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Abstract

The inverse problem of tomography is an iterative procedure. It requires the computation
of the gradient of the traveltime misfit cost function many times. This calculation is custom-
arily done by ray tracing, the path length of the rays being closely related to the gradient.
We propose in this work an alternative method to compute the gradient of the traveltime
cost function without ray tracing. We use upwind finite difference schemes to compute the
traveltime field by solving the eikonal equation. Then by adjoint state techniques we derive a
closed-form expression of the gradient of the traveltime cost function. This approach allows
an accurate computation of the gradient as well as the freedom to change the norm on the
model space.

1 Motivation

Tomography aims at determining the subsurface structure from arrival times picked on prestack
seismic data. This method minimizes a cost function which measures the misfit between the
computed traveltimes and the traveltime data. The minimization is an iterative procedure and
requires the computation of the gradient of the cost function. The computation of the cost function
(traveltimes) and gradient with respect to the slowness is customarily done by tracing rays. An
argument based on Fermat’s principle shows that the traveltime gradient is related to the path
length of the rays [2]. But ray tracing is far from routine in complex media [14]. An alternative
to traveltime computation consists in solving the eikonal equation directly by finite differences
instead of integrating the ray equations. This idea was introduced into the geophysical litterature
in [9] and [12] and developped further in [13, 10] and elsewhere. The numerical integration of
the eikonal and related equations used in this paper uses upwind schemes [16, 8]. These efficient
schemes give accurate solutions of these equations when no turning rays are present. The upwind
feature of these schemes corresponds to computing the traveltime in the direction where the rays
are out going. This is what a ray tracer does naturally when it computes the rays from the ray
equations.

Since the cost functional in our approach is an algebraic expression in the samples of the solution
of the initial and boundary value problem, the adjoint state method is available to compute its
gradient. This technique has been used in [3, 1, 11] and elsewhere to construct algorithms for
inverse problems for the wave equation. As we shall see it works equally well in the context of
traveltime inversion.

This paper concerns the local computation of the traveltime cost functional and its gradient in the
following sense: we assume that all rays have everywhere in the computational domain velocity
vectors with positive component in one coordinate direction (the positive z direction, to be specific).
That is turning rays must not be present. Moreover we assume that the traveltime is given on that
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part of the boundary (of the computational domain) on which the rays are entering the domain
(inflow boundary). That is the part of the boundary on which traveltime data is not given must
obey an outflow condition. Both of these restrictions are well-understood necessary conditions for
the stability of difference schemes for hyperbolic initial/boundary value problems [16].

Such local traveltime computation schemes may be concatenated to compute the global traveltime
field of a point source, without any restriction on turning rays. General techniques to globalize the
computation of the traveltime have been developed [12, 13, 10]. Similar globalization is possible
for the gradient calculation presented here. The paper is organized as follows. First we introduce
the adjoint state and derive the expression of the L2 and H' gradients. The next section is devoted
to the numerical method used to compute these quantities. The upwind scheme and its adjoint
are described in detail. Then we give an example of such computations and check the accuracy of
the gradients versus differential quotient. In the last section we present our conclusions.

2 Problem under consideration

The cost function J measures the misfit between the traveltimes data and the computed traveltimes.
Given a slowness field s(z, z) in a domain Q of R?, it is defined by:

(21) 1) = 5 3 Irls.r) — ()P

reER

where 7 are the computed traveltimes, t4(r) are the traveltime data at the receiver r and R is the
array of receivers. The traveltime 7 is linked to the slowness field s by the eikonal equation [15]:

IVr]2 = 52 in Q
(2.2)
T = ¢ on Ty

Here ¢ is the initial profile of the traveltime on the inflow part of the boundary I'y. For a point
source field we assume that the medium is locally homogeneous around the point source. So we
compute analytically the traveltime in a small box around the point source. The traveltimes on
the boundary of this initial box become initial profiles for subsequent computations. We assume
that the slowness fields we consider are square integrable, which is quite general and includes all
applications. To derive the gradient easily we write the cost function J with Dirac masses as
follows:

J(s) = %/ﬂz |T(o; 2, 2) — t4(x, 2)|? . 6, (x, 2) dx dz

reR

where é,(z, z) is the Dirac mass at the receiver r. A perturbation és of the slowness field s will
give rise to a perturbation 67 = 7/(s)és of the traveltime 7. We showed in Appendix A that é7
satisfies the following equation:

Vr.Vér = s.bs i Q
(2.3)
or = 0 on I'y
Therefore the derivative of J with respect to s is given by:

Jl(s).és = /ﬂér(m, z) {Z(T(O’; x,2) —t4x,2)) . 6. (x, z)} dz dz

rer
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Let Res(z,z) = Z(T(S; x,2) — %z, 2)).6,(x, 2) be the residuals of the computed traveltimes at

reER
the receivers, we have then:

(2.4) J (s).6s = /ﬂér(r, z) Res(s, z) dx dz

The definition of the gradient with respect to s, V.J(s) = G(s) is linked to the scalar product or the
Hilbert space we want to use. The first natural choice is the space of square integrable functions
on Q L?(Q) since we assumed the slownesses to be square integrable. The gradient with respect
to the L2 scalar product is defined by:

(2.5) /ﬂés(m,z) G(s)(x,z) de dz = Jl(s).és

Adjoint state techniques [3, 1, 7] allows us to use integration by parts to make the quantity we
desire appear explicitly in the formula. In our case we want to have an expression where és appears
explicitly. So we introduce a new unknown w (the adjoint state) solution of:

-V (wVT) = Res in Q
(2.6)
w = 0 on T'1 =T/Ty

The expression of the derivative (2.4) becomes:

J (s).6s = /ﬂér(m,z) Res(z,z) de dz = —/ﬂér(m,z)v (wVT) dz dz

= /Q(VT.V(ST)(;E, 2)w(z, z)de dz
Since 67 is the solution of (2.3) we have
(2.7) J (s).6s = /ﬂs(:v, z)bs(x, 2)w(x, z) de dz
Now using (2.5) we have:
/ﬂs(z,z)és(z,z)w(m, z)de dz = /ﬂés(m, z) G(s)(z,2) da dz
Since this relation is true for an arbitrary perturbations és, the L? gradient is:

G(s)(z,z) = s(z,2)w(z,2) (z,2) €Q

Another choice for the Hilbert space is suggested by the uncertainty analysis in [5, 6]. They showed
that in order to reduce the dependence of the tomographic inverse problem on the discretization
the H'(Q) norm on the models (here the slownesses) was a better choice than the L? norm. In
that case the gradient verifies:

(2.8) /ﬂés(r, 2)G(s)(x,z) + Vés(x,2)VG(s)(x, z) dedz = Jl(s).és
With (2.7) we can write:

J'(s).65 = /ﬂés(m, z)s(z, z)w(z, z) dz dz

= /ﬂés(m, 2)G(s)(x, z) de dz + /ﬂV&s(m, z2) VG(s)(x,z) dx dz

= /ﬂés(m, 2)[G(s)(x,z) — AG(s)(z, z)] dx d=z —|—/F g—gés(m, z) do
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Therefore the H' gradient is the solution of the following elliptic problem:

G-AG = sw in

(2.9) PYe
— =0 onT

on

3 The Discrete Problem

For the computation of the traveltime 7, we have chosen the second order essentially non-oscillatory
(ENO) scheme described explicitly in [8]. Tt is quite efficient and very accurate: for the examples
used here, errors in 7 are a small fraction of 1%.

The key to the computation of the L? or H' gradient is the adjoint state w. It is determined by
equation (2.3) for the perturbation of the traveltime §7 (which we call the direct equation). In the
discrete case, the choice of a numerical scheme for the integration of (2.3) determines the numerical
scheme for the integration of the adjoint equation. It is not just any discretization of the adjoint
equation.

The equation verified by the traveltime perturbation 67 can be written as follows:

7,67, + Tp 61, = s.6s in €

or = 0 on Iy

For our study we choose the domain to be a rectangle Q =|Zmin, Tmaz[X]2min, Zmaz| and the
boundary I'y to be z = z;,;,. We also assume that the slowness field we consider do not produce
turning rays. Therefore the derivative of the traveltime 7 with respect to z does not vanish (7, # 0).
So we can write the preceeding equation as an evolution equation in z. For convenience we set
u = 67 we have:

u, + T_xe = i.és in
(3.1) T T
u = 0 on [y

The numerical method we choose to integrate this equation is a first order upwind scheme [16]
given by :

un+1 — u” u”? —u u”? —u”?
J i (i1 J —\n _j+1 I _ ¢n
(3.2) e e v R v J;
W= 0 j=1.J
Te ) s
where a = =, at = maz(a,0), a~ = min(a,0) and f = —.és.
T

Of course this not the pertubational equation of the seconé order ENO scheme used to compute 7.
Thus the computed derivative 67 and ultimately the gradient derived from it, will disagree with
the true gradient of the discrete cost function by a truncation error. As we shall see this error can
be made arbitrarily small by refining the grid. More precise gradient schemes can be developed
at the cost of more involved formulae. The reason to choose the first order scheme lies in the
simplicity of the discrete adjoint equation.

This scheme works if there is “outflow” at the boundaries. The necessary outflow condition on 7
translates here into :

(at)F =0 (at)y =0 n=1.N

(a=)5=0 (a7)j_,=0 n=1.N
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The Von Neumann stability criterion shows that Az and Az can not be chosen independently of
one another, but must satisfy:

alAz
Az

<1

Appendix B shows that the discrete adjoint state w is the solution of :

w?—l — ,w? _ (a+)?+1w§l+1 — (a+)§?'w§1 + (a_)?—lw?—l — (a‘)?w? = Res
s Az Ax

We are now ready to compute the discrete gradients. Equation (2.4) is approximated by the
following expression:

N_1J—
(J'(5).65)n E E ui Res? Az Az
Therefore using (B.1) (see Appendix B) we find:
N-1J-1
(J'(s).68)n Z w 7 Az Az
n=1 j=2
whence the L? gradient (G7):
(3.4) Gh o= wn L =271 LN -1
. b= wh — ji=2,J— n=1, _
j I (n)

For the H' case we must choose an approximation to Vu. We decide to use a first order approxi-
mation. Therefore we replace the gradient by the following approximation (Vu):

u,, —u? ulttt —
(V u)n _ Uj 1 uy Uy U;
i = Az Az

The discrete H! scalar product is therefore:

N-1J-1
u?v? Az AZ+ZZ th th) Axr Az

n=2 j=2

|'|M|

Now we can find the H! adjoint. Using (B.1) again we can write:

N-1J-1 N-1J-1
ZZ ”Res AIAZ—ZZW A@Az
n=2 j=2 n=2 j=2
N-1J-1 n+1 n+1
Z arss G;‘H G7 057,y — 687 N Gy =Gy 6577 — 68T Aw As
Az Az Az Az

n=2 j=2

.,
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By discrete integration by parts (see Appendix C) we find that the discrete H! gradient (G7}) is
the solution of the following problem:

n n n n+1 n n—1 n
o Gip —2G7 + G, G = 2GT + G o
J Az? Az? ()}
N N-1 2 1
(3.5) Gi -G : Gi -G :
—— =0 =1.J-1 —— =0 =1.J-1
Az J Az J
Gy~ G,y G5 - G
—_ - = =1.N-1 — = = =1..N-1
AL 0 n AL 0 n
4 Numerical Results
We consider the domain @ =] — 1, 1[x]1, 3[. The source of the wave is located at the origin (0, 0).

The receivers are located at the depth z = 3 symetrically with respect to & = 0 (see figure 1).

Source

Receivers Receivers

Figure 4.1: The Medium and the Source Receiver Configuration

4.1 Gradient Calculations

The traveltime data we used have been generated with the slowness field s + ds, where s is the
constant slowness field equal to 1 everywhere and ds is the perturbation displayed in figure 2. The
traveltime data displayed in figure 3 show that the slowness field created a caustic. It is apparent
in the non smoothness of the traveltime field. This shows that our method works in the presence
of caustics.
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Figure 4.3: Traveltime data with a caustic

The figures 4 and 5 are the L? and H! gradients of the cost function computed at the slowness
field s.
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Figure 4.5: H' Gradient of the Cost function in homogeneous medium

Figure 4 and 5 show that the two gradients have very different smoothness features. This is
expected because the H' gradient is the solution of an elliptic problem whose source is the L?

The next iterate of the slowness chosen by the optimization algorithm will be in the direction

gradient.
opposite to the gradient. In this example we see that it will increase the slowness from the constant
value s = 1. That is consistent with the data which have been generated with the slowness 1 + és

(és is displayed in figure 2).
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4.2 Verification of the gradient by finite differences

Using the definition of the derivative, the gradient of the cost function with respect to the L? or
H*' norms can be checked by finite differences. In fact for an arbitrary perturbation in the slowness
field 6s and a number h we can write using the centered finite difference approximation:

J(s+ h.6s) — J(s — h.és)

o =J'(s).6s + O(hz) when h — 0

Since we can replace J/(s).6s by (G(s),8s)y where H is either L? or H' we can test the accuracy
of the gradient calculations simply by plotting the curve:

J(s+ h.bs) — J(s — h.bs)

h

—(G(s),6s)m

for arbitrary perturbations és. If it is a parabolic function of the parameter h then we will validate
our calculations. As pointed out above the h = 0 limit in both cases will generally be non zero
as we have not computed the actual discrete gradient, but only an approximation differing by a
truncation error.

This is confirmed in figure 6 were we have computed the gradients with three different grids. The
grid used for the * curve is four times finer than the grid used for the 4+ curve which is four times
finer than the grid used for the x curve. We see as we refine the grid that the difference between
the actual discrete gradient and its approximation tends to zero. The slowness perturbation used
in the computation of the finite difference quotients is given in figure 2.

Convergence of the Differential Quotient
1 T T T T T

*+X

0.81-

* + X
*+ X

o
(<]
T
X
* + X

Normalized Error
o o
IS o0
T T
X
+ X
L

02 + * % |

0 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Step (h)

Figure 4.6: Quadratic Convergence of the Differential Quotient to the scalar product of the gradient
and the perturbation in the case of homogeneous media
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We also verified the convergence on the case of a velocity linearly increasing with depth. We
used the perturbation shown in figure 2 to compute the differential quotients. The results displayed
in figure 7 show the convergence of the method in that case as well.

Convergence in "Linear" Medium
03 T T T T T

0.25

0.2

Error
o
=
a

T

0.05r

O L L L L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

h

Figure 4.7: Quadratic Convergence of the Differential Quotient to the scalar product of the gradient
and the perturbation in the case of linearly increasing velocity

5 Conclusions

In this paper we derived a method to compute the gradient of the traveltime cost function without
ray tracing. Our approach is based on adjoint state techniques. It consists in computing the
adjoint state by retro-propagation of the residuals traveltimes. Then according to the norm chosen
on the model space (here the slownesses) we derive a closed form formula for the gradient. This
flexibility in the choice of the norm is essential in the numerical treatment of the inverse problem.
The numerical method we used is based on upwind schemes. These efficient schemes are limited
by their upwind feature. In our case it meant that no turning rays were present in the medium.
This, however, does not mean that caustics are absent. In fact our method deals gracefully with
caustics as 1s demonstrated in the preceeding example. Moreover the local calculation explained
here may be embedded in a globalization scheme to remove the restrictions of turning rays and
outflow boundaries.
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A Derivation of the perturbed equation

We consider a slowness perturbation és. The travel time 7(s + §s) associated to the perturbation
satisfies :
Vr(s+685)2 = (s+6s)? in
T(s+6s) = ¢ on Ty
We want to find the equation satisfied by 67 = Tl(s).és. Since we have

(Vr(s+6s)2 = (V(r(s)+ 7"(5).65 + ?(632)))2
= (V7(5))? +2.V7(s).7 (5).65 + 0(65?))

we can write
Q.VT(S).TI(S).(SS +0(6s%)) = (Vr(s+8s5))? —(Vr(s))? = 2s.65 + 0(6s%)

Dropping the term of order higher or equal to two (because we are looking for the first derivative)
we find that é7 is the solution of the following problem :

VrNér(z,z) = s.bs(x,z) (z,2) €
(A.D)
{ §r(z,z) = 0 (z,2) €Ty

Remark
Using the method of characteristics we can find from equation (A.1) the usual formula for §7 given
by:
t
ot :/ 8s(z(o), z(0))do
0

where (2(c), z(0)) are the rays and o the arclength.
Since the slowness s is never equal to zero, we can rewrite equation (A.1) as follows:

6TxT—x—|—67‘zT—z = §s (z,2) € Q
(A.2) s s
ér(z,z) = 0 (z,2) €Ty

The characterics of equation (A.2) are the curves (a(t),b(t), 67(t)) such that

= s

da 75 db T, dér
dt s s

- dt dt

Therefore 67 is given by :

Furthermore we have :
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The last equation means that the parameter ¢ is in fact the arclength and the two first equations
are the differential equations satisfied by the rays [18]. Therefore once again we find that the
perturbation of the travel time is the integral along the rays (the characteristics) of the pertubation

in slowness.

B Adjoint Upwind Scheme

We are looking for the adjoint equation of equation (3.2) for the discrete L? scalar product. We
use the notation (.,.)s for that scalar product. Let us note P* the adjoint operator of P where P

is the defined by the discrete equation (3.2). We have

(P*w’u)h = (Pu’w)h

J-1N-1 n+1 n n n n n
:Zwa J J — (a*)} - L+ (a7)} i+ L) AzAz
Az Az Ax
j=2 n=1
Let us treat the first integral
J-1N-1 n+1 n
I, = w? o B AzAz
7 Az
ji=2 n=1
J-1  (N-1 N-1
- — nyntl _ oy
= X wiuj Z wy uf AxAz
ji=2 n=1 n=1
e N N-1
_ n—1,n _ an T
= 2 A; E wi T uj Wi uj AxAz
j=2 n=2 n=1
J-IN-1,n-1_ J-1
_ J J ,n _ N-1,_N : 1 _
= X uj AxAz — + ij u; Ax since uj = 0
z .
ji=2 n=1 ji=2
The second integral can be written as
J-1N-1 n n
_ n( +yn _J—1 J
I, = wi(a™); ~—a AzAz
j=2 n=1
N-1 J-1 J-1
— +\n, . n, n _ +\n,,n,n ,
= s Z(a )i wiui_y (a™)iwiu} | AzAz
n=1 ji=2 i=1
N-1 1 J—2 J—1
- _ = +\2o n on +\n, n,n )
= s Z(a )]_Hw]_l_lu] E (a™) wiuj | AzAz
n=1 ji=1 ji=2
J—1N-1 ( n +\n,,,n N-1
a™ )P wiyy — (a™)fwj .
= — E E It ]+A L ul AzAz + Z(a+)§'w§'u7}_1Az since (at)
j=2 n=1 z n=1

13



Alain Sei and William W. Symes

Let us treat the last integral

J-1N-1
I3 = Z Z wy (a )" J+1 Y AzAz

ji=2 n=1
N-1o o fI-1 J-1

= A Z(a )i wj u]_l_l—Z(a"')?w?u? AzAz
n=1 ji=2 ji=2
N-1 J J-1

= — Z(a_)]_lw]_lu] Z(a )jwiul | AzAz
n=1 Az ji=3 ji=2
J—1N-1 — n N-1

a W] a ) w

= Z Z (7)1 JAlx (a”)f v} ui AzAz — Z(a_)?w?ugAz since (a7)5_, =0

j=2 n=1 n=1

Ar Az + A
ji=2 n=1
J—1N-1 n+1 n n
_ n | Y Yy +\n J — Y nUi+1 — Y
=22 Y (7& ()] S5+ (7)) | AvAs
ji=2 n=1
N-1 J-1 N-1
+ E (a7)fwlubAz — Z 'wjv_luj»vAm - Z (at)iwhu}_ Az
n=1 ji=1 n=1
So if we choose w such that :
wl =wj =0 n=2.N-1
w¥ =0 j=2.J-1

we find that the adjoint scheme of (3.2) is given by (3.3). Using the right handside of equation (3.2)
and equation (3.3) we can write

N-1J-1 N-1J-1 o
(B.1) Z Z Res] Az Az = E Z wJ" ) 7 Az Az
n=1 j=2 n=1 j=2 ?

C Discrete H' gradient

We have
N-1J-1 »
Z Z w? 65 Az Az
n=2 j=2 ( )J
(C.1)
N-1J-1 n+1 n+1
_ Grosh 4 Gy — Gy bsi — b7 N Gy =Gy 6577 — 68T Aw As
7 Az Az Az Az
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Gradient Calculation of the Traveltime without Ray-tracing

To derive the equation satisfied by G} we have to factor out és7. The first term is not a problem
since 6s7 is already factored out. For the second and third term we have to integrate by parts. We

J

show the calculation on second term, the third term is treated exactly in the same fashion.

n=2 j=2
N-1 J—1

= — bsT J I g5t L L] Az Az
= Az ]Z; i+l Az J Az
N-1

—2G} + GY

=- Z_: o 0s] ALAZ—Z(SSZG e +255J

n=2 j=2 n=2

N-1J-1 Gn+1 Gn 6Sn+1 (SST'L

J AL
Z s s Az Az
n=2 j=2
N—1J-1 ~n+ n n—1 J-1 2
G —QG —I—G G»
_ J ]
= — 2 ]Z:; Ar2 65 Ax Az — ]2; 65 Az + Z 65

Therefore according to (C.1) G} is solution of (3.5).

J-1
Az

N GN—l Gy -G
z



