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AN INEXACT HYBRID ALGORITHM FOR NONLINEAR SYSTEMS OF
EQUATIONS!
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Abstract. In this work we define a hybrid algorithm for approximating zeros of the nonlinear systems F(z) = 0,
where ' : IR™ — IR" is continuously differentiable. We are concerned with the possibility that n may be large and the
Jacobian F' (z) sparse and singular. Trust region globalization methods are known to be robust and can be applied
successfully to obtain global convergence results under rather weak hypotheses. However, these algorithms can be
expensive, especially for large problems, if the trust region radius needs to be reduced quite often before an acceptable
step is obtained. Exploiting the convex structure of the local model subproblem, we propose a hybrid algorithm that
uses both trust region and linesearch globalization strategies. It solves, once and not accurately, a local model to
obtain a search direction and then uses linesearch techniques to obtain an acceptable steplength . We demonstrate,
under rather weak hypotheses, that the algorithm is globally convergent and that the sequence of residuals converges
to zero. Moreover, under standard assumptions of Newton’s method theory, we prove that the rate of convergence is
g-superlinear. Furthermore, g-quadratic convergence can be obtained by requiring sufficient accuracy in the solution

of the local model trust region subproblem.
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Introduction. In this paper we consider the problem of solving the nonlinear system of equa-

tions
(1.1) F(z)=0

where F' : IR® — IR" is continuously differentiable. We will be concerned with the possibility that
n may be large, and that the Jacobian of F' at , say F'(x), may be sparse and singular.

It is well known that, locally, problem (??) is often solved by Newton’s method. Globally,
trust region algorithms can be used successfully to minimize a given norm of the residual, leading
to quite satisfactory convergence results. We refer to Moré (1977) [?] for the £3-norm, to Duff,
Nocedal and Reid (1987)[7?] for the £,,-norm, and to El Hallabi and Tapia (1987) [?] and El Hallabi
(1993)[?] for an arbitrary norm. However, trust region algorithms may be expensive, especially for
large problems, if the local model needs to be solved more that once before an acceptable step is
obtained.

Exploiting the convex structure of the local model, we propose a hybrid algorithm that uses

both trust region and linesearch globalization strategies to solve problem in its equivalent form
(1.2) minimize f(z) = ||F(2)||a

where || ||q is an arbitrary (but fixed) norm on IR" and F' is given in (?7). The algorithm solves,

once and for an approximate solution only, the local model trust region subproblem

1 This work was partially done while the author was visiting the Center for Research on Parallel Computation

(CRPC) and the Computational and Applied Mathematics Department at Rice University, Houston,Tx 77251-1892
2 Departement des Sciences de Base, Ecole Hassania des Travaux Publics, B.P. 8108, Route d’El Jadida, Km.7,

Oasis, Casablanca, Morocco.



minimize my(s) = || F(zr) + F'(2r)$||a

(1.3) ‘
subject to Is]le < Ag,

where || || is an arbitrary (but fixed) norm on IR"; and then uses linesearch techniques to obtain
an acceptable step.

In (?7) and (1.3), we use arbitrary norms for the convenience of the presentation and for the sake
of mathematical generalization. Motivated by the recent developments in the linear programming
research area (primal-dual interior-point methods, simplex type methods), we mainly aim to use
polyhedral norms, in which case the local model trust region subproblem can be formulated as a
linear programming problem.

In Section 2 we define the optimality conditions for solving problem (1.2) and derive a necessary
and sufficient condition for stationary points to solve problem (?7). The inexact hybrid algorithm
for nonlinear systems of equations (IHANSE) is described in Section 3. In Section 4 we demonstrate
that the IHANSE Algorithm is globally convergent. In Section 5 we prove, under rather weak
assumptions, that the sequence of residuals {F(zy)} converges to zero. Moreover, we prove that
if the iteration sequence has an accumulation point, say z., such that F'(z,) is nonsingular, then
actually converges to such a point. Furthermore, the g-superlinear convergence of the iteration
sequence is demonstrated in Section 6; so is the fact that the rate of convergence is g-quadratic if
more accuracy is required in the minimization of the local model subproblem. Finally, in Section 7

we present a summary and some concluding remarks.

2. Optimality Conditions. In this section, we define the optimality conditions for problem
(1.3). We also give a necessary and sufficient condition for stationary points to be solutions of
problem (77).

The locally Lipschitz composite function f = ||F||, is regular, i.e. its generalized directional
derivative denoted fO(z;s) and its one-sided directional derivative denoted f’(z;s) exist and are
equal (see Clarke (1983) [?]). They are respectively defined by

(2.1) fO(z;s) = limsup flz+1s) = J(=) )
y—ax, )]0 t

and

(2.2) f(z;s) = ltilrg w )

Also its generalized gradient at z, denoted Jf(z), is the subset of IR™ defined by
(2.3) f(x) = {g €R" | fx;s) > g's, VseIR"}.

In this research, we use both derivatives although they are equal. To study the optimality
conditions, working with the one-sided directional derivative is sufficient. But to analyze the behavior
of the algorithm at an iterate that is not a stationary point of f, the generalized directional derivative

is a powerful tool because its definition uses a hall neighborhood of = rather just the point z.
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The usual definition of a stationary point z in non differentiable optimization is that 0 € 9f()
or equivalently f%(z;s > 0 for all s € IR". But since in our case the function f is regular, we will
use the following definition of stationarity.

DEFINITION 1. Let f = ||F||a, where F': IR" — IR™ a continuously differentiable function, and
let x € IR™. Then x is a stationary point of f if

(2.4) f(z;8)>0 VseR™.

In the following two lemmas we define the local model of f, say m,, and we show that it has
the same directional derivatives than f. Moreover we show that the notion of stationarity can be
defined in terms of the set of minimizers of the local model. These properties are important from
an algorithmic point of view.

LEMMA 2. Let f = ||F||q, where F': IR™ — IR" a continuously differentiable function, and let
r € R". Then

(2.5) f(z;s) =ml(0;5), VseIR".
where
(2.6) mg(s) = || F(z) + F'(z)s|la -

Moreover, we have
(2.7) £(055) < ma(s) = ma (0).

Proof. For (77), we refer to El Hallabi and Tapia (1987)[?], and Inequality (??) is an obvious
consequence of (77) and the convexity of mg(). O

LeEmMa 3. [El Hallabi and Tapia (1987)[?]]. Let f = ||F||o where F: IR™ — IR" is continuously
differentiable. Then x. € IR" is a stationary point of f if and only if for all s € IR"

IF(z)lla < [|1F(22) + F (22)sla

or equivalently my, (0) < mg, (s) for all s € R™ where my is given in (77).

In the following theorem, we establish a necessary and sufficient condition for a stationary point
of f to be a solution of the nonlinear system (?7).

LEMMA 4. Let z, be a stationary point of f = ||F||. Then . is a solution of the nonlinear

system (17), i.e.

(2.8a) F(z.)=0

ts and only if the linearized system

(2.8b) F(z.)+ F'(zs)s =0

15 consistent.
Proof. The proof is an obvious consequence of Lemma 77. O
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3. The Inexact Hybrid Algorithm. In this section we define our hybrid algorithm for ap-
proximating a solution of the non differentiable optimization problem

i 1(&) = 1P

where F : IR — IR" is continuously differentiable and where || ||, is an arbitrary norm on IR".

At each iteration, the algorithm solves the local model for an approximate solution in the sense
given in the following definition.

DEFINITION 5. Assume that x is not a stationary point of f, ¢ > 0, A > 0, and || || end
[| |5 are arbitrary norms on IR™. We say that s. is an e-solution of the local model trust region

subproblem

minimize mg(s) = [|F(z)+ F'(2)s]]q
subject to [Is]lp < A

if s. satisfies
Mme(se) —me(0) <0 and mg(s:) < mg(s)+e

for all s satisfying ||s||p < A.
Inexact Hybrid Algorithm for Nonlinear Systems of Equations (IHANSE)
Let ¢;,2=0,...,5, Anin, Ag and Fy be constants satisfying:

0<ep<ea<1<es O<ey<es<l
0<Amn K1 1 € Apax < 00
<60 0<Amln§A0

Let zg be any point in IR, and let || ||, and || || be arbitrary (but fixed) two norms on IR".
The algorithm will generate a sequence {(zg, Ak, fx)}, where zj is the iterate, Ay the trust
region radius, and Fj is used to measure the required accuracy in the eg-solution.
Suppose that z, Ay, and B have been determined by the algorithm at the k'? iteration. The
algorithm determines zg41, Ag41, and Br41 in the following manner:
STEP 1. Obtain an ¢j-solution with
ex = e min([|sillo |1 (@0)lla )
of the model trust region subproblem
(LMTR) = { minimize my(s) = ||F(2r) + F'(21)$]|a
subject to ||s||p < Ag
STEP 2. Set ty =1
Until
flop +trsg) < flze) + ca[mp(tesk) — fazr)]
Choose tj such that
caty, < tp < csty;

set t = 1.



End (Until)
STEP 3. If f(xr, +trsr) < fler) + ca[mp(tese) — f(xr)]
choose A 41 so that
A < Apgr < max(Ag, csltrse||)
Else
Choose Aj4; such that
calltrsl] < Apgr < |[trse ]
STEP 4. Set A41 = min(max(Ag+1, Amin), Amax)
Choose 0 < Br41 < Bo -
REMARK 3.1. We could use ¢ = Bi||F(21)||a instead of e = B min(||5k||b, ||F(]:k)“a) IN

Appendix A, we discuss the use of the later choice versus the first one.

Throughout this paper, we use the following definition.

DerINITION 6. . The successful steplength ty, obtained in STEP 2 of the IHANSE Algorithm
will be said to be acceptable with respect to (xy, Ay, Br). Moreover the iterate xpy1 = x + tgp sy will

be referred to as a successor of xy.

4. Global Convergence for the IHANSE Algorithm. In this section we will establish the
global convergence of the inexact hybrid algorithm for nonlinear systems of equations described in

Section 3. Throughout this section, unless otherwise stated, e;(sg) is defined by

(4.1) x(sx) = By min([[sells, [ F(2e)lla) -

We start by proving that any ej-solution, in the sense of Definition 77, of the local model
trust region subproblem LMTR is a descent direction for f = ||F||, at the current iterate, and
consequently, we can obtain an acceptable step by using linesearch techniques.

PROPOSITION 7. Assume that xzy is not a stationary point of f. Then
(4.2) ' (ze;s6) <0

holds for any ep-solution sy of the local model subproblem LMTR. Moreover, there exists t, € (0, 1]
such that

(4.3) fze +tese) < flzp) + ealmp(tese) — fzr)] -

Proof. The proof follows from Definition ??, Lemma 7?7 and the inequality (?7).0

ProposITION 8. . Let {(zk,Ag, Bi)} be a sequence converging to (x.,As,0), where z, and
zy are not stationary points of f, and where Ay > Apin. Let sp be an ex(sp)-solution of the local
subproblem
(4.4) minimize my(s) = [|[F(zr) + F'(2r)$||a

subject to [Is]le < Ag.



Then any accumulation point of {sy}, say s, is an ezact solution of the local subproblem

minimize my(s) = ||F(xs) + F'(24)8]|a

(45) |
subject to [Is]le < Ag,

Proof. First, observe that the condition Ay > A, implies that A, > 0. Since {Ag} converges
to Ay and ||sg|lp < Ay for all &, the sequence {s;} is bounded. Consider any accumulation point s,

of this sequence. We prove that
(4.6) 1P (@) + F ()5l < 1F(22) + F'(22)s]a

holds for all s such that ||s||s < As, i.e., s« is an exact solution of (4.5). Let s satisfy ||s||s < A..
We consider two cases:
i) First, we assume that ||s||s < A.. Since {Ay} converges to A, ||s|| < A holds for sufficiently

large k; and because sy is an ¢x (s )-solution of the local subproblem (4.4), we obtain
(4.7) 1F (k) + F'(wk)sella < [1F(2k) + F'(2r)s]la + e (se)

which implies that (?7?) is satisfied.
ii) Now, we assume that ||s||y = A.. Consider y; = I@ﬁs, which satisfies ||yx||s = Ak. Because s

is an g5 (s )-solution of the local subproblem (4.4), we obtain

A

(4.8) 1F(zk) + F'(zr)sella < [|1F(2) + ﬁF'(xk)SHa + ex(se) -
By passing to the limit when k£ — 400, we obtain

! A* !
(4.9) [[F(2s) + F'(@a)sulla < [[F(2e) + MF (@+)slla ,

and since [|s||p = A, this implies (?7).0

The condition Ay > A, implied by STEP 4 of the ITHANSE algorithm was first introduced in
El Hallabi and Tapia (1987)[?]. In a trust region framework, it forces the algorithm, before reducing
the radius if needed, to start each iteration with a radius at least as large as some arbitrary small
fixed constant Ai,. This safeguard led to quite powerful global convergence in both unconstrained
and constrained optimization. We refer to El Hallabi (1993) [?] and El Hallabi and Tapia (1987)[?]
for the first case, and to Alexandrov (1993)[?], Dennis, El Alem and Maciel (1992)[?] and El Hallabi
(1993)[?] for the second. The main implication of this safeguard is that the actual radius, i.e. that
determines an acceptable step, which may be less than A, in case the trust region radius has
been reduced, remains bounded away from zero at a non stationary point. In the following theorem
we establish that this safeguard has the same implication with respect to the steplength ¢; that
determines an acceptable step in the hybrid algorithm under consideration.

THEOREM 9. Let {(z, Ak, Br)} be a sequence that converges to some (2., A, 0). Assume that
z. and xy are not stationary points of f and that Ap > Anin for all k. Then there exists a positive
integer t(x«, Ay) > 0 such that

(4.10) 1> U(ze, A)
6



holds for any accumulation point t. of {tp} where ty determines an acceptable step with respect to

(zk, Ak, Br)-
Proof. Assume that for any constant v > 0, there exists an accumulation point of {t3}, say t. -,
such that

0<tsy <.

Therefore there exists a subsequence {t, k € N C IN} converging to zero. Without loss of generality,
we can assume that {¢;} converges to zero. This implies that for sufficiently large k, we have
0 < tr < 1,ie. asteplength of one is never accepted. Let £; be the last non acceptable steplength
in the direction si, an e (sy)-solution of the local model trust region subproblem LMTR. We have
that

(411) 0< 64{13 <t < C5t7c ,
which implies that {f;} converges to zero, and
(4.12) Pl +use) — Fon) > e [1F(w0) + 6P Ga)sell, — 1P ()l

which can be written as

trse) — f(: r e P (xp)s4||a — || F(: a
(4.13) floxttes) = fan) _ P@e) + b (zr)slla = | F(2e)]
tr 173
J(zg +tese) — f(or +trsk)
+ _
ty
voy I Ge) + teF (k)8 lla — 1 (xp) + LB (28 54 la
1 t;c .
But because I is continuously differentiable, we have
(4.14) I(Foe) + 6 F (205 lla — |F@0lla > Flae +fes.) — F(e) + olie) |

where limg_. 4 O(}Z‘) = 0. ;From (??) and (?7) we obtain that
flar +trse) — flar) S Jlxg +trse) — f(ar + trsg)

(4.15) (1—c1) = -

IF (@) + 6 F ()3 lla — [P (e0) + 6P @)sella |, olin)
+ c1 7 + t7
k k

bl

which implies, because f and the norm || ||, are locally Lipschitz and because 0 < ¢; < 1, that

f(z + trse) — f(zr)

(4.16) lim sup = >0,
k—4o00 173

and hence

(4.17) lim sup fy+ts.) = fy) >0
Yy—Tx, 110 t



iFrom the regularity property of f, (7?), (?7), and (?7), we obtain

(4.18) f(ze,8:) >0,

which, together with Lemma ?? and the convexity of mg, () , implies that
(4.19) 1F@@a)lla < [1F () + F'(24)54]|a -

On the other hand the sequence {si} is bounded. Let s, be any accumulation point of this se-
quence. Without loss of generality we can assume that {s;} converges to s.. From Proposition
??, we obtain that s, is an exact solution of the local model trust region subproblem (4.5), which,
together with (?7), implies that zero solves the local model trust region subproblem (4.5). There-
fore, by Proposition 77, we conclude that z, must be a stationary point of f, which contradicts our
hypothesis.

Consequently, there exists a positive scalar t(z., A,) such that (??) holds for any accumulation
point ¢, of {tx}.0

Now we establish that the IHANSE Algorithm satisfies a property we call we Local Uniform
Decrease. We believe that this property is a very powerful tool to obtain a global convergence result
(see El Hallabi (1993)[?] and El Hallabi (1993)[?]). This property is the most important hypothesis
of the global convergence theory of Polak (1970)[?] and Huard (1979)[?] concerning some conceptual
algorithms.

THEOREM 10. Consider (z.,A,0) where A, > 0 and z. is not a stationary point of f.
Then there exists a neighborhood of (x.,A,0), denoted N, = N(x.,AL,0), and a positive scalar
P« = p(xw, Ay) such that for any (z, A, ) € N, with >0

holds for any successor (x4, A4, 1) of (x, A, ).
Proof. Assume that the theorem does not hold. Then there exists a sequence {(zx, Ag, 5r)},
with B > 0, converging to (z., A, 0), a sequence of positive scalars {p;} converging to zero, and a

sequence of successors {(g+, 0k+, Sr+)} such that

(4.21) f(@eg) 2 f(24) — pr

holds for all k. Therefore, for all k, there exists an (s )-solution sy of the subproblem (4.4) and
0 <ty < 1 such that zp4 = 2y + tpsp satisfies (77) and

(4.22) Flees) < fee) + er 17 (z) + e F (xr)sklla = 17 (z2)lla] -
4From (2?) and (?7) we obtain

Fa) = pe < flae) + e [I1F (2p) + te " (2)sella — [1F'(2k)lla]
and then, since the sequence {(z, 1)} is bounded,

(4.23) () + 1P (2 )sulla — | F(@)]a 2 0.
8



where (%4, s«) is an accumulation point {(¢x, s;)}. Observe that, by Theorem 77, ¢, > 0. Let us set
(4.24) Gu(t) = [|F (2s) + 1F (24) 4|0,

and rewrite (?77) as

(4.25) $:(0) < du(ts) -
Because ¢, is convex and 0 < ¢, < 1, we obtain necessarily from (?7)
¢+(0) < 6.(1)

or equivalently
(4.26) 1F @) lla < 1P (@) + F(@2)s. o

On the other hand we obtain from Proposition 77 that s, is an exact minimizer of the local
model trust region subproblem (4.5). Consequently we obtain from (??) that zero is a solution of
subproblem (4.5). This, together with Lemma 77, implies that z, is a stationary point of f, which
contradicts our hypothesis. O

In the following theorem, we demonstrate that the inexact hybrid algorithm for nonlinear systems
of equations IHANSE described in Section 3 is globally convergent.

THEOREM 11. Consider a continuously differentiable function F' : IR" — IR™. Let || || and || ||s
be arbitrary (but fizred) norms on IR™, zo be an arbitrary point in R™, and f(x) = ||F(z)||q. Assume
that the the sequence {fBr} converges to zero. Then any accumulation point of the sequence {zy}
generated by the IHANSE algorithm of Section 3 using xg as initial iterate is a stationary point of
f-

Proof. Let z, be an accumulation point of the sequence {zj} generated by the THANSE al-
gorithm. Without loss of generality (by considering a subsequence if necessary), we can assume
that the sequence converges to .. The sequence {(zy, Ag,B%)} is bounded. Let {(z;,A;,53;)} be a

subsequence that converges to (., A, 0). Because the sequence {f(zy)} is decreasing, we have
Fa;) < flax) Vizk,

which implies that

(4.27) flas) < f(er) Yk eIN.

Suppose that z. is not a stationary point of f. Since the sequence {(z;,Aj, 5;)} converges to

Zs, Ay, 0), there exists an integer j, such that (z;, A;, 3;) € N, for all j > j., where N, is defined
g PR RN

in Theorem 4.3. Hence, we obtain
(4.28) f(@jqr) < f(xa) = pe Vi 2Js,

which contradicts (?7). Consequently, any accumulation point of the sequence {z1} generated by
the IHANSE algorithm in Section 3 is a stationary point of f = [|F||. D

REMARK 4.1. Actually, Theorem ?? can be obtained as an application of Theorem 7?7 and the
work of either Huard (1979)[?] or Polak (1970)[?] concerning the global convergence of conceptual
algorithms. We choose to give a direct proof because that proof is not long and contributes to the

completeness of the presentation.



5. Convergence to a Solution of F(z) = 0. In this section we demonstrate that, under
rather weak hypotheses, the sequence of residuals {F(z)} converges to zero. We also demonstrate
that if the iteration sequence generated by the IHANSE Algorithm has an accumulation point, say
Z., such that Fl(a:*) is nonsingular, then, the iteration sequence converges to .

In the following two theorems, under rather weak assumptions that do not include the non-
singularity of the Jacobian, we prove that the sequence of residuals converges to zero. This can be
considered as a convergence result for the singular Newton’s method.

THEOREM 12. Assume the hypotheses of Theorem 77. Also assume that there exists a bounded
subsequence {xp, k € N CIN} and a constant n € [0,1) such that

(5.1) 1 (2x) + F'(xr)sel] < nll ()|

holds for all k € N C IN. Then any accumulation point of the iteration sequence, generated by the
IHANSE Algorithm, is a solution of the nonlinear system (77). Moreover, the sequence of residuals
{F(xr)} converges to zero.

Proof. Let z, be an arbitrary accumulation point of the subsequence {zy, k € N C IN}. jFrom

Theorem 77, we obtain that z, is a stationary point of f, which implies that
(52) I1F ()l < [1F(20) + F (25|

for all s € IR"™. On the other hand, since {s;} is bounded, we can assume without loss of generality

that it converges to s.. Therefore, inequality (?7) implies that
(5.3) 1P (@) + F/(w.)s. | < all Pzl
iFrom (77), (??7), and 0 <75 < 1, we obtain

F(z.) = 0.

This implies, since the sequence {||F(zt)||} is decreasing, that {F(z))} converges to zero, hence

any accumulation point of the iteration sequence is a solution of the nonlinear system (77).0
REMARK 5.1. Condition (??) can be written as

(5.4) mi(sp) < n my(0).

Because, first, at each iteration we minimize, within some tolerance (see Definition 3.1), the local
model trust-region subproblem LMTR, second, zero is a feasible point for such minimization prob-
lem, and third, we are considering a zero residual problem, the assumption that (??) holds for a
subsequence does not seem to be restrictive.

Now, we prove that the iteration sequence actually converges.

THEOREM 13. Assume the hypotheses of Theorem ??7. Also assume that the iteration sequence

has an accumulation point, say x., such that the linear system
(5.5) F(z.)+ F'(z:)s =0

1s consistent. Then any accumulation point of the iterate sequence is a solution of the nonlinear
system (1.1). Moreover the sequence of residuals {F (1)} converges to zero.

10



Proof. Let z, be an arbitrary accumulation point of {z}. By Theorem 7?7, z, is a stationary
point of f = ||F||q. Assume that (?7) holds. Then, by Lemma ??, we have

(5.6) F(.Z‘*) =0,

which implies, since the sequence {||F(x)||o} is decreasing, that {F(zj)} converges to zero. Finally,
we obtain that any accumulation point accumulation point of the iteration sequence is a solution of
the nonlinear system (?7). O.

THEOREM 14. Assume the hypotheses of Theorem 7. If the sequence {xy} generated by the
IHANSE Algorithm has an accumulation point, say x., such that F'(x.) is nonsingular, then {zy}
converges to x., and F(xz,) = 0.

Proof. Let x. be an accumulation point of {«;} such that F'(z.) is nonsingular. Then the
linear system (?7) is consistent, and hence, by Theorem 77, {F(z)} converges to zero. On the

other hand, we have
1F(ze) + e ' (zp)sklla = [[Er(F(xr) + F'(zr)sk) + (1 —tg) F(zn)]|a

where sy, is an gg-solution of the local model trust region subproblem LMTR, and #; € (0,1] is an

acceptable steplength with respect to (zx, Ag, Br). Therefore we have
17 (e) + F'(@e)(tesi)lla < Gll(F(2e) + F'(zi)silla + (1= )| F(@e)lla
and by using the Definition 3.1 of an approximate solution of LMTR we obtain
17 (e) + F'(ex)(Eesi)lla < [1F(2p)lla -

Now, the convergence of the sequence {z} to . follows from Theorem 3.3 of Eisenstat and Walker
(1993) [7].

Observe that if we were solving the local model exactly, the next section would not be needed.
Indeed, under the standard assumptions of Newton’s method, the Newton step converges to zero,
and because Ay > Ay, it becomes feasible for the local model subproblem LMTR for sufficiently
large k. Therefore, we could conclude that the IHANSE Algorithm reduces to Newton’s method for

sufficiently large k£, and hence it is g-quadratically convergent.

6. Convergence Rate of the IHANSE Algorithm. In this section, we prove that, under
the standard assumptions of Newton’s method, the IHANSE Algorithm is g-superlinearly convergent
and that it is g-quadratically convergent if either 8 = O(||F(x)||) or Bx = O(||sk|]). We also prove
that, for sufficiently large k, the trust region radius is not decreased, which implies that a very small
safeguard for global convergence Ay, is of no importance for the convergence rate.

LEMMA 15. Assume the hypothesis of Theorem 7. Also assume that the sequence {xy} gener-
ated by the ITANSE Algorithm has an accumulation point, say ., such that F'(z.) is nonsingular
and F' is Lipschitz near x.. Then there exists a positive integer ki such that Ax > Ay, for k > k.
and a steplength of one is acceptable with respect to (xp, Ay, Br).

Proof. By Theorem ?7, the iteration sequence converges to z, and {||F(z)||} converges to zero.

Let us show that the inequality

(6.1) f(ze41) < flar) + ea[mp(sk) — me(0)]
11



where s3 is an ep(sy)-solution of LMTR subproblem, is satisfied for sufficiently large k. Because
0 < e1 < g < 1, this will answer both questions of the lemma. Since F' is continuously differentiable

and {zy} converges to z,, we have

fler +s6) = [|F(ze) + F'(zr)sk +ol|[sello)lla

and hence
(6.2) f(er) = fler + s6) > flor) = (me(se) — [lo(llse[]s)]]a) -
Because f(zr)— mg(sg) > 0, this implies
S(aer) = fler +s6) o llo(llsells)lla l|sk ls
03 e —mits) > lsele Fe) —malen)

Let us show that
Jxr) — mp(se)

(64) Toell

> M,

for some positive constant M,. Since {y} converges to ., F/(z.) is nonsingular, and F' is contin-
uously differentiable, there exists a positive integer k. and a positive constant A, such that F'(zy)

is nonsingular and

(6.5) [[F'(z)d||la > Ac|ld|ls Vd € R™ and Vk > k. .

Consider (zy, Ay, B) for k > k., and denote by s& the Newton step, i.e. the solution of
F'(zg)sy 4+ F(a) =0 .

We consider two cases:
Case 1. Assume that Aj < ||5fcv|| Let us define

(6.6) o = HSJ’\C,Hb and 8 = agsh .
lIsx [le
Since 0 < a < 1, we have
(6.7) () = (1 anllF @)l
On the other hand, because ||$k||s = ||sk||s and s is an ei (s )-solution of the local model, we have
(6.8) flze) —me(se) < flze) — me(se) +ex(Be)

which, together with (??) and (?7), implies

1F" (@ )5k lla
158" llo

Therefore, since {8} converges to zero, we obtain (??) from (?7) and (??). Observe that we needed

flan) —mu(se)

(6.9) Toells

Br <

er < Brllsk|le ( It is the only place in the paper where our choice of ¢ is needed).
12



Case 2. Now we assume that [[sY|l; < Aj. This implies that the Newton step is feasible for
subproblem LMTR. Because s is an ¢g-solution of LMTR subproblem, we obtain

17 () + F'(wr)sklla < BellF(k)lla
or equivalently, since the norms on IR" are equivalent,
(6.10) 17" () (56 — 53 )la < Bl | 7 (ka5 [Jo-
for some constant g. From (?7) and (?7?) we obtain that

lIsklo
lIst lla

(6.11)

—1| < Mipe,

where M is a constant depending on z,, holds for sufficiently large k, which implies, by passing to

the limit as G5, converges to zero,

52l

6.12 lim b1
( ) k—+4oco ||3k||b

Therefore, for sufficiently large k, say for k& > k. for convenience, we have

[ENIE

(6.13) sells

>

N | —

Also, because sg is an g-solution of the local model trust region subproblem LMTR, we have

flar) —milsr) o I1F()lls  ex
lIsklle = lslle llsells

Since e, < Bi||F (z1)||q, we obtain from (?7)

S(ze) — mai(sk)

(6.14)

1F"(2)s% lla

6.15 > (1= B
(6:19) T PR
which, together with (?7), implies
N N
(616) M Z (1 _ ﬁk)/\* Hsk ||<1.
B IEAID

iJFrom (?7) and (?7), we obtain (??). Observe that we only needed e, = SBi||F(21)||a (see the
derivation of (77))

Inequalities (??7) and (??) imply that for k& > k. we have

(6.17) fen) = fntse) oy L flollsell)ll
f(ar) —mg(s) M. |Isklls
On the other hand, there exists a positive integer, say k. for convenience, such that
L [lo(llsxls)Il
6.18 1 — — HANPRS I
(19 M. |lsklls :

for all k£ > k.. Finally, we obtain from (??) and (??) that equality (??7) holds for k£ > k.. Therefore,
for k£ > k., the trust region radius Ay satisfies

(6.19) Ay, < Ay,
13



and a steplength of one is acceptable with respect to (xp, Ay, Br). Observe that we only needed
er = Brl|F(xr)||a (see the derivation of (77)).0

Now, let us prove that the IHANSE Algorithm converges g-superlinearly.

THEOREM 16. Assume the hypothesis of Lemma 77. Then the iteration sequence converges

g-superlinearly to x,.

Proof. Let k. be given by Lemma 77. Also let sfcv denote the Newton’s step, i.e. sfcv =

—F'(z)"1F(zy). For for k > k., we have
(6.20) Fxg) + F'(xr)sk = F'(xg)(sk — 55 ) .

On the other hand, since the sequence {F(zy)} converges to zero, the Newton step s is feasible for
the local model subproblem LMTR, i.e.

(6.21) 58 lls < A,

for sufficiently large k. Since sj is an eg-solution of LMTR subproblem, we obtain from (?7) and

(77)
(6.22) 15" () (st — 5% )lla < BrllF(26)]la
and consequently

AUBRNIF () — F(24)|la
LiBrllze — x|l

_ N
(623) ||Sk Sk Ha

INIA

for some positive constant L,. On the other hand we have

(6.24) The1 — T = (wf\f—i_ Sfcv —x.) + (sp— Sg)
= (Ik+1 — 24) + (sk—sy ),

where :L‘chH 1s the Newton iterate obtained from zj. Therefore we have

(6.25) 2k 41 = zalls < ll2lys — 2slls + llse — s llo -

iFrom (77) and (?7), we obtain
(6.26) leet1 = zallo < M2y — 2allo + LaBillzr — z4]ls -

Consider D, a convex neighborhood of z, contained in the domain of the ¢g-quadratic convergence of
Newton’s method (see Dennis and Schnabel [?]). Since {1} converges to z., there exists an integer,

say k. for convenience, such that z € D, for all £ > k.. Then we have
(6.27) o2y — 2lls < Lollew — ol ¥ k> k.
where Lq is a positive constant. From (?7) and (??) we obtain

(6.28) 2k 41 — 2alls < Lollew — 2§ + LaBllzr — 2ls -

14



Therefore, because {8} converges to zero, (??) implies that

lzksr —zalls

(6.29) lim =0,

k=too [[zr — ulo

i.e. the iteration sequence {aj} generated by the algorithm converges g-superlinearly. O

THEOREM 17. . Assume the hypothesis of Theorem 77.
i) If B = O(||F'(zx)|]) or B = O(||sk]]), the iteration sequence converges q-quadratically to x., and
ii) If By = 0 for sufficiently large k, xy is the Newton iterate for the nonlinear equation F(z) = 0
and consequently the rate of convergence of {xy} 1o . is q-quadratic.

Proof. Assume that

(6.34a) Br = O(||F(zk)lla)
(6.34b) B = O([|(se)lla) -

iFrom (??7) we obtain

(6.31) lim el

k—too [|lzg — zally
Since F(z,) = 0 and F'is continuously differentiable, we have

1E@lle = [1F(er) = F(2)lla

(6.32)
Lollzy — zfs -

A

iFrom (6.34a), (6.34b) and (?7) we obtain

(6.33) Br = O([ler — 2«lo) -
Therefore (??7) becomes

(6.34) 2et1 — zalls < L7[Jox — 2.7

i.e. the iteration sequence {zy} generated by the IHANSE algorithm converges g-quadratically to
Zy.

Now assume that 8y = 0 for k£ > k.. This means that we are solving the local model trust region
(LMTR) exactly. The proof is similar to the one given for Theorem 8.1 of El Hallabi and Tapia [?].
O

7. Summary and Concluding Remarks. To solve nonlinear systems of equations using an
arbitrary starting point, trust region strategies are known to lead to quite robust globally convergent
algorithms. However, these algorithms can be expensive if the trust region radius needs to be
decreased quite often before an acceptable steplength is obtained, especially for large nonlinear
systems.

To remedy to this possible situation, we proposed a hybrid algorithm for approximating a
solution of F'(#) = 0. To maintain the robustness of the trust region globalization strategy, the
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IHANSE algorithm described in Section 3, determines a search direction s; as an approximate

solution of the local model trust region subproblem

minimize my(s) = || F(zr) + F'(21)s||a
subject to |s]le < Ag

(LMTR) = {

where || || and || ||s are arbitrary (but fixed) norms on IR", then it uses linesearch techniques in the
direction s; to obtain an acceptable steplength ¢ .
Observe that if || ||, and || ||s are polyhedral norms, in particular || || = ¢1-norm and || || = feo-
norm, then the local model subproblem LMTR, can be formulated as a linear programming problem.
We proved, under rather weak hypotheses, that the inexact hybrid algorithm for nonlinear
systems of Equations is globally convergent.

Under the forcing condition that
(7.1) 1F(ze) + F'(ze)sella < nllF(@e)lla;

where 0 < 7 < 1, holds asymptotically and only for a subsequence, we proved that the sequence
of residuals {F'(zp)} converges to zero. Observe that since we are solving a nonlinear system of
equations, condition (?7) is more likely to hold. Moreover, we proved that if the optimal residual is
not zero then, for any accumulation point of the iteration sequence, say z., not only the Jacobian
matrix F'(z,) is singular, but the linear system F'(z.) 4+ F'(z«)s = 0 is inconsistent.

Also, under standard assumptions of the inexact Newton’s method, we showed that the iteration
sequence is g-superlinearly convergent and that it is g-quadratically convergent if more accurate, but
not exact, minimization of the local model trust region subproblem is performed.

Finally, let us emphasize that the hybrid approach stems from the observation that as long as,
first, the local model and the objective function have the same directional derivatives and, second,
the local model is convex in the direction of the approximate solution , decreasing the trust region

radius to obtain an acceptable step is irrelevant.

8. Appendix A. In the IHANSE algorithm, to obtain an approximate solution, we use the

accuracy test

(8.1) ex = B min([lsells | F(2e)]la)

that is a posteriori defined in the sense that the algorithm updates the required accuracy while
solving the local model LMTR. We could just use

(8.2) er = PellF (xr)lla-

In fact the derivation of global convergence uses (77). But when deriving the superlinear convergence,
with (?7), we need not to consider Case 1 in the proof of Lemma 6.1, i.e. we need to use the fact
that the Newton step is inside the ball of radius Ay. This will occur for sufficiently large k since,
by Theorem 5.3, si\f converges to zero. But this implies that Ap, should not be very small. On
the other hand, a not very small Ap,;, would cost more linesearches for the global convergence, and
make the algorithm Aj,-dependent. Moreover, we believe that, although A, is important to
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obtain a global convergence result, its use should be for theoretical purposes only. Our approach,
then, is to choose a very small A, and let the algorithm work with the trust region Ay that is
automatically updated since it will be in general greater than Ay,. This can be done using the a

posteriori defined accuracy

ex = B min[lsello, | F(@0)lla)

In the following lemma, we show that the approximate solution used in the algorithm is well defined.

LEMMA 18. Assume that x is not a stationary point of f and A > Apin. Then IHANSE
algorithm always finds an ep-solution in the sense of of Definition 77.

Proof. The local model subproblem LMTR is convex. Therefore its dual program is well defined
(see Rockafellar (1970)[7],(1981)[?], Janh (1994)[?]). Let p; = m(s;) be the primal objective value
obtained at the j'* inner-iteration in the process of solving LMTR subproblem, and let d; be the
corresponding dual objective value. We call primal-dual gap the difference m(s; ) —d;, and we denote
it by pdg;. Observe that the optimal primal-dual gap pdg. is zero. On the other hand, since z is
not a stationary point of f, there exist ||so||p < A such that

(8.3) [1F(2) + F'(2)s0lla < [|F'(2)]la-

Let {s;} be a sequence generated when solving subproblem LMTR such that such that {||F(z) +

F'(z)sj||a} is decreasing and

(8.4) 17 () + F'(2)sjlla < [[1F(2) + F'(2)s0]la < |IF(@)[la,

Assume that there exists a subsequence of t {s;} that converges to zero. Then, from (?7) we obtain
(8.5) 1F@)la < |1F(x) + F'(2)solla < [|F(#)lla,

which is impossible. Therefore there exists a positive constant depending on (z, A), say w, such that
(8.6) lIsille > w

holds for all j. Now, because the primal-dual gap converges to zero, we have

(8.7) pdg; < fmin(w, ||F(x)].)

for sufficiently large j. Let j. be the smallest integer such that (??) holds. From (??) and (?7), we

obtain

(5.8) pdg;. < Bemin([ls; 1o, | F(2)]la)
Using the definition of the primal-dual gap, we rewrite (?7) as
(8.9) me(sj,) < pj. +e(sj., B)
which implies that

(8.10) my(s;,) < me(s) +e(sj,, B)

for all s such that ||s||s < Ay, i.e. s;, is an €(s;,, §)-solution of LMTR subproblem.

17



REFERENCES

topsep

[1] N. Alexandrov, Multilevel algorithms for nonlinear equations and equality comstrained opiimization, Ph.D.
Thesis, Technical Report TR93-20 (1993), Department of Computational and Applied Mathematics, Rice
University, Houston, Texas 77251-1892.

[2] F.H. Clarke, Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs
and Advanced Texts, John Wiley and Sons Publications, 1983.

[3] J.E.Dennis, M. El-Alem and M.C. Maciel, 4 global convergence theory for general trust region-based algorithms
for equality constrained optimization. Technical Report TR92-28 (1992), Department of Computational
and Applied Mathematics, Rice University, Houston, Texas 77251-1892.

[4] J.E. Dennis, Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equa-
tions. Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[5] L.S. Duff, J. Nocedal and J.K. Reid, The use of linear programming for the solution of sparse sets of nonlinear
equations. SIAM Journal on Scientific and Statistical Computing 2(1987), pp. 98-108.

[6] S.C. Eisenstat and H.F. Walker, Globally convergent inexact Newton methods. Research Report, Febru-
ary/91/51, Department of Mathematics and Statistics, Utah State University. Revised August 1992 and
March 1993. Siam Journal on Optimization, to appear.

[7] M. El Hallabi, An ineract minimization trust region algorithm: Globalization of Newton’s method. Technical
Report 93-43 (1993), Department of Computational and Applied Mathematics, Rice University, Houston,
Texas 77251-1892.

[8] M. El Hallabi, A globally convergent theory for arbitrary norm trust region algorithms for equality comstrained
optimization, Technical Report 93-60 (1993), Department of Computational and Applied Mathematics,
Rice University, Houston, Texas 77251-1892. (revised May 1995)

[9] M. El Hallabi and R. Tapia, A global convergence theory for arbitrary norm trust region methods for monlin-
ear equations. Technical Report TR87-25, Department of Computational and Applied Mathematics, Rice
University, Houston, Texas 77251-1892 (revised as TR93-41).

[10] M.D. Hebden, An algorithm for minimization using evact second derivatives. Technical Report TP515, Atomic
Energy Research Establishment, Harwell, England, 1973.

[11] P. Huard, Point-set maps and mathematical programming. Mathematical Programming Study 10, North Hol-
land, Amsterdam, 1979.

[12] J. JAHN, Introduction to the theory of nonlinear optimization, Spinger-Verlag, Berlin, Heidelberg, 1994.

[13] J.J. Moré, The Levenberg-Marquardt algorithm: Implementation and theory. in G.A. Watson, ed., Lecture
Notes in Mathematics 630, Springer- Verlag, Berlin, Heidelberg and New York, 1977, pp. 105-119.

[14] E. Polak, On the implementation of conceptual algorithm. In O.L. Mangasarian, K. Ritter and J.B. Rosen,
eds., Nonlinear Programming, Academic Press, New York, 1970, pp. 275-291.

[15] R.T. ROCKAFELLAR, Convez analysis. Princeton University Press, Princeton, 1970.

[16] R.T. ROCKAFELLAR, The Theory of subgradients and its applications to problems of optimization: conver

and nonconver functions. Heldermann, Berlin, 1981.

18



