A Stencil Compiler for the
Connection Machine Model CM-5

Ralph G. Brickner, Kathy Holian
Balajyt Thiagarajan, S. Lennart
Johnsson

CRPC-TR94457
June, 1994

Center for Research on Parallel Computation
Rice University

P.O. Box 1892

Houston, TX 77251-1892



A Stencil Compiler for the
Connection Machine Model CM-5

Ralph G. Brickner !, Kathy Holian, Balaji Thiagarajan?
Los Alamos National Laboratory

S. Lennart Johnsson?

Thinking Machines Corporation

Abstract

In this paper we present the design of a stencil compiler for the Connection
Machine system CM-5. The stencil compiler will optimize the data motion
between processing nodes, minimize the data motion within a node, and minimize
the data motion between registers and local memory in a node. The compiler will
natively support two—dimensional stencils, but stencils in three dimensions will be
automatically decomposed. Lower dimensional stencils are treated as degenerate
stencils. The compiler will be integrated as part of the CM Fortran programming
system. Much of the compiler code will be adapted from the CM—-2/200 stencil
compiler, which is part of CMSSL (the Connection Machine Scientific Software
Library) Release 3.1 for the CM~2/200, and the compiler will be available as part
of the Connection Machine Scientific Software Library (CMSSL) for the CM-5.

In this paper, we report on the implementation status of the stencil compiler.
In particular, we discuss optimization strategies and status of code conversion
from CM—-2/200 to CM—5 architecture, and report on the measured performance
of prototype target code which the compiler will generate.

1 Introduction

This paper discusses design goals, performance of prototype code, and implementation
status of a “stencil compiler” for the Connection Machine system CM-5. A “stencil”
for the purpose of this paper is a weighted sum of circularly shifted arrays. A specific
example expressed in the CM-Fortran language (CMF) [6] is

REAL, DIMENSION( NX, NY ) :: DST, SRC, Ci, C2, C3, C4, C5

DST = C1 * CSHIFT( SRC, DIM=1, SHIFT=-1) +

!Presenting Author. Address: C-3, MS-B265, LANL, Los Alamos, NM 87545. E-Mail:
rghb@lanl.gov. Phone: 505-667-8385 (voice), 505-665-5220 (FAX).

?Also with the Department of Computer Science, Syracuse University

3Also affiliated with the Division of Applied Sciences, Harvard University



& C2 * CSHIFT( SRC, DIM=1, SHIFT=+1) +
& C3 * SRC +
& C4 * CSHIFT( SRC, DIM=2, SHIFT=-1) +
& C5 * CSHIFT( SRC, DIM=2, SHIFT=+1)

which represents a second order accurate discretization of the Laplacian operator on
a regular grid in two dimensions. In the example, “DST” is the destination array,
“SRC” the source array, and “C1” through “C5” are the coefficient arrays; they are in
this example arrays, but they may be scalar variables also. Because there are shifts in
two dimensions of the source, this is a rank 2 stencil. In general, our stencil compiler
can have multiple sources arrays, and even multiple destination arrays. The number
of coefficient arrays are determined by the size of the stencil, i.e., the number of grid
points that are convolved. In practice, the stencil compiler in its first incarnation
will only handle a number of coefficients compatible with the number of registers in a
vector unit. If there are more coefficients than what can be handled in the register file,
then the compiler reverts to executing the CMF stencil subroutine compiled with the
standard CMF compiler.

Operations like the one above occur with great frequency in scientific computing. Any
simulation which solves partial differential equations by finite difference methods is
likely to incorporate stencil operations at an “inner loop” level. Image filtering and
compression may consist largely of stencils, and other examples abound.

It is therefore desirable to be able to execute stencil operations efficiently. Thinking
Machines Corporation developed an experimental “convolution compiler” for the CM—
2 that won the Gordon Bell Award in 1990 [2]. Expanding upon that work, a CM-
2/200 stencil production quality stencil compiler for the Connection Machine Scientific
Software Library was developed in collaboration between Thinking Machines Corp.
and Los Alamos Laboratory [1].

The next section discusses the principles of stencil optimization, suggesting areas for
improved performance compared to the standard CMF compiler. The following sec-
tions discuss the implementation of those optimizations in prototype codes for the
CM-5, and the delivered performance. The codes have been developed for automatic
generation by a compiler, envisioned as a pre—processor for the CM-5 CMF compiler.
The architecture of this proposed compiler is discussed, along with a comparison with
the existing stencil compiler for the CM-2/200 in the Connection Machine Scientific
Software Library (CMSSL). Finally, we discuss the implementation status of the CM—5
stencil compiler, and draw some conclusions.

2 Principles of Stencil Optimization

In CM Fortran, multiple array elements are assigned to each physical processor. Cur-
rently, the data distributions are always block distributions. The subgrid assigned to
each processor consists of consecutive array elements in each dimension. The proper



focus of our work is thus the calculation of an entire subgrid of stencil results, not a
single stencil element. There are three primary areas in which our compiler may gain
in performance over the CM Fortran compiler:

1. Full utilization of the interconnection network in doing multidimensional and
bidirectional communications required by most stencils

2. Elimination of memory—to—memory moves occurring as part of the CSHIFT com-
munications intrinsics used to implement stencils in CM Fortran

3. Optimal Floating Point Unit (FPU) register use in the computational part of the
stencil calculation.

The first point we leave up to the authors of the CM Fortran runtime system [8],
except for elimination of overhead due to multiple communications calls at the CM
Fortran level. The CSHIFT intrinsics in the CM Fortran expression for a stencil are
atomic processes, in that a call to CSHIFT requires that all data motion be finished
before the call returns, and the potential for optimization across multiple calls is thus
lost. Our solution to this problem in the stencil compiler is to call a single routine
which accomplishes the minimum required data motion between processors, by calling
a runtime communications function as discussed in a later section. This procedure
provides a high percentage of the potential communications bandwidth possible in
stencil communications.

The second area for performance improvement consists of eliminating the memory—
to-memory move component of the CSHIFT intrinsic function. CSHIFT, as currently
implemented, “knows” nothing about the use of the result array it produces. Therefore,
it is constrained to follow the definition of its functionality in the language specification,
which states that all the elements of the source array are shifted in the index space.
However, if the only use of the CSHIFT result is in the calculation of a stencil on an
FPU’s subgrid, we can more cleverly implement this shift functionality by leaving in
place all the array elements which would have moved only within the FPU’s memory,
and adjusting our memory address calculations for these elements accordingly. Because
stencils normally involve a significant number of CSHIFT calls, and because the memory—
to—memory move cost increases with the subgrid size, this can result in significant
savings in execution time for large subgrids and large stencils.

The third and final optimization we discuss in this section consists of reusing the stencil
source array elements once they are loaded into the FPU registers. For concreteness,
we consider the standard five-point stencil in two dimensions, as commonly encoun-
tered in discretizing the Laplace operator in two dimensions, and written out in the
introduction. As seen in Figure 1, we can combine multiple instances of the stencil
along one axis to obtain a multistencil. This axis will be referred to as the pipeline
axis, which we take for the sake of discussion to be axis 1. The number of stencils
combined along the pipeline axis is the multiwidth. The benefit of a multistencil is
that, for example, the rightmost point of the leftmost stencil requires loading exactly



the same source array element as the center point of the next stencil to the right.
For the multistencil of multiwidth eight, we need to load 26 source array elements,
compared to the naive count of 40 obtained from loading all the source array elements
for each stencil calculation. The greater the width of the stencil along the pipeline
axis, the greater is the savings in memory loads for a given multiwidth. Stencils may
also be combined along the other stencil axis of a five-point stencil to obtain further
gains in register reuse. We refer to this axis as the sweep axis. Register reuse through
combining stencils along the sweep axis is obtained by loading only the leading edge
of the multistencil as it sweeps through the source array along the sweep axis. For this
to work, we must store in the FPU registers as many rows of source data (along the
pipeline axis) as the stencil is wide along the sweep axis.

So far, we have discussed only two—dimensional stencils, implicitly embedded in two—
dimensional data arrays. In this case, the two axes over which we re-use data exhaust
the possibilities. However, for higher rank stencils, there is the possibility of optimizing
register usage over other dimensions. For example, in the three-dimensional analog of
the five-point stencil discussed above, we could load in multiple layers of data in the
third axis, just as we build a multistencil along the pipeline axis. In practice, this
approach is limited in usefulness by the number of FPU registers available for storing
the source data. Even if there are enough FPU registers to fit the extended stencil, it
is likely the vector length would be relatively short. This would restrict the efficiency
of the stencil calculation, since a vector length of eight is required for peak efficiency.
Because of these considerations, we choose to optimize our stencil calculations over
only two axes. We then loop the two—dimensional calculations through the remaining
axis of the three-dimensional data, and so on for higher rank data.

One significant complication in the implementation of the multistencil scheme is the
presence of wings as shown in Figure 1. The wing elements are, in general, not part
of the main source array subgrid, but instead may come from edge arrays obtained
from neighboring processors. Because they potentially belong to a different array than
the central part of the multistencil, they require their own address and stride registers.
Since in many processor architectures, the size of the register set is fairly limited, the
number of wings in a multistencil is one severely limiting factor on the size of the
stencils the compiler can accommodate. The solution to this problem in our proposed
design for the CM-5 stencil compiler is to allocate a “ghost source” array with the
same machine geometry as the user’s source array, but with “ghost cells” around the
boundary which are to be filled with data from physically neighboring processors.
This requires one extra memory copy (from the original source to the ghost source),
but greatly simplifies the code required to perform the arithmetic, and also eliminates
extra address and stride registers required for the wings, when the wings are in separate
edge arrays.

The optimization principles described above for the design of the CM—5 stencil compiler
are the same as for the CM-2/200 stencil compiler [1]. Therefore, much of the stencil
compiler algorithmic development port from the CM-2/200 to the CM-5.



3 Stencil Compiler Implementation Strategy

In this section, we describe the strategy for implementation of the stencil optimization
principles described in the preceding section.

An early yet crucial decision for the CM-5 stencil compiler was to provide a separate
source array, one for each of the input source arrays, with “ghost cells” on the boundary.
These extra ghost cells are to be filled in by data from off-processor grid positions.
(This type of array is known as an “overlap array” in the compiler community). The
ghost cells allow greatly simplified code generation, and reduce the number of registers
required for addresses and strides of the edge data.

Given the general approach of using ghost arrays for the stencil source data, the fol-
lowing major tasks must be accomplished in order to calculate a stencil:

1. Allocate ghost array memory.

2. Fill the ghost arrays from the appropriate source arrays (on—processor data mo-
tion).

3. Retrieve the edge data into the ghost cells on the boundary of the ghost arrays.
4. Loop over subgrid axes.

5. Calculate the arithmetic operations involved in the stencil.

6. Store the result.

7. Cleanup.

Each ghost array must have the same distributed (physical) geometry as the corre-
sponding source arrays and destination arrays passed into the stencil subroutine. Fach
ghost array must also have the same subgrid shape, but with extra ghost cells around
the edges, of width equal to the stencil width in that direction. To simplify all the
following operations, it is also desirable to convert the two—dimensional (for example)
geometry of the input and output arrays into a four—dimensional geometry, such that
the first two axes are purely on—processor (subgrids), and the second two are purely
physical (off-processor). This is accomplished by means of the CMF alias package,
which provides a comprehensive set of routines to recast a given array geometry into
another array geometry, without moving any of the array data. A side effect of the
construction of these aliases is that we obtain all the information we need to construct
the ghost array. Because the physical part of the geometry requires one element per
physical processor, the optimized stencil code we are developing requires compilation
with the CMF “-nopad” switch [7]. All the array aliasing is done in CMF code, in the
subroutine which the user calls. The ghost array memory is allocated with CMF code,
called from this same top-level stencil routine. This setup code is called only once for
a given set of actual input arguments, to reduce overhead.



Once we have set up and allocated ghost arrays, we need to fill their interior with the
data from the source arrays. Because of the ghost cells along the boundary, the interior
data for a ghost are not contiguous (although they are contiguous in the source array).
Therefore, a simple block copy of the entire array cannot be done. We have explored
three methods for carrying out this copy of data: CMF code, custom CDPEAC code [5],
and calls to the runtime system routine “CMCOM_array_section_transfer” [8]. Based
upon timing studies, we have chosen the CDPEAC for this phase of the target code.
We anticipate a small library of pre—written routines which can be called for various
stencil /array geometries, each of which contains a small amount of interface code, and
encapsulates a call to a CDPEAC kernel. The compiler will then generate a call to
the appropriate interface routine, with the proper parameters for the user arrays as
determined at runtime. The CDPEAC routine does all looping over the subgrid axes.

The next step is to perform the physical communications required to move data be-
tween physical processors. “Corners”, when required, are moved with the “column”
edges after the “row” edges have been filled in. We have explored two methods for
carrying out this move of data: CMF code, and calls to the run-time system routine
“CMCOM _physical rotate” [8]. Based upon timing studies and ease of implementa-
tion, we have chosen the CMCOM routine for this phase of the target code. As for
the interior fill phase, we anticipate a small library of pre-written routines which can
be called for various stencil/array geometries, each of which contains a small amount
of interface code, and encapsulates a call to “CMCOM _physical _rotate”. The compiler
will then generate a call to the appropriate interface routine, with the proper param-
eters for the user arrays as determined at run—time. The CMCOM routine does all
looping over the subgrid axes.

Looping over the two array axes selected for register reuse optimization is done by the
arithmetic portion of the stencil code, as described below. However, we must also loop
over the other axes of the user arrays, in the case that those arrays are of higher rank
than two. This looping structure is to be done by “C” code generated at (stencil)
compile time, since we know at that time the ranks of the stencil and the user arrays.

The arithmetic calculations in our prototype code are carried out in CDPEAC [5], a C—
like programming language which allows both C constructs for control and scalar data,
and direct specification of vector instructions for the FPUs. The CDPEAC code does
all looping over the pipeline and sweep axes; it also chooses the maximum multistencil
(vector length) possible for the remaining extent along the pipeline axis, for every
swath along the sweep axis through the user arrays. For each swath, a number of
“groups” of instructions are required, corresponding to the width of the stencil along
the sweep axis. These groups are required in order to cycle the loaded source data
through the registers, reusing the data in each of several steps along the sweep axis.
For our canonical five-point example, there are three groups, with a given vector of
data participating first as the top row (vector) of points, then the middle row, then the
bottom row. The following step along the sweep axis frees up those registers, and the
new leading edge of data are loaded into them. There is initialization code before each
swath along the sweep axis, to load in the initial rows of source data. And there is



additional code at the termination of the sweep axis loop to account for array extents
along that axis which are not a multiple of the number of groups. When the sweep—
axis loop is executing, the code performs the following steps: 1) load the leading edge
of source data into the current FPU registers corresponding to the “top” row of the
multistencil; 2) load a vector of coefficients for the first term in the stencil; chain these
data into the initial product; 3) load a vector of coefficients for the second term of the
stencil; chain these data into the second product, add the result of the previous product
(a single vector “mult—add” instruction); 4) continue until all terms are calculated; 5)
store the result.

The store of results is straightforward for double precision results. However, for single
precision results, there is a performance penalty on the CM-5 architecture. This can
sometimes be alleviated if the results to be stored correspond to single precision words
which are contiguous in memory. Because a stencil may span any three dimensions
of any allowable CMF array, there is, in general, no guarantee that the optimization
strategies described above will result in the calculation of contiguous single precision
words. Therefore, we intend to investigate alternative vectorization strategies which
would allow us to calculate contiguous single precision results, and store them as a
single vector.

Because the stencil compiler generates code to allocate CM memory for the ghost
arrays, we anticipate providing a mechanism to deallocate that memory when it is no
longer needed. Alternatively, if future timing studies indicate the performance penalty
is acceptable, we might deallocate the ghost array memory upon exit of the stencil
code.

4 Measured Performance for Stencil Components
and Prototypes

The specific implementation strategies discussed above were the result of testing various
approaches to the different components of the prototype stencil code. In the following
sections, we present some of the results of those tests for components of five- and nine-
point stencils in two—dimensions (the nine—point stencil is the relative of the five—point
stencil displayed in the introduction, but with four “corners” added). All tests were run
on CM-5 systems at Thinking Machines Corporation during March—April of 1994, with
the floor CM Fortran compiler (CMF 1.2.1-2), the floor runtime system (Version 8.0),
and the “~0” optimization flag for the CM Fortran compiler. C code was compiled
with “gcc”, using the “—04” optimization flag; CDPEAC code was compiled with the
“~02” optimization flag. The timings were done on systems running CMOST Version
7.3. In the following, we present only the elapsed time, not the CM Busy time, because
the elapsed time is the actual time a user needs to wait until the problem completes.
All times are for a timing loop of 1000 iterations. In general, we plot execution time
as a function of subgrid length, for a square subgrid. That is, for a subgrid length of 4,
we are timing performance on 1000 iterations of a process, on a 4 x 4 subgrid. Finally,



because all timings were done on busy time-sharing systems, we took the minimum
elapsed time for a number of runs.

We tested three approaches to filling the interior of the ghost array: Straight CM
Fortran code, custom CDPEAC code, and calls to CMCOM _array_section_transfer.
The CM Fortran code was:

real*8, array( 0:NSX+1,0:NSY+1,1:NPX,1:NPY ) :: ghost_src
real*8, array( 1:NSX, 1:NSY, 1:NPX,1:NPY ) :: src

ghost_src( 1:NSX, 1:NSY, :, : ) = src( 1:NSX, 1:NSY, :, : )

Here, as with the following, the original two—dimensional arrays have been aliased to
four—-dimensional arrays by means of the CM Fortran ALIAS package, so that, e.g.,
NSX is the number of elements in the subgrid along the x—direction. The third and
fourth axes are purely physical, i.e. non-local.

Figure 2 presents the results of comparing the CMCOM _array _section_transfer call with
the CDPEAC call for a variety of square subgrids. We do not show the CMF timings,
since they are so large that plotting all three methods on a single graph makes the
two non—-CMF methods appear identical in performance. Typically, the CMF time is
an order of magnitude (or more) longer for a given subgrid length. As is evident, the
best result is obtained from the custom CDPEAC code, which is the method we have
chosen for the stencil compiler.

We tested two approaches to filling the edges of the ghost array: Straight CM Fortran
code, and calls to CMCOM _physical rotate. The CM Fortran code evolved through a
number of versions; we present the final version here. Both CM Fortran and CMCOM
versions depend upon the ghost array already being filled with interior data. This
avoids “cross—geometry” moves, which can have a significant performance penalty.
The CM Fortran code was (with the appropriate declarations):

real*8, array( 0:NSX+1,0:NSY+1,1:NPX,1:NPY ) :: ghost_src

CcC Recall e.g., the array section ghost_src(O,l:NSY,:,:) is *3Dx*
CcC - -
CcC 1 23

ghost_src( 0,1:NSY,:,:) =
& CSHIFT( ghost_src(NSX,l:NSY,:,:), DIM=2, SHIFT=-1 )

ghost_src(NSX+1,1:NSY,:,:) =
& CSHIFT( ghost_src( 1,1:NSY,:,:), DIM=2, SHIFT=+1 )



ghost_src(0:NSX+1, 0,:,:) =
& CSHIFT( ghost_srC(O:NSX+1,NSY,:,:), DIM=3, SHIFT=-1 )

ghost_src(0:NSX+1,NSY+1,:,:) =
& CSHIFT( ghost_srC(O:NSX+1, 1,:,:), DIM=3, SHIFT=+1 )

The comments indicate why, when we actually want to communicate along the third
dimensions of the original array in the first and second statement, the CSHIFT argu-
ment is for dimension “2”. Figure 3 presents the results of comparing this method with
the other two methods for a variety of square subgrids. As is evident, the best result
is obtained from the CMCOM _physical rotate routine, which is the method we have
chosen for the stencil compiler.

Because the CM Fortran compiler does not reuse registers in the manner described in
our discussion of optimizations, it is difficult to compare between CM Fortran arith-
metic code and our code. However, our timing studies have indicated our CDPEAC
code is competitive with CM Fortran code for a similar operation — that is, for every
grid point, load of a single source value, followed by a sum of products of that value
with nine different coefficients, i.e.

dst = cl*src + c2*src + c3*src + céd*src + cb*src +
& c6*¥src + c7*src + c8%src + c9*src

The results are shown in Figure 4, where we see our CDPEAC code is indeed com-
petitive with the CMF code for the above operations on small subgrids. However, for
large subgrids, the CDPEAC does loose somewhat; we conjecture this is becasue the
maximum vector length is not 16, but 14 for our calculations, due to the existence of
the stencil “wings”. Once, again, we stress that these are not the same calculations,
but are presented to give some idea of the efficiency of our CDPEAC code.

Figures 5 and 6 present the comparison between CMF code for the nine—point and
five-point stencils, and the stencil compiler prototype code. As is evident, the proto-
type code provides significantly better performance for large subgrids. The five—point
CMF code is that displayed in the introduction. The “naive” nine—point CMF code
is similar, except it has four additional terms, each a doubly-nested CSHIFT operation.
The “reduced nine-point” results [4] refer to a method of calculating the nine-point
stencil which involves only four CSHIFT calls instead of the naive twelve CSHIFT calls, but
with the cost of adding four temporary arrays. This method also requires pre-shifting
the coefficient arrays, which is acceptable when the stencil is employed in an inner
loop (typically an iterative solver), and the coefficients are calculated outside the loop.
As is evident, the stencil compiler prototype code provides significant performance
improvement for large subgrids.



5 Implementation Status

The anticipated structure of the CM-5 stencil compiler will comprise 1) a separate
compiler step, callable from CM Fortran, and consisting of separate parser and code
generator passes; and 2) a set of library routines for performing array—filling and com-
munications functions, as well as some auxiliary routines to assist in executing the
required looping structures. In terms of use, the user will need to break out the de-
sired stencil into a separate subroutine, complete with declarations (but not requiring
shape or size information). This subroutine must be placed in a file with a “.stencil”
extension, and passed to CM Fortran with the usual “-¢” flag for compilation to a “.0”
file. The result, if everything works out, is an apparently normal “.0” file which the

user then links with the other files in the application. This general scheme is the same

as the CM-2 stencil compiler present in CMSSL Release 3.1 for the CM-2 [9].

Implementation of the CM-5 stencil compiler will involve reuse of a great deal of
code from the CM-2 stencil compiler. The parser is unchanged, expect for additional
refinement to enhance reliability. All the analysis code in the compiler (for example,
to determine the number of register groups, register assignments, etc) will be directly
usable also. The major modification to the compiler code will be in the code generation
phase. The CM-2 stencil compiler generated calls to custom microcode [1]; the CM-5
compiler will generate calls to the above—described CDPEAC and CMCOM routines
and also generate portions of the CDPEAC code and all the appropriate wrappers.
Nevertheless, we anticipate much of the structure surviving. Currently, we have begun
building the initial parts of the code generation phase as we have done our timing
studies to determine our optimization strategies. This initial code-generation phase
creates the highest—level CM Fortran code, callable from the user code.

6 Testing and Verification of the Stencil Compiler

The potential “space” of possible stencils, even considering only rank—three and lower
stencils, is enormous. The goal of the stencil compiler is to support asymmetric pat-
terns, number of points limited only by register availability, single and double precision
data, scalar or array coefficients, and multiple source and destination arrays. Not only
is the stencil itself greatly variable, but it may be embedded in arrays of any rank
allowed by CM Fortran. Furthermore, given a stencil embedded in arrays of a given
rank, the axes of the arrays may be distributed or local, and the specific shape of the
distributed and local parts is not known until runtime, and varies from machine size
to machine size.

Because the space of possible stencils is so large, we are from the outset designing
sophisticated, automated testing procedures to ensure we explore large areas of the
possible space of stencil parameters. We have taken the automated testing procedures
of David Kramer as the starting point for this work [3]. Furthermore, we intend to
implement regression testing during the development process to help ensure quality

10



control.

The automated testing procedure is a systematic approach developed to test and val-
idate the functionality of the stencil compiler. We have used a semi-exhaustive tech-
nique to generate array geometries to test the compiler. The motivation for using this
technique is as follows

1. A large subset of possible geometries can be tested

2. Performance results on “odd” geometries can provide useful feedback for improv-
ing performance of the compiler.

In outline, the automated testing routine functions as follows. We refer the reader to
the CM-=5 CM Fortran Performance Guide [10] for a discussion of arrays geometries.

1. Define the inputs provided by the user that tester will use to generate test cases
2. Define the public interface to CMF routines for checking correctness
3. Define the public interface to the stencil compiler—generated routines

4. For each input line

(a) Check the validity of inputs based on certain preset rules

(b) Generate processor masks, hence forth called “pmasks”. The pmasks are
generated using the highest axis varying fastest ordering (HVFO). We have
also used the lowest axis varying fastest ordering(LVFO) which will generate
a different set of pmasks. The test set will be made more comprehensive in
future by using more innovative ordering techniques.

(c) Generate a set of permutation for the pmask. Each permutation is called
an array geometry. For each array geometry:

Allocate arrays for the emf interface and stencil interface
e Call the cmf interface that produces the emf_result
e Call the stencil interface that produces the stencil_result

e Compare stencil_result and ecmf_result. If the stencil compiler routine
works correctly these two results should be the same.

During the course of the stencil compiler development, we intend to extend and refine
these techniques further.

7 Conclusions

The stencil compiler prototypes we have presented here illustrate methods which can
provide significant performance gains over ordinary CM Fortran code for a wide va-
riety of stencils. The techniques for gaining this performance are neither simple nor

11



straightforward, from user perspective, without a great deal of aid from software tools.
The compiler we are presently developing provides those tools, and as part of CMSSL,
can significantly enhance the productivity of CM—-5 users.

8 Acknowledgements

This work was performed in part under funding through DOE TTI CRADA LA93C10070,
and the DOE HPCCI Program. CM-5 access was provided by Thinking Machines Cor-
poration and the Advanced Computing Laboratory of Los Alamos National Laboratory.
We would like to thank the following people for helpful conversations and assistance:
Palle Pederson, Kapil Mathur, David Kramer, Steve Heller, Bob Lordi, Mark Bromley
(TMC), and Rick Smith (LANL).

References

[1] Ralph G. Brickner, William George, S. Lennart Johnsson, and Alan Ruttenberg. A
stencil compiler for the Connection Machine Models CM-2/200. In Proceedings of

The Fourth International Workshop on Compilers for Parallel Computers, pages
68—-78. Delft University of Technology, December 1993.

[2] Mark Bromley, Steven Heller, Tim McNerney, and Guy L. Steele. Fortran at ten
Gigaflops: The Connection Machine convolution compiler. In Proceedings of ACM
SIGPLAN 91 Conference on Programming Language Design and Implementation,
pages 145-156. ACM Press, June 1991.

[3] Thinking Machines Corporation David Kramer. Automated testing routines for
cmssl, 1994. Private Communication.

[4] Los Alamos National Laboratory Richard Smith. Stencil subroutines for the lanl
climate model codes, 1994. Private Communication.

[5] Thinking Machines Corp. CM-5 VU Programmer’s Handbook, CMOST Version
7.2, 1993.

[6] Thinking Machines Corp. CM Fortran Reference Manual, Version 2.1, 1993.
[7] Thinking Machines Corp. CM Fortran Release Notes, Version 2.1, 1993.

[8] Thinking Machines Corp. CM Run-Time System Architectural Specification, Ver-
ston 7.2, 1993.

[9] Thinking Machines Corp. CMSSL for CM Fortran: CM-2/200 Edition, Version
3.1, 1993.

[10] Thinking Machines Corp. CM-5 CM Fortran Performance Guide, Version 2.1,
1994.

12



8 [1oUISHINIA

¥ [1IDUBISHINIA

SBUIp SBUIp
[10U8)S
‘110Ud1S yoea ul %o0|q Aalb yoea 1o} palinbal Si jualdiyaod auQ
‘l1Ioua1sn|nw ay) ul o0]|q Aaib yoes 1o} paiinbal si jusws|e Aelle 82I1N0S auQ

‘(uoneunsap) pare|nNaed si |1IDUa1S YaIym J1oj uiod e = X

S|louaIsnNN T 24nbi4



3.20

3.00

2.80

2.60

2.40

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00

Figure2. CMCOM/CDPEAC Ghost Interior Fill

Elapsed Time (sec)

/

/

jn]
/
g
g
g
g
.

g
2
2
2
o
2
0
o

50.00

100.00

AST Ghost Fill

CDP Ghost Fill

(Square) Subgrid Length



Figure3. CMF/CMCOM Physical Rotate

Elapsed Time (sec)

CMF CSHIFT

/' CMCOM Physical Rotate
140.00

130.00 /

120.00 /

110.00 /

100.00
90.00
80.00 /
70.00 /
60.00
50.00 /
40.00 /
30.00
20.00
10.00 //

0.00 —fResfpocoegzrzzmeeees EFeenenemnnnns

150.00

(Square) Subgrid Length
0.00 50.00 100.00



Figured4. CMF/CDPEAC Arithmetic

Elapsed Time (sec)

CMF Arithmetic

16.00 »— CDP Arithmetic

15.00

14.00

13.00

12.00 /
11.00 /
10.00 /
9.00 /
8.00
7.00 /
6.00

5.00 /

4.00 7
3.00 /

2.00

1.00 ../
0.00 —&==

0.00 50.00 100.00

(Square) Subgrid Length



Elapsed Time (sec)

32.00

30.00

28.00

26.00

24.00

22.00

20.00

18.00

16.00

14.00

12.00

10.00

8.00

6.00

4.00

2.00

0.00

Figure5. Two Dimensional, 5pt Stencils

;
/
/
/
/ F
/
_____ A

CMF Stencil

Stencil Compiler Prototype

(Square) Subgrid Length



Figure6. Two Dimensional, 9pt Stencils
Elapsed Time (sec)

Naive CMF Stencil

60.00 / Taiiced GRIE Sanai "

55.00 / a
50.00

Stencil Compiler Prototype
45.00 /

40.00 /
35.00

30.00 =
25,00 / .
20.00 /
15.00 //

10.00

5.00

0.00

(Square) Subgrid Length
0.00 50.00 100.00



