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A GLOBAL CONVERGENCE THEORY FOR SEQUENTIAL LINEAR
PROGRAMMING INEXACT HYBRID ALGORITHMS!

MOHAMMEDI EL HALLABI?

Abstract. In this paper, we propose a sequential linear programming hybrid algorithm to minimize a nonlinear
function f : R™ — IR subject to nonlinear equality constraints z;(z) = 0,z = 1,---,m where h; : R" — IR. We
adopt the approach taken in Vardi (1985). We also replace the £-norm in the trust-region constraint by the £qo-
norm. At each iteration, a linear programming subproblem is solved within some tolerance. Instead of the regularity
assumption of linear independent gradients, we assume that the system of linearized constraints is consistent at any
point of the iteration sequence, and that, at any accumulation point of the iteration sequence, the largest singular
value of the constraints gradient is bounded away from zero. Also, we assume that the functions f and A;,2 =1---m,
are continuously differentiable. We demonstrate that any accumulation point of the iteration sequence, obtained from

an arbitrary starting point, is a Karush-Kuhn-Tucker point of he constrained minimization problem.
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Introduction. In this paper we present a sequential linear programming algorithm for approx-

imating a solution of the equality constrained optimization problem

minimize  f(z)

(1.1) (EQCP) = {subjectto hi(z) = 0,i=1---m,

where f:IR" — IR and h; : IR® — IR, i¢=1---, are continuously differentiable and nonlinear. We
are concerned with the possibility that the dimensions of (EQCP), i.e. n and m, might be large.

Problem EQCP can be solved by many trust region methods proposed in the literature; for
example; the methods in Vardi [?], Byrd, Schnabel, Omokojun and Shultz [?], El-Alem [?], Powell
and Yuan [?], Maciel [?], Dennis, El-Alem and Maciel [?], Alexandrov [?], Marucha, Nocedal, and
Plantega [?], El Hallabi [?], and Dennis and Vicente [?]. However, These methods might be expensive
if the trust region needs to be decreased quite often before an acceptable step is obtained.

In this research, we adopt the approach used in El Hallabi [?], and propose a sequential linear
programming inexact hybrid algorithm (SLPIHA) to solve problem EQCP. This algorithm solves,
once, a linear programming subproblem to obtain a descent direction of some merit function, and
then uses linesearch techniques to obtain an acceptable steplength. We assume that the functions
f and h;,i = 1---m, are continuously differentiable, that the linear system h(z) + Vh(z)'s = 0
is consistent, and that the largest singular value of the constraints gradient is bounded away from
zero.

In Section 2, we recall from El Hallabi [?] a sufficient condition for the translation parameter
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ay to define a nonempty feasible region for the translated linear programming subproblem
minimize  Vf(z)Ts
(1.2) (TLPS) = subject to aph(zg) + Vh(zr) s =0,
Islleo < A.

In Section 3, we derive a characterization of stationarity in terms of minimizers of subproblem
TPLS. We define the sequential linear programming inexact hybrid algorithm (SLPIHA) in Section
4. In Section 5, we prove that any accumulation point of the sequence generated by the SLPTHA
algorithm, from an arbitrary starting point zg, is a Karush-Kuhn-Tucker point of (EQCP). We end

this paper by giving some concluding remarks in Section 6.

2. Linearized Constraint Translation. In this section we recall from El Hallabi [?] a suffi-
cient condition for the translation parameter a to define a nonempty feasible region for the subprob-
lem TLPS in (?7). We also relate this parameter to the smallest nonzero singular value of Vh(zy).
This relation is needed later.

PROPOSITION 2.1 [El Hallabi [?]]. Assume that @ € IR"™ is not feasible for (EQCP), i.e.
h(z) # 0, and that the linear system

(2.1) h(z) + Vh(z)'s =0,

is consistent. Assume further that A > 0. Let o, be the smallest positive singular value of Vh(z).

If

. \/§ O
(2.2) 0§a§m1n<1,7A ||h(I)||2)’

then the subset
(2.3) Fa,A)={s e R" | ah(e)+Vh@)Ts=0, |sllo <A},

1s not empty. Moreover its is not a singleton set.
Actually in El Hallabi [?], it shown that

(2.4) Mz, A) = {5 cR" ‘ ah(z)+ Vh(z) s =0, |[s]]s < ? A} ,

which is contained in F(z, A), is not empty.

REMARK 2.1. By chosing & = 0 we can generalize Inequality (?7) to the case where h(z) # 0
but Vh(z) = 0.

REMARK 2.1. The smallest positive singular value of Vh(zy) can be estimated using the QR

decopmosition.

3. Characterization of stationary points of problem EQCP. In this section we derive a
useful notion of stationarity in terms of minimizers of the linear programming subproblem LPS.
PROPOSITION 3.1. Let Ay > 0, and consider xy satisfying h(zy) = 0. Then s, = 0 is a
solution of the linear programming subproblem
minimize  Vf(z;)’s
(3.1) (LPS) = subject to  Vh(zr)Ts =0
lIsllco < A,



if and only if xy, is a Karush-Kuhn-Tucker point of (EQCP).
Proof. Because of the Slater condition, the proof follows obviously from the necessary and

sufficient conditions for zero to be a minimizer of LPS subproblem. O

4. Sequential Linear Programming Inexact Hybrid Algorithm. In this section we pro-
pose a sequential linear programming inexact hybrid algorithm (SPLIHA) for solving (EQCP). We
also show that the choice of the penalty parameter fits well with the objective function and the
constraints.

Approximate solution of the linear programming subproblem.

At each iteration, we solve a translated linear programming subproblem TLPS
minimize  Vf(z)Ts
(4.1 (TLPS) = subject to aph(zg) + Vh(zr) s =0,
lIslloc < A,
for some fixed (2, ag, Ag), and within some tolerance ¢ in the sense given in the following definition.

DEFINITION 4.1. Letz € IR, 0 < «, and 0 < A. Assume that x is not a Karush-Kuhn-Tucker
point of (EQCP). Then we say that s is an e-solution of subproblem TLPS if s, is feasible,

(4.2) V]"(:L‘)Ts6 < Vf(]:)Ts—}—e
for any feasible s, and if in addition h(z) =0, we also ask that

(4.3) Vi(z)'s. <0.

Our trial step sy will be any eg-solution of the subproblem TLPS for fixed (2, o, Ag), and

with the tolerance

(4.4) o :ﬁk{akllh(m)n if h(zy) # 0

[|5%|| 0o otherwise

for some 0 < By that will be set by the algorithm. Observe that in (?7)
ag|[h(zp)l| = [[A(zr)l| = [|A(zx) + Vh(zr)s]],

i.e. the decrease in the norm of the constraints obtained for any feasible point of subproblem
TLPS. Also, when h(z;) = 0 and xj is not stationary point, the test in (??) implies that a small
approximate solution will point toward the feasible steepest descent, i.e the gradient projection (see
El Hallabi and Tapia [?]). This property enables the algorithm to never fail at a nonstationary point.
In the following lemma and its corollary, we show that the eg-solution is well defined.
LEMMA 4.1. Let py(s;) and dJ;c denote respectively the primal and the dual objective function
values obtained at the j** iteration for solving the subproblem TLPS. Let ey > 0. If

(4.5) Ip(sy) — ] < e

holds, i.e. the duality gap is less that ey, then s; is an ex-solution of (TLPS).
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Proof. Assume that (?7) holds. Then we have
(4.6) pr(si) < dj + e < pr(se) +ex
where s, is an exact solution of (TLPS). From (??) we obtain that
Pr(s;) < pr(s) + e

for all feasible s for (TLPS), i.e. s; is an eg-solution of (TLPS). O
Penalty parameter and merit function.

To accept or reject a trial step si, we will use the actual reduction
(4.7) Aredi(s) = Or(s) — P (0)

and the predicted reduction

(4.8) Predy(s) = i(s) — ¥ (0)
where
(4.9) O(ze, ri5) = f(on + ) + puel|b(or + )]

is the merit function approximated by
(4.10) ok, 1t 5) = F(z) + V(@) s + ellh(ze) + Vh(ar)s].

For convenience, we will denote them respectively ®j(s) and ¥r(s). In (??) and (?7), pi, denotes
the penalty parameter, and || || denotes an arbitrary (but fixed) norm on IR™.

The penalty parameter will be defined by

(4.11)

[ Bk if pp—1 > p+p
a tr + 2p  otherwise,

where p is a positive constant, and py is given by

) 0 if h(zg) =0
(4.12) k=Y 2 max(0, % otherwise.

The functions s — ®p(s) and s — ¥y (s) have the same one-sided directional derivative at the
origin. This is given in the following Lemma.
LEMMA 4.2. Let z, € IR", and py > 0.Then for all s € IR", we have

(4.13) . (0;5) = W}, (0;s) .

Proof. For all positive ¢t and all s € IR", we have

(4.14) Dy (ts) — x(0) = flzr +ts) — fzr) + pr |lh(zx + L3)]| = [a(zi)ll
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or, because f and h;, ¢ = 1...m are continuously differentiable

w.15) O (ts) — @, (0) = tVf(ze)s+ pp [ Hh(mk) + ch(‘Ik)TSH — [|h(zp)]| ] + o(t)
| + [Hh(xk) +1Vh(zg) s + o(t)|| = |A(zk) + tVh(zi)Ts|| ]

iFrom (??) and the Lipschitz continuity of the norm, we obtain

<I>k(t5) - <I>k(0) _ \I’k(ts) - \I’k(O) + @

4.1
(4.16) t t t

which, by passing to the limit when ¢ converges to zero, implies (?7).0

In the following proposition, we show that any eg-solution of subproblem TPLS is a descent
direction of ®;, at the origin.

PROPOSITION 4.1. Let zg, and A > 0. If zy s not a non Karush-Kuhn-Tucker point of
(EQCP) and sy is an eg-solution of (TLPS), then

(4.17) Predy(tsy) = —t |Vf(;1:k)Tsk| — pag ||h(zp)]|
holds for all t € (0,1]. Moreover we have

(4.18) @4 (0555) < — [V f ()T si| = par [[A(zp)]],

and consequently sy is a descent direction of ®p at the origin.
Proof. We have

(4.19) Predy(tsy) = tVf(a:k)Tsk + pg Hh(rk) + ch(xk)Tsk H — [|h(zr)]|

On the other hand, because ayh(zy) + Vh(zi)T sy =0, we have for all ¢ € (0, 1]
h(zy) +tVh(zr) sy = (1 — tag)h(zr) ,

which together with (?7), implies

(4.20) Predy(tsy) =1t [Vf(a:k)Tsk — PO ||h(rk)||] .

First we assume that

(4.21) Vi(zr)' s, > 0.

Therefore h(zy) # 0 must hold. We have

Vf(zr)'s
4.9 P AEAGLY
(422 e
which, together with (?7), implies that
(4.23) Predy(ts) <t [—Vf(:vk)Tsk — path(:L‘k)H] .

5



iFrom (77) and (?77), we obtain (77).

Now we assume that (?7) does not hold, i.e. we have
(4.24) V(i) 'sy <0.
We have pp > p. Therefore (?77) implies that
(4.25) Predy(ts) <t [Vf(mk)Tsk — pag||h(zy)|| |

iFrom (77) and (??7) we obtain (?7) .
By passing to the limit when ¢ converges to zero in (?7), we obtain (?7). Moreover, if h(z;) # 0
we obtain from (?7) that ®}.(0;sz) < 0, and if h(2) = 0, we obtain from Definition 4.1 that

Vizr) s, <0

and hence ®4,(0; s;) < 0 must hold. Consequently sj is a descent direction of ®; at the origin. O
Definition of the algorithm SLPIHA.
Let ¢;,e=1,---,5,p, 8, Anin, and Apax be constants satisfying

O<ep<er<l , O<es<esa<l | 1<es
0<y<l1 , 0<p , 0<pg
0<Amin<Amax~

Let zg € IR™ be an arbitrary point, Apin < Ag < Apax, 0 < 8o < 3, and po = p.
Let (21, A, Bx) be given by the k'" iteration. The algorithm generates (241, Agy1, Bks1) by
the following iterative scheme:
STEP 1. If h(xr) = 0 set a; = 1 and go to STEP 3,
STEP 2. Obtain a lower bound of the positive singular values of Vh(xy), say wy, and set

(V2 Wk
ap = mm(l, - Ay m),
STEP 3. Obtain an eg-solution of the subproblem TPLS with ¢ defined in (77),
STEP 4. Update the penalty parameter pj using (?7) and (?7?)
STEP 5. Set t; =1
Until Aredg(tgsy) < c1Predi(tgsy)}
choose tj such that csty <ty < caty,
set tp =ty
End Until
Set zpy1 = zk +trsk
STEP 6. If Aredy(trsi) < caPredy(tysk)
then choose 6541 such that Ay < épy1 < max(Ag, este|sk||co)
Else choose é;41 such that catp||sk|lcc < 0k41 < tr ISk oo
Set Agy1 = min(Amax, max(8x+1, Amin))-
STEP 7. Choose 0 < fry1 < S.



Observe that Ap > Api, holds for all k. Throughout this paper, we will use the following
definition.

DEFINITION 4.1. If for some ty,, the test in STEP 9 is satisfied, we say that 3, is an accepted
steplength with respect to (xr, Ag, Br). Moreover, we say that (Ay, i) determines an acceptable step
(or steplength). Furthermore, we will refer to xp41 as a successor of xy and to (¥r41, Ak+1, Pr+1)

as a successor of (xp, A, Br)-

5. Global Convergence. In this section, we demonstrate that any accumulation point of the
iteration sequence generated by the SLPTHA Algorithm is a Karush-Kuhn-Tucker point of (EQCP).

We make the following hypotheses:

H.1) The functions f and hi, i = 1... m, are continuously differentiable.

H.2) The systems of linearized constraints h(z) + Vh(z;)?'s = 0 are consistent for all k.

H.3) At any accumulation point of the iteration sequence {z}, say @, there exists v, > 0 such
that ||Vh(z.)|| > v«, and

H.4) The sequence {8} converges to zero.

To obtain our global convergence result, given by Theorem 5.4, we derive some important
properties of the algorithm near non stationary points. These properties will play a crucial role in
our global convergence theory analysis.

We start by analyzing, in the following lemma and its corollary, the behavior of the penalty
parameter py.

LEMMA 5.1 [El Hallabi [?]]. Let {(zx, Ag, i)} converge to (z.,,As,0). Then the there exists
a posttive constant p, such that g < p.

COROLLARY 5.1 [El Hallabi [?]]. Assume that the hypothesis of Lemma 5.1 holds. Then there
exists an integer k* such that py = g~ for all k > k*.

The following technical lemma will be used later.

LEMMA 5.2. Assume that {(xr, Ag, Br)} converges to (x.,, A, 0). Assume further that

(5.1) kEr_}r_loo arh(zr) =0
holds. Then
(5.2) h(z,) =0

holds. Moreover ay, = 1 holds for sufficiently large k.

Proof. jFrom the equivalence of norms, the definition of ay, and (?7?), we obtain

(5.3) lim min(||h(mk)||2, ? A wk) = 0.

k—+4o00
On the other hand, the singular values of VA(z) are continuous functions of z. Let o, denote the
smallest nonzero singular value of Vh(z.). We obtain form hypothesis H.3 that, necessarily

O«
— >0
B >

holds for sufficiently large k. Therefore we can assume that the lower bound of the singular values
of Vh(xp), i.e. wy, satisfies

(54) U'k,rk Z

(5.5) Wy > TO,
7



where 7, € (0,1) is an arbitrary small positive constant, depending on z.. Now, from (??) and

(?7), we obtain

(5.6) h(z.) = 0.

Finally, we obtain from the definition of ay, Ar > Apin , and (?7) that
(5.7) ap =1

holds for sufficiently large k. O

In the following proposition, we show that the algorithm cannot stop at a nonstationary point.

PROPOSITION 5.1. Let 2 be a non Karush-Kuhn-Tucker point of (EQCP), and let si be a
€x- solution of the linear programming subproblem TLPS. Then there exists t;, € (0,1] that is an
acceptable steplength.

Proof. ;From Proposition 4.1, we obtain that s is a descent direction of the merit function @y
at the origin.

Assume that the algorithm reduces the steplength ¢ indefinitely without obtaining an acceptable

one. Then we have

@k(tjsk) - <I>k(0) > ¢ ‘Ilk(tjsk) - \I/k(O)
t; t;

where {0 < ¢} converges to zero. By passing to the limit when j — 400, we obtain
(5.8) @1 (0; s5) > 15 (0; sp) -
iFrom Lemma 4.2, (7?7) and ¢; € (0,1), we obtain

27,(035¢) 2 0,

which contradicts the fact that s; is a descent direction of @ at the origin.O
In the following theorem, we analyze the behavior of the steplength near a non stationary point.
THEOREM 5.2. Let {(zr, Ax,Br)} converge to (z.,Ax,0), where xy, and z* are not Karush-
Kuhn-Tucker points of (EQCP) and Ay > Apin. If t is an acceptable steplength with respect to
(xk, Ak, Br), then there exists a positive scalar t(z«, B«, Ay) such that

(5.9) te > t(ze, B., A))

holds for any accumulation point t, of {ty}.

Proof. Assume that the theorem does not hold. Then, for all integer j, there exists an accumu-
lation point ¢, ; < ]l This implies that there exists a subsequence {t;,j € N C IN} that converges
to zero. Without loss of generality we can assume that the sequence {¢;} converges to zero. Con-
sequently 0 < ¢; < 1 holds for sufficiently large j, which implies that ¢; = 1 is never an acceptable
steplength with respect to (z;,6;,7;). Let ¢; be the last non acceptable steplength with respect to
(2,65,n;). We have

(510) 63{]' S tj S C4{j y
8



which implies that {¢;} converges to zero. Since t; is not acceptable, we have
@;(tj55) — ©;(0) > 1 [¥;(t58;) — ¥;(0)],
or equivalently
(5.11) Fos +1s5) = £s3) + my | Ihas +Ts)ll = Azl | >
; T : T
e {6V 1) s + s [ 0(es) + 6 VR(2) s ]| = k)l |} -

Because 0 < ¢; < 1, f and h;, 2 = 1...m are continuously differentiable, and the norm is locally

Lipshitz, we obtain from (?7)

L5 0.
tj

(5.12) {v Flag) P 4y LRG0+ VR 5] = nh(mj)n} )

tj
But since axh(zg) + Vh)zr)T's, = 0, we have
(5.13) [B(;) + 85V h(x;)" s | = 1h(2))l| = —pitj o [|h(e;)]] -

Using (?7), we rewrite (?7) as

(5.14) Ve sy = e Il > A
Therefore we obtain
(5.15) Vi(z) s; > @ :

j
Also, from the definition of pj (see (?7)), and (?7), we obtain
6.16) o (el > ¥ S5 + 22

which, together with (?7), implies that
o(t;)
(5.17) — poy () > 22,
j
Therefore, we obtain from (??) and Lemma 5.2 that

(5.18) (2.l = 0

and that a; = 1 holds for sufficiently large j. Let A, and s, be respectively accumulation points of
{A;} and {s;}. Without loss of generality, we can assume that these sequences converge respectively
to zero A, and s.. Therefore, we obtain from Huard [?]) that s, is an exact solution of the linear

programming suproblem

minimize V(s )Ts
subject to  Vh(z.)Ts = 0,|[s]/eo < As.
9
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(The ¢;-solution is considered as a function of (z;, Aj, 5;)). Also, from (??) we obtain
(5.20) Vi) se >0,

which implies that zero solves the subproblem LPS. Therefore we conclude from Proposition 3.1
that z, is a Karush-Kuhn-Tucker point of (EQCP) which contradicts the hypothesis. Consequently
(?7) holds. O

Before we give our global convergence result,we establish that the SLPIHA Algorithm satisfies
the very important local uniform decrease property. This property played a pivotal role to obtain
the global convergence in El Hallabi [?].

Since, when {(zx, A, Br)} converges to some (., Ay, 0), the penalty parameter becomes con-
stant for all sufficiently large &£, and since we assume that the iteration sequence is infinite, the merit
function ®(ug, xx; s) is constant with respect to this parameter; therefore, in the following theorem,
we denote ®(zy + s) instead of ®(ug, zk, s).

THEOREM 5.3. (Local Uniform Decrease). Let {xy, Ay, Br)} converges to some (., A, 0). If
z, is not a Karush-Kuhn-Tucker point of (EQCP) then there exists a positive integer k., depending
on (2., AL), such that for all k > k.

(5.21) B(py) < D)

holds for any successor (zp+, Ay, Bry) of (xr, A, Br).
Proof. Assume that the theorem dose not hold. Then there exists a subsequence {(zx, Ag, fr)}
converging to (., Ay, 0) and a subsequence of successors {(zr+, A4, Be+)} such that

(5.22) D(zp4) > ()
holds for all k. Therefore there exists an eg-solution of the linear programming subproblem

minimize Vi(zr)'s
subject to arh(zg) + Vh(zr) s =0, s]|ec < A

(TLPS){
such that zp4 = zp + ts, tx € (0,1], and
(5.23) S(zp + trsk) < B(zp) + c1Predp (trsk) -
Inequalities (??) and (??) imply that
(5.24) O(z*) — ®(xr) < c1Predy (trsg).
iFrom Proposition 4.1 and (??) we obtain
(5.25) O(,) — P(ar) < —caty [|Vf(xk)Tsk| + pag||h(zy)] ,
which, together with Theorem 5.2, implies that
(.20 Jim_aullh(zl =0.
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Therefore, we obtain from Lemma 5.2 and (?7) that
(5.27) h(z.) =0

and that ar = 1 holds for sufficiently large ¥ . On the other hand, let us consider si, an eg-
solution of subproblem TLPS, as a function of (2, Ak, fx). Then we obtain from Huard [?], that

any accumulation point, say s., of {si} is a solution of the linear programming problem

(5.28) (LPS { minimize Vi )Ts

subject to  Vh(z.)Ts =0, [|s]|+00 < A

Also, we obtain from (?7) that
(5.29) Vi) s =0.

Consequently zero solves the linear programming subproblem LPS in (??), which, by Proposition
3.1, contradicts the hypothesis that . is not a Karush-Kuhn-Tucker point of (EQCP).0

Finally, we give our global convergence result which detracts from the matter at hand.

THEOREM 5.4. Let {xy} be an ileration sequence generated by the SLPIHA Algorithm described
in Section 3. Assume that
H.1) the functions f and h;,i = 1...m are continuously differentiable,

H.2) for all k, the linearized constraints are consistent,

H.3) at any accumulation point of the iteration sequence {xp}, say ., there exists v, > 0 such that
[|Vh(z.)|| > vs, and

H.4) the sequence {fr} converges to zero.

Then any accumulation point of {xy} is Karush-Kuhn-Tucker point of (EQCP).

Proof. Let z, be an arbitrary accumulation point of {z;}. Recall that, because penalty pa-
rameter uy is constant for sufficiently large k, the merit function @ is constant with respect to
this parameter and therefore will be denoted ®(z). Let k = max(k.,k*), where k* and k. are
respectively given if Corollary 5.1 and Theorem 5.3. Since, for all k¥ > k , the iterate z; is not a
Karush-Kuhn-Tucker point of (EQCP), we have

<I>(.Z‘k+1) < @(rk) Yk > k.

Let {z;,j > k} be a subsequence that converges to z.. Consider k > k.There exists Jj(k) > k such
that

Q(xjr)) < ()
and consequently
O(z;) < D)
holds for all j > j(k). Therefore, we obtain

(5.30) O(z.) < B(z) YE> k.
11



Assume that z, is not a Karush-Kuhn-Tucker point of (EQCP). Therefore, we obtain from Theorem
5.3

B(zj41) < B(e.) Vi
This contradicts (?7). Consequently z, is a Karush-Kuhn-Tucker point of EQCP). O

6. Concluding Remarks. Motivated by the recent advances in linear programming research
area (interior point methods and simplex type methods), we have presented a sequentially linear
programming problem (SLPIHA) to solve the nonlinear equality constrained minimization problem
EQCP. At each iteration the linear programming subproblem is solved within some tolerance. We
proved, under rather weak hypotheses, that the SLPIHA Algorithm is globally convergent in the
sense that any accumulation of the iteration sequence is a Karush-Kuhn-Tucker point of (EQCP).
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