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Abstract

This paper is about multidisciplinary (design) opti-
mization, or MDO, the coupling of two or more analy-
sis disciplines with numerical optimization. The “in-
dividual discipline feasible” (IDF) approaches intro-
duced here make use of existing specialized analysis
codes, and they introduce significant opportunities
for coarse-grained computational parallelism partic-
ularly well-suited to heterogeneous computing envi-
ronments.
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1 Introduction

Because of the complexity of most MDO problems, we
need to understand the formulations of MDO prob-
lems and their interdependence with optimization al-
gorithms. To this end we sketch here a set of tools
consisting of problem formulations and optimization
algorithms.

In part, the genesis of the ideas given here was
an attempt to find ways for nonlinear programming
methods to exploit both parallel computation and
decomposition methods for simulation. We decided
on problem reformulation as an approach to pursue
because the design of parallel algorithms for general
nonlinear programming (NLP) has not been success-
ful, and we hoped to mesh the simulation with the
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optimization in such a way as to lift into the opti-
mization routine the parallelism in the simulation.
We were able to do this, and we have extended these
ideas to MDO in joint work with Evin Cramer, Paul
Frank, and Greg Shubin of Boeing Computer Ser-
vices. A detailed version can be found in [9]. In
this paper we will present a sketch of that work to-
gether with a brief discussion of some optimization al-
gorithms likely to be useful for MDO. We recommend
Greg Shubin’s computational study [21] of these for-
mulations applied to a model problem in aircraft de-
sign.

The IDF formulation given in section 2 has a sim-
plicity of structure that allows easy incorporation of
existing disciplinary analysis codes without the need
for a multidisciplinary analysis procedure. However,
this is not the only motivation for this formulation.
From the point of view of nonlinear programming, the
IDF approach may prove to be a more efficient ap-
proach for solving MDO problems than conventional
approaches. This has certainly been our experience in
parameter estimation for ordinary differential equa-
tions (ODE).

Having formulated MDO as a large-scale con-
strained optimization problem, we can apply algo-
rithms developed in the past decade of research in
large-scale nonlinear programming. In Section 3, we
discuss some optimization algorithms we have devel-
oped at Rice because we believe that these trust-
region methods for constrained optimization are es-
pecially likely to be useful. For our purposes here,
the reader can think of trust-region methods as NLP
methods that adaptively set their own move limits as
the iteration proceeds. Thus, there must be a choice
only of the first move limits to try for the initial step,
and from that point on, the algorithm sets the move
limits.

There is certainly other applicable work on NLP
algorithms. The Stanford Optimization Laboratory
has produced the program NPSOL [20] which has



been used successfully in aerospace applications at
Boeing. It uses a more conventional line search ap-
proach.

In order to be computationally effective, optimiza-
tion algorithms must exploit the pronounced block
structure of MDO problems. Our large-scale opti-
mization algorithms are designed to do this. These
algorithms were developed in our work on parameter
estimation for systems governed by ODE and PDE
(partial differential equations) to solve problems that
are structurally very similar to MDO problems. In
that work, the “disciplines” corresponded to the sub-
domains produced by applying a domain decomposi-
tion method to the governing differential equations.
We are also very hopeful of the success of a nonlin-
ear multilevel approach being developed by Natalia
Alexandrov of ICASE [2, 3]. The decomposition of
MDO problems along the lines of the constituent dis-
ciplines also leads one to a natural coarse-grained
computational parallelism, a point worth noting but
one we will not discuss here in any detail.

A major obstacle to making MDO truly practical is
the need for sensitivities of the disciplinary analysis
codes with respect to the parameters controlled by
the optimizer. It was our interest in sensitivities for
use in nonlinear programming that we helped to start
the development of ADIFOR, an automatic differen-
tiation tool for Fortran programs, and we continue
to influence the work of the ADIFOR group. Specif-
ically, we are discussing with them tools to aid the
developer of analysis codes to produce sensitivities as
well.

2 Formulations of the MDO
problem

The importance of problem formulation is a ma-
jor topic in the engineering literature on MDO.
Sobieszczanski—Sobieski argued for its significance at
least as far back as 1982 [22]. The status of this re-
search area is well summarized in [1].

The observation that lies at the root of the formu-
lations we propose is that the disciplinary analyses of
MDO-—the simulations of the response of the physi-
cal system in the MDO problem to those parameters
we can control—constitute equality constraintsin the
optimization problem. Thus, we view the MDO prob-
lem as a nonlinear programming problem in which the
standard notion of MDO constraints, such as perfor-

mance goals or design parameter bounds, are dom-
inated by constraints from the disciplinary analyses
which are strongly partitioned into a relatively small
number of large blocks. These blocks represent the
contributions of the various disciplines to the model
of the entire system. Our view is that this block struc-
ture and the nature of the constraints representing
the interdisciplinary coupling must also figure in the
design of optimization algorithms for the solution of
the MDO problem.

We have identified three broad classes of formula-
tions of MDO problems:

e The multidisciplinary feasible (MDF) formula-
tion,

e The individual disciplinary feasible (IDF) formu-
lations, and

e The “all-at-once” (AAO) formulation.

Our major contribution is the large and flexible class
of individual discipline feasible (IDF) formulations of
MDO. One may view the IDF formulations as refor-
mulations of the system-level optimization problem
so that a nonhierarchical problem can be written as
a hierarchical problem. We accomplish this by intro-
ducing new optimization variables and new optimiza-
tion constraints. The key is not to introduce so many
new variables that the problem grows too large.

We will give an abbreviated presentation of our
taxonomy of the formulations of MDQO, using nota-
tion that differs slightly from that used in the ATAA
paper [8] or the more developed paper [9]. In the
latter paper, we give a complete framework for de-
scribing MDO problems. For purposes of the present
exposition, the example we will discuss in this sec-
tion will be an MDO problem with two disciplines.
For simplicity, we will ignore side constraints not as-
sociated with any particular discipline, such as con-
straints on the design variables z. However, extend-
ing the formulations given here to larger numbers of
disciplines or admitting design constraints in the orig-
inal MDO problem presents no difficulty. It is useful
to point out that whether or not the user chooses
to have the optimization algorithm maintain feasibil-
ity with respect to design constraints is not an issue
in any of these formulations. The formulations are
distinguished only by their treatment of the analysis
constraints with respect to the optimization variables
step computation.



2.1 The multidisciplinary feasible

(MDF) approach

The conventional formulation of our example MDO
problem is:

minimize f(z, y1(z), y2(x)),

where y1(z) and ya(z) are defined via the implicit
relations

e, v = {

hi(z, y1(z), yr2(y2(2))) 0
ha(z, y21(y1(2)), y2(2)) = 0.

(1)
The relations h; represent individual discipline anal-
yses, say, structural response and aerodynamics in
static aeroelasticity. The design variables are z and
might be spline coefficients describing the shape of
a wing. The dependent variable y; represents the
analysis outputs computed by the analysis h;. For
instance, y; might represent structural deflections or
stresses and y» might represent pressures computed
by the aerodynamics analysis.

The quantities y;; are very important to our ap-
proach; they represent the interdisciplinary transfer
of information. For instance, if h; represents struc-
tural response and ya () the pressure field, y12(y2(2))
might represent the pressures on the wing, a subset
of the information contained in the entire pressure
field. The amount of information passed between the
disciplines, i.e., the size of the y;;, we call the inter-
disciplinary bandwidth.

In the conventional approach to this problem, we
would treat the design variables z as the only truly
free variables. At each optimization iteration we
would choose x and then solve for the analysis out-
puts y(z) via the relation h(z,y(z)) = 0. We call
the solution of this coupled system of equations, for
a fixed xz, a multidisciplinary analysis, or MDA. An
MDA corresponds to computing a consistent multi-
disciplinary simulation.

We call the conventional approach the multi-
disciplinary feasible (MDF) approach. The opti-
mizer controls the design variables and any de-
sign constraints. At every optimization iteration
we determine the state variables of the coupled
aerodynamical-structural multidisciplinary analysis
by doing a full MDA each time a value is needed
for y. This approach treats the state variables y as
dependent on z via (1) and eliminates y as a vari-
able in the optimization problem. However, we must
compute sensitivities of y(2) with respect to z, and

these sensitivities must be computed at a full MDA
solution. The MDF approach has some attractive

features:

e MDF leads to the smallest optimization prob-
lems of the three formulations.

e Existing disciplinary solver codes can be used as
black boxes. We do not need explicit access to
the internal operation of the solver codes or to
residuals of the equations they solve.

e Each MDF iterate is a feasible design insofar
as 1t satisfies the coupled system of disciplinary
solvers, i.e., the MDA.

e It is a traditional approach well-understood by
users.

o MDF is the MDO version of the generalized re-
duced gradient (GRG) algorithm. For general
nonlinear programming, at least, GRG can be
effective if carefully implemented.

However, MDF has some significant disadvantages
which we believe make it impractical when the MDA
is expensive:

e Each function value in MDF requires a complete
multidisciplinary analysis.

e Computing sensitivities of the state variables

with respect to the design variables require full
MDA solutions.

o If we compute sensitivities by finite-differences,
we may encounter serious problems with the
computational cost and accuracy because of the
solution operators inside the multidisciplinary
analysis. These typically involve the solution of
PDE and can be very difficult to accurately dif-
ferentiate using finite-differences.

e The time it takes to solve the optimization prob-
lem via the MDF formulation is closely linked to
the efficiency with which we can solve the MDA.

Thus, in general this approach will be very costly
since at every value of xz considered for any rea-
son by the optimization iteration the MDF formu-
lation requires that we solve for the multidisciplin-
ary state vector y that simultaneously satisfies all of
the individual discipline analyses. We are required to
devote computational effort running the simulation
codes to perform a multidisciplinary analysis when
we would rather be making progress on the optimal
design problem. A variation on this straightforward



MDF approach that might reduce the computational
expense would be to mimic for MDO what has been
done in single discipline structural optimization by
using so-called approximation concepts [4] for each
analysis code. We plan to investigate such short-cuts
for the alternative problem formulations presented in
the following sections.

2.2 The All-at-once (AAQO) approach

If we treat feasibility of the multidisciplinary analy-
sis entirely as a constraint, then we obtain what we
call the all-at-once (AAO) formulation of the MDO

problem:

minimize  f(z, y1, y2)
subject to  hy(z, y1, y12(y2)) =0
h2('ra y21(y1): yZ) =0.

Now y; and y; are independent variables, and the re-
lations between them and z are viewed as equality
constraints. We no longer need to perform an MDA
to obtain y as a function of z. Sensitivities are also
much less expensive than in the MDF approach; we
do not need to compute derivatives of y(z) with re-
spect to z at a full MDA solution y(z). Instead, one
computes the partials of the residual h with respect
to z and y.

The sensitivities of f and h that must be computed
are the same in all three of the approaches. The big
difference between these sensitivity computations for
f and h in the three approaches is the value of y
at which these sensitivities are to be evaluated. In
MDF, y(x) is the result of a full MDA. In IDF, it is
the less expensive y; (&, y12) and ya(x, y21) with y;;
treated as independent variables. In AAQO, y is an
independent variable.

The AAO approach has been investigated in a num-
ber of engineering fields, for instance, aerodynamics
[15], structural optimization [19], where it is called
SAD or SAND, for simultaneous analysis and design,
and chemical engineering [24], where it is called the
open equations or nonlinear programming approach.
We have applied this approach to parameter estima-
tion for flow in porous media and for chemical kinetics
problems.

Why might it be a good idea to treat disciplinary
residuals as explicit equality constraints? After all,
in moving from the MDF formulation to the AAO
formulation we have greatly increased the number of
optimization variables and introduced a large num-
ber of equality constraints for the NLP algorithm to

manage. However, the reformulation of the MDO
problem as a larger constrained problem enables us to
obtain a solution more efficiently, because we do not
spend time computing a full multidisciplinary anal-
ysis at each optimization iteration to get (z, y(x))
such that h(z,y(z)) = 0 and additional multidisci-
plinary analyses if we are computing sensitivities via
finite-differences.

In fact, optimization algorithms that allow for it-
erates infeasible with respect to nonlinear constraints
generally are more efficient than algorithms that en-
force feasibility at every iteration. This is usu-
ally explained by saying that the additional degrees
of freedom may enable the optimization algorithm
to move much more quickly to a solution by cut-
ting “cross-country” toward optimality and feasibility
rather than following a feasible but winding path.

In the AAO formulation, if we allow infeasible op-
timization iterates, then the additional freedom we
gain by expanding the parameter space from z to
(z, y1, y2) should enable us to move more quickly
towards an optimal solution, but at the expense of
solving a larger nonlinear program.

In the AAO approach, treating the state relations
inside the analyses as constraints and allowing infea-
sibility with respect to these constraints amounts to a
relaxation of the amount of work required for a mul-
tidisciplinary analysis. The amount of work required
can be determined automatically by the optimization
algorithm during the progress of the optimization—a
detailed multidisciplinary analysis is forced only as
we approach optimality.

For our model problem, this would afford a com-
pletely rigorous way to use approximate CFD and
structural analyses at the beginning of the optimiza-
tion; the optimization would determine how accurate
a multidisciplinary analysis we would need. The opti-
mization algorithm would then guide the refinement
of the accuracy of the analyses as the optimization
progresses towards an optimal and feasible solution.
For the supporting theory, see [12]. The advantages
of the AAO formulation follow:

¢ AAO should be more efficient than MDF and
IDF, insofar as AAQO will generally require fewer
optimization iterations than MDF and IDF to
find a solution.

e AAO does not require even single discipline so-
lutions until optimality.

e The required sensitivities are relatively inexpen-



sive, since they need not be computed at even
single discipline solutions, as in IDF, much less
at full MDA solutions, as in MDF.

However, the AAO formulation is not without dis-
advantages:

o The AAO leads to a much larger optimization
problem than MDF or IDF. For discretized time-
varying problems, one would need to store the
state values for each point in each spatial grid
for each point in time.

e AAO will not easily incorporate analysis algo-
rithms that adaptively change the number of
state variables, such as adaptive grid methods,
since the state variables appear as optimization
variables.

e The optimization algorithm we use in an AAO
formulation must have explicit access to residu-
als treated by single discipline solvers.

e The optimization algorithm we use in an AAO
formulation must have built into it any special
methods used to achieve single discipline solu-
tions, since we have given the optimizer the task
of achieving individual disciplinary and multidis-
ciplinary feasibility—which is essentially equiv-
alent to computing an MDA as we converge to
optimality.

e Experience in aeronautical applications shows
that this approach can experience difficulty when
shocks are present. More generally, the optimiza-
tion algorithms applied to the AAO formulation
can experience difficulty converging to feasibility
if started far from feasibility [15].

2.3 The Individual Feasible (IDF) ap-
proach

The AAO approach shifts the difficulty of multidisci-
plinary feasibility from the level of the analysis codes
up to the level of the optimization algorithm. This
may be inconvenient if it requires extensive rearrange-
ment of the analysis software. Moreover, if one of the
analysis codes, aerodynamics, for instance, involves
highly specialized solution techniques, then the opti-
mization software may have difficulties achieving fea-
sibility unless these solution techniques are somehow
integrated into the optimization. The AAO approach
may also lead to a prohibitively large optimization
problem.

As a compromise between the MDF and AAO ap-
proaches we have devised a family of completely new
MDO formulations. We call these the individual dis-
cipline feasible (IDF) formulations. Conceptually and
practically, the IDF formulations span the gulf be-
tween the MDF and AAQO approaches. The IDF
approaches lead to equality constrained optimization
problems, so we can apply optimization methods that
allow infeasible iterates to solve the resulting opti-
mization problems more efficiently than the MDF for-
mulation. At the same time we avoid the size of the
optimization problem that results from the AAQO for-
mulation. Moreover, the IDF approaches allow us
to use existing analysis software, as in the MDF ap-
proach.

In the IDF formulations the analysis outputs cor-
responding to a given discipline are thought of as de-
pendent within that discipline’s analysis and as in-
dependent in the other analyses. For our example
problem, at each optimization iteration we have a
“correct” aerodynamic analysis and a “correct” struc-
tural analysis, except that these analyses use the op-
timizer’s current estimate of each discipline’s inputs,
rather than the one corresponding to the output of
the other discipline. A representative IDF formula-
tion is then

minimize  f(z, y1(x, 212), y2(z, 221))
subject to 12 — y12(ya(x, €21)) =0
Ta1 — yzl(yl(l‘, 1‘12)) =0,

where y1 (2, z12) and ya2(z, 221) are defined by solving
the individual discipline analyses

hi(z, y1(z,212), 212) = 0
ho(z, x21, y2(x,221)) = 0.

(2)

We have expanded the space of optimization variables
from z to (z, 12, #21), and expressed the coupling of
the individual disciplines in terms of explicit equality
constraints.

The IDF formulation has the attractive feature of
not requiring a multidisciplinary analysis solver, un-
like the MDF formulation. Instead, we only require
the individual discipline feasibility expressed in (2).
The IDF formulation yokes together the individual
discipline analyses at the level of the optimization
and does not demand that we assemble a separate
MDA solver, itself a significant undertaking. On the
other hand, if a multidisciplinary analysis solver is
available, we can use it in the subtasks of the opti-
mization algorithm.



Equally important is the observation that the IDF
approach leads to optimization problems with more
variables (but also more freedom for an infeasible iter-
ates optimization algorithm to exploit) than the MDF
formulation, but, in general, far fewer optimization
variables than the AAQO approach. For instance, in
our example, x19 plays the role of the pressures or
loads only on the wing, which can be described with
far fewer parameters than the entire pressure field ys,
which we would need to keep around in the AAO ap-
proach. We say that we have decomposed the prob-
lem at a low bandwidth interdisciplinary interface.

Additional IDF formulations are described in [9],
including the sequenced IDF formulations, which
were anticipated in the literature by equation (12) in
[18]. The more detailed presentation given in [9] dis-
cusses further how we might use the IDF approach to
obtain constrained MDO formulations that are much
smaller than in the AAO approach.

The common feature of all the IDF approaches is
that we maintain feasibility separately with respect
to the individual discipline analyses, and we use them
to provide an implicit relation to remove some state
variables from the optimization problem. Note that
not every optimization procedure that maintains fea-
sibility of the individual disciplines is an IDF proce-
dure. The key issue is whether the state variables
are eliminated from the optimization iteration, as in
the IDF and MDF formulations, or whether they are
set between optimization iterations by a restoration
step, as might be the case in a restoration algorithm
applied to an AAO formulation.

The IDF approach allows us to incorporate, at
the level of the optimization problem, certain types
of parallelism inside a single discipline analysis. If
the parallelism inside a discipline is implemented via
some sort of global consistency constraint, as is the
case for many domain decomposition methods for
partial differential equations, then we can extract
this consistency constraint and include it as a cou-
pling constraint in the formulation of the optimiza-
tion problem. This approach treats the domain de-
composition subproblems as individual analyses cou-
pled by an equality constraint. We have had success
with IDF formulations of ODE inverse problems, and
we are currently investigating this approach in our
work on parameter estimation for flow in porous me-
dia.

The following are among the advantages of the IDF
formulations:

e IDF allows the use of existing disciplinary
solvers, which can be run concurrently on
appropriate machines.

e The optimization problems resulting from the
IDF formulation are nearer in size to those of

the MDF than the AAO.

e Sensitivities are less expensive than those of the
MDF formulation.

There are also some relative disadvantages.

e We must compute sensitivities of the state vari-
ables produced by the single discipline solvers
with respect to the inputs to each discipline.
This makes the sensitivities more expensive than
those of the AAO formulation.

e Any special methods required to handle cross
disciplinary consistency must be built into the
optimizer.

Shubin [21] contains a useful practical discussion of
the issues involved in choosing a formulation for a
particular problem.

3 Optimization

A major thrust of our approach is our work on op-
timization tools and algorithms for MDO. The opti-
mization research that has been conducted at Rice
over the course of the past decade can make signifi-
cant contributions to MDO:

e Exploratory optimization tools for investigating
the design space while producing a nominal best
design.

e An approach to objective synthesis for resolving
competing objectives.

o Parallel direct search methods for derivative-free
optimization.

e Parallel large-scale nonlinear programming algo-

rithms that exploit the block structure of the
MDO formulations presented in Section 2.

e Techniques for addressing the problem of obtain-
ing sensitivities.

Space permits us to give little detail concerning these
topics. We recommend [14] for an informative study
on the use of optimization methods in MDO.
Exploratory optimization and objective synthesis
are interactive procedures involving the designer.



These procedures should prove very useful in the pre-
liminary stages of the MDO solution process. First
we need to decide what we want to design for—
the design objective we wish to optimize—and where
in the design space we should not look—the design
constraints. This first stage could be viewed as an
exploratory stage in which single discipline analysis
codes, possibly of less physical fidelity, are used in
conjunction with an optimization method to explore
the design space and at the same time to resolve mul-
tiple objectives into a single objective function.

Having produced a provisional single objective to
optimize and having identified the region of the de-
sign space in which we wish to look for a solution, we
can then pass to the use of analysis codes of high
physical fidelity (and greater computational cost)
possibly applied to more sophisticated designs involv-
ing more design variables, coupled with nonlinear
programming algorithms appropriate to the nature
of the optimization problem. In this second stage,
we optimize the design objective in the region of the
design space selected during the exploratory stage.
The designer can then return to the exploratory op-
timization phase, if desired, in order to investigate
the design space around the design produced.

The point of developing such a suite of optimiza-
tion tools is to provide designers with the power and
sophistication of state-of-the-art nonlinear program-
ming algorithms, but at the same to keep the designer
involved in the design optimization process. This is
motivated, frankly, by our suspicion of the notion
of “push-button” design, especially for problems as
complex as MDO.

3.1 NLP algorithms

While there are many computational optimization
approaches that present themselves as candidates to
solve MDO problems, the most promising involve us-
ing calculus-based quasi-Newton methods for numer-
ical optimization [14].

We will discuss several optimization algorithms
that we believe will prove effective in solving the dif-
ferent formulations of the MDO problem. The first of
these is parallel direct search, which is a parallel opti-
mization algorithm that has the attractive features of
not requiring derivatives and being robust and simple
to apply. It is most suitable for the MDF formula-
tion of MDO problems involving relatively few (< 50)
optimization variables.

For the IDF and AAOQO equality constrained formu-
lations of MDO in Section 2, we need more sophisti-
cated, derivative-based optimization methods. More-
over, if we are really to take advantage of the alterna-
tive AAO and IDF formulations of the MDO problem,
these optimization algorithms should allow optimiza-
tion iterates that may be infeasible with respect to
the nonlinear constraints. Some such algorithms are
of a class known as trust region methods, which are
based on local quadratic programming models that
incorporate both the objective and the constraints.

Trust region algorithms are robust, efficient, and
less dependent than line-search methods on accurate
information about derivatives and merit functions.
The reader familiar with the notion of move limits in
structural optimization methods can think of trust re-
gion methods as algorithms that adaptively set move
limits at each iteration by comparing actual versus
predicted reduction in a merit function, such as the
augmented Lagrangian.

We will discuss two related classes of trust region
algorithms for the equality constrained MDO formu-
lations. The first of these is a class of large-scale
constrained optimization algorithms that are descen-
dents of the Celis-Dennis-Tapia (CDT) algorithm [7].
The other class of trust region methods are general-
izations to optimization of the methods of Brown and
Brent for nonlinear equations.

Both the parallel direct search and CDT algorithms
have already proven their effectiveness in our work
on parameter estimation for ODE and for geophys-
ical systems governed by partial differential equa-
tions. The multilevel trust region generalizations of
the methods of Brown and Brent to optimization are
completely new, having been introduced in the thesis
[2]. They are motivated by the potential expense of
computing derivatives in MDO, and by the possible
convenience of being able to process each discipline,
or each block of cross disciplinary constraints, inde-
pendently in the optimization. For this reason we
have placed the discussion of these methods in Sec-
tion 3.2, where we discuss the issue of sensitivities in

MDO.

3.1.1 Parallel direct search methods

We can apply to the MDF formulation the parallel
direct search methods developed by Dennis and Tor-
czon [11]. Direct search methods are optimization
methods that neither require nor estimate deriva-
tives, so they avoid one of the major difficulties in



the MDF approach to MDO. Instead of trying to
compute gradients, direct search methods move to-
wards optimality by working directly with values of
the objective function.

While they are not as efficient as methods which
use derivatives, the direct search methods have at-
tractive qualities of their own, such as ease of use.
They are also robust in the presence of noise and well-
defined even when the objective function is neither
continuous nor differentiable. Moreover, when the
objective function is differentiable, the direct search
methods are supported by a convincing convergence
theory [26, 28], making them an attractive alternative
to more ad hoc methods such as genetic algorithms
or neural networks.

Dennis and Torczon [11] have developed direct
search methods specifically for parallel computers,
and the parallelism is of an uncommon type insofar
as in principle, there is no upper limit to the number
of processors that can be used effectively in the algo-
rithm. A code developed by Torczon [27] has solved
a variety of problem, including a velocity estimation
problem in oil exploration, a problem in tumor mod-
eling, and a parameter estimation problem in model-
ing hearing loss. Recently it was inserted as a crucial
component of a Boeing parts nesting code developed
by Eldersveld and Grandine [13, 17] to plan for min-
imizing waste while cutting aircraft parts from sheet
metal.

3.1.2 The CDT algorithm for large-scale
equality constrained optimization

We have implemented an algorithm that can han-
dle very large equality constrained optimization prob-
lems and successfully used it in the parallel solution of
parameter estimation for flow in porous media. These
flow in porous media problems are quite large, involv-
ing tens of thousands of design variables and equality
constraints. The code, developed by Michael Lewis,
solved the problem in MDF, IDF, and AAO formu-
lations.

The problem with allowing infeasible iterates in
constrained optimization is that one is pulled in two
different directions. On the one hand, we want to
achieve feasibility as we arrive at constrained opti-
mality. At the same time, attempting to optimize the
objective without proper consideration to the con-
straints will tend to draw us away from feasibility.

Our algorithm is based on the following idea of

Celis, Dennis, and Tapia for solving the equality con-

strained problem:
minimize  f(z)

subject to  h(z) = 0.

The CDT idea is to predict at each iteration a cer-
tain rigorously justified amount of improvement in
feasibility while optimizing a local quadratic model
of the Lagrangian function. The CDT algorithm ac-
complishes this by the approximate solution of the
following subproblem. If z. is our current estimate of
the optimal design, we obtain our optimization step
s by computing s that approximately solves

ge(s)
llsl] < ée

minimize

subject to

()

In this problem, g¢.(s) is a quadratic model of the La-
grangian and Vh? is the Jacobian of the constraints
at x.. The quantity 6, is the trust radius, which
serves to limit the size of the step we take and which
is updated at the end of each optimization iteration
based on the how well the model predicted the actual
behavior of the function and constraints. The quan-
tity 6. is chosen to ensure convergence to feasibility;
in theory we need only require a fraction of Cauchy
decrease on the sum of squares of the linearized con-
straints [10].

Having approximately solved this subproblem, we
apply an acceptance test to the new iterate. This
acceptance test currently uses the augmented La-
grangian as its merit function. The augmented La-
grangian combines the objective and the constraints
to measure progress towards the competing goals of
optimality and feasibility. The choice of the penalty
parameter in the augmented Lagrangian follows that
in [12]. In contrast to augmented Lagrangian meth-
ods, the penalty weight in the augmented Lagrangian
does not directly enter into the computation of the
optimization step. Instead, it only figures in the step
acceptance test.

Because we make an effort to improve feasibility
of the constraints at each iteration, the algorithm is
robust—barring some rare pathologies, it will con-
verge to a solution even when starting far from opti-
mality and feasibility. On the other hand, the algo-
rithm is designed so that we do not move too quickly
to feasibility. If we arrive at feasibility too quickly
then we can become mired while moving around the



feasible set. This can deprive us of the advantages of
infeasible iterates and the additional degrees of free-
dom we enjoy in the equality constrained formula-
tions of the MDO problem.

These algorithms can be implemented to take ad-
vantage of either sparse direct methods or precon-
ditioned conjugate direction methods in the solu-
tion of the linear systems and local minimization of
quadratic forms that arise in the optimization itera-
tion. This decision is of importance for the parallel
solution of large-scale optimization problems.

Solving the subtasks of the optimization iteration
by use of iterative methods such as conjugate gra-
dients is particularly efficient. This choice allows us
to use the ideas of Steithaug and Toint [23, 25] for
truncated conjugate direction iterations to reduce the
amount of work in an optimization iteration when we
are far from a solution.

Because we are using conjugate directions methods,
we only require the action of Jacobian and Hessian
matrices on vectors, and not the actual computation
and assembly of these matrices. This greatly reduces
the expense of the sensitivity information required.
Moreover, iterative methods for linear algebra reduce
the expense and increase the parallelism of the com-
putation. Finally, the structure of the IDF formula-
tions should assist in using various components from
the analysis codes to construct effective block precon-
ditioners for use in iterative solvers.

The major issue in large scale optimization is how
best to deal with inequality constraints. Any active
set method [16] is compatible with our CDT algo-
rithm, but no one has much experience with the use
of active set methods on problems as large as MDO.
We intend to investigate a simple active set method
recently proposed by John Dennis, as well as interior
point methods such as the classical barrier methods
and Polyak’s modified barrier methods.

3.2 The problem of sensitivities

Quasi-Newton optimization methods require that we
compute partial derivatives to form gradients and Ja-
cobians (or Jacobians and Hessians times vectors) to
use in the algorithm. The relations we must differ-
entiate may be very complex; consequently, this in-
formation about derivatives may be very difficult to
extract from the analyses since these derivatives will
involve the sensitivity of the analysis outputs with
respect to the design variables and other analysis in-

puts.

There are several approaches to the problem of
computing derivatives in MDO. One new and radi-
cally different approach involves multilevel optimiza-
tion algorithms. There is also the possibility of using
the current version of the ADIFOR automatic differ-
entiation tool. Another approach we plan to pursue is
to help extend ADIFOR to assist in semi-automatic
implicit differentiation.

3.3 Multilevel algorithms

The difficulty of obtaining derivatives and the block
structured analysis constraints in MDO motivate a
class of optimization methods, known as multilevel
algorithms, based on Brown-Brent methods for non-
linear equations. The multilevel algorithms can be
applied to all classes of MDO formulations.

Brown [6] suggested a nonlinear generalization of
Gaussian elimination for solving square systems of
nonlinear equations. Brown’s method is locally gq-
quadratically convergent, the same rapid rate of con-
vergence as Newton’s method, and its variant that
uses finite-difference derivatives can be implemented
to require the calculation of fewer—roughly half as
many—sensitivities than we would need to calculate
for Newton’s method. Brent [5] and other authors
have suggested different perspectives and variants,
but no one had previously globalized these methods.

The multilevel methods being developed at ICASE
and Rice, see [2, 3], can be viewed as globalizations
of the Brown-Brent methods for nonlinear equations
and their extension to constrained optimization. The
basic idea amounts to successive minimization of pro-
gressively smaller-dimensional (reduced) models of
the arbitrarily partitioned constraint blocks and fi-
nally the reduced model of the objective function.
The method avoids the cost of simultaneous sensitiv-
ity analyses. In addition, this approach enables us to
determine optimization steps while computing fewer
sensitivities than in Newton’s method.

Another important application for the multilevel
algorithmsis MDA. As mentioned previously and dis-
cussed in detail in [9], MDA, or the procedure of
bringing all the disciplines into equilibrium, can be
extremely expensive because of the need to execute
the analysis codes and to compute the associated sen-
sitivities repeatedly.

We believe that for a typical problem, finite-
difference sensitivities are most viable for AAO and



IDF formulations, and less viable for the MDF for-
mulation because of the difficulties associated with
computing accurate finite-differences of the MDA. In
any event, for any one of these formulations, finite-
difference sensitivities are, in general, the least desir-
able in terms of both cost and accuracy.

4 Widening the interest in

MDO

The modeling system we have developed with our col-
laborators at Boeing seems to be powerful enough to
represent MDO problems in a diverse set of fields. We
published a detailed version of that system in the op-
timization literature in order to reach out to the opti-
mization community. We plan to extend this work by
adding examples from chemical process control, en-
vironmental process control, nondestructive testing,
and aquifer characterization and showing how to use
our system to model those problems. We hope in this
way to help make MDO a powerful conceptual model
for computational engineering.
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