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Abstract

A systematic comparison is carried out between some standard finite difference schemes,
regarding their costs and dispersion properties. To be more specific, given a precision
threshold to be imposed on the velocity error and a finite difference scheme, it is possible
to determine a time-step and a grid-spacing in an optimal manner, i.e. so as to minimize
the computational cost. Using this optimal cost as a criterion, it becomes easy to single
out the most economical scheme for the purpose of a synthetic seismic campaign.

This survey represents the preliminary part of the larger project Marmousi 3-D, the
purpose of which is to create a synthetic database corresponding to one-parameter media.
In this paper, one’s attention is focused on the 2-2m family of schemes. Since both homo-
geneous and heteregenous cases are investigated, the study is expected to provide realistic

figures for future simulations.
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Introduction

The use of numerical methods to produce synthetic seismograms dates back to the seventies
with the paper by Kelly et al. [6]. Undeniably, its advantage over other traditional approaches
like asymptotic expansion or Kirchhoff integral is that by directly dealing with the acoustic
wave equation, it takes into account all physical phenomena. However, for such methods to be
valid, it is capital to be able to overcome —or at least to control— the artifacts they are likely
to bring about.

One of the major artifacts is dispersion. Since the numerical scheme is only an approxi-
mation to the wave equation, a plane-wave calculation [15] reveals that it always makes the
phase and group velocities depend on the frequency. This discrepancy in velocity is all the
more noticeable as the propagation time is long. After some critical amount of time, the signal
is so much distorted [1, 14] that it becomes hopelessly impossible to recognize the shape of the
traveling pulse.

For a given propagation time, it is always possible to lessen the effects of dispersion by
choosing smaller values for the sampling intervals. Nevertheless, there is a trade-off between the
numerical accuracy thus obtained and the computational cost. The latter issue is of paramount
importance, to the extent that we are having a 3-D project in mind. We will therefore indicate
an optimal strategy to select the time- and space-steps within the requirement of accuracy.
For simplicity, the numerical schemes we will be concerned with are Taylor finite difference
schemes whose order in time is 2 and whose order in space is 2m. Other types of scheme, such
as spectral methods [4, 8, 11] or Holberg coefficients [5] are in reality not devoid of drawbacks.
These will not be considered in this paper.

It may come as a little surprise to realize that although this approach is fairly elementary, no
systematic comparison has been previously carried out for the family of schemes considered. On
one hand, the work initiated by Sei [13, 14] applies to stencils of the form A*A which operate on
two-parameter media. Transposing Sei’s ideas to the present case is relatively straightforward.

On the other hand, all studies regarding the choice of sampling intervals and computer costs
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[7, 10] have addressed only homogeneous media. This is why we will need to find out a suitable
way to proceed in heterogeneous media.

This paper is divided into three parts. First, we begin by recalling some basic notions on
finite difference schemes and their dispersive behavior. Then, we will establish some useful
theoretical properties which would make it easier to derive an optimal strategy. Finally, a
thorough investigation on the cost of the schemes will be taken up in both homogeneous and

heteregenous media.

1. Mathematical background

1.1 Approximation of the Laplacian

First, examine the 1-D case. Let v be a function of the variable z € R. Consider a regularly

spaced sequence of nodes z; = i{Az where i € Z and Az > 0. If v; = v(z;), then the ratio

Vig1 — 20 + v
Agv), = 1.1
(M), 2 (1)

is known to be a second order approximation of v, (z;), in the sense that the leading term in
the difference between the latter and the former is proportional to Az%. More generally, for

any integer p > 1, introduce the discrete Laplacian associated with a larger step pAx

_ Vigp — 20+ vip
(Agv)z - pQAxQ . (12)

This is also a second order approximation of v (x;), although the actual error between (AZwv).
and vg(z;) is p* times greater than that between (A,v); and v (z;). It is natural to combine
the (AZv),’s with different p’s in order to get a higher order approximation of vy (z;). Put

another way, m > 1 being an integer, we look for a linear combination of m elementary discrete

Laplacians
(DFfu); = ) ot (Afw),; (1.3)

which approximates vy (z;) at the 2m-order.
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Lemma 1.1 A necessary and sufficient condition for (D] u); , defined by (1.3), to be a 2m-th

order approximation of vy (x;) is that the coefficients " are solution to the Van der Monde

P
system
1 1 1 1 aft 1
12 22 32 m? al 0
14 24 34 m? okl 0

12m' 22m’ 32m 2m

where m' = m — 1.

Proor It suffices to carry out the Taylor expansions, and to proceed to termwise identification.
Cancelling out the errors in Az?? for 1 < p < m leads to the m — 1 last equations. <

Let us give some frequently used examples. For m = 2, we have

4 1
o =3 and o = —3

which gives rise to the fourth order stencil. For m = 3, the coefficients are

a:{’:%, ag’:—g and a%:E.
For m = 4, we end up with
alzg, azz—%, a%:% and aj = %
1.2 Discretization of the wave equation
We wish to solve the wave equation
1
Fun ~ [tetuy tuz] =60 R (1.5)

where 6 is the Dirac function and R the time dependency of the source. Take a time step At

and a space step Az = Ay = Az = h. Consider a regular grid of points M; ; . = (ih, jh, kh).
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Denote by u;’; , the approximate value for u at time nAt¢ and at point M; ;5. Replace the wave
equation (1.5) by its discrete version
1 n m,,n m,,n m, n
C?,j,k (Aguijk)" — [( z “j,k)z. + (Dy Uk,i)]. + (Dz ui’j)k = 6,k ® R(nAt) (1.6)
where m > 1 is an integer and D™ the operator introduced by (1.3). From the standpoint of
accuracy, the numerical scheme (1.6) is a 2-2m scheme, i.e. second order in time and 2m-th

order in space. For the sake of notation conveniency, we will henceforth write (1.6) as

1 n m,,n
2 (Aewin)” — Yo (D) = bijk ® R(nAL) (1.7)
ik v {7}

This is the family of finite difference schemes we will be concerned with. We will try to
precise how to choose suitable values for the steps h and At, in connection with dispersion and

cost issues.

1.3 Relation of dispersion

Assume for the time being that the medium is homogeneous, i.e. ¢;; = ¢ for all M; ;, and
that the excitation source R in the right-hand side is zero. To the discrete problem (1.6) we

seek harmonic plane wave solutions, i.e. of the form
Ui = exp [wnAt — (Exi+ &yj + &) R ] (1.8)
where w > 0 is the pulsation and & = (&, &, £,) denotes the wave vector.

Proposition 1.1 The discrete wave equation (1.6) in a homogeneous medium without exci-
tation source admits the harmonic plane wave (1.8) as a solution if and only if the following
condition, called relation of dispersion, is salisfied

At AN & apt h

sin? (L) = (C—> Z 2 Z sin? <&) .
2 h — p? 2
p_l be{z,y,z}

Proor Plug (1.8) into the numerical scheme (1.6), try to factor out u7;,, and make some

trigonometrical transformations. <
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dw
Obviously, the quantities and H — || , respectively known as phase and group veloc-

w
€1l

ities, are not equal to ¢ but depend on the wave vector £&. Thus, each harmonic component
travels at its own speed. This phenomenon, which may turn very annoying as far as numerical
solutions are concerned, is commonly referred to as dispersion.

We will study more thoroughly the behavior of the velocity errors in the next section.
Let us beforehand mention a quite interesting trigonometrical property of which we will make

extensive use later.

Lemma 1.2 There exists a sequence of posilive numbers 3,, p > 1, the values of which are

independent of the m, such that

Vm>1, V#eR, Z a—g sin? (pf) = Z B, sin?” () (1.9)
p —

p=1

where a7, p € {1,---,m}, are the coefficients determined by the system (1.4).

ProoF Just carry out the calculations. We end up with

1 8 4
= 1 = — = — — ...
ﬁl ’ ﬂ? 3 ’ ﬂS 45 ’ 54 35
These first four terms will be sufficient for our purpose. <

This nice transformation provides us with a more usable relation of dispersion

sin? (%At) = (CAt) Z Z By sin” (%) . (1.10)

p=1 be{z,y,z}

1.4 Phase and group velocities

Let w and &€ be connected by the relation of dispersion (1.10). The phase velocity, defined as

is the speed at which propagates the plane wt — £.7 = Cle. The group velocity, defined as

=% )+ () @]

can be shown [3, 15] to represent the speed at which propagates the energy packet corresponding

to the wave vector €.
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2. Choice of discretization parameters

2.1 Accuracy criterion

Let T be lapse of time over which we would like to carry out numerical simulations. The
absolute error, measured by the difference in the distance covered after time T, is equal to
T (cy(&) — c) for the wave component €. It is desirable to impose an appropriate upper-bound
on this error, so as to ensure accuracy to the numerical solution. The upper-bound can, for
instance, be a fraction of some characteristic wavelength. In geophysical modelling, it is typical

[10, 13, 14] to set this wavelength to

c

min — ;
f max

A (2.1)

where fi.x denotes the cutoff frequency of the source wavelet R. With this shortest wavelength

is associated the largest wave number

2T
‘Emax - A—

min

By means of these quantities, our criterion can now be expressed as

Amin
VE 1€l € bmax = |T(cg(€)—0)| < .

X

where 1/n) , the fraction of wavelength, is at our disposal. In order to get an non-dimensional

criterion, divide both sides of the above inequality by ¢1'. This yields

ey(§) —¢

c

1 Amin 1 1
<_ —

vE? Hé-H S ‘Emax :>

(2.2)

~ ny T n_A E’
where ny = ¢T'/Amin, the number of shortest wavelengths covered after time 7', is also at our
disposal. Condition (2.2) will be the most important constraint on the parameters h et At. Its
left-hand side

eg = (2.3)

e = (2.4)

can be introduced. In view of (1.10), e, and e, depend a priori on m, ¢, €, h and At.
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2.2 Computational cost

In addition to the accuracy criterion, the parameters A and Af must be chosen so as to minimize
the cost of simulations. Let us elaborate a little more on the concept of cost.

Suppose on one hand that the sizes of the model are I, X [, X [,. The number of gridpoints
needed to sample this model is I./h x I,/h x I, /h, so is inversely proportional to A%. On the
other hand, if the simulation time is 7', then the number of time-steps necessary to cover this
interval is T'/At, therefore is inversely proportional to At.

Let N,, be the number of elementary floating point operations involved in the 2-2m scheme.
The actual value of N, may depend on the programming tricks used in the implementation of
the scheme. In our machine-independent optimized version of the code, we have N,,, = 44+7m .

When the 2-2m scheme is employed, the cost of a simulation is proportional to

N,

which is to be minimized under various constraints.

Thus far, we have regarded the number of floating point operations as a measure of the
cost. Undoubtedly, it would have been more relevant to look at the CPU time. However, for
this aspect of the problem, we would have had to take into account too many architecture-
dependent factors such as load/store operations, memory hierarchies or parallelization issues
[7, 10]. We believe that the cost J,, defined above is sufficient to compare different numerical

schemes.

2.3 First formulation

We are now in a position to state the problem of choosing A and At in homogeneous media as
a constrained minimization problem. The formulation (F1) given below is that which would
come right away to our minds, but is not very convenient to work with. It will be made simpler

and more exploitable in the next section.
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(F1)  GIVEN

¢ velocity of the homogeneous medium
fmax cutoff frequency of the source wavelet
m  half-order in space of the scheme 2-2m
€ accuracy threshold (1/nynr)

FIND

h and At so as to minimize J,,(h, At) under the following constraints

e Nyquist’s frequency

e stability condition

e accuracy criterion

27

V£7 Hg” < ‘Emax = — |eg(m,c,h,At,§)| < € (28)

A]T]Tll]?l

REMARK 2.1 The stability condition (2.7) can be readily derived [9, 13] from the relation

of dispersion (1.10). O

REMARK 2.2 The accuracy threshold € is to be set by the user according to what is desired

for ny and nyp. O

3. Optimal strategy for the homogeneous case

3.1 Properties of velocity errors

In order to find a handier version for (F1) and to ultimately solve it, let us go through some
useful properties of the velocity errors e, and e,. To begin with, it is advisable to perform a

few transformations so as to express these in terms of the following non-dimensional variables
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v = cAt/h stability ratio

v = &/&| unit vector in the direction of £
H = h/Apin inverse of the number of points per wavelength
s = || &||Amin/ 27 ratio of || €| to &max

Lemma 3.1 For every integer m > 1, the relative velocity errors e, and e, are functions of

m and the four variables v, v, H, s alone. More specifically,

1/2

1 m

e, = arcsin | v Z Z B, sin® (rv,sH) -1
mrell p=lbe{ry.z)

571/2

¥ E (i 2pB, sin**~! (ry,sH) cos (m/bsH))

be{zy,z} \p=1

€g

1/2
sin{ 2arcsin | vy (Z Z B, sin?? (m/bsH))

p=lbef{zy,z}

Proor Take the square root of both sides of (1.10) and pull out w. Divide by ¢|| £|| and
subtract one to get the first formula.

As far as the second formula is concerned, take the derivative of both sides of (1.10) with
respect to £, for b € {z,y, 2} while keeping in mind that w depends on &,. This allows us to
deduce g—z and to proceed further. <

In the above equations, the ratio ¥ must be less than the stability threshold y2* defined
in (2.7). It should also be strictly positive. By passage to the limit when 7|0, we obtain

the formulae corresponding to the semi-discrete case. The general behavior of e, and e, with

respect to v is given by

Proposition 3.1 For any integer m > 1 and for fired v, s, H, the errors e, and e, are strictly

increasing funclions of v € |0, ymax[.

Proor (4, Cy and C5 denoting various positive constants, we see from Lemma 3.1 that

arcsin (C17) Cy arcsin (C17)
e, = — - A2

= 1
Cay Cs Ciy
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arcsin x|,

max is strictly increasing

m

where Cyy €]0, 1[ in view of 72%%’s value. Now, the function

ZT

over |0, 1[. So, the same holds true for the phase error e,. As for the group error, we have

037 03 1

‘o = sin [2arcsin (C1y)] 204 /1 - C2q2

with again Cyy €]0, 1[. The function

L is also strictly increasi 10, 1], which
—— = 18 alSOo SsiTICLly lnCI'eaSng over ) , WilIC
Vv1—2z2

completes the proof of this Proposition. <
REMARK 3.1 In the polynomial expansion of the expressions previously given for e, and
ey, 7 always appears as a square, which testifies to the second order accuracy in time. O
The next Proposition is concerned with the extrema of e, with respect to the directions v.
A good knowledge of these extrema would allow us to eliminate the angle parameters in the

accuracy criterion.

Proposition 3.2 Form > 1 and v, s, H fized in such a way that sH < 1/2, the phase velocily

relative error e, atlains

o ils minimum algebraic value for the coordinate directions
v~ = (£1,0,0) or (0,41,0) or (0,0, +1)
o its maximum algebraic value for the principal diagonal directions
vt = (£1/V3, £1/V3, £1/V/3)
o ils saddle-point value for the secondary diagonal directions
Vo= (£1/V2, £1/v2,0) or (£1/v2,0, £1/v2) or (0, £1/v2, £1/V2)

In addition, there is no other direction for which e, reaches a local extremum.

Proor Let x, = my,sH forb € {z,y,z}. Introduce, for y € [0, 7/2], the function

em(x) = i Bp sin?? () (3.1)
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so that the search for extremal values of e, is equivalent to that for extremal values of

fm(Xﬂ?? Xy XZ) = Q‘Om(Xm)+@m(Xy)+99m(X2)- (3'2)

The main reason justifying this reduction is that z — arcsin « is an increasing function, so we
only have look for the extremal values of its argument, or even the square of its argument,
2

which coincides with F,,, within a multiplicative factor v~.

Since the x,’s are subject to the constraint
Xo Xy + X2 = wisHP,

we will apply Lagrange’s multiplier rule to solve this optimization problem. It follows that for

X = (Xz» Xy Xz) to be a direction for which F,,, attains an extremum, it is necessary that

O0F .
INeER | Vhed{z,y,2}, ——(x) =2 \x,
Xy

or, because of (3.2),
FAER | Vhed{r,y,2}, ¢nlx) =20 x.

It is clear from (3.1) that ¢,, is an even function and therefore ¢, (0) = 0. The optimality

condition for x can then be expressed without the multiplier A as

A ! 1
©rn(Xz) _ @m(Xy) _ “r(Xz2) and X925‘|‘X§‘|‘X2 _ 7r252H2, (3.3)
Xz Xy Xz

©n(X5)

Xb

provided that for y, = 0, the ratio is allowed to take any real value. Now, a careful

Al
study of y — M
X

. . . . . ™
reveals that this function is strictly decreasing over ]O, 5 [ As a result,

the situation described in (3.3) can occur under only three circumstances:

1. Two of the x},’s vanish and the remaining one is equal to *7sH. This corresponds to

the family of coordinate directions the first part of v~ .

2. One of the y,’s vanishes and the remaining two are both equal to +msH/v/2. This

corresponds to the family of secondary diagonal directions v/ .
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3. Nome of the y,’s is zero and the three of them are all equal to +7sH/+/3. This corre-

sponds to the family of principal diagonal directions v+ .

This implies that there is no other direction for which F,, is extremal. Examining the
quadratic form induced by the Hessian matrix (which is diagonal in the present context) over
the tangent plane of the constraint sphere at these points, we can further classify them into

maximum, minimum or saddle points as indicated in the Proposition. <

This property enables us to get rid of the anisotropy of the errors by directly dealing with

their maximal and minimal values. Define

r 1/2
1 m
e (m,y, H') = P~ arcsin | v pz:;ﬁp sin?” (rH') -1
I 1/2 (3.4)
1 = TH'
et (m,y,H') = arcsin |y | 3 sin2p< ) -1

as functions of m > 1,7 € ]0, y2**[ and H' € [0, 1/2]. Physically speaking, e7 is the phase
velocity relative error in the slowest direction, while e"vj is the phase velocity relative error in the
fastest direction. It would be highly interesting to show similar results for the group velocity
relative error e,. Unfortunately, transposing the proof of Proposition 3.2 to e, is far from being

easy, especially because e, does not have the special form (3.2). We must therefore content

ourselves with extensive numerical computations, which nonetheless lead us to suggest that

Hypothesis 3.1 The group velocity relative error e, altains its extrema for the same directions
in the space of wave veclors as does ils phase counlerpart e, . Furthermore, the minimum

algebraic value is reached for v~ , and the mazimum algebraic value is reached for v .

We wish to insist on the fact that although no analytic proof has been found, Hypothesis
3.1 was experimentally confirmed for a wide range of m, v and sH. Once this has been taken

for granted, it becomes natural to introduce the extremal values
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¥ Z B, sin®* 1 (zv, H') cos (rH'")

p=1

e, (m,7,H') = 72 -1
sin ¢ 2arcsin |y (i B, sin?? (ﬂ'H/))
. = (3.5)
V3 Z 2pf3, sin?P 7t (%) cos <7TH,)
ef (m,y,H') = =l 72 -1

TH'

V3
7))

sin { 2arcsin | 7v/3 (Z Bp sin?P <
p=1

form>1,v€]0,y2*[ and H' € [0, 1/2].

s Im

3.2 Design of an algorithm

Taking advantage of the properties enumerated above, we can reformulate problem (F1) as
(F2) GIVEN

¢ velocity of the homogeneous medium
m  half-order in space of the scheme 2-2m

€ accuracy threshold (1/nynr)

FIND
v and H so as to minimize J,, = # under the following constraints
e Nyquist’s frequency
0 < H< %

e stability condition
0 < v <™
e accuracy criterion
VH' € [0,H], ef(m,7,H) < e and e, (m,y,H) > —¢ (3.6)

REMARK 3.2 Once v and H have been determined, the parameters h and At are deduced
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via ¢ and fpax. The latter is not explicitly involved in the statement of (F2). O

In the denominator of J,, , the objective function, H is raised at the fourth power while

At stays as it is. Since H seems to exert a much stronger influence on .J,, than At does, we

are tempted to make a bold step by replacing J,, by J % In other words, we will try
to maximize H under the prescribed constraints. A rigorous justification of this step would
require a sensitivity study of e; and e, with regard to y and H, which we have not taken up.
However, this simplification can be intuitively understood as follows. The schemes considered
are second order in time and 2m-th order in space. Therefore, At must be very small so as to

produce an error At? of the same order of magnitude as h*™, the error produced by h. As a

result, it is a pointless effort to take At into account in the objective function.

Minimal and maximal algebraic errors
0.2 T T T T T

-0.2r q

-0.4}+ 4

group error

-0.6 q

-0.8+ 4

. . . . . . . . .
o] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
H (inverse of the number of points per wavelength)

Figure 1: Behavior of the extremal errors e;(m,'y,H) and e, (m,v, H) with respect to H for

the 2-4 scheme (m = 2) and a stability ratio vy = 0.4.

Prior to maximizing H, it is helpful to have an idea about the behavior of e;(m, v, H) and

€, (m,~, H) with respect to H for fixed m and 7. Figure 1 illustrates the typical shapes of e;

and e as functions of H for given m and 7. Starting from positive values for H close to 0, both

e; and e, climb to their maximal values at some point before decreasing steadily and perhaps
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taking negative values. Given m and v, for € > 0 small enough, it is possible to consider

HXf(m,v) = smallest value of H for which ef(m,y,H)=¢ 3.7)
3.7

HZ(m,y) = smallest value of H for which e, (m,y, H)= —¢

€
Lemma 3.2 For fized m > 1 and € > 0 small enough for HY and H to be well-defined.
These are continuous functions of v. Furthermore, HY(m,7) is a decreasing function of v,

whereas H-(m,~) is an increasing function of 7.

Proor The existence of HF(m,~) for € small enough stems from the behavior of el and e
with respect to H. Their continuity is a consequence of the implicit functions theorem. Their
mononoty with respect to ¥ comes from Proposition 3.1. <

We are at last ready for the optimal strategy. On the grounds of the above properties, we
intuitively feel that v and H must be determined in some simultaneous way so as to maximize

H under the accuracy criterion, which appears to be the most important constraint.

Theorem 3.1 Consider problem (F2) in which the objective function J,, has been replaced by
1/H. Assume that the threshold € is small enough. Then, the couple (v, H) is solution to (F2)

if and only if HF (m,v) = HZ(m,v) = H.

ProoT Let (v, H)be the optimal parameters. If HY(m,v) < H(m,v),then for the accuracy
criterion to be met, we must have H = H¥(m,~). However, by virtue of the properties known

for el and e, , it is possible to change 7 to ¥’ > 7, so that

Q

HE(m,y) < HN(m,y') < HZ(m,y) < HZ(m,7')

€

and thus (v/, H') with H' = H}(m,v’) would be a better candidate. Likewise, assuming
HI(m,v) > H(m,7) also leads to a contradiction. This implies the equality HF(m,v) =
HZ-(m,7). There is no difficulty in showing the converse. <

Let us give some insights into the practical procedure of finding v and H. Given m > 1

and ¢ > 0, we have to grope a little while before getting the correct value for 7. Figure

2a represents what happens when 7 is smaller than the optimal value. In such an instance,
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x 1072 (a) gamma=0.18
T T T

group error
o
T
|

T T
2 4
3 . . . . . . . . .

[0} 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

H (inverse of the number of points per wavelength)

x 1072 (b) gamma=0.19
3 T T T
2L 4
] 2 _

group error
o
T

B e e i |
2 4
3 . . . . . . . . .

[0} 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

H (inverse of the number of points per wavelength)

x 1072 (c) gamma=0.1861
3 T T T
2L 4
) g NS

group error
o
T
|

[0} 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
H (inverse of the number of points per wavelength)

Figure 2: Determination of v and H for m = 2 and € = 1072. In (a), v is a little smaller than

the optimal value. In (b), it is a little larger. In (¢), it is equal to the optimal value.
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HY(m,v) > HZ(m,v) and so ¥ must be bigger. Figure 2b depicts the situation when 7 is
larger than the optimal value. In this case, H}(m,v) < H(m,v) and so 7 must be smaller.

We keep on adjusting v until HF(m,v) = H(m,) is satisfied, as in panel c.

3.3 Results and comments

One of the preliminary questions of the Marmousi 3-D campaign is to know whether or not the
2-8 scheme is more economical than the 2-4 one. Put another way, our task is to compare m = 4
with m = 2. Even in homogeneous media, the answer unavoidably depends on the accuracy
threshold € we want to impose to the group velocity relative error. Typically, it is useful to
consider € ranging from 0.001 to 0.01. The rationale of such a range is that for a simulation to
be useful, in general n7 > 100 and n) > 4. A precision € = 0.001 means, for instance, that after
the wave front has propagated over ny = 200 shortest wavelengths, the relative discrepancy

between the numerical solution and the exact solution is less than 1/ny = 1/5.

x 10° Homogeneous media
2.5
oL 4
2-4
F1.5- )
(=]
(=]
©
£
a
=)
-~ 1F )
o
0.5 2.8 o ]
©
X o
X
x x %
o | | I I I I L L
o > 3 4 5 6 7 8 9
epsilon (accuracy threshold) x 1072

Figure 3: Optimal cost .J in normalized unit versus accuracy threshold ¢ for (o) the 2-4 scheme

and (x) the 2-8 scheme in homogeneous media.

Given m and ¢, the optimal strategy sketched out in Theorem 3.1 is applied to determine

7

the optimal paramters v and H. Then, the minimal cost J} = ;4 is computed. Figure 3
~

plots J, versus € for m = 2 and From the standpoint of elementary floating point operations,
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Precision || Stability ratio || Sampling ratio || Cost ratio
€ 72 Y4 1/Hy | 1/Hy I3/ I3
0.001 0.186 | 0.083 11.7 5.7 4.2
0.002 0.221 | 0.107 9.8 5.4 3.3
0.003 0.244 | 0.124 8.8 5.1 2.9
0.004 0.261 | 0.138 8.2 4.8 2.6
0.005 0.275 | 0.149 7.7 4.6 2.4
0.008 0.308 | 0.176 6.8 4.3 2.0
0.010 0.324 | 0.190 6.5 4.2 1.9

Table 1: Detailed comparison of the 2-4 scheme (m = 2) and the 2-8 sheme (m = 4) in

homogeneous media.

N4 = 32 is much larger than Ny = 18. However, this is sufliciently compensated for by the gain
in H obtained via the 2-8 scheme so that the latter turns out to be mostly better than the 2-4
one. Table 1 supplies us with more details about this comparison. Note that 1/H is exactly
the number of points per shortest wavelength. We wish to emphasize that the stability ratio
7 is associated with the sampling ratio 1/H in such a way that the couple (v, H) is optimal.

In other words, any change in v at fixed H will result in a violation of the accuracy criterion

(2.8).

As is clearly seen from Figure 3 and Table 1, the more demanding we are on the accuracy,
the more expensive the simulations, and the more the 2-8 scheme ascends over the 2-4 one. Up
to € = 0.01, which is not such a tremendous precision for a large scale model, it takes the 2-4
scheme twice as many operations than the 2-8 one to run simulations. Note that this conclusion
is exactly opposite to that drawn by Sei [14] for schemes of the form A'A. The key feature
which accounts for this situation lies in the number of elementary operations of the schemes,

which implies that the greatest attention should be paid to the family of schemes under study.
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Although this comparison speaks up strongly in favor of the 2-8 scheme, we should be aware
of the fact that real-life media are not homogeneous. This is the reason why we are now going

to propose a generalization of the optimal strategy to the heterogeneous case.

4. Generalization to the heterogeneous case

4.1 New formulation

Let ¢min—Cmax be the velocity range of the heteregeneous medium at hand. The basic idea
consists in assimilating this medium as merely a series of several homogeneous media ¢ between
Cmin and ¢max. The discretization parameters h and At are required to satisfy the constraints
of problem (F1) for all ¢ € [¢min, ¢max|- Concretely speaking, we have to solve

(G1) GIVEN

Cmin—Cmax Velocity range of the heterogeneous medium
fmax cutoff frequency of the source wavelet
m  half-order in space of the scheme 2-2m

€ accuracy threshold (= 1/nyn7)

FIND
h and At so as to minimize J,,(h, At) under the following constraints

e Nyquist’s frequency

1 min
- (4.1)

e stability condition

< (4.2)

e accuracy criterion

VE, 1€l € émax = Y€ E [Cmin, Cmax] s |€g(m,c,h, AL E)| < € (4.3)

In order to somehow make use of the optimal strategy for the homogeneous case, we first
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have to reformulate (G1) in terms of non-dimensional variables v and H. In this process, a

slight difficulty may appear. Since we are faced with a whole range of velocity instead of one

single velocity, we need to know the velocity value with respect to which v and H are to be

defined. For conveniency purposes, we can rule out that this is always the smallest velocity

Cmin- D0, the discretization parameters and the non-dimensional variables are connected by

v = CminAt and H = h _ hfmax ]

h Amin Cmin

We will also need to introduce the velocity contrast

Cmax

o =
Cmin

Now, consider
(G2) GIVEN

Cmin Minimum velocity of the medium
o velocity contrast
m  half-order in space of the scheme 2-2m

€ accuracy threshold (1/nynr)

FIND
C T N . .
~vand H so as to minimize J,, = i under the following constraints
~
e Nyquist’s frequency

1

0< H < -

-2

e stability condition

1
0 <y < =™

e accuracy criterion

@ 4

!
sup sup e <m, o'y, —/) < €
o'€[L0] H'€ [0, H] g

H/
inf inf e <m, o'y, —) > —¢
o'el,0] H'e[0,H Y o’

(4.4)

(4.5)

(4.7)



22 W. W. Symes and Q. H. Tran

REMARK 4.1 In (4.4), the stability ratio v is associated with cmin and not cpax as is
traditionally the case. This accounts for the division by o in the right-hand side of (4.6). O
REMARK 4.2 It is easily seen that condition (4.7) is equivalent to criterion (4.3). Indeed, for
any ¢ = o'cpin belonging to the velocity range, o’y and g are the non-dimensional variables

corresponding to h and At via ¢’ and fiax- O

4.2 Search procedure

Analogously to the homogeneous case, the idea is first and foremost to replace the objective
function J,,(y, H) by 1/H, which is tantamount to maximizing H under the three constraints.

Secondly, a method for determining optimal v and H will be proposed, based on the following
property.

1
Lemma 4.1 For fized m > 1,0 > 1, v E] 0, —”’max[ and H € ] 0,
o

I'm

[, the mappings

N | —

H _ H
o' e; <m, 'y, ?) and o' — €, (m, 'y, ?>
are increasing functions of the variable o' € [1,0].

ProoF By the chain rule, we have

ale;t 86} H (?e;t L3
do' — ' 9y o2 OH' (4.8)
where the derivatives are taken at point (m, o'y, H/o'). According to Proposition 3.1, e;t is
+ a_ +
€ €
an increasing function of 7y. Hence, 3—g > 0. If the other derivative 8—};’ is also negative,
7
+
€
evidently d—g’ > 0 and so e;t is an increasing function of o’.
o
86;: ) ale;t ]
In the case BV > 0, we still want to prove that To’ > 0. Thanks to (4.8), the desired
o

inequality is equivalent to

det de ]! H 1
a—f;(m,alq’,ﬂ/ol) [(9]5’] (m,o'y,H/co") > O_—(O'/"‘;’) .

By the change of variable v’ = ¢’y and H' = H/o', what we have to show is

det der 17 H'
ﬁ(mfy/,H/) [aﬁ/‘| (Imvﬁf//vH/) 2 7
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AP
g
oH'

functions theorem, the left-hand side of (4.9) represents the opposite of the derivative with

for all v/ € 10, y™ax[ and H' €]0, 1/20[ such that (m,+',H') > 0. But, by the implicit

respect to 7 of the function 7' — H (') defined implicitly by e (m,~', H} (7)) = n where

7 is some positive number, small enough such that H' = H (9'). Inequality (4.9) can now be

rewritten as

_dan(ﬁ/) s Hn()
d,-)/l - ,-.‘r,/

which, after some algebra, amounts to saying that the mapping 7' — 7'H} (7') has to be a

decreasing function of 7' € ]0, ymax

[ for n > 0 sufficiently small.
On one hand, for the same reasons as those invoked for HX(m,7), which were defined

earlier by (3.7), H (7') is a decreasing function of 4’. On the other hand, it follows from the

asymptotic expansions of the formulae (3.5) that

e;t (m,~v',H') = A* ('H")?> + BZ (H')>™ + higher powers of H'

where AT > 0 and B < 0 are various constants. To get an idea about different orders of

magnitude, replace the primary definition of H}, by the approximate characterization
ARV HL ()P + B [Hy (1) " = 1 (4.10)

Arguing that AT > 0, BE < 0 and that H},(7') decreases with 7/, we can infer from (4.10)
that v H* (7') is also a decreasing function of 7', which finally completes the proof. <

The geometrical interpretation of Lemma 4.1 is the following. For fixed v € |0, y#*/o [ and
any o’ € [1,0],let £%(o’) be the dispersion curves representing efqt (m,o'y, H/o") as functions
of H € [0,1/2]. The result of Lemma 4.1 ensures that if 6" > o', then £t (o”) always lies
above £T(o’), and £~ (0") always lies above £ (o’). This geometrical property is illustrated
in Figure 4.

Lemma 4.1 enables us to simplify the heterogeneous accuracy criterion (4.7) as

VYH €[0,H], ef

T (m,0v,H'Jo) < € and e, (m,v, H') > —¢ (4.11)

g
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The search procedure is readily inspired from the homogeneous case by defining

Ht(m,o',vy) = smallest value of H for which ef(m,o'y, H/o') =€
HZ(m,o',7) = smallest value of H for which e, (m,o'y, H/o') = —¢

As before, it can be shown that for fixed m > 1, ¢ > 0 and ¢’ € [1,0], the mapping
v +— HY(m,o',v) is a decreasing function of v € ]0, o™ /g [, while v — H (m,o’,7) is

an increasing function. The optimal parameters are given by

Theorem 4.1 Consider problem (G2) in which the objective function J,, has been replaced by
1/H. Assume that the threshold € is small enough. Then, the couple (v, H) is solution to (G2)

if and only if (i) HF (m,0,7) = HZ(m,1,7) = H.

€

ProoF Similar to the proof of Theorem 3.1 <

0.02

0.015- B

0.01f -

0.005!- =

0 - 4

-0.005 ~ B

-0.01 N b

group error (with change in variables)

-0.015( R

-0.02 I I I I
[0] 0.05 0.1 0.15 0.2 0.25

H (inverse of the number of points per wavelength)

+

7 (m,o'y,H/c') as functions of H for

Figure 4: Illustration of Lemma 4.1. Group errors e

m = 2,7 =0.1and ¢/’ =1 (solid line), ¢’ = 1.5 (dash line) and o’ = 2 (dash-dotted line).

4.3 Results and comments

We have applied the above procedure to heterogeneous media with ¢ = 2. The experimental
approach is much the same as in the homogeneous case: for € ranging from 0.001 to 0.01, we

compare the optimal costs corresponding to the 2-4 and 2-8 schemes.
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x 10° Heterogeneous media
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Figure 5: Optimal cost .J, in normalized unit versus accuracy threshold ¢ for (o) the 2-4 scheme

and (x) the 2-8 scheme in heterogeneous media with o = 2.

Figure 5 summarizes the results obtained, while Table 2 gives more details on the com-
parison. It is pleasant to notice that the optimal discretization parameters are just a trifle
smaller than those of the homogeneous case. This can be physically understood as follows.
If the medium were homogeneous with ¢ = ¢y, then v and H would be given by Table 1,
which yields some values for & and A¢. When another homogeneous medium ¢ > ¢y is su-
perimposed to the initial medium, the stability ratio, computed as ¢!At/h would be worsened.
Meanwhile, the sampling ratio ¢’/ fiaxh would be improved. Thus, there is no need to select
a really smaller space-step h for numerical simulations in this medium. The only issue that

matters then is to lower the time-step At so as to respect the stability condition.

The method proposed in Theorem 4.1 suffers from a serious drawback for large €, for

which the stability threshold is saturated before one could figure out an appropriate v for the

equality HF(m,o0,v) = H7(m,1,7) to be satisfied. In such cases, the exact solution to (G2)

is v =" and H = H (m,1,77®). Table 2 shows that this situation occurs to the 2-4
scheme for € > ¢, = 0.005. Anyhow, the cost ratio still remains definitely in favor of the 2-8

scheme. The stronger the contrast o, the smaller the level ¢, and the sooner the stability

condition is saturated.
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Precision || Stability ratio || Sampling ratio || Cost ratio
€ 72 va || 1/Hz2 | 1/H4 I3/ J5
0.001 0.172 | 0.082 || 12.0 5.8 5.0
0.002 0.204 | 0.106 || 10.1 5.5 3.9
0.003 0.225 | 0.122 9.1 5.2 3.4
0.004 0.241 | 0.136 8.4 4.9 3.1
0.005 || 0.2507 | 0.147 || 8.0 | 4.6 2.9
0.008 0.2507 | 0.173 || 7.3 4.3 3.2
0.010 0.2507 | 0.187 || 7.0 4.2 3.3

Table 2: Detailed comparison of the 2-4 scheme (m = 2) and the 2-8 sheme (m = 4) in
heterogeneous media with ¢pax = 2¢min - The symbol § indicates that the stability ratio has

been saturated.

5. Conclusion

Throughout this paper, we have set up what we believe is a good framework for comparing the
cost of numerical schemes of the type 2-2m under the same accuracy constraint. In the process
of presenting the optimal strategy, we have even derived some useful theoretical results, namely
the behavior of the group or phase velocity relative error with respect to various parameters,
such as the stability ratio or the angle in the wave vector space. As is a widely common
practice in geophysics, the accuracy criterion has been based on the group velocity error, since
this represents the velocity at which energy propagates.

The numerical results, obtained for the 2-4 and 2-8 schemes in both homogeneous and
heterogeneous media, lead us to recommend the 2-8 scheme as the more economical method for
the purposes of the 3-D modelling campaign envisaged. In addition, the optimal discretization
parameters are explicitly given as functions of the accuracy level desired. The existence of

an optimal strategy to determine the discretization parameters in heterogeneous media is of
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particular interest.

However, it must be reminded that this is a comparison merely between numerical methods,
and not between actual CPU times. Implementing the 2-8 scheme turns out to be much a harder
task than coding the 2-4 one, insofar as the boundaries of the computational domain require
more special treatments. Notwithstanding, this study provides an excellent overview on how

the simulation cost is about to change with the accuracy level.
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