A Comparison of Nonlinear
Programming Approaches to an
Elliptic Inverse Problem and a

New Domain Decomposition

Approach

J.E. Dennis, Jr.
Robert Michael Lewsis

CRPC-TR94468
August 1994

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005



A COMPARISON OF NONLINEAR PROGRAMMING APPROACHES TO AN ELLIPTIC
INVERSE PROBLEM AND A NEW DOMAIN DECOMPOSITION APPROACH.

J. E. DENNIS, JR. * AND ROBERT MICHAEL LEWIS f

Abstract. We compare three nonlinear programming approaches to a well-known elliptic inverse problem in three spatial
dimensions. Two of these approaches may be viewed as conventional; the third approach is new and is based on a domain
decomposition technique for the solution of the governing elliptic equation. We discuss the benefits that may be obtained from
treating the governing differential equation in an inverse problem as equality constraints in the optimization problem. We
present numerical results and discuss the relative efficacy of the three approaches.
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1. Introduction

We will compare three nonlinear programming approaches to a well-known elliptic inverse problem in three
spatial dimensions. In the study of flow in porous media, this inverse problem is known as inverse conduc-
tivity, and involved estimating the coefficient of an elliptic operator. Two of the approaches we will discuss
may be viewed as conventional; the third approach is new and is based on a domain decomposition technique
for the solution of the governing boundary value problem (BVP). We will present numerical evidence that
indicates that in some cases, the new approach performs significantly better than the conventional methods.

We began this work to see whether we could integrate a domain decomposition method with a nonlinear
programming (NLP) algorithm in the formulation of the optimization problem in order to produce a more
efficient and robust method for the optimization problem, as well as to exploit computational parallelism.
The approach we have developed exploits computational parallelism in the solution of the BVP; moreover,
it is not simply a parallel implementation of an existing method. As we shall see, the domain decomposition
introduces additional constraints and variables into the optimization problem which we can exploit to our
advantage.

In order to understand the relationship between the three approaches we will discuss, we will begin with
the following abstraction of the situation. Most simply, the problem we are considering can be formulated
as a large-scale nonlinear programming problems of the following form:

minimize  f(z, y(z))

where # represents the variables modeling the coefficient of the differential operator and y(z) are the state
variables. The BVP which describes the behavior of the system is, abstractly, a relation

h(z, y(z)) =0

in which given the parameters x defining the coefficient, we can solve for the state variables y(z). For
purposes of exposition, we will ignore any additional constraints that might pertain to the problem, such as
a requirement that x define a coefficient with only positive values.

Ostensibly, then, the optimization problem is

minimize f(z,y(x)),
(1) where hgm, ZEJJ;; =0.

However, for reasons we will describe shortly, we choose to view the state equations as constituting equality
constraints for the optimization problem. We could thus formulate the preceding problem most generally as
minimize  f(z,y)

(2) subject to  h(z,y) =0 .

*Department of Computational and Applied Mathematics, Rice University, P. O. Box 1892, Houston, Texas, 77251-1892.

12709 Werlein St., Houston, Texas, 77005-3959. This work was supported by the State of Texas as part of the Geophysical
Parallel Computation Project, contract 1059.



This formulation makes apparent the abstract nature of the problem as an equality constrained NLP.

When we view the formulation given by (1) from the point of view of the equality constrained formu-
lation (2), we see that (1) enforces feasibility with respect to the equality constraints at every step of the
optimization. This it accomplishes via the solution of the state relations h(z, y(z)) = 0. This approach
to the optimization problem is an example of a reduced basis or generalized reduced gradient method [2,
9]. We call the approach described by (1) as the black-boz approach, since the solution operator for the
BVP may be treated as a black-box by the optimization algorithm. In [6, 7] we also call such a method a
multidisciplinary feasible (MDF) approach in the context of multidisciplinary design optimization; we will
use the term “black-box” and the acronym MDF interchangeably.

At the other extreme, we have (2), which we call the all-at-once (AAO) approach, since all the state
equations are treated explicitly as equality constraints. Why might such an approach be advantageous, since,
after all, it introduces a large number of constraints that must be handled by the NLP algorithm? The answer
lies in how we can take advantage of the additional degrees of freedom. There is an opinion that one hears
in nonlinear programming that if one has nonlinear equality constraints in an optimization problem, it is
generally inefficient to maintain feasibility with respect to these constraints at every step of an optimization
algorithm. The reasoning involves the interplay between the formulation of the optimization problem and
the algorithm one applies to solve it. In the formulation (2), we have expanded the optimization parameter
space to (z,y), while removing the the additional degrees of freedom at the solution via the constraints.
However, if we apply an NLP algorithm that does not demand feasibility with respect to the nonlinear
equality constraints at every iteration, we may be able to cut “cross-country” rather than being forced to
follow closely the surface defined by hA(z,y(z)) = 0, as in the black-box approach. We need insure only that
feasibility will be attained at the same time as constrained optimality.

Our new approach is a compromise between the extremes of the black-box and all-at-once methods, and
attempts to retain some of the beneficial features of both methods. In this approach, which we call the
“in-between” approach, we maintain feasibility with respect to some of the state constraints while allowing
infeasibility with respect to others. That is, we first partition the state variables into y = (yg, yr) and the
state constraints as

® ooy ={ e ve ) = 0

The subscripts £ and I denote ezplicit and implicit variables. This distinction is made because we assume
that the division of y is chosen so that given  and yg we can solve the relation

hi(z, ye, yr(z,ye)) =0,

for yr(x, yg). This allows us to eliminate the variables y; from the formulation of the optimization problem,
leading to the problem

minimize  f(z,ye, vi(z, yE))
(4) subject to  hg(x,ye,yi(x, yr) =0,
where hi(z,yr,yr(x,ye) = 0.

In this manner we can partially eliminate some of the state variables from the optimization problem, while
retaining some additional degrees of freedom. In the approach we will describe in this paper, this partial
elimination is accomplished by applying a domain decomposition method to the governing BVP. As we shall
see in Section 5, the in-between approach can perform significantly better than the other two formulations.

The distinction between explicit and implicit variables helps to explain the name “in-between.” In the
black-box method, the only independent variable in the optmization problem is z. This corresponds to the
choice yf = y. At the other extreme, in the all-at-once method all of the state variables y are independent
variables in the optimization problem, corresponding to the choice yg = y. The in-between method is meant
to be an intermediate division.

In Section 2 we describe the model problem, inverse conductivity. We present the black-box, all-at-once,
and in-between formulations for our model problem in Section 3. Sections 4 and 5 contain numerical results
and a discussion of the relative efficacy of the three approaches.



2. The model problem—inverse conductivity

We begin with a description of our model problem, inverse conductivity. In this problem we seek to estimate
the coefficient in the following three-dimensional second-order elliptic boundary-value problem. Let Q C R3
be a smoothly bounded domain, and consider the following BVP defined on :

(5) -V - (KVp)=4¢q onQ
p=g on 0.

The parameter estimation problem we will consider is the following: Given a subset S C Q and data

Pdata = P|s, estimate the coefficient K (z,y, z). In our computational experiments, we take S = Q.

This parameter estimation problem arises in a variety of applications. We are interested in its ap-
pearance in flow in porous media, where in two-dimensional flow K is called the transmissivity, and in
three-dimensional flow, the conductivity (see [18] for a good review of this problem). The associated parame-
ter estimation problem is known as either inverse transmissivity or inverse conductivity, as appropriate. The
BVP (5) describes static, incompressible flow in an aquifer; p represents pressure or hydraulic head. Other
boundary conditions are possible. For a further discussion of the significance of this BVP in flow in porous
media, see [4].

This problem is “ill-posed,” in the sense that K will not be well-determined by the data (see [1, 12], and
the references therein). This is in part a consequence of the smoothing properties of the inverses of elliptic
operators. In our investigation we will ignore this fact and the resulting need for regularization and simply
study the computational nature of the problem as an optimization problem. We formulate the problem of
estimating K as a nonlinear least-squares problem; for some choice of inner-product norm || - ||, we wish to
solve

2

minimize H p[K] ‘S — Pdata

We use decrease of this objective to measure progress of solution and ignore the under-determined nature of
the least-squares problem since we are interested primarily in the algorithmic efficiency of our approaches.

The computational problem is not quite as simple as it might appear from the preceding. In particular,
the actual problem that we solved is more nonlinear. This will become clear from the the details of the
problem as implemented.

We used cell-centered finite-differences to discretize the BVP. Cell-centered finite-differences correspond
to the lowest order mixed finite-element method with a simple quadrature rule [16]. The coefficient K is,
in general, a 3 x 3 tensor. In our implementation, K is a 3 x 3 diagonal tensor. The diagonal entries, in
turn, are obtained by harmonically averaging a scalar conductivity A(z,y, z) across cell-boundaries in the
finite-difference grid. The harmonic averaging of the coefficient captures homogenization effects that occur
when the coefficient is spatially varying. This local harmonic averaging introduces a significant nonlinearity
to the computational problem.

An additional source of nonlinearity results from the way in which we enforce nonnegativity of the
conductivity tensor. Rather than parameterize the scalar coefficient A, we parameterized log A and then
exponentiated. This insures that we always have a physically sensible conductivity satisfying A > 0, but
it does, although it did not actually occur, introduce the possibility of serious scaling problems in the
optimization.

We will denote by m(z, y, z) the actual model parameters in the computational problem, i.e., m = log A.
The model problem that we actually solve is, then,

(6) —V - (K[m]Vp)=¢q onQ
p=g on 0R.

The model parameters m are values of log A at each cell-center, rather than a coarser parameterization,

say, using constant values of log A on larger zones. This fine-scale parameterization leads to a large-scale

optimization problem, with as many model parameters are cells in the finite-difference grid. In the results

presented here, the number of variables in the optimization problem varied from 8192 to 17408, and the

number of equality constraints from 8192 to 9216.



3. The nonlinear programming approaches

We now will present the black-box, all-at-once, and in-between formulations of inverse conductivity.

3.1. The black-box approach: Generalized reduced gradients

As we mentioned in the Introduction, the black-box approach is an instance of generalized reduced gradients
(GRG) [2,9]. In the black-box approach, we enforce the relation between the state variable p and design
variable m in the NLP that exists through the BVP. That is, we treat p as p[m] by requiring p at every
iteration to be a solution of the BVP (6).

In the black-box approach, the formulation of inverse conductivity as a least-squares problem is

2

(7 minimize H p[m] ‘S — Pdata
where p = p[m] is computed by solving the global BVP

(8) -V - (K[m]Vp)=¢q onQ
p=g on 0.

This elimination of p by treating it as a function of m makes clear the nature of this approach as an example

of generalized reduced gradients. As mentioned in the Introduction, this corresponds to making all the state

variables y = p implicit variables y; in the optimization problem.

3.2. The all-at-once approach: The BVP as equality constraints

In the all-at-once formulation we treat the state equations in the BVP entirely as equality constraints in the
optimization problem. This approach has been investigated by many others in various fields under various
names. For instance, other all-at-once formulations for design optimization problems have been described in
the literature for aerodynamic optimization ([8, 14, 15, 17]), structural optimization ([11]), chemical process
control, and control and inverse problems ([3, 13]). In [17] this approach is called the “one-shot” method,
and in [11] it is called “simultaneous analysis and design.”

In this approach, the optimization problem is the fully constrained problem

2
minimize H p ‘ — Pdata
-V - (K[m]Vp)=4¢q onQ
p=g on 0%

In this case the independent variables in the optimization problem are (m, p). This time, the state variables
y = p are all treated as explicit variables yg

3.3. The in-between approach: A method based on domain decomposition

We will first describe the domain decomposition method for the solution of the BVP on which the in-between
approach is based. We will then explain how this domain decomposition approach for the solution of the
governing differential equation is integrated with the parameter estimation problem.

3.3.1. The domain decomposition method for the BVP

We based the in-between method on a non-overlapping decomposition method for the solution of the BVP
(5) devised by Glowinski and Wheeler [5, 10], The idea of this method is to subdivide the domain into smaller
subdomains, add additional boundary values at the subdomain interfaces introduced by the decomposition,
solve the resulting BVP on the subdomains, and then iteratively adjust the boundary values on the subdomain
interfaces until fluxes between the subdomains match. This matching condition is amounts to conservation
of mass; what flows out of one cell across a boundary is what flows into the cell on the other side of the
boundary.



To express this precisely, we will assume for simplicity that € is subdivided into only two subdomains
Q; and Q5. We then solve the following problem. Choose Dirichlet data @ for the boundary between ©; and
Q,, and solve, for each subdomain Qi, i =1, 2,

-V - (KVp;)=q on
9) pi=g on 0€; N 0N
pi=7 on 99; \ 09Q.

The game then becomes to choose 7 in such a way that the jump in the fluxes between Q; and Qs is zero;
on 01 N 085, we want

(10) [(KVp) -v]=(KVp1) va+ (KVps)-v1 =0,

where v; is the normal pointing outward on 9€Q;. This flux matching condition can be enforced by solving
an auxiliary linear system—a Schur complement, to be precise—that is symmetric and positive definite. In
our implementation of this approach we actually solve the extended domain decomposition system (9) and
(10) using conjugate gradients with a block SSOR preconditioner, with the blocks corresponding to (9) and
(10).

3.3.2. The in-between formulation

From an optimization perspective, enforcing the flux matching condition in the solution of the BVP represents
enforcing feasibility with respect to a constraint that expresses the consistency of the subdomain solutions.
As we previously mentioned, this is believed to be inefficient from the standpoint of nonlinear programming.
The idea of the in-between approach is to make explicit in the nonlinear programming formulation the
flux-matching constraint that is implicit to the domain decomposition method.

We make this implicit flux matching constraint explicit and add it as a constraint to the nonlinear
programming problem. Making the flux matching condition explicit in the NLP results in the following
constrained least-squares formulation:
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(11) minimize H p[m, ﬂ'] ‘S — Ddata
subject to [(KVp)-v] =0,

where p[m, 7] is given by the solving on each subdomain €; the BVP

-V - (K[m]Vp;) =¢q on &
(12) pi=g on 9Q; N OQ
pi=T7 on 0% \ 09.

We have expanded the parameter space in the optimization problem from m in (7) to (m,w). Since our
equality constrained optimization algorithm allows iterates to be infeasible, we hope to take advantage of
the additional degrees of freedom in order to make more rapid progress towards solution of this problem,
as opposed to the “black-box” formulation. On the other hand, the fact that we are solving the subdomain
BVP (12) leads to a non-trivial partial elimination of the state variables in the problem.

In the in-between approach, the state variables are y = (m, p). We divide y = (yg), yr) into the explicit
variables yg = m and the implicit variables yr = p. Note that the problem (11)-(12) depends on the domain
decomposition. Different decompositions lead to different problems, and sometimes, as we shall see in Section
5, radically different computational performance.

4. Numerical tests

In the experiments presented here, we varied the source term g¢(z,y,z), the target coefficient A(x,y,2),
and the starting guess. In the case of the in-between approach, we also varied the domain decomposition
between one that was 1x2x1 and one that was 1x1x2. The domain Q in all the experiments was the slab
[0,1] x [0, 1] x [0,0.25] in R3, with a 32x32x8 cell-centered finite-difference grid.

5



We also varied a parameter controlling the relative amounts of improvement in optimality and feasibility
in the model subproblem in the optimization algorithm. The algorithm proved very sensitive to the choice
of this parameter. We will discuss the effect of this parameter and techniques for choosing it adaptively
elsewhere.

The optimization algorithm was told to stop if

1. It arrived at a constrained stationary point.

2. If a minimum step length criterion was violated.

3. The algorithm found itself in a portion of its domain which caused numerical problems (e.g., problems
computing finite-difference Hessian-vector products).

4. The algorithm had taken 512 iterations.

The source term.

We chose among the following source terms ¢ for our experiments. The first was a point source and a point
sink, crudely representing an injection and an extraction well, given by

+taoagas i (z,y,2) = (0.125,0.125,0.125)
g(z,y,2) = —meagay i (2,9,2) = (0.875,0.825,0.125) |

0 otherwise

where Az, Ay, Az are the dimensions of the cells in the finite-difference discretization. We also used a
distributed source,

q(z,y,z) =sin 27z sindry sin 67z.

The target coeflicient.
The target coefficient was either an anisotropic conductivity,

1
1+0.99 cos2mx cos27my cos2mz’

A(z,y,2) =0.01 %

or a layered conductivity,

0.01 if0<2<0.05
0.05 if 0.05b < z<0.10
0.001 if0.10 < 2 <0.15
0.04 otherwise

Alz,y,z) =

The starting guess.

This was the most annoying of the parameters varied in the experiments, since the three algorithms are
actually solving three very different problems. For that reason, the points from which we started the three
different algorithms are simply not comparable. We elected to start all of the algorithms from A(z,y,z) =1
and A(z,y,z) = 0.01.

Note that in the black-box approach, the choice of A completely determines p. In the all-at-once
approach, on the other hand, p is an independent variable. We chose starting guesses of p = pgq1a—that is,
the unconstrained minimizer—and p = 0 as starting points. The choice p = pgqt4 served in part as a test
of our nonlinear programming algorithm’s ability to attain feasibility. However, it also affects the efficacy of
the method, as we will discuss in Section 5

Finally, we began the in-between approach with # = 0. Because we chose Dirichlet boundary conditions
g > 0, the Maximum Principle guaranteed that 7 = 0 was not close to either a feasible or optimal value.



5. Discussion of the results

We have plotted the norm of the least-squares residual and the norm of the constraints. Take care in
comparing the norm of the constraints between the various plots. For one thing, while the measures of
feasiblility are the same for the MDF and AAO approaches—the norm of the residual of the discretized
differential operator in the interior of {2—the constraints for the in-between approach are different; in the
in-between approach we introduce the jump in the fluxes across subdomain boundaries.

Also note that depending on the starting value of A, one sees a marked difference in the values of
|| A(z) || achieved in each run. This difference is about two orders of magnitude, which, not by chance, is
the difference in the starting values of A. What you are seeing is an artifact of the way in which we set the
feasibility tolerance. The feasibility tolerance is set as a fraction of the norm of the right-hand side of the of
the linear system corresponding to the discretized BVP evaluated at the start of the optimization iterations.
This quantity turns out to be a homogeneous function of degree one in A.

5.1. Point sources

Plots of the relative performance of the three approaches for the anisotropic target permeability appear in
Figures 1— 4 for two experiments involving point sources (and sinks) representing wells.

In the experiments with point sources and sinks, the in-between method shows a striking superiority over
the other two methods. In Figures 1 and 2 you can see that the performance of the in-between method with a
1x2x1 domain decomposition is comparable to that of the black-box method, while the all-at-once approach
performs better (Figure 4) However, in Figure 3 we see that the in-between method with a 1x1x2 domain
decomposition performs dramatically better than both the black-box and the AAQO approaches, both in terms
of the final residual and the rapidity with which the reduction is achieved (observe the different scale along
the z-axis). We believe this is in part related to the strong lateral flow between the injection and extraction
wells; this flow is concentrated in the upper portion of the slab Q, and this portion is entirely contained
in one of the two subdomains of the decomposition. The strong gradient in p helps better determine the
coefficient, while the freedom in the values of @ along the interface between the subdomains allows us to
avoid slowing down progress in optimality due to the need to have a globally consistent iterate.

Another feature worth noting, common to all the experiments, is the correlation of decrease in the
objective with the infeasibility of the iterates. In Figures 3 and 4, for instance, observe that we begin
with rapid improvement in the objective, but that improvement in the objective slows considerably once we
are feasible with respect to the equality constraints. The equality constrained optimization algorithm we
developed has the property that once it has obtained feasibility, it will become a reduced basis method like
the black-box approach.

This correlation of improvement in the objective and infeasibility supports the notion, mentioned in the
introduction, that algorithms which allows iterates which are infeasible with respect to equality constraints
can be much more efficient than those that do not. This result makes us hopeful that we can ultimately
obtain much better results from the equality constrained approaches by improving the algorithm’s control
over the relative amount of improvement in feasibility and optimality that are expected in each iteration.

In the tests for the layered target conductivity, the black-box method and the in-between method with
a 1x2x1 domain decomposition rapidly encountered numerical diffculties and terminated abnormally with a
dozen iterations. The in-between method with a 1x1x2 domain decomposition, on the other hand, proceeded
quite successfully, as seen in Figure 5. The all-at-once approach failed to achieve feasibility (though this
could be corrected by improved tuning of the optimization algorithm).

We should mention that we also tried an in-between formulation with a 1x2x2 domain decomposition;
the results were comparable to the case of a 1x1x2 decomposition and an example is plotted in Figure 3.
Experiments with larger grids and domain decompositions have produced comparable results for the three
methods.

5.2. Distributed source

There turned out to be a less dramatic difference in the performance of the three methods in our tests using
a weak distributed source. In Figures 6— 9 we have plotted the performance of the three methods for the
case of the anisotropic target conductivity.



The black-box approach and all-at-once methods proved better than either of the in-between methods.
However, both the equality constrained approaches exhibited the behavior noted previously—while the it-
erates were infeasible, the algorithm also made rapid improvement in the objective value. Again, we intend
to investigate whether we can improve the relative performance of the in-between by properly tuning the
improvement between feasibility and optimality required in the optimization algorithm.

6. Conclusion

These ideas are applicable to other optimization problems and other domain decomposition techniques. The
key is the observation that in a typical domain decomposition method, the region over which a PDE is
to be solved is divided into smaller regions, and the PDE is then solved on each of the smaller regions in
parallel. Some manner of correction is made and the subdomain solutions are continued until the solutions
on the collection of subdomains represents the solution on the original domain. The consistency condition
that one attempts to enforce can be lifted into the formulation of the optimization problem. We plan
further investigation and analysis of the relationship between domain decomposition and the efficacy of the
in-between approach for this and other problems.
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Fia. 4: The AAO approach, point sources and oscillatory target permeability.
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Fia. 5: The IDF approach, point sources and layered target permeability, 1x1x2 domain
decompositition.
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FiGa. 6: The MDF approach, distributed source and oscillatory target permeability.
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Fia. 7: The IDF approach, distributed source and oscillatory target permeability, 1x2x1
domain decompositition.
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Fia. 8: The IDF approach, distributed source and oscillatory target permeability, 1x1x2
domain decompositition.
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FiGg. 9: The AAO approach, distributed source and oscillatory target permeability.
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