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GMRES ON (NEARLY) SINGULAR SYSTEMSx
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Abstract. We consider the behavior of the GMRES method for solving a linear system Az = b when A is singular
or nearly so, i.e., ill-conditioned. The (near) singularity of A may or may not affect the performance of GMRES,
depending on the nature of the system and the initial approximate solution. For singular A, we give conditions
under which the GMRES iterates converge safely to a least-squares solution or to the pseudo-inverse solution. These
results also apply to any residual minimizing Krylov subspace method that is mathematically equivalent to GMRES.
A practical procedure is outlined for efficiently and reliably detecting singularity or ill-conditioning when it becomes
a threat to the performance of GMRES.
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1. Introduction. The generalized minimal residual (GMRES) method of Saad and Schultz [16]
is widely used for solving a general linear system

(1.1) Az =b, Ae R,

and its behavior is well-understood when A is nonsingular. Qur purpose here is to examine the
behavior of GMRES when A is singular or nearly so, i.e., ill-conditioned, and to formulate practically
effective ways of recognizing singularity or ill-conditioning when it might significantly affect the
performance of the method.

Abstractly, GMRES begins with an initial approximate solution zg and initial residual ro =
b — Azg and characterizes the kth approximate solution as x; = zg + 2, where zp solves

1.2 in [|b— A = min [|ro — Az]2.
(1.2) min [|b— Ao + 2)ll2 = min [|ro — Azl

Here, Ky, is the kth Krylov subspace determined by A and rg, defined by
Ky = span{rg, Arg, ..., A" 1rg}.

There are a number of ways of implementing GMRES, but in each, one generates a basis of Ky
and then replaces (1.2) by an unconstrained k-dimensional least-squares problem. We shall not be
more specific about the basis generating process at this point, except to assume that it successfully
generates a basis if and only if dim Ky = k, where “dim” denotes dimension.

Note that, trivially, dim A(Ky) < dim £ < k for each k. We shall say that GMRES does not
break down at the kth step if dim A(Ky) = k. In this case, dim A(Ky) = dim K, and, hence, (1.2)
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has a unique solution. Furthermore, since dim K = k, a basis of Ky is successfully generated and
the k-dimensional least-squares problem also has a unique solution. This definition addresses two
distinct kinds of breakdown: rank deficiency of the least-squares problem (1.2), which occurs when
dim A(Ky) < dim Ky, and degeneracy of Ky, which occurs when dim Ky < k. (The latter kind of
breakdown is sometimes referred to as “lucky” or “happy” breakdown, especially in the context of
the Lanczos algorithm, cf. [6] and [16].) The definition is intended to focus on essential breakdown
of the method, as opposed to breakdown associated with any particular implementation or ancillary
algorithm used in it. Note that if dim A(Kj) < k for some k, then K; = Ky, for all 7 > k and no
further improvement is possible, even if subsequent z; € K; are well-defined in some way.

For perspective, we recall that Proposition 2, p. 865, of [16] ensures that, if A is nonsingular,
then GMRES does not break down until the solution of (1.1) has been found. Breakdown in [16,
Prop. 2, p. 865]is associated specifically with breakdown of the Arnoldi process used in the GMRES
implementation in [16], but the statement remains true with our definition (see §2 below).

In contrast to the nonsingular case, anything may happen when A is singular. Example 1.1
below shows that GMRES may break down before getting anywhere at all, even when the system has
a solution, or it may determine a least-squares solution' or the pseudo-inverse solution? without
breaking down. Example 1.2 shows that even if a least-squares solution or the pseudo-inverse
solution is reached, this may not be evident from the behavior of GMRES; indeed, GMRES may
continue for a number of additional steps without breakdown (or further progress).

FExample 1.1. Suppose that

R R B

Then 7o = (1,0)T and Arg = (0,0)?, and GMRES breaks down at the first step. Note that g is not
a (least-squares) solution. If A is changed to
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then, for the same b and xq, we have rg = (1,0)T = Arg, and GMRES determines without breakdown
z1 = (1,0)7, which is a least-squares solution but not the pseudo-inverse solution. If we also
change b to b = (1,1)7, then, for the same zg, we have ro = (1,1)7 and Arg = (2,0)?, and GMRES
determines without breakdown z; = (1/2,1/2)%, which is the pseudo-inverse solution. Note that
dim A(K3) = 1 in these last two cases, so GMRES breaks down at the step after the least-squares or
pseudo-inverse solution has been found.

FExample 1.2. For arbitrary n, let A be the “shift” operator with ones on the first subdiagonal
and zeroes elsewhere. Then for b = (1,0,---,0)" and g = (0,---,0)7, z¢ itself is the pseudo-inverse
solution, but GMRES proceeds without breakdown (or progress) until the nth step, at which point
it breaks down with dim A(K,,) =n — 1.

In §2 below, we explore the theoretical behavior of GMRES when A is singular and, in particular,
determine circumstances in which the GMRES iterates converge without breakdown to a least-squares
solution or the pseudo-inverse solution of (1.1). We also discuss the conditioning of the least-squares
problem (1.2) prior to breakdown, since this is crucial to the practical performance of the method.
The results in §2 apply not only to GMRES but also to any mathematically equivalent method, i.e.,
any method that takes steps characterized by the residual minimizing property (1.2). (See [8, §2.4]
for a discussion of mathematically equivalent methods.) Thus in §2, one can think of GMRES as a

1 An z € R™ for which |6 — Az||2 is minimal.

2 The least-squares solution z such that ||z]|z is minimal.
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generic minimal residual method that characterizes corrections by (1.2). In §3, we discuss further
how singularity or ill-conditioning can appear in GMRES and affect its practical performance. We
outline an efficient and reliable way of detecting singularity or ill-conditioning when it threatens to
cause breakdown or otherwise degrade the performance of the method. In §4, we discuss several
illustrative numerical experiments.

Others have considered GMRES and related methods on singular or ill-conditioned systems. It
is noted in [3] and [15] that GMRES can be used to solve singular homogeneous systems that arise in
Markov chain modeling. In [9], conditions are given for the convergence of general Krylov subspace
methods on singular systems, and particular results are derived for the QuRr [10] and TFQMR [7]
methods (see §2 below), with applications to Markov chain modeling. Deflation-like modifications
of GMRES based on truncated singular value decomposition solutions have recently been considered
in [12]; see also [13] and the references in [12] and [13] for more on deflation techniques for nearly
singular systems. In [14], extensions of GMRES are considered in which Krylov subspaces are
augmented with approximate eigenvectors generated during previous iterations. These extensions
appear to be most effective when there are a few relatively small eigenvalues.

In the following, we denote the null-space and range of A by N (A) and R(A), respectively,
and say that (1.1) is consistent if b € R(A). We set 1, = b — Axy for each k and denote the
restriction of A to a subspace § C IR™ by Als. As a convention, we always regard z( as determined
without breakdown at the “0Oth” step and define Ko = {0}. Also, we assume that GMRES terminates
immediately upon breakdown.

2. Theoretical discussion. Although our interest is primarily in (1.1) when A is singular,
the results in this section also apply, as appropriate, when A is nonsingular. The questions of
interest are the following:

e Will GMRES determine a least-squares solution without breakdown?
e When has a least-squares solution been reached by GMRES?
e When is a least-squares solution determined by GMRES the pseudo-inverse solution?
e How ill-conditioned can the GMRES least-squares problem (1.2) become?
We begin with several general results.

Lemma 2.1. Apply GMRES to (1.1), and suppose that dim Ky = k for some k > 0. Then
exactly one of the following holds:

(i) dim A(Kg) =k — 1 and A(zo + 2) # b for every z € Ky;

(ii) dim A(Kg) =k, dim Kyy1 = k, @y is uniquely defined and Azy = b;

(iii) dim A(Ky) =k, dim K41 = k4 1, x is uniquely defined and Az, # b.

Proof. First, note that if dim K, = k and £ > 0, then dim A(K,_1) = k—1. Indeed, in this case
o, Arg, ..., A¥=1ry constitute a basis of Kj and, therefore, Arg, ..., A¥~1rg constitute a basis of
A(Kk—1). With this observation and the fact that A(Ky_1) C A(Ky) for k£ > 0, it is clear that the
assumption dim Ky = k implies k — 1 < dim A(Ky) < k for all k£ > 0. Note also that ro € A(Kk_1)
if k> 0.

If dim A(Ky) = k — 1, then conclusions (ii) and (ili) cannot hold. Furthermore, k& > 0 and
A(Kg—1) = A(Kg) in this case, and, since ro ¢ A(Ky—1), it follows that rqg ¢ A(Kx). Then
A(zo + z) # b for every z € Ki, and (only) conclusion (i) holds.

Suppose that dim A(Ky) = k. Then zj is uniquely defined; furthermore, since A(Ky) C Ki41,
we have £ = dim A(Ky) < dim Kg4q < k4 1. If dim Kyy1 = k, then we must have A(Ky) = Kiqq
and, hence, rg € A(Ky). It follows from (1.2) that 7, = 0 and Az = b; thus (only) conclusion (ii)
holds. If dim Cpyq = k4 1, then ro € A(Ky), rp # 0, Azy, # b, and (only) conclusion (iii) holds. O

This lemma implies the following result:

THEOREM 2.2. Apply GMRES lo (1.1). Then, at some step, either
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(a) GMRES breaks down through rank deficiency of the least-squares problem (1.2) without de-
termining a solution,
or

(b) GMRES determines a solution without breakdown and then breaks down at the next step

through degeneracy of the Krylov subspace.

Proof. We have dim Ko = 0. Assume that, for some k > 0, GMRES has proceeded to the kth step
with dim K = k. Then exactly one of the three conclusions of Lemma 2.1 must hold. If conclusion
(i) holds, then we have (a) above. If conclusion (ii) holds, then we have (b). If conclusion (iii) holds,
then Azjy # b and the iteration continues to the next step. The theorem follows by induction. 0O

The alternatives of this theorem give useful insights into the eventual outcome of applying
GMRES to (1.1). For example, if (1.1) is not consistent, then breakdown through rank deficiency
of (1.2) will eventually occur; in practice, this may be preceded by dangerous ill-conditioning, as
discussed further below. Conversely, breakdown through degeneracy of the Krylov subspace occurs
if and only if (1.1) is consistent and the solution has been found. Also, these results imply the
result in [16, Prop. 2, p. 865] cited earlier: If A is nonsingular, then GMRES does not break down
until the solution of (1.1) has been found. Indeed, if A is nonsingular, then GMRES cannot break
down through rank deficiency of (1.2), and the second alternative must hold. However, the reader is
cautioned to make inferences carefully; e.g., Example 1.1 above shows that there can be breakdown
through rank deficiency in the consistent case before a solution is found.

The next result characterizes circumstances in which a least-squares solution has been reached.

LEMMA 2.3. At the kth step, GMRES delermines a least-squares solution of (1.1) without
breakdown if and only if

(2.1) dim AT (Kyy1) = dim A(K}) = k.

Proof. By definition, GMRES does not break down at the kth step if and only if dim A(K) = k.
Thus we need only show that z; is a least-squares solution of (1.1) if and only if dim AT(Kyy1) =
dim A(Ky).

From (1.2), we have that z is a least-squares solution of (1.1) if and only if it is possible to
reach a least-squares solution of (1.1) through some correction in Ky, i.e., if and only if there is
some z € Kj, such that

(2.2) 0=AT[b— A(zo + 2)] = AT (ro — A2).

But (2.2) holds for some z € Ky if and only if ATrg € AT A(K}), which is equivalent to AT(Kj11) =
AT A(Ky). To complete the proof, we note that dim ATA(K;) = dim A(K}). Indeed, we clearly
have dim AT A(Kg) < dim A(Ky). If dim AT A(K) < dim A(K}), then there is a w € K}, such that
Aw # 0 and AT Aw = 0. But then 0 = w? AT Aw = || Aw||3, which is a contradiction. [

With Lemma 2.1, one can easily extend Lemma 2.3 to conclude additionally that if (2.1) holds,
then (1.1) is consistent if and only if dim K41 = k, i.e., GMRES breaks down at step £+ 1 through
degeneracy of the Krylov subspace.

We use Lemma 2.3 to characterize the property of A that yields the most satisfactory answers to
the questions posed at the beginning of this section. This property is N (A4) = N(AT), equivalently,
N(A) = R(A)L, which holds when A is normal, e.g., when it is symmetric or skew symmetric. It
also clearly holds when A is nonsingular. In general, this property holds if and only if N(A)t is
an invariant subspace of A. Note also that it holds only if all eigenvectors of A associated with
nonzero eigenvalues are orthogonal to N'(A).



THEOREM 2.4. GMRES determines a least-squares solution of (1.1) without breakdown for all
b and z if and only if N(A) = N(AL). If N(A) = N(AT) and a least-squares solution is reached
at some step, then GMRES breaks down at the next step, with breakdown through degeneracy of the
Krylov subspace if (1.1) is consistent and through rank deficiency of the least-squares problem (1.2)
otherwise. Furthermore, if (1.1) is consistent and zq € R(A), then the solution reached is the
pseudo-inverse solution.

Proof. First, suppose that N(A) # N'(AT). One can choose b and z such that ro € N(A) and
ATrg £ 0. Then z¢ is not a least-squares solution. Furthermore, dim A(K;) = 0, so GMRES breaks
down at the first step before reaching a least-squares solution.

Now assume N (A) = N(AT). Then for each k, we have dim AT (Kxy1) = dim A(Kj41), and
(2.1) becomes

dim A(Kgp1) = dim A(Ky) = .

This condition must hold for some k£, 0 < k& < n, and it follows from Lemma 2.3 that GMRES
determines a least-squares solution zj without breakdown at the kth step. Furthermore, since
dim A(Ky41) = k, GMRES breaks down at step k£ + 1. One concludes from Theorem 2.2 that
breakdown is through degeneracy of the Krylov subspace if (1.1) is consistent and through rank
deficiency of the least-squares problem (1.2) otherwise. If (1.1) is consistent, then zj is a solution
and, furthermore, Ky C R(A). If in addition zg € R(A), then z; = 29+ 21 € 20+ Kr C R(A) =
N(A)L. Since a (least-squares) solution of (1.1) is the pseudo-inverse solution if and only if it lies
in N(A)L, it follows that x is the pseudo-inverse solution. O

If it is known that A (A) = N(AT), then Theorem 2.4 provides theoretical assurance not
only that GMREs will determine a least-squares solution of (1.1) without breakdown but also that
reaching it will be indicated by breakdown at the next step. If (1.1) is consistent as well, then
choosing zg € R(A), e.g., zg = 0, will yield the pseudo-inverse solution without breakdown, and
reaching it will be indicated by zero residual norm.

If V(A) = N(AT) and (1.1) is consistent, then the least-squares problem (1.2) will remain as
well-conditioned as the nature of A will allow until a solution of (1.1) is reached. Indeed, if we
denote

AkEAl)Ck,

then the appropriate condition number for (1.2) is ka(Ay), which satisfies
A
bt /Il 121/ 1

. A~/ = . A / =
omin Azl /el min 1Azl /2]

(2.3) Ko(Ay) = K2(AlR(a));

since Ky C R(A) in the consistent case. Note that, since R(A) = N(AT)L = N(4)*, rk2(Alr(a)) is
just the ratio of the largest singular value of A to the smallest positive one. Also, recall from above
that, in the consistent case, if a solution is reached at some step, then breakdown of GMRES at the
next step occurs because of degeneracy of the Krylov subspace and not because of rank deficiency of
the least-squares problem (1.2). These reassuring results are to be expected, for if A(A4) = V(A7)
and (1.1) is consistent, then everything reduces to the nonsingular case on R(A) = N (A)*.

If V(A) = N(AT) but (1.1) is not consistent, then, despite the theoretical guarantee of Theorem
2.4 that GMRES will not break down, the least-squares problem (1.2) may necessarily become
dangerously ill-conditioned before a least-squares solution of (1.1) is reached, regardless of the
conditioning of A|R(A). This is shown by Theorem 2.5 below. It is, perhaps, not surprising,
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because if a least-squares solution is reached at some step, then, in the inconsistent case, breakdown
at the next step occurs because of rank deficiency of the least-squares problem (1.2), rather than
degeneracy of the Krylov subspace.

THEOREM 2.5. Suppose that N(A) = N(AT), and denote the least-squares residual for (1.1)
by r«. If rg—1 # 7+ for some k, then

(2.4) Ka(Ag) > H{lkHZ ) l|lTe—1ll2
WAl Al =l

where A, = Alg, and Ay = Al +span {rs}-
Proof. Note that 7. € R(A)t = N(A)and r4_1 — 7. € R(A) = N(A)L. Then, since ry_1 —7. €
Ky + span{r.}, we have

Arioalls = [JA(re—r = 7o+ r)ll2 = [JA(re—1 — 72)]l2
< N Akllz - reer = rellz = 1Al - /llrecal2 = i3,
whence
Arp Vlireall3 - I3
(2.5) IArealls 7,

751l 7%=l

Since r4—1 € K, (2.4) follows from (2.5) and the definition of ky(A) (see (2.3)). D
If (1.1) is consistent, then r, = 0 and Ay = Ag. It follows that (2.4) is just the trivial bound
k2(Ag) > 1in this case. In general, we have 1 > [|Axla/[|All2 > [|Axll2/[|All2, and (2.4) yields

[[Akll2 il

. 7
Al e 13 = 11711

which may be more easily applied in the inconsistent case.

If Ais singular and V(A) = N(AT), then it is evident from (2.6) that, for an unfortunate choice
of b and g, the least-squares problem (1.2) will become so ill-conditioned before breakdown that
little or no accuracy can be expected in a solution computed in finite-precision arithmetic. Indeed,
in view of (2.6), one would expect that, in many cases, the residual for the computed solution
will first decrease in norm for a number of iterations and then lose accuracy and perhaps increase
as a least-squares solution is approached and accuracy is degraded by increasing ill-conditioning.
(This is seen in Experiment 4.2 below.) In such cases, it would clearly be desirable to terminate the
iterations when approximately optimal accuracy has been reached. Note that the usual termination
criteria based on the size of the residual norm are unlikely to be of any use in this case; some
alternative criterion is needed.

We show how (2.6) can be used to derive a heuristic guideline for terminating the iterations at
an approximately optimal point in finite-precision arithmetic. We make two assumptions that are
reasonable but by no means the only possible assumptions; our main purpose is to demonstrate the
method of derivation. The first assumption is that x3(Ay) is about as small as possible, given the
lower bound (2.6), i.e., that

(2.6) Ko(Agk) >

| Akll2 I7k=1]l2

Ka(Ag) ~
1Al il = el




The second assumption is that the computed value of r;, denoted by 7, satisfies

I7e = rill2

~ ukq(Ag
Trallz 2(4s)

where u is unit rounding error. A rigorous worst-case bound on |7y — r&||2/]|70||2 would require
ukz(Ag) multiplied by a polynomial of low degree in n and & (see [11, Ch. 5]), but this is not
necessary here. With these assumptions, we have

17x — 7ll2 17k = 7ella | llre — 7ll2
lI7oll2 lI7oll2 lImoll2

[l7&l13 — [Ir-II3

~ ukg(Ar)+ T
>0 SR [ R
B lI7oll2
[ Akllz [Ire=1ll2 1
~ ukg(Ap) + . .
AL Tl mal )
= B(KQ(Ak))v
where
Akll2 llre-all2 1
B(k) =us + . Lo
) T4l ol s
It is easily seen that B is minimized when
(2.8) _ _ Az llre—allz 1
i 1Az lrollz w”’

which suggests a heuristic guideline as follows: If the iterations are terminated with K2(Ag) = Kmin
given by (2.8), then (2.7) gives an approximate minimal bound

17 — 7l]2
lIToll2

[Akllz  [lre-allo
IAll2 ol

(2.9) < B(Fmin) = 2

This can be simplified for practical purposes by assuming that [[Ag|l2/[|A|lz = 1 and [|re—1|]2 =
. We discuss how to monitor ky( Ay) efficiently in practice in §3.

If N(A) # N(AT), then it follows from Theorem 2.4 that, for some b and zg, GMRES will
break down before determining a least-squares solution of (1.1). However, there is an important
special case in which GMRES still reliably determines a least-squares solution, viz., that in which
N(A)NR(A) = {0} and (1.1) is consistent. This occurs, e.g., in Experiment 4.3 below.

THEOREM 2.6. Suppose that N(A)NR(A) = {0}. If(1.1) is consistent, then GMRES determines
a solution without breakdown at some step and breaks down at the next step through degeneracy of
the Krylov subspace.

Proof. Since (1.1) is consistent, rg € R(A) and Ky C R(A) for each k. Since N(A)NR(A) =
{0}, this implies that dim A(Ky) = dim Ky, for each k. Then there cannot be breakdown through
rank deficiency of the least-squares problem (1.2), and the theorem follows from Theorem 2.2. O
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Conditions that are essentially equivalent to those in Theorem 2.6 appear in [9]. The index of
A, denoted index(A), is defined to be the smallest integer ¢ such that A? and A?*! have the same
rank. It is easily seen that index(A) = 1 if and only if A is singular and N(A)NR(A) = {0}. For a
consistent system (1.1) with index(A) = 1, general conditions are given in [9] under which a Krylov
subspace method is convergent. It is further shown in [9] that the QMR and TFQMR methods are
convergent for such a system.

IfN(A)NR(A) = {0} and (1.1) is consistent, then xy(Ay) satisfies (2.3). However, note that if
N(A) # N(AT), then miner(a), 20 [[A2[]2/||2|l2 may be smaller than the smallest positive singular
value of A, and so 52(A|R(A)) may be larger than the ratio of the largest singular value of A to
the smallest positive one. Still, the least-squares problem (1.2) is as well-conditioned as the nature
of A will allow and cannot become arbitrarily ill-conditioned before a solution is determined by
GMRES through an unfortunate choice of b and zy. This is not surprising, since GMRES breakdown
occurs because of degeneracy of the Krylov subspace, rather than rank deficiency of the least-
squares problem (1.2); as when (1.1) is consistent and N'(A) = N (AT), the setting reduces to the
nonsingular case on R(A), although now R(A) may not be A'(A)L. When (1.1) is not consistent,
breakdown must occur because of rank deficiency of (1.2), and in general we cannot expect (1.2)
to remain well-conditioned, whether or not a least-squares solution is reached.

We conclude this section by noting that, in some applications, one can easily project b onto
R(A). For example, in each of Experiments 4.2 and 4.3 below, N(A”T) is one-dimensional, and it
is not difficult to determine a unit vector in AN'(AT) and then to project b onto N(AT)L = R(A).
In such an application, if GMRES can be expected to behave well on a consistent system, e.g., if
N(A) = N(AT) or N(A) N R(A) = {0}, then it is clearly desirable to project b onto R(A) before
starting GMRES. By doing this, one can determine a least-squares solution for the original b without
risking the dangerous ill-conditioning that may precede GMRES breakdown with rank deficiency of
(1.2). In addition, if N(A) = N(AT), then one can determine the pseudo-inverse solution by taking
g € R(A), e.g., 29 = 0.

3. Practical handling of (near) singularity. In §2, we consider the conditioning of the
least-squares problem (1.2) and how it might be affected by A and perhaps b and zg. In this
section, we look further into how singularity or ill-conditioning can arise in GMRES and discuss how
conditioning can be monitored efliciently in practice.

Recall from §1 that, prior to breakdown, an implementation of GMRES generates a basis of Ky
for each k. We denote the matrix having the basis vectors as columns by By € R™**. The kth
GMRES correction zx, which is the solution of (1.2), is not computed for each k, but when desired,
it is determined by first finding y that solves

(3.1) min [|rg — ABgy||2
yeRF

and then forming z; = Bgyk. Thus ill-conditioning or singularity is a concern in GMRES only if it
becomes manifested in ill-conditioning or rank deficiency of ABy or Bj.

Sound GMRES implementations are designed so that, as much as possible, each By is well-
conditioned regardless of the conditioning of A. For example, the standard implementation of [16]
and Householder variants in [18] determine ideally conditioned Bj such that BkTBk = I} (in exact
arithmetic). Other implementations in [2] and [19] generate By that are usually well-conditioned, if
not ideally conditioned. In any event, in well-constructed GMRES implementations, the conditioning
of By does not suffer directly from ill-conditioning of A; furthermore, any ill-conditioning of By
seems likely to be reflected in ill-conditioning of ABj. Therefore, we focus on the conditioning of

ABj, here.



In practice, a reasonable course is to monitor the conditioning of ABjy and terminate the GMRES
iterations if excessive ill-conditioning or rank deficiency appears. Typically, the solution of (3.1)
is computed using a factorization ABj = QRy, where Q) € IR™* has orthonormal columns and
Ry € R*** is upper triangular. It is reasonable to assume that this factorization is determined
using one or more stable factorization techniques. For example, the implementations of [16] and
[18] first use modified Gram—Schmidt or, respectively, Householder transformations to produce
ABy = Bpy1Hy, where Hy, € R+ %k g upper Hessenberg, and then use plane rotations Jy,
.oy Ji to obtain AgBy = QgRg with Qr = BryrJi .. JL (I, 0)1 and Ry = (Ix,0)Jx ... J1 Hg.
In general, each @ may be only implicitly specified, as in the implementations of [16] and [18],
but each Rj is always produced explicitly. Then, since the conditioning of ABj is determined by
that of Ry, it suffices to monitor the conditioning of Ry and terminate the iterations if excessive
ill-conditioning or singularity appears.

In the important case in which Bf By = I, as in the implementations of [16] and [18], we
have ko(Ry) = Ko(ABj) = ka(Ag) < Ko(A), where Ay = A|g, as above. This inequality need not
be strict; for example, if A is nonsingular and GMRES proceeds for n steps without breakdown,
then A, = A and k2(R,) = k2(As) = k2(A). Thus R can become fully as ill-conditioned as A.
However, if rq lies in an invariant proper subspace, then k3(Rj) may remain much less than xy(A).
The following example illustrates extreme behavior.

FErample 3.1. Assume that BkTB;C = I for each k. Suppose that we have o9 > ... > 0,1 =
on, > 0, and define

0 0 0,-1 O
g1 0 0
A= 0 0 .

Op—2 0 0

0 0 0 o
Clearly, 01, ..., o, are the singular values of A, and k3(A) = 01/0,. Fori =1, ..., n, let e; denote
the ith column of I,,. If rg = eq, then we have Ky = span{ey,...,ex} and ka(Ry) = k2(Ak) = 01/0%
for k=1, ..., n— 1. In particular, the solution is reached at the (n — 1)st step with xa(R,—1) =

01/0n—1 = 01/0, = K2(A). However, if rq = e, then the solution is reached at the first step with
ko(R1) = oy fo, = 1.

A very efficient means of monitoring the conditioning of Ry is provided by incremental condition
estimation (1ICE) [4], [5]. This determines estimates of the largest and smallest singular values of
each Ry in O(k) arithmetic operations, given estimates of the largest and smallest singular values of
Ri_1. Thus one can begin with £ = 1 and use ICE to estimate incrementally the condition number
of each successive Ry as k increases. Over a cycle of m GMRES steps, the total cost of estimating
the condition number of each Ry, 1 < k < m, is O(m?) arithmetic operations, which is negligible
in most applications. A well-developed Fortran implementation of ICE is provided by auxiliary
routine xLAIC1 of LAPACK [1], where x =s for single precision or x =D for double precision. This
implementation was used in all of the numerical experiments reported in §4.

4. Numerical experiments. In this section, we discuss several numerical experiments that
illustrate the theoretical and practical points brought out above. A standard modified Gram-
Schmidt GMRES implementation, as originally outlined in [16], was used in all experiments. Recall
that with this implementation, the basis matrix By is ideally conditioned, with B,{Bk = Ip. This
implementation was augmented with routine bLAIC] of LAPACK for monitoring conditioning of the
triangular factor of ABjy as discussed above. In all experiments, we took the zero vector to be
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the initial approximate solution and specified a stopping tolerance tol so that the GMRES iterations
would terminate when ||rg||2 < tol||bl|;. Of course, there was no expectation of stopping on the
basis of such a test in cases in which (1.1) was not consistent; in these cases, termination was
based on other criteria noted below. All computing was done in double precision Fortran on Sun
Microsytems Sparc architectures.

Ezxperiment 4.1. This experiment, which involves a contrived problem, points up the danger of
not monitoring the conditioning of ABj) and terminating when excessive ill-conditioning appears.
The matrix A is from the example in [6, §6],

0 1

-1 0
We assume that n is odd, in which case A is singular with

N(A) = span{(1,0,1,0,---,0,1)T}.

Since A is skew symmetric, the conclusions of Theorem 2.4 hold, at least in exact arithmetic, and
GMRES should find a least-squares solution of (1.1) without breakdown and then exhibit breakdown
at the next step. In floating point arithmetic, however, GMRES produced misleading results.

We took n = 49, tol = 107% and first ran GMRES with b = (1/4/2,0,---,0,—1/v/2)T, for which
(1.1) is consistent. GMRES safely terminated with a computed residual norm of 1.57 x 107'¢ when
the pseudo-inverse solution was reached at the 24th step; the largest observed condition number
estimate was 12.7. We then ran GMRES with b = (1/v/2,0,---,0,1/v/2)T, for which (1.1) is not
consistent; the least-squares residual norm is v/2/5. In exact arithmetic, a least-squares solution
would have been obtained at the 24th step, and this would have been indicated by breakdown at the
25th step in the form of rank deficiency in the least-squares problems (1.2) and (3.1). Because of
rounding error, exact breakdown did not occur, nor were any arithmetic exceptions such as overflow
observed. However, the condition number estimate went from 12.7 at the 24th step to 1.47 x 10'¢
and 1.79 x 10%° at the 25th and 26th steps, respectively. We allowed GMRES to continue, restarting
every 49 steps, until it declared successful termination at the 185th step with a computed residual
norm of 6.68 x 10~7. Of course, this was the value of the residual norm maintained recursively by
GMRES and not the true residual norm, which was 9.14 x 10'2 on termination!

We also note that the GMRES implementation used in these experiments did not re-evaluate
the residual and its norm directly at each restart, i.e., it did not multiply the current approximate
solution by A and subtract the result from b. Instead, it updated the residual at each restart by
forming a certain linear combination of the Arnoldi basis vectors generated in the previous cycle
of steps. Such updating saves an A-product at each restart and is usually a safe thing to do,
unless extreme residual norm reduction is desired. In this example, however, it was not safe, and
re-evaluating the residual directly at restarts would have indicated that GMRES had gone astray.

The next two experiments involve discretizations of boundary value problems for the partial
differential equation

ou
(4.1) Au + d% = f(z), = =(21,29) € 2 =10,1] x[0,1],
where d is a constant and f is a given function. In the experiments reported here, we discretized
(4.1) with the usual second-order centered differences on a 100 x 100 mesh of equally spaced
discretization points, so that the resulting linear systems were of dimension 10,000. We took
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d = 10 and preconditioned the discretized problems on the right with a fast Poisson solver from
Fisupack [17]. This preconditioner is very effective for this fairly small value of d. We took
tol = 10719 in order to see how GMRES behaved with a tight stopping tolerance. We also stopped the
iterations when the condition number estimate became greater than 1/(50u) = 10'%. In the trials
outlined below, there was no need to restart GMRES; in each case, there was termination because of
either sufficient residual norm reduction or excessive ill-conditioning before the maximum allowable
number of iterations (50) had been reached.

In each of these two experiments, it is possible to give a simple characterization of A(AT).
In each, then, we first consider a b for which (1.1) is not consistent and then project it onto
R(A) to obtain a consistent system that is effectively solved by GMRES. The result is both an
approximate solution of the consistent system and an approximate least-squares solution of the
original inconsistent system.

Fxperiment 4.2. In this experiment, we imposed periodic boundary conditions: u(z1,0) =
u(z1,1) and u(0,22) = u(1,z3) for 0 < 21,23 < 1. The matrix A is given as follows:

Tm Im Im -4 Q. Q_
A=— I , T, = a- € Bme7
h2 A . .
. . I, .. ooy
I, I, T, o4 a_ —4

and m = /n = 100, h = 1/m, and ayx = 1 £ dh/2. It is easy to verify that A is normal and that
(4.2) N(A) = N(AT) = span{(1,1,---, 1)T};

then Theorems 2.4 and 2.5 are applicable.

We first took b to be a discretization of f(z) = z1 + z,. For this b, (1.1) is not consistent;
the least-squares residual norm is 99. GMRES began with an initial residual norm of 107.1 and
terminated after 21 iterations with a condition number estimate greater than the termination value
1/(50u) ~ 10*. A subset of the iterations is shown in Table 4.1, which gives to 14-digit accuracy
both the residual norm values maintained recursively by GMRES and the directly computed residual
norms, as well as the condition number estimates. Note that the two norm values agree well and
decrease toward the least-squares residual norm through iteration 15, but then the computed norms
begin to increase while the recursive norm values continue erroneously to decrease below the least-
squares residual norm. Since u &~ 2.2 x 107! here, the heuristic guideline developed in §2 would
have called for termination when the condition number estimate was about 10%. Table 4.1 shows
that this would have been a very good point at which to terminate: The computed residual norm
would have been near its minimum value, and the recursive residual norm value would have still
been accurate. Note the pessimism of the bound (2.9) in this case.

Using the characterization of N (AT) in (4.2), we next projected the above b onto R(A) to
obtain a consistent system. The initial residual norm was 40.82. After 17 iterations, GMRES
successfully met the termination test based on tol = 107!° and terminated with a residual norm
of 2.441 x 107°. No major inaccuracy was observed; the recursive residual norm value agreed
with the directly computed residual norm to five significant digits. Since N'(A4) = NM(AT) and the
initial guess was zero, the final iterate was an approximate pseudo-inverse solution of not only the
consistent system but also the inconsistent system with the original b.

Fzperiment 4.3. In this experiment, we imposed Neumann boundary conditions: du(z)/0v =0
for z € 9Q. The matrix A is now given by
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Iteration | GMRES Recursive Computed Condition No.
No. Residual Norm Residual Norm Estimate
9 99.000000080681 | 99.000000080680 7.80 x 10°
10 99.000000005202 | 99.000000005201 4.17 x 104
11 99.000000000146 | 99.000000000145 1.65 x 10°
12 99.000000000008 | 99.000000000007 9.97 x 10°
13 99.000000000002 | 99.000000000000 4.71 x 108
14 99.000000000002 | 99.000000000000 3.20 x 107
15 99.000000000001 | 99.000000000001 1.76 x 108
16 98.999999999935 | 99.000000000068 1.33 x 10°
17 98.999999997323 | 99.000000002679 8.41 x 10°
18 98.999999811806 | 99.000000188196 | 7.05 x 10'°
19 98.999990468226 | 99.000009534599 | 5.02 x 10!

TABLE 4.1
GMRES iterations 9-19 on problem (4.1) with periodic boundary conditions.

€ Bme7
—4 Q.
T 2 —4
and m, h, and ay are as in Experiment 4.2. We have N(4) = span{(1,1,---,1)T} as before, but
now N (A1) # N(A). Indeed, we determine A'(AT) as follows: Set

D,, = diag (1,2/a_,2a;/a?, -+, 2077/ 7% o772 [a7 %) € R™F™,

and define a block-diagonal matrix D = diag(D,,2D,, - +,2D, Dy) € R™™. Then one can
verify that DA is symmetric, and it follows that AM(AT) = span{D(1,1,---,1)'}. With this
characterization of N(AT), one sees that A (A)NR(A) = {0}; then Theorem 2.6 applies when (1.1)
is consistent.

The procedures and observations in this experiment were much like those in Experiment 4.2. We
first took b to be a discretization of f(z) = 1+ 23 +sin 1021 cos 10z, +e'97172 This gave somewhat
more dramatic results than the choice of f in Experiment 4.2. For this b, (1.1) is not consistent;
the least-squares residual is 5.302 x 10%. GMRES began with an initial residual norm of 1.232 x 10°
and terminated after 30 iterations with a condition number estimate greater than 1/(50u) =~ 104
The final computed residual norm was 6.305 x 10, which suggests that the GMRES iterates were
not converging to a least-squares solution (at least not in any practical sense, given the very large
condition number). We next used the characterization N (A7) = span{D(1,1,---,1)T} to project
this b onto R(A) and obtain a consistent system. The initial residual norm was 1.112 x 10°. After
23 iterations, GMRES successfully met the termination test based on tol = 107!° and terminated
with a residual norm of 8.716 x 107%. No major inaccuracy was observed; the recursive residual
norm agreed with the directly computed residual norm to three significant digits. In this case, the
final iterate was not a pseudo-inverse solution of either the consistent system or the inconsistent
system with the original b.
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5. Summary discussion. We have addressed the performance of GMRES on a linear system
Az = b when A is singular or ill-conditioned. Theoretical results are given that are of interest
primarily in the singular case; these hold not only for GMRES but also for any mathematically
equivalent method. In general, at some step, GMRES will either (a) break down through rank
deficiency of the GMRES least-squares problem without determining a solution or (b) determine
a solution without breakdown and then break down at the next step through degeneracy of the
Krylov subspace.

More extensive results hold when A (A) = N (AT). This condition is necessary and sufficient for
GMRES to determine a least-squares solution without breakdown for all b and z¢. If N'(A) = N(AT)
and the system is consistent, then the condition number of the GMRES least-squares problem remains
bounded by HQ(A|R(A)), which, in this case, is the ratio of the largest singular value of A to the
smallest positive one. If g € R(A) as well, then the solution determined by GMRES is the pseudo-
inverse solution. If A(A) = N (AT) and the system is not consistent, then, for some b and z¢, the
GMRES least-squares problem will necessarily become dangerously ill-conditioned before a least-
squares solution is reached, despite the theoretical guarantee of no breakdown. However, one may
be able to use the condition number of the GMRES least-squares problem to determine when to
terminate with nearly the best obtainable accuracy.

If N(A)N R(A) = {0} and the system is consistent, then GMRES will produce a solution
without breakdown, even if A(A) # N(AT). In this case, the condition number of the GMRES
least-squares problem again remains bounded by HQ(A|R(A)), but this may be larger than the ratio
of the largest singular value of A to the smallest positive one. Still, this condition number cannot
become arbitrarily large through an unfortunate choice of b and zy.

In some applications in which the system is not consistent, it may be possible to project b onto
R(A). If GMRES can be expected to solve consistent systems reliably, e.g., if N(A) = N(AT) or
N(A)NR(A) = {0}, then applying GMRES to the consistent system with the projected b will safely
yield a least-squares solution of the original inconsistent system.

In practice, the kth GMRES step is obtained by reducing the GMRES least-squares problem to
an unconstrained k-dimensional least-squares problem, which is solved through @ R factorization.
In numerically sound GMRES implementations, singularity or ill-conditioning of A is a concern only
if it becomes manifested in singularity or ill-conditioning of the upper-triangular factors, which
may or may not occur before a solution is found. The condition numbers of these factors can be
estimated very efficiently using incremental condition estimation (1CE) [4], [5].

Acknowledgment. The authors are grateful to the referees and the editor for their helpful
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