. The elements of
D; are ¢;; for 1 < j < |D;|. The number of computations performed for e;; is
add; + function; + divide; where add; is the number of computations in the fastest
operation group, function; is the number of computations in the medium speed
operation group, and divide; is the number of computations in the slowest operation
group. The number of memory cells needed for storing variables associated with
element e;; is |e;j|. The set of communications between neighbors e;; and e; in
D; is denoted comm;y, where d is the dimension for communication. The set of
communications between neighbors ¢;; in D; and ej; in D; is denoted commy;.

Next, define the following terms to simplify the modeling discussion. Two DECOM-
POSITIONs that are neighbors in the simulation are defined to be “coupled”. When
neighboring elements in coupled DECOMPOSITIONS are located on different processors,
communication will result. The set of elements for which communication is necessary

in such a mapping is defined as follows:
Coupling(D;, D;) = {(€ir, 1) | €eix € Di & €1 € Dj & ey, 15 coupled to e}

For each element of each DECOMPOSITION there is one processor, its owner, on which
it is permanently stored. The owner of an element performs all computations for that

element. The owner of an element ¢;; is defined by:
Map(ei;) = P = e;-js owner.

This is just following the owner-computes rule.

A.4 The Model
A.4.1 The Complete Model

The components being modeled are: communication, computation, indirection and
the inspector. In all of the components, the maximum over all processors is used
to get a worst case upper bound on the total time of execution. This will allow
comparison of different distributions of the same problem and selection of the better
one.

Communication represents the cost associated with a series of “gets”, in which
communication is grouped to reduce overhead where possible. Communication occurs
when sub-blocks of a DECOMPOSITION are mapped to different processors and when
coupled DECOMPOSITIONs (or coupled sub-blocks thereof) are mapped to different

Processors.



149

Computation represents the cost of performing all of the computations associated
with the elements of decompositions mapped to a given processor. This is simplified
to use only three types of computations with only three associated execution times.

Indirection represents the cost of extra communication associated with the use of
any index arrays.

Inspector represents the cost of running an inspector to determine what commu-
nication is necessary when compile-time techniques are not sufficient for such deter-
mination. When indirection is not used, the inspector should not be needed.

For the complete model, a simple sum of the component terms is sufficient:

Costaroger(Map) = Computation(Map) + Communication(Map)
+ Indirection(Map) + Inspector(Map).

A.4.2 Communication

Modeling of communication is based on the use of the “get” as opposed to the use of
send /receive pairs.

In order to effectively model communication, a two level approach is used. At the
bottom, fine granularity, the cost of individual communications is modeled. At the
top, large granularity, the cost of the set of communications imposed by a particular
distribution is modeled.

For communication modeling, the following definitions apply.

e Let hops be the distance, in number of steps, between the source and sink for

a communication.

o Let cost,cighpor be the cost for communicating between nearest-neighbor proces-

SOrs.

o Let hops,eperar be the maximum number of steps used in general communication

between any pair of processors.

o Let costpyse be the cost for communication of one byte between nearest-neighbor

processors. This is strictly greater than zero.
o Let bytes be the number of bytes being communicated.

o Let costsiartup constant b€ the startup constant that is associated with calling the

“get” command regaurdless of what is being gotten or where it is located.
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o Let constantiyqpsse, be the constant associated with buffering data on interme-
diate processors between the source and destination. This is used, for example,

to model the pipelining effect in communication.

All of the constants, including the number of steps between any two processors,
are a function of the parallel processor being used and are greater than or equal to

Z€ero.

Modeling single communications

A single communication on a given architecture may have a variety of costs associated
with it depending on the size of the value being communicated, the distance between
the processors that are the source and sink of the communication, and the startup
cost of communication.

First, the distance between the source and sink of the communication is:
H{(hops) = min(hops, hopseneral )-

On most architectures hopsgenerqr Will be the maximum distance between any pair
of processors. The exceptions to this rule are machines like the Thinking Machines
CM-2, which have separate networks for reducing this maximum communication dis-
tance.

The total cost for a single communication is modeled as:

CT(h0p37 bytes) = COStstartup constant T+ (H(hOPS) - 1) * COStneighbor
+bytes * costyyie + bytes ¥ H(hops) * constant pygering -

where the current mapping in effect, Map, determines the location of the source
and sink for communication. This is composed of the cost of the communication
instruction, the cost of setting up the route for wormhole routing, the cost of buffering
the message if necessary, and the cost of buffering in intermediate processors between

the source and sink.

Modeling for a Fixed Distribution of Decompositions

Once a set of DECOMPOSITIONs has been mapped to processors, the communication
requirements for the simulation are fixed. Each communication fits into one of two
categories: between two neighboring elements of a single DECOMPOSITION, which are
assigned in the distribution to different processors, or between coupled elements of two

neighboring DECOMPOSITIONs when the elements are assigned to different processors.
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These two categories correspond, respectively, to the two terms of the total simulation

communication model, which is a function of the mapping.

x

Communication(Map) = rr}ljaxz {Cr (#hops( Py, P,), #bytes (COMM,,))}
Py

with
COMM,, = Z comm;gq + Z COMMp,
(€ij,eir) (€ij,emn)
where
Map(ei;) = Pe,  Map(ei) = Py,  Map(en,) = Py,
and

(€ij, €mn) € Coupling(D;, D,,).

Here, #hops is the number of hops between the two processors involved in commu-
nication and #bytes is the number of bytes of communication. This assumes that all
communication across a boundary that is of the same type can and will be grouped
into a single vector communication. Such an assumption will give a slightly unfair
advantage to random distributions as the extra work to group communications for
random distributions will be ignored.

As an example, the communication timings on the Intel i860 resulted in the fol-

lowing approximate values for the timing variables.

Variable Timing
CostNeighbor 0.04
HopsGeneral 2
CostStartupConstant 0.04
ConstantBuffering 0.2
CostByte 0.00077

A.4.3 Computation

At the instruction level, computations are modeled as having one of three fixed costs;

so the model for computation is simple:

Computation(Map) = ]rjnewjg{ > Compi} .
m€ ei; | Map(ei;)=Pm

with

Comp; = add; * costyqq + function; * cost pynction + divide; * cost giyide-
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The number of computations that take approximately the same time as an addition is
add;. The definitions for function; and divide; are similar. This three cost component
approach is used as some processors, such as the Intel 1860, have groups of opera-
tions with three distinctly different costs. For example, on the i860, the following

approximate timings were measured:

Operation | Timing
multiply | 5.3e-04

add 7.4e-04
function 4.2e-03
divide 9.4e-02

Since adds and multiplies take the same order of magnitude of time, adds and mul-

tiplies are grouped, for this machine, and classified as “adds” in the model.

A.4.4 Indirection

Indirection is modeled as the cost of doing the “get” when the index array element
does not reside on the processor performing the operation. Hence, for X (/X (7)) the

cost of the indirection is:
Indirection(Map) = Cr(#hops(Map(I1X (1)), Map(X(1X(1)))), #bytes(IX(1)))

when Map(IX (1)) # Map(X(IX(1))).

A.4.5 Inspector

The inspector’s only variation in this model is when index arrays are used. Since this
component is handled above via the indirection cost, the inspector overhead is fairly

simple:

Inspector(Map) = max {constantmspectw * Z |lei;| * |[program| },
m ei; | Map(eij)=Pm
which is the size of the data on processor P, times the program size. This is actually
a rather large upper bound on the cost for using the inspector. If there are no index
arrays in the program, then communication can be analyzed at compile time and no

inspector is needed.
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A.5 Model Validation

A.5.1 Test Problem: 1-Dimensional Explicit Material Dynamics

1-dimensional explicit material dynamics provides an excellent test problem as I have
run this problem on a variety of machines with many different distributions. This
experience allows me to predict the relationships between the runtimes of various
distributions and verify that the model produces valid results. In this test problem
there are 32 “adds”, 3 “functions”, and 7 “divides” for each element in the mesh
on each timestep. There is no indirection and there are 56 bytes of communication

between neighbors on each timestep.

ol of of 2] 2| 2 3] 313 1] 1|1 o 21 3| §f 021 3[1]0 23] 1
load balanced with best block map load balanced with cyclic map
ofojo] 1f 1] 1|22 2| 3[3]3 oj0jo0jo0]21212|12|3(3 (1|1
load balanced with bad block map not load balanced with best block map

Figure A.1 Single Mesh Sample Distributions.

Single Decomposition Mapping

Here, the flow of fluid in a single section of pipe is simulated. This is arguably
the simplest type of problem for distribution as each element of the decomposition
has the same computation and communication pattern (with the exception of minor
variations at the boundaries or ends of the pipe).

In this first test case, the model is run on a single mesh with different distributions.
The variations on distribution that are modeled include: load balanced distribution
with best block map, load balanced with bad block map, load balanced with cyclic
map, and not load balanced with best block map. These types of distributions are



154

illustrated in Figure A.1 for a twelve element mesh mapped onto a four processor
(hypercube) machine. In the figure each element is numbered with the id of the
processor who owns it. A one hundred element problem was used with four processors

in the model evaluation. The predicted runtimes for the four different distributions

were:
Distribution Predicted Time

load balanced with best block map 17.52

load balanced with cyclic map 19.59

load balanced with bad block map 18.68

not load balanced with best block map 18.21

The ordering of the predicted runtimes is correct according to previous experiments
on the Intel (and other machines, such as the Denelcor HEP, the Floating Point
Systems Tesseract, the Cray XMP, the Alliant FX/8, and the Sequent Symmetry).

r21212)2|2]2[0f0f0f0|0]0 10 d 02223 3311
1

| |

1 1

1 1

1 1

1333|3331 1|1]1|1]1 L40]0 022 23 33111
split block map block map

r1 0100 0]2]2(23]3[3[1]1]1 -1 0 Q0 F q43[2(212 1 11

| |

1 1

1 1

1 1

L3 3[3[1[1{1[0]0]0]|2]2]2 —1 3| 3|3[0] 0[O 1] 1f 12|22
bad block map very bad block map

Figure A.2 Two Mesh Sample Distributions.




155

Multiple Decomposition Mapping

Here, the flow of fluid in two pipes, joined as a “Tee”, is simulated. This is similar to
the type of computation that occurs on a larger scale in the simulation of water-cooled
nuclear reactors.

In this second test case, the model is run on two coupled meshes with four dis-
tributions. The variations on distribution that are modeled include: split block map,
block map, bad block map, and very bad block map. These types of distributions are
illustrated in Figure A.2 for two twelve element meshes mapped onto a four processor
(hypercube) machine. In addition to numbering elements with the processor number,
coupling between meshes is shown via a dashed line. A one hundred element (per
mesh) problem was used with four processors in the model evaluation. The predicted

runtimes for the four different distributions were:

Distribution Predicted Time
split block map 34.77
block map 34.89
bad block map 35.30
very bad block map 37.46

In this test problem, there were 56 bytes of communication between nearest-
neighbors, but only 16 bytes across the coupling. When there are more communication
bytes across the coupling than between neighbors, the block map will outperform the
split block map.

A.6 Theorems

Next, theorems about distribution in this model of parallel computation and exten-
sions of the model are presented. These theorems provide direction for the design and
comparison of distribution algorithms. Unless otherwise stated, elements are to be
equally distributed across p > 0 processors with 1- to 3-dimensional decompositions

considered.

A.6.1 Standard Model Theorems

The basic setting for all of these theorems is physical simulation applications for static

problems unless otherwise stated.

Theorem A.1 Given two distributions with the same overheads due

to load balance, context switching, indirection, and the inspector, if one
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distribution has a random placement of decomposition elements and the
other has a neighborhood placement, e.g., based on a domain decompo-
sition, the topology-based distribution will provide better performance.
More precisely, for a large enough number of DECOMPOSITION elements
per processor, the worst case communication performance of a topology-
based distribution will be better than the expected communication per-

formance for a random distribution.

Intuitive Argument: In the target physical simulation applications, the commu-
nication necessary for each element is in it’s neighborhood. In the random distribu-
tion, no advantage is taken of this knowledge, every element is equally likely to be on
any processor. If instead, the neighborhood property is preserved as much as possible
on each processor, then there will be minimal communication across processors.

Proof: For 1-dimensional DECOMPOSITIONS, each interior element has 2 neigh-
bors. Let there be m DECOMPOSITION elements per processor.

With a random distribution, for each element the probability of needing to com-
municate to reference a neighbor value is 2 % %. Hence, for any processor, the
expected number of communications is 2 % m * %. For all processors, the expected
number of communications is 2 * m * (p — 1).

With a topology-based distribution, the worst case is for a processor storing an
interior section of the distribution. On such a processor, there are 2 elements that
must access 1 neighbor each on a different processor. Hence, the communication for
a 1-dimensional DECOMPOSITION distributed in this manner is 2 * (p — 1).

Therefore, for m > 1, the topology-based distribution has fewer communications
than expected with a random distribution.

For 2-dimensional DECOMPOSITIONS, each interior element has 8 neighbors. Let
there be m * n DECOMPOSITION elements per processor.

With a random distribution, for each element the probability of needing to commu-
nicate to reference a neighbor value is 8 % %. Hence, for any processor, the expected
number of communications is 8 * m * n * %. For all processors, the expected number
of communications is 8 x m *n * (p — 1).

With a topology-based distribution, the worst case is for a processor storing an
interior section of the distribution. On such a processor, there are 2 * (m + n) — 4
elements that must access 3 neighbors each on other processors and 4 elements that
access b elements on other processors for an upper bound of 6 * (m 4 n) + 8. Hence,
the number of communications for a 2-dimensional DECOMPOSITION distributed in
this manner is bounded by p * [6 * (m + n) + 8].
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Therefore, for m,n > 3, the topology-based distribution has fewer communications
than expected with a random distribution.

For 3-dimensional DECOMPOSITIONS, each interior element has 26 neighbors. Let
there be [ % m * n DECOMPOSITION elements per processor.

With a random distribution, for each element the probability of needing to com-
municate to reference a neighbor value is 26 pp%l. Hence, for any processor, the
expected number of communications is 26 * [ * m * n % %. For all processors, the
expected number of communications is 26 * [« m *n * (p — 1).

With a topology-based distribution, the worst case is for a processor storing an
interior section of the distribution. On such a processor, there are 2 * [([ — 2) * (m —
2)+({=2)%(n—2)4 (m —2)* (n — 2)] elements that must access 9 neighbors each
on other processors, 4 * [({ — 2) + (m — 2) + (n — 2)| elements that must access 15
neighbors each on other processors, and 8 elements that access 19 elements on other
processors for an upper bound of 18 % (Im + In +mn) — 12 % (I + m + n) + 8. Hence,
the number of communications for a 3-dimensional DECOMPOSITION distributed in
this manner is bounded by p* 18 x (Im + In 4+ mn) — 12x (I +m +n) + 8.

Therefore, for {,m,n > 3, the topology-based distribution has fewer communica-
tions than expected with a random distribution.

Throughout this proof, it was only required that p be greater than one, but as
p increases the gap between the number of communications for a topology-based

distribution and the expected number for a random distribution increases.

Theorem A.2 Given two distributions with the same overheads due
to load balance, communication, indirection, and the inspector, if one
distribution has a single block of elements from one decomposition and
the other has a number of blocks of elements from various decompositions
then the distribution with one block per processor will provide better

performance.

Proof: This is easy to see as no context switching is performed in the single block

case whereas it is necessary in the multiblock case.

Theorem A.3 Given two distributions with the same overheads due
to context switching, communication, indirection, and the inspector, the
distribution with the better load balance will outperform the other distri-
bution.

Proof: This is straigtforward as the runtime is based, in part, on the maximum
over all of the processors’ computational times, which increases with decreasing load

balance, by definition.
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Theorem A.4 Consider two distributions with the same overhead due
to context switching, load balance, indirection, and the inspector and the
same number of communications, with the same blocking capabilities. A
distribution with communication between close together processors will
outperform a distribution where communication takes place between dis-
tant processors (up to, but not past, the point where general communica-
tion takes over). This implies that maintaining the neighborhoods when

mapping blocks of decomposition elements to processors is important.

Proof: Let hy be strictly less than hopsgenerar — 1. Consider the communication
cost, Cr, for b bytes. For hq,

Cr(hy,b) = constant + hy * costeighbor + b * hy * constantyygering
while for hy; + 1,
Cr(hy + 1,b) = constant + (h1 + 1) * costpeighbor + b * (h1 + 1) * constant yygering,
or

Cr(h1+1,b) = constant + hy * costeighbor + b * hy * constant ygering

+coStpeighbor + b* constant yygering-

Hence,
Cr(h1,b) — Cp(hy + 1,b) = costrcighbor + b * constant yygering -

Since costyeighbor > 0 and b, constantygering > 0, this shows that, in this model, more

distant communication implies longer runtime.

A.6.2 Extended Model Theorems

Now, some problems are considered that require extension of the original modeling
assumptions.

Consider the case of dynamic physical simulation problems where the computa-
tional cost per element in a decomposition is not constant and may change over time.
If a static distribution is used, then perfect load balance will not be maintained over
time. Since the computation per element can change at each iteration of the simula-
tion, communication overhead may be required to achieve a reasonable load balance.
One approach is to break blocks into sub-blocks and map the sub-blocks onto the
processor mesh in a wrapped fashion, e.g., see Figure A.3.

Using this approach, the communication overhead is increased somewhat but the

load balance may be improved. This approach applies particularly well to those
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3 4 3 4
1 2 1 2
3 4 3 4

Figure A.3 Sub-block distribution mapping

applications where the difference in computation between elements can be large and
the expensive type of computation occurs in large clusters of elements. In this case,
the sub-blocks should be some fraction of the normal cluster size (maybe size 1/p,
where p is the number of processors).

When the expensive type of computation is spread randomly (not clustered) over
the elements, then you may as well optimize the communication and just balance the
number of elements per processor. This is because at any step each element is just as
likely as any other to doing an expensive computation. Therefore, it does not matter
how the elements are grouped in a static partition, each partitioning can be as bad
as any other. In addition, if the state changes (between inexpensive and expensive)

are unpredictable, this same argument implies dynamic partitioning is not beneficial.

A.7 Appendix Summary

A model of parallel computation has been presented that can be used in comparing
different distributions of meshes in ICRM problems.

Theorems have been proven about the model. These theorems were used in al-
gorithm development for ICRM distribution. In particular, distributing large meshes
over all processors, packing small meshes according to coupling, and using packing

for load balance in medium mesh problems are direct consequences of the theorems.



