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Abstract

GIVE-N-TAKE is a code placement framework which
uses a general producer-consumer concept. An advan-
tage of GIVE-N-TAKE over existing partial redundancy
elimination techniques is its concept of production re-
gions, instead of single locations, which can be bene-
ficial for general latency hiding. GIVE-N-TAKE guar-
antees balanced production, that is, each production
will be started and stopped once. The framework can
also take advantage of production coming “for free,”
as induced by side effects, without disturbing balance.
GIVE-N-TAKE can place production either before or
after consumption, and it also provides the option to
hoist code out of potentially zero-trip loop (nest) con-
structs. GIVE-N-TAKE uses a fast elimination method
based on Tarjan intervals, with a complexity linear in
the program size in most cases.

We have implemented GIvE-N-TAKE as part of a
Fortran D compiler prototype, where it solves various
communication generation problems associated with
compiling data-parallel languages onto distributed-
memory architectures.

1 Introduction

Partial Redundancy Elimination (PRE) is a classical
optimization framework for moving and placing code
in a program. Example applications include common
subexpression elimination, loop invariant code motion,
and strength reduction. The original dataflow frame-
work for performing PRE was developed by Morel and
Renvoise [MR79] and has since then experienced vari-
ous refinements [JD82, DS88, Dha88a, Dha9l, DRZ92,
KRS92]. However, the PRE frameworks developed to
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date still have certain limitations, which become appar-
ent when trying to apply them to more complex code
placement tasks.

Atomicity: PRE implicitly assumes that the code
fragments it moves, generates, or modifies are
atomic in that they need only a single location in
the program to be executed. For example, when
placing the computation of a common subexpres-
sion, PRE will specify only one location in the
program, and code will be generated at that lo-
cation to perform the entire computation. Later
optimizations may then reschedule the individual
instructions, for example to hide memory access
delays, but PRE itself does not provide any such
mechanism.

Ignoring side effects: Taking again the example of
common subexpression elimination, classical PRE
assumes that each common subexpression has to
be computed somewhere; i.e., nothing “comes for
free.” However, there are problems where side ef-
fects of other operations can eliminate the need for
actual code placement. For example, when plac-
ing register loads and stores, certain loads may
become redundant with previous definitions. This
is generally treated as a special case, for example
by developing different, but interdependent sets of
equations for loads and stores [Dha88b].

Pessimistic loop handling: One difficulty with flow
analysis has traditionally been the treatment of
loop constructs that allow zero-trip instances, like
a Fortran DO loop. Hoisting code out of such loops
is generally considered unsafe, as it may introduce
statements on paths where they have not existed
before. However, unless the computation to be
moved may change the meaning of the program
(for example by introducing a division by zero),
we often would like to hoist computation out of
such loops even if the number of iterations is not
known at compile time.



Several techniques exist to handle zero-trip loops,
like for example adding an extra guard and a pre-
header node to each loop [Sor89], explicitly intro-
ducing zero-trip paths [DK83], or collapsing inner-
most loops [HKKT92]. These strategies, however,
result in some loss of information due to explicit
control flow graph manipulations, and they do not
fully apply to nested loops.

This paper presents a data flow framework, called
GI1VE-N-TAKE, that aims to overcome these limitations
in a general context. It is applicable to a broad class
of code generation/placement problems, including the
classical domains of PRE techniques as well as memory
hierarchy related problems, like prefetching and com-
munication generation. GIVE-N-TAKE is subject to
a set of correctness and optimality criteria (see Sec-
tion 3.2); for example, each consumption must be pre-
ceded by a production, and any generated code should
be executed as infrequently as possible. However, the
solutions computed by GIVE-N-TAKE vary depending
on which kind of problem it is applied to. In a BE-
FORE problem, items have to be produced before they
are needed (e.g., for fetching an operand), whereas in
an AFTER problem, they have to be produced after-
wards (e.g., for storing a result). Intuitively, one can
think of an AFTER problem as a BEFORE problem with
reversed flow of control.

Orthogonally we can classify a problem as EAGER
when it asks for production as early as possible (e.g.,
sending a message), or as LAZY when it wants produc-
tion as late as possible (e.g., receiving a message); this
definition assumes a BEFORE problem. For an AFTER
problem, “early” and “late” have to be interchanged.
(Classical PRE, for example, can be classified as a
Lazy, BEFORE problem.) This means that the same
framework can be used for different flavors of problems;
there are no separate sets of equations for loads and

stores [Dha88b], or for READs and WRITEs [GV91].

The rest of this paper is organized as follows. Sec-
tion 2 introduces the communication generation prob-
lem, which will be used as an illustrating example ap-
plication of GIVE-N-TAKE. Section 3 provides further
intuition for the GIVE-N-TAKE framework and some
background on the type of flow graph and neighbor
relations used by the GIVE-N-TAKE equations. Sec-
tion 4 states the actual equations and argues informally
for their correctness and efficiency. Section 5 gives an
efficient algorithm for solving the GIVE-N-TAKE equa-
tions. Section 6 concludes with a brief summary. A dis-
cussion of possible extensions, such as the combination
of GIVE-N-TAKE with dependence analysis, and for-
mal correctness proofs of GIVE-N-TAKE can be found
elsewhere [HK93].

doi=1,N
y(i)y=...
enddo
if test then
doj=1,N
enddo
dok=1,N
... =z(a(k))
enddo
else
dol=1,N
... =z(a(l))
enddo
endif
Figure 1: An instance of the communication placement
problem, where the array x is assumed to be distributed
or shared. Each reference to x in the k& and [ loops
necessitates a global READ operation, whereby a pro-
cessor referencing some element of  receives it from its
owner. Possible communication placements are shown
in Figure 2.

2 A Code Placement Example:
Communication Generation

An example of code placement is the generation of com-
munication statements when compiling data parallel
languages, like Fortran D [HKT92a] or HiIGH PERFOR-
MANCE FoRTRAN [KLSt94]. For example, a processor
of a distributed memory machine may reference owned
data, which by default reside on the processor, as well
as non-owned data, which reside on other processors.
Local references to non-owned data induce a need for
communication, in this case a READ of the referenced
data from other processors. Figure 1 shows an example
node code containing references to distributed data.
Since generating an individual message for each da-
tum to be exchanged would be prohibitively expen-
sive on most architectures, optimizations like mes-
sage vectorization, latency hiding, and avoiding redun-
dant communication are crucial for achieving accept-
able performance [HKT92b]. The profitability of such
optimizations depends heavily on the actual machine
characteristics; however, even for machines with low
latencies or shared-memory architectures, the perfor-
mance can benefit from maximizing reuse and mini-
mizing the total number of shared data accesses.
Figure 2 compares two possible communication
placements for the example from Figure 1. Note that
the GIVE-N-TAKE solution shown on the right would
generally be considered unsafe, since for N < 1 the
loops would not be executed. In the communication
generation problem, however, we generally rather ac-
cept the risk of slight overcommunication than not



doi=1N ‘READSend{z(a(l:N))}‘
y(1) = ... doi=1N
enddo y(i) =
if test then endydo T
do y = l;N if test then
2(7)=... doj=1N
enddo 2(5) =
dok=1N enddo
READsena{z(a(k))} ‘READR%U{:B(&(LN))}‘
READ gecy {z(a(k))} dok=1N
- = x(a(k)) ... = z(a(k))
enddo enddo
else else
dol=1,N [READ fco {2 (a(1: )}
READ s¢pq{z(a(l))} dol=1,N
READ gecy {z(a(l))} ..=z(a(l))
— z(a(l)) enddo
enddo endif
endif

Figure 2: Possible communication placements for the
code in Figure 1. A naive code generation, shown on
the left, results in a total of N messages to be ex-
changed, without any latency hiding. The solution
provided by GIvE-N-TAKE, shown on the right, needs
just one message and uses the i-loop for latency hid-
ing (z(a(k)) and z(a(l)) can be recognized as identical
based on the subscript value numbers).

hoist communication. Furthermore, it is often the case
that non-execution of a loop also means that no com-
munication needs to be performed (in the example,
N < 1 implies z(a(1:N)) = 0).

Note that the examples shown in this paper do not
include data declarations, initializations, distribution
statements, etc. The communication statements are in
a high level format that does not include any schedule
parameters, message tags, and so on. Communication
schedule generation, which is a non-trivial problem in
itself [HKK*92], and the conversion from global to lo-
cal name space are also excluded. These and other im-
plementation details on the usage of GIVE-N-TAKE for
communication generation, like the value number based
data flow universe, are described elsewhere [Han93].

If we do not use a strict owner computes rule [CK88],
then non-owned data may not only be locally refer-
enced, but also locally defined. We assume that these
data have to be written back to their owners before
they can be used by other processors, as shown in Fig-
ure 3. (An alternative would be the direct exchange
between a non-owner that writes data and another non-
owner that reads them [GS93]. This could also be ac-
commodated by GIVE-N-TAKE, but especially in the
presence of indirect references it would result in more

if test then if test then

do:=1,N do:=1,N
z(a(i)) = ... z(a(i)) = ...
enddo enddo
doj=1, N' WRITESend{z(a(l : N))}
.=z(j+5) WRITE ey {z(a(l : N))}
del;ddO READSend{z(G N+ 5)}
endi READ 6: N+5
do k — LN . '_Rleczjzv{fﬂ( )}
= a(k+5) ity
enddo =2l
enddo
else

READgepg{z(6: N 4+ 5)}
READRecy{z(6 : N +5)}

endif
dok=1,N

...=z(k+5)
enddo

Figure 3: Example of a code with local definitions of
potentially non-owned data (left), and a corresponding
placement of global WRITEs (right).

complicated code generation.)

Dependence analysis can guide such optimizations,
for example by guaranteeing the safety of hoisting com-
munication out of a loop nest. However, dependence
analysis alone is not powerful enough to take advan-
tage of all optimization opportunities, since it only
compares pairs of occurrences (i.e., references or def-
initions) and does not take into account how control
flow links them together. Therefore, combinations of
dependence analysis and PRE have been used, for ex-
ample for determining reaching definitions [GS90] or
performing scalar replacement [CK92]. Duesterwald
et al. incorporate iteration distance vectors (assuming
regular array references) into an array reference data
flow framework, which is then applied to memory op-
timizations and controlled loop unrolling [DGS93].

Several researchers have already addressed the com-
munication generation problem, although often re-
stricted to relatively simple array reference patterns.
Amarasinghe and Lam optimize communication gen-
eration using Last Write Trees [AL93]. They assume
affine loop bounds and array indices, they do not al-
low loops within conditionals (such as in Figure 1).
Gupta and Schonberg use Available Section Descrip-
tors, computed by interval based data flow analysis, to
determine the availability of data on a virtual processor
grid [GS93]. They apply (regular) mapping functions
to map this information to individual processors and
list redundant communication elimination and commu-
nication generation as possible applications. Granston
and Veidenbaum combine dependence analysis and



PRE to detect redundant global memory accesses in
parallelized and vectorized codes [GV91]. Their tech-
nique tries to eliminate these operations where possi-
ble, also across loop nests and in the presence of con-
ditionals, and they eliminate reads of non-owned vari-
ables if these variables have already been read or writ-
ten locally. However, they assume atomicity, and they
also assume that the program is already annotated with
read/write operations; they do not try to hoist memory
accesses to less frequently executed regions.

While these works address many important aspects
of communication generation that are outside of the
scope of GIVE-N-TAKE itself, such as name space map-
pings or regular section analysis, they do not seem to
be general and powerful enough with respect to com-
munication placement. In the following, it is this aspect
that we will focus on.

3 The Give-N-Take Framework

The basic idea behind the GIVE-N-TAKE framework
is to view the given code generation problem as a
producer-consumer process. In addition to being pro-
duced and consumed, data may also be destroyed be-
fore consumption. Furthermore, whatever has been
produced can be consumed arbitrarily often, until it
gets destroyed.

Data flow frameworks are commonly characterized
by a pair (L, F'}, where L is a meet semilattice and F is
a class of functions (see Marlowe and Ryder [MR90] for
a discussion of these and other general aspects of data
flow frameworks). Roughly speaking, L characterizes
the solution space (or universe) of the framework, such
as the set of common subexpressions or available con-
stants, and their interrelationships. F' contains func-
tions that operate on L and compute the desired infor-
mation about the program. Together with a flow graph
(consisting of nodes, edges, and a root) and a map-
ping from graph nodes or edges to F', this framework
constitutes a data flow problem, which can be solved
to analyze and optimize a certain aspect of a specific
program. However, since we view GIVE-N-TAKE as a
fairly general code placement mechanism, this paper
will focus mostly on F', the class of functions that we
use to propagate information about consumption and
production through a given program.

3.1 Communication Placement with
Give-N-Take

The problem of generating READs can be interpreted
as a BEFORE problem as follows:

e FEach reference to non-owned data consumes these
data.

e Each READ operation, where a processor p sends
data that it owns to another processor ¢ that re-
ceives and references these data, produces the data
sent.

e Each non-local definition (i.e., a definition on an-
other processor) of non-owned data destroys these
data.

To split each READ into a READ geng (the send issued at
the owner) and a READ gecy (the corresponding receive
at the referencing processor), we need both the EAGER
and the LAZY solution of the framework. We want to
send as early as possible and receive as late as possible;
since this is a BEFORE problem, the READ g¢ng’s will
be given by the EAGER solution, and the READ ge.y’s
will be the LAzY solution.

For placing global WRITEs, the non-owned defini-
tions can be viewed as consumers, just as non-owned
references, and we have to insert producers which in
this case communicate data back to their owners (in-
stead of from their owners). Since we want to write
data after they have been defined, this is an AFTER
problem. Note that in this scenario, the previous prob-
lem of analyzing communication for non-owned refer-
ences can be modified to take advantage of non-owned
definitions if they are later locally referenced; i.e., non-
owned definitions can also be viewed as statements
that produce non-owned references as a side effect (“for
free”), potentially saving unnecessary communication
to and from the owner. Again, we can split each WRITE
into a WRITEgenq (given by the LazY solution, since
WRITE is an AFTER problem) and a WRITERe., (the
EAGER solution).

3.2 Correctness and Optimality

Given a program with some pattern of consumption
and destruction, our framework has to determine a
set of producers that meet certain correctness require-
ments and optimality criteria. The requirements that
GIVE-N-TAKE has to meet to be correct are the fol-
lowing (with their specific implications when applied
to communication generation):

(C1) Balance: If we compute both the EAGER and
the LAzY solution for a given problem, then these
solutions have to match each other; see Figure 4.
(For each executed READ gepng, exactly one match-
ing READgecy Will be executed, and vice versa;
similarly for WRITE geng’s and WRITERec,'s.)

(C2) Safety: Everything produced will be consumed;
see Figure 5. (No unnecessary READs or WRITEs.
In our specific case, this is more an optimization
than a correctness issue.)

A special case are zero-trip loop constructs, like
a Fortran DO loop. GIVE-N-TAKE tries to hoist



items out of such loops, unless explicitly told oth-
erwise on a general [HK93] or case-by-case (Sec-
tion 4.1) basis.

(C3) Sufficiency: For each consumer at node n in
the program, there must be a producer on each
incoming path reaching n, without any destroyer
in between; see Figure 6. (All references to non-
owned data must be locally satisfiable due to pre-
ceding READs or local definitions, without inter-
vening non-local definitions, and all definitions of
non-owned data must be brought back to their
owners by WRITEs before being referenced non-
locally or communicated by a READ.)

The optimization criteria, subject to the correctness
constraints stated above, are:

(O1) Nothing produced already (and not destroyed
yet) will be produced again; see Figure 7. (Noth-
ing will be recommunicated, unless it has been
non-locally redefined.)

(02) There are as few producers as possible; see Fig-
ure 8. (Communicate as little as possible.)

(03) Things are produced as early as possible for
EAGER, BEFORE and LAazy, AFTER problems; see
Figure 9. (Send as early as possible.)

(03’) Things are produced as late as possible for
Lazy, BEFORE and EAGER, AFTER problems; see
Figure 10. (Receive as late possible.)

Note that while the correctness criteria are treated
as strict requirements that GIVE-N-TAKE must ful-
fill [HK93], the optimality criteria are viewed more
as general guidelines (and are phrased correspondingly
vague).

3.3 The Interval Flow Graph

A general data flow analysis algorithm that considers
loop nesting hierarchies is interval analysis. It can be
used for forward problems (like available expressions)
[All70, Coc70] and backward problems (like live vari-
ables) [Ken71], and it has also been used for code mo-
tion [DP93] and incremental analysis [Bur90]. We are
using a variant of interval analysis that is based on Tar-
jan intervals [Tar74]. Like Allen-Cocke intervals, a Tar-
jan interval T'(h) is a set of control flow nodes that cor-
responds to aloop in the program text, entered through
a unique header node h, where h ¢ T'(h). However,
Tarjan intervals include only nodes that are part of this
loop (i.e., together with their headers they form nested,
strongly connected regions), whereas Allen-Cocke in-
tervals include in addition all nodes whose predeces-
sors are all in T(h); i.e., they might include an acyclic
structure dangling off the loop. In that sense, Tarjan

Figure 4: Left: unbalanced production, where one
EAGER(X) production is followed by an arbitrary num-
ber of Lazy(X) productions. Right: possible solution
obeying correctness criterion C1.

| |

Eager(X)
Lazy(X) \l
Eager(X)
Lazy(X)
|
Consume(X) Consume(X)
! !
Destroy(X) Destroy(X)

! !

Figure 5: Left: unsafe production. Right: possible
solution obeying C2.

| |

Destroy(X) Destroy(X)
! !
Eager(X)
Lazy(X) \l
Eager(X)
Lazy(X)
!
Consume(X) Consume(X)

! !

Figure 6: Left: insufficient production. Right: possible
solution obeying C3.




Lazy(X
Consume(X)

|

Eager(X)
Lazy(X)

Consume(X)

Lazy(X

Consume(X)

'

Figure 7: Left: redundant production. Right: possible
solution obeying O1.

| |

e Eager(X,Y)
Lazy(X) Lazy(X,Y)
Lazy(Y) \|l
}
Consume(X,Y) Consume(X,Y)

I !

Figure 8: Left: too many producers. Right: possible
solution obeying O2.

il

Destroy(X)
Eager(X)
! |
E X
YA A

Consume(X) Consume(X)

i
i

Figure 9: Left: too late production. Right: possible
solution obeying O3.

il
il

Destroy(X) Destroy(X)
E X
L?;;r((x )) Eager(X)
|
Lazy(X)

Consume(X) Consume(X)

i
i

Figure 10: Left: too early production. Right: possible
solution obeying O3'.

intervals reflect the loop structure more closely than
Allen-Cocke intervals [RP86]. Note that a node nested
in multiple loops is a member of the Tarjan interval of
the header of each enclosing loop.

Unlike in classical interval analysis, we do not explic-
itly construct a sequence of graphs in which intervals
are recursively collapsed into single nodes. Instead, we
operate on one interval flow graph G = (N, E), with
nodes N and edges E. RooT € N is the unique root of
G, which is viewed as a header node for the entire pro-
gram. For n € N, LEVEL(n) is the loop nesting level
of n, counted from the outside in; LEVEL(RooT) = 0.

We define 7'(n) = §§ for all non-header nodes n, and
T*(n) = T(n) U {n} for all nodes n. We also de-
fine CHILDREN(n) to be the set of all nodes in T'(n)
which are one level deeper than n; CHILDREN(n) =
{¢| ¢ € T(n), LEVEL(¢) = LEVEL(n) + 1}. For each
m € CHILDREN(n), we define J(m) to be the immedi-
ately enclosing interval, T'(n).

One of the main differences between G and a stan-
dard control flow graph is the way in which edges
e = (m,n) € E are constructed and classified. In ad-
dition to edges that correspond to actual control-flow
edges, £ may also contain SYNTHETIC edges, which
connect the header h of an interval T'(h) to all sinks (ex-
cluding T* (h)) of edges originating within 7'(h). Each
non-SYNTHETIC edge (m,n) is classified as having one
of the following types.

ENTRY: An edge from an interval header to a node
within the interval; n € T'(m).

CYCLE: An edge from a node in an interval to the
header of the interval; m € T'(n).

JUuMP: An edge from a node in an interval to a node
outside of the interval that is not the header node;
Jh :m € T(h),n & T*(h). This corresponds to a
jump out of a loop.

ForRwARD: An edge that is none of the above; Vh :
m € T'(h) <= n € T(h).

We also define HEADER(n) = m if n is the sink
of an ENTRY edge originating in m (otherwise,
HEADER(n) = 0).

Note that CycLE and JUMP edges correspond to Tar-
jan’s cycle and cross edges, respectively [Tar74]. How-
ever, we divide his forward edges into FORWARD and
ENTRY edges depending on whether they enter an in-
terval or not (while others divide them into forward
and tree edges depending on whether they are part of
an embedded tree or not). Note also that for each
JuMP edge (m,n), G contains LEVEL(m) — LEVEL(n)
SYNTHETIC edges.

GI1VE-N-TAKE requires G to have the following prop-
erties:



doi:=1,N
y(a(z)) = ...
if test(i) goto 77
enddo
doj=1,N
enddo
77T dok=1,N
... =o(k 4+ 10) 4+ y(b(k))
enddo

Figure 11: Example code. We wish to use the j-loop
for latency hiding in case the branch out of the i-loop
is not taken.

e (G is reducible; i.e., each loop has a unique header
node. This can be achieved, for example, by node

splitting [CM69].

e For each non-empty interval T'(h), there exists a
unique n € T'(h) such that (n,h) € E; i.e., there
is only one CYCLE edge out of T'(h). We will refer
to node n as LASTCHILD(h).

e There are no critical edges, which connect a node
with multiple outgoing edges to a node with mul-
tiple incoming edges. This can be achieved, for
example, by inserting synthetic nodes [KRS92].
Code generated for synthetic nodes would reside
in newly created basic blocks, like for example a
new else branch or a landing pad for a jump out
of a loop.

Intuitively, a critical edge might indicate a location
in the program where we cannot place production with-
out affecting paths that are not supposed to be af-
fected by the production. The code shown in Figure 3
is a case of placing production at a synthetic node
(the added else branch). Note that for the EAGER
production on the else branch (the “READ geng{2(6 :
N +5)}7), a naively placed matching LAzY production
(a “READReco{2(6 : N 4+ 5)}”) might be located right
before the k-loop, since LAZY productions are generally
delayed as far as possible. This, however, would vio-
late balance, since on the then branch the correspond-
ing EAGER production has already been matched by a
Lazy production. Therefore, the LAzY production is
moved up into the else branch.

Each of the requirements above can lead to a growth
of G and can therefore slow GIVE-N-TAKE down. (For
example, inserting synthetic nodes makes O(N) =
O(FE).) However, it has been noted by several re-
searchers that for typical programs, both the aver-
age out-degree of flow graph nodes and the maximal
loop nesting depth can be assumed to be bounded
by small constant independent of the size of the pro-

gram [MR90]. Therefore, the increase of G should be

Level 2

3 (@) =

Figure 12: Flow graph for the code from Figure 11.
The dashed nodes are synthetic nodes inserted to break
critical edges. The dashed edge (2, 10) is a SYNTHETIC
edge caused by JUMP edge (4, 10) (since 4 € T(2)). All
non-FORWARD, non-SYNTHETIC edges are labeled as
either ENTRY, CYCLE, or JUMP edges.

fairly small for well structured programs.

Figure 12 shows the interval flow graph for the code
in Figure 11. The i-loop, for example, corresponds
to the interval T'(2) formed by nodes 3, 4, 5, with
header 2 (again, the header itself is not part of the
interval). Note that FORWARD edges are the only
non-SYNTHETIC edges that do not cross nesting level
boundaries.

3.4 Traversal Orders and Neighbor Re-
lations

The order in which the nodes of the interval flow
graph are visited depends on the given problem type
(BEFORE/AFTER, EAGER/LAZY) and on the pass of
the GIVE-N-TAKE framework that is currently being
solved (see Section 5). F induces two partial orderings
on N:

Vertically: Given a FORWARD/JUMP edge (m,n), a
FORWARD order visits m before n, and a BAcK-
WARD order visits m after n.



Horizontally: Given m,n € N such that m € T'(n),
an UpPwWARD order visits m before n, whereas a
DowNWARD order visits m after n.

Since these partial orderings are orthogonal, they can
be combined into PREORDER (FORWARD and DowN-
WARD), PosTORDER (FORWARD and UPWARD), and
the corresponding reverse orderings. For example, the
nodes in Figure 12 are numbered in PREORDER. Note
that in a BEFORE problem, the flow of information is
not necessarily in FORWARD order; this will become ap-
parent in the discussion of the algorithm in Section 5.

A data flow variable for some n € N might be defined
in terms of variables of other nodes that are in some
relation to n with respect to G. Therefore, we not only
have to walk G in a certain order, but we also have to
access for each n € N a subset of N — {n} that has a
certain relationship with n. In general, we are inter-
ested in information residing at predecessors or succes-
sors. However, we are also considering through which
type of edge they are connected to n. The edge type
carries information about how the neighboring nodes
are related to each other (for example, whether mov-
ing production from one node to the other constitutes
a hoist out of a loop or not). The type also indicates
whether this information has already been computed
under the current node visiting order or not.

Let TYPE be a set of edge types, where the letters
C, E, F, J, and S indicate CYCLE, ENTRY, FORWARD,
JumP, and SYNTHETIC edges, respectively. GIVE-N-
TAKE uses the following neighbor relations:

PREDSTYPE(n): The source nodes of edges reaching n
of a type in TYPE.

Succs™¥PE(n): The sink nodes of edges originating
from n of a type in TYPE.

The conventional “predecessors” and “successors” are
then PREDs®"(n) and Succs®®’(n), respectively,
which we will abbreviate as PREDs(n) and Succs(n),
respectively.  We will refer to the transitive clo-
sures of PREDs™(n) and Succs®(n) as the ances-
tors and descendants of n, respectively. Note that
{LasTCHILD(n)} = PREDS®(n), and {HEADER(n)} =
PrEDS®(n). Note also the following implications of the
lack of critical edges:

o Let e = (n,s) be a JumP edge. Then there exists
an h € N with n € T'(h),s & T*(h). Since T (h)
is by definition strongly connected, n must have
successors within 7+ (h). Since s is also a suc-
cessor of n, n must have multiple outgoing edges.
However, G does not have critical edges, there-
fore s has only one predecessor, which is n; i.e.,
PREDS“®F(s) = 0. In other words, the sink of a
JUMP edge, like node 10 in Figure 12, never has
any predecessors besides the source of the Jump
edge.

e Let e = (n, h) be a CYCLE edge. It follows that h is
an interval header, which by definition has multi-
ple predecessors. Since h is a successor of n, n may
not have any other successors (otherwise e would
be critical). However, it is h ¢ Succs®™'(n). It
follows Succs®(n) = 0 for each source n of an
CYCLE edge.

Even though the equations and their correctness and
effectiveness are the same for both BEFORE and AFTER
problems, we will for simplicity assume in the following
that we are solving a BEFORE problem unless noted
otherwise.

4 Give-N-Take Equations

Given a set of initial variables for each node n € N,
which describe consumption, destruction, and side ef-
fects at the corresponding location in the program,
GIVE-N-TAKE computes the production as a set of re-
sult variables for each node. Intermediate stages are
the propagation and blocking of consumption, and the
placing of production.

In the following, let n € N, let L denote the empty
set, and let T be the whole data flow universe. If an
equation asks for certain neighbors (like PREDS™ (n))
and there are no such neighbors (such as for a loop en-
try node), then an empty set results. Subscripts in, out
denote variables for the entry and the exit of a node, re-
spectively (reverse for AFTER problems). Subscript loc
indicates information collected only from nodes within
the same interval (nodes in J(n)), and init identifies
variables that are supplied as input to GIVE-N-TAKE.

Figure 13 contains the equations for the data flow
variables, which will be introduced in the following sec-
tions. We will provide example values from the READ
instance for the graph in Figure 12, where zy, yq, yp
correspond to references z(k+10), y(a(7)), and y(b(k)),
respectively (values at RooT are excluded for simplic-

ity).

4.1 Initial Variables

The following variables get initialized depending on the
problem to solve, where L is the default value.

STEAL;pit(n): All elements whose production would
be voided at n. This can also be used to prevent
hoisting productions out of zero-trip loops, if so
desired.

In our communication problem, this includes an
array portion p if either the contents of this portion
get modified at n, or if p itself gets changed, for
example if p is an indirect array reference and n
modifies the indirection array [HK93].



STEAL(n) = STEAL;pit(n) USTEAL;,.(LASTCHILD(n)) (1)
GIVE(n) = GIVE;pit(n) U GIVE.(LASTCHILD (1)) (2)
BLOCK(n) = STEAL(n)UGIVE(n)U | ]  BLOCK.(s) (3)
seSuccs®(n)
TAKEN,u(n) = (]  TAKEN,(s) (4)
seSuccsFi3(n)
TAKE(n) = TAKEii(n)U( | )  TAKEN;,(s) — STEAL(n))
seSuccs®(n)
U((TAKENue(n) N | ] TAKEs(s)) — BLOCK(n)) (5)
seSuccs®(n)
TAKEN,,(n) = TAKE(n) U (TAKEN () — BLOCK(n)) (6)
BLOCKyo.(n) = (BLOCK(n)U | J  BLOCKy(s)) — TAKE(n) (7)
seSuccsf (n)
TAKE, () = TAKE(n)U( ]  TAKEp.(s) — BLOCK(n)) (8)
seSuccs®F (n)
GIVEr(n) = (GIVE(n) UTAKE(n)U () GIVEi(p)) — STEAL(n) (9)
pePREDST(n)
STEALy.(n) = STEAL(n)U ]  (STEALi.(p) — GIVEL:(p)U | )  STEALy.(p) (10)

pePREDST(n)

pePREDS®(n)

GIVEN;,(n) = GIVEN(HEADER(n))U (] GIVEN,u(p) U(TAKEN;,(n) N | ] GIVEN,.(q)) (11)
pePREDST ! (n) ¢€PREDST ! (n)
B ‘ TAKEN;,(n) for an EAGER Problem,
GIVEN(n) = GIVENin(n) U { TAKE(n) for a LAzY Problem. (12)
GIVEN,:(n) = (GIVE(n) U GIVEN(n)) — STEAL(n) (13)
RES;,(n) = GIVEN(n) — GIVEN;,(n) (14)
RES,ut(n) = | J  GIVEN;u(s) — GIVEN u(n) (15)

seSuccsF(n)

Figure 13: GIVE-N-TAKE equations.

For Figure 12, we have for example y, €
STEAL;,it({3}). (Read as: “For the READ prob-
lem, the variable STEAL;,;: at node 3 contains the
array portion referenced by y(b(k)).”)

GIVE;nit(n): All elements that “come for free,” i.e.,
which are already produced at n.

If we do not use the owner computes rule in com-
munication generation, then this includes local
definitions of non-owned data, since a later refer-
ence to these data does not need to communicate
them in any more.

Ya € GIVE;ni:({3}).

TAKE;pit(n): The set of consumers at n.

For communication generation, this is the set of
non-owned array references.

Tr, Yo € TAKE”L“({IS})

4.2 Propagating Consumption

The following variables, together with the variables de-
fined in Section 4.3, analyze consumption.



STEAL(n): All elements whose production would be
voided by n itself (given by STEAL;pi(n)), or
by some m € T(n) without being resupplied
by a descendant of m within T(n) (given by
STEAL,(LasTCHILD(R))).

ys € STEAL({2,3)}).

GIVE(n): All elements that are already produced at n,
or at some node in T'(n) without being stolen later
within T'(n).

BLOCK(n): Elements whose production is blocked
by n, i.e., whose production cannot be hoisted
across n because it is stolen or already produced
at n or a node in T'(n).

Ya, y» € BLOCK({2,3}).

TAKEN,yt(n): Things guaranteed to be consumed (be-
fore being stolen) on all paths originating in n, ex-
cluding n itself. Here we have to consider not only
ForwARD and JUuMP edges, but also SYNTHETIC
edges. (Otherwise we might violate safety by pro-
ducing something whose only consumer may be
skipped due to a jump out of a loop).

rr,yp € TAKEN4({2,6,7,9...11});
also, x, € TAKEN ;. ({1}).

TAKE(n): The set of consumers at n. This includes
items that are guaranteed to be consumed by
nodes in T'(n) (the TAKEN;,, term) and not stolen
at n, and items that may be consumed by 7'(n)
(the TAKE,, term) and are guaranteed to be con-
sumed on exit from n without being blocked by n.

zy, ys € TAKE({12,13}).

TAKEN;,(n): Similar to TAKEN 4y, except that the ef-
fects of n itself are included.

zg,yp € TAKEN;,({6,7,9...13});
also, z, € TAKEN,;, ({1, 2}).

BLOCK oc(n): Items blocked by n or by descendants

of n within J(n) without being consumed.

Ya, Yo € BLOCK oo ({1...3}).

TAKE ,c(n): Ttems taken by n, by descendants of n
within J(n), or by nodes within 7'(n). Here (unlike
for BLOCKjoc) we have to explicitly include suc-
cessors on ENTRY edges, since they are not guar-
anteed to be reflected in TAKE (which has to be
conservatively small), whereas they will always be
considered by BLOCK(n) (which is conservatively
large).

T, Yy € TAKEloc({6, 7, 9.. 13})’
also, x, € TAKE;,.({1,2}).

4.3 Blocking Consumption

The following variables are used by the interval headers
to determine whether items are stolen or taken within
the interval.

GIVEjec(n): Items produced by n or by ancestors of n
within the same interval. Here items are treated
as produced also if they are consumed, since con-
sumption is guaranteed to be satisfied by a pro-
duction.

Vo € GIVEo({2...7,9. .. 11});
Tr,Yp € G|VE106({12 . 14})

STEALjoc(n): Ttems stolen by n, or stolen by a prede-
cessor p of n without being resupplied by p. Fur-
thermore, if there exists a p € PREDs®*(n) (i.e., n
is the sink of a JuMP edge, and p is the header
of an interval enclosing the source of the Jump
edge but not n itself), then we also have to in-
clude items stolen by p; however, since the inter-
val headed by p is not guaranteed to be completed
before n is reached (since taking the JumP edge
corresponds to a jump from within the interval),
we cannot exclude items resupplied by p (which

would be given by GIVE;.(p)).
ys € STEAL,.({2...7,9...12,14}).

4.4 Placing Production

After analyzing what is consumed (and not already
produced) at each node, the production needed to sat-
isfy all consumers is computed by the following vari-
ables. (As described in Section 5, the following vari-
ables may differ for the EAGER and for the LAZY so-
lution; this will be indicated in the examples by super-
scripts.)

GIVEN;,(n): Things that are guaranteed to be avail-
able at the entry of n (or, for an AFTER problem,
the exit of n.) If n is a first child, then it has
everything available that is available at its header
(and PrEDS®™ = (). Otherwise, things are guar-
anteed to be produced if they are produced along
all incoming paths; or if they are produced at least
along some incoming paths and guaranteed to be
consumed. In the latter case, the result variable
RES,,: will ensure that things will be produced
also along the paths that originally did not have
them available (see Equation 15).

zr € GIVEN 9 ({2...14});

Ya € GIVENSY"({4...14});

ys € GIVEN;2"({7...9,11...14}).
2k, yp € GIVENIY({13, 14});

Ya € GIVENIY({4...14}).



GIVEN(n): Items guaranteed to be available at n itself,
either because they come from predecessors of n,
or because they are consumed by n itself, or, for
an EAGER problem, by a descendant of n.

z, € GIVENwer ({1 .. .14});
Ya € GIVENCa9er({4 . 14});

vy € GIVEN=2er({6...14}).
k. y» € GIVEN@¥({12..14});
va € GIVEN'=({4 .. 14}).

GIVEN,4¢(n): Things that are available on exit from n.
This includes whatever comes from at n itself, but
it excludes things stolen by n.

zr € GIVEN LI ({1...14});

out
ya € GIVENSYY*"({2...14});
ys € GIVENSY " ({6...14}).
zr, yp € GIVEN'Y({12...14});
va € GIVEN""Y({2...14}).

4.5 Result Variables

The result of GIVE-N-TAKE analysis is expressed by
the following variables.

RES;n(n): The production generated at the entry of n.
This includes everything that is guaranteed to be
available at n itself but is not yet available at the
entry of n.

The READsenq’s stem from zp € RES;.’“"({1})
and y, € RES;.Y“"({6,10}); the READ gecy’s are
2, yp € RESI®Y({12}).

RES,u:(n): The production at the exit of n. This in-
cludes items whose availability has been guaran-
teed to some successors of n and that are not al-
ready available on exit from n.

In Figure 12, there is no production needed on
exit.

Note that 2 € RES,4:(n) implies by Equation 15 that
z ¢ GIVEN,yu:(n), but that for some s € SUCCSFJ(n)
and p € PREDSFJ(S)—{n}, z € GIVEN gyt (p) must hold.
In other words, n must have a successor s which in turn
has a predecessor p # n that produces an z which is
consumed by s and not produced by n. Furthermore,
the lack of critical edges implies that s must be the
only successor of n, and therefore it does not matter
whether we use union or intersection in Equation 15.

Figure 14 shows the code from Figure 11 annotated
with communication generation as computed by GIVE-
N-TAKE.

5 Solving the Equations

This section presents an algorithm, GiveNTake, for
solving a code placement problem using the GIVE-N-
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‘ READgng{z(11: N +10)} ‘

doi=1,N
y(a(z)) = ...
if test(i) then
WRITE g¢pn g {y(a(l : ?’))}
WRITE gecy {y(a(l : 7))}
READ g¢na{y(b(1: N))}
goto 77
endif
enddo
WRITE g¢png {y(a(l: N))}
WRITE gecy {y(a(l : N))}
READgena{y(b(1: N))}
doj=1,N
enddo
77 \ READ grecy {#(11 : N +10), y(b(1 : N))} \
dok=1,N

...=o(k+10) 4+ y(b(k))
enddo

Figure 14: The code from Figure 11 annotated with
communication statements.

TAKE framework. Section 4 already listed the equa-
tions that lead from the initial data flow variables to
What is left towards an actual
algorithm is a recipe for evaluating these equations.

the result variables.

5.1 The Constraints

The objective of the algorithm is to assign the flow
variables at each node a value that is consistent with
all equations; i.e., we have to reach a fized point. Note
that the number of evaluation iterations to reach a fixed
point may be constant, as is usually the case in interval
analysis. In general, the evaluation order is also impor-
tant for the convergence rate and, in some cases, termi-
nation behavior of the algorithm. For GIvE-N-TAKE,
there actually exists an order where the right hand side
of each equation to be evaluated is already fully known
due to previous computation. Therefore, GiveNTake
has to evaluate each equation only once for each node,
which implies guaranteed termination and low compu-
tational complexity (it also implies fastness [GW76]).
However, since the direction of the flow of informa-
tion varies across the equations, we still need multiple
passes over the control flow graph, solving a different
set of equations during each pass.

An objective for GiveNTake is to minimize the num-
ber of passes, therefore we partition the equations into
different sets that can be evaluated concurrently, i.e.,
within the same pass. It turns out that each of the
Sections 4.2, 4.3, 4.4, and 4.5 defines one set of equa-
tions that can be evaluated concurrently. We will re-



fer to these sets as S; (Equations 1...8), S2 (Equa-
tions 9, 10), Sz (Equations 11 ... 13), and S (Equa-
tions 14,15), respectively. Since all equations except
Equation 12 in S3 are the same for EAGER and Lazy
problems and S; and S are computed before Ss, the
variables defined in S; and S; are the same for both
kinds of problems. Therefore, we need to differentiate
between EAGER and LAzY only for variables defined
in S3 and S4. We distinguish these variables by super-
scripts eager and lazy.

To determine an order for solving the GIVE-N-TAKE
equations that yields a fixed point after evaluating each
equation only once, we have to make sure that an
equation is evaluated after the right hand side is fully
known. Inspection of the equations yields the following
constraints:

e S; should be evaluated in BACKWARD order (for

example, because Equation 8 defines TAKE;,.(n)
in terms of TAKEj,(s), with s € SUCCSEF(n)).

e S; should also be evaluated in UPWARD order
(e.g., Equation 3)).

e Si(n) (“the equations from S; for node n”)
should be computed before Si(n), but after
S5 (CHILDREN(n)).

o S5 should be evaluated in FORWARD order.

e S3 must be computed in FORWARD, DOWNWARD
fashion (i.e., PREORDER), after S;.

e S, has to be evaluated after S; and Ss, in any
order.

Intuitively, these constraints express that information
about consumption is flowing up and back, whereas
the availability of production gets propagated forward
and down. The production to be inserted at a node,
however, again depends on the successors of the node.

5.2 The Algorithm

The resulting algorithm is shown in Figure 15. A for-
mal proof that it does indeed obey all ordering con-
straints, as well as a proof that Give-N-TAKE meets
the correctness constraints (C1), (C2), and (C3), can
be found elsewhere [HK93].

As already noted, each equation is evaluated only
once for each node. Furthermore, each equation de-
pends only on a subset of neighbors. Therefore, the to-
tal complexity of GIVE-N-TAKE is O(FE) steps (where
the cost of each step depends on the current lattice and
its representation, for example bit vectors of a certain
length). As already noted in Section 3.3, E can be as-
sumed to be of a size in the order of the program size in
most cases; under this assumption, GIVE-N-TAKE as
well as other interval-based elimination methods have
linear time complexity.
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Procedure GiveNTake

Input: G = (N,E); Vn € N:
TAKE jnit(n), STEAL;pit(n), GIVE pnit(n)
Output: Yn € N: RES®Y*"(n) and/or RES'**Y (n)

forall n € N, in REVERSEPREORDER
forall ¢ € CHILDREN(n), in FORWARD order
Compute Equations 9, 10
endforall
Compute Equations 1...8
endforall
forall n € N, in PREORDER
Compute Equations 11...13 for EAGER/LAZY

endforall
foralln € N
Compute Equations 14,15 for EAGER/LAzZY
endforall
end
Figure 15: Algorithm GiveNTake computing an

EAGER/LAZY code placement. RES without subscripts
stands for both RES;, and RES,.;.

5.3 BEFORE vs. AFTER Problems

We mentioned earlier that an AFTER problem can es-
sentially be treated as a BEFORE problem with reversed
flow of control. However, this also means that the re-
versed flow graph has to fulfill the same requirements
from Section 3.3 as the original graph, which is not triv-
ially the case. For example, ENTRY edges may become
CYCLE edges (and vice versa), but each loop may have
only one CYCLE edge; this can be satisfied by adding
nodes similar to the SYNTHETIC nodes. More severely
is the requirement for G to be reducible, which will
be violated if the original graph had any JuMP edges,
since these will become jumps into loops. In fact, this
would prevent us from determining a unique set of in-
tervals for the reverse (G. For example, consider the
flow graph in Figure 16, which may be the result of
solving an AFTER problem for a program containing a
jump out of a loop. A consumption placed at node 4
might be hoisted into its header (node 3), which would
be unsafe (due to the path 1-2-5-3).

In our implementation, we handle this case by using
the same interval structure as for the original graph,
and preventing hoisting production out of loops that
contain JUMP edges. This can be done by either ac-
cordingly initializing STEAL;,;; for each header of a
loop containing a JUMP edge, or by ignoring for these
headers the contributions to TAKE coming from the
loop body (see Equation 5).



Figure 16: Flow graph containing a jump into a loop.
Note the synthetic (dashed) edge between nodes 2
and 3.

5.4 A Note on Synthetic Nodes

Having computed the result variables with GIVE-N-
TAKE, one still has to perform the actual program
optimizations by modifying the analyzed code. This
step might be complicated by having production placed
at a synthetic node, which would require new basic
blocks (see Figure 3). However, it may often be possi-
ble to shift production to a neighboring non-synthetic
node. This can either be done at code generation time,
or by post-processing the results of GIVE-N-TAKE, in
a way that is similar to a mechanism employed in
edge-placement [Dha88a] for avoiding code prolifera-
tion. Our implementation took the latter route, by
running a backward pass on G which checks whether
these movements can be done without conflicts.

6 Summary

This paper has outlined a general code generation
framework, based on Tarjan intervals, that handles sev-
eral different classes of problems. Unlike previous ap-
proaches, it does not assume atomicity. Instead, GIVE-
N-TAKE provides both EAGER and LAzy solutions,
and it guarantees their balance across arbitrary control
flow. Furthermore, GIVE-N-TAKE can be applied to
both BEFORE and AFTER problems, and it can take ad-
vantage of side effects to further eliminate unnecessary
production without affecting balance. Other nice prop-
erties of GIVE-N-TAKE include the option to hoist code
out of zero-trip loop constructs even for nested loops,
and the natural handling of irregular loop bounds and
access patterns.

Note, however, that like with code placement strate-
gies in general, there may be conflicting goals in how
far to separate production and consumption. Often
the computations compete for resources, like registers
or message buffers, which could cause some “optimiza-
tions” to have a negative effect in practice. While
GIVE-N-TAKE does not address this issue directly, cer-
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tain extensions (such as a heuristic for inserting addi-
tional STEAL;y;:’s which blocks production) could help
to solve this conflict. Other possible extensions are
the combination with dependence analysis (for exam-
ple by refining the initial assignments to TAKE;,;; and
STEAL i), or a more thorough treatment of jumps out
of loops for AFTER problems. While our current ap-
proach (Section 5.3) prevents unsafe code generation, it
may miss some otherwise legal optimizations. Related
to that is the issue of analyzing irreducible graphs in
general.

We have implemented GIVE-N-TAKE in C+4 as
part of a Fortran D compiler, where it is used to gen-
erate messages for distributed memory machines. We
generate READs, WRITEs, and WRITEs combined with
different reduction operations (such as summation), all
of which can be placed either atomically (for example,
for a library call), or divided into sends and receives.
The non-atomicity and balance attributes enables mes-
sage latency hiding and other optimization to be per-
formed across arbitrary control flow. GIVE-N-TAKE’s
flexibility allowed us to apply the same algorithm to
very different tasks that traditionally were solved with
separate frameworks. This simplified the implementa-
tion in the Fortran D compiler significantly.

We expect GIVE-N-TAKE to have potential use in
other areas as well, like general memory hierarchy
issues (cache prefetching, register allocation, parallel
I/O) and classic partial redundancy elimination appli-
cations (common subexpression elimination, loop in-
variant code motion, etc.).
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