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Abstract

A family of finite difference schemes for the acoustic wave equation in heterogeneous media
is introduced. The precision and computational cost are analyzed in two cases. First, a two
layered medium is considered. The order of convergence at the interface is derived for each
scheme. Given an a priori accuracy on the solution, the computational cost is studied as a
function of the order of accuracy of the finite difference scheme. It is demonstrated that this
function has a minimum. The previous results are extended to the case of random media by
a numerical study. Similar conclusions about precision and cost are found.

Key Words. Wave Equation, Heterogeneous Media, Numerical Schemes, Computational
Cost

AMS(MOS) subject classifications. 65M06, 65M12, 65M15

1 Introduction

Finite difference schemes for the wave equation have been extensively studied in homogeneous
media (cf [1]). The error introduced by the numerical procedure is called dispersion (cf [2]). This
phenomenon causes different Fourier components of a signal to travel at different speeds and results
in a smeared signal.

In heterogeneous media, the effect of the numerical schemes on the reflection and transmission
of waves has to be considered. Many authors have studied these properties. Cohen and Joly
introduced a compact fourth order scheme and studied the order of convergence of the reflection
coefficient in a two layered medium (cf [3]). Their results demonstrated a discrepancy between
the order of convergence of the reflection coefficient, and the order of convergence of the scheme
in homogeneous medium. Brown also conducted an analysis of a two layered medium and showed
that the choice of the interface location in the mesh could increase the order of convergence (cf
).

However, the study of two layered media is not enough. There has been growing interest in wave
propagation in very heterogeneous media and its implications on seismology theory and models.
Frankel and Clayton established the feasibility of finite difference simulations of wave propagation
in random media (cf [5]). They then used the simulations as a tool to study the scattering of
short period seismic waves by heterogeneities in the Earth’s crust (cf [6]). This scattering affects
the waveform, travel time, and the amplitude of waves. Jannaud et al dealt with the attenuation
and the anisotropy of seismic waves in random media using computer simulations (cf [7, 8]).
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In both cases the specific numerical scheme used has been tested for convergence. However, a
better understanding and more analysis of finite difference schemes in very heterogeneous media
is necessary if we want to use these techniques trustfully. Our goal in this work is to investigate
the precision of high order schemes in heterogeneous media and their computational cost in order
to apply finite difference schemes to real (3D) media. The question we want to address is, “What
scheme has the lowest cost for a given accuracy on the solution ?”

We will address that question in the context of a family of numerical schemes based on the first
order system associated with the second order hyperbolic wave equation. The schemes are indexed
by their order of accuracy in space and are second order accurate in time. First we analyze the
two layered case and then we tackle random media.

The paper is organized as follows. In section 2 we analyze the truncation error of the second order
scheme at the interface of a two layered medium. Section 3 shows numerically that the conclusions
of section 2 are still valid for high order schemes in which the computation of the truncation error
is tedious. Section 4 focuses on the computational cost of the different schemes. Given an a
priori precision on the solution, the cheapest scheme in terms of floating point operations is found.
Section 5 deals with random media as we study numerically the order of convergence. We state
our conclusions in section 6.

2 Analysis of the Truncation Error

We consider the following model problem. We look for the continuous function u solution of the
radiation problem :

?u 0 Ju
with the following initial conditions :
u(z, 0) = wuo(x)
(2.2) au(’ oo |
@0 = w)

where ug and u; are smooth functions with support in R~. The function a is piecewise constant
and has a discontinuity in 0. It is defined by

a(z) =a” <0
(2:3) a(z) = at x>0
We set
ut(z,t) = u(z,t) x>0 t>0
u (z,t) = u(z?) r<0 t>0
By continuity of u have at the interface « = 0:
(2.4) ut(0%,¢) = u=(07,¢) t>0

Using the variational formulation of the problem, it is easy to see that the stress is continuous at
the interface z = 0:

Aut du~

2. t—(0%¢) = a” Tt t>
(25) FE 0N = S0 120
By definition of a we have :

0?ut 0?ut

+ _ .

Y e T 0 z>0 t>0
(2.6)

O?u~  _ 0%~

Y g T 0 z<0 t>0



Error Analysis of Numerical Schemes in Heterogeneous Media

Taking the derivative of (2.4) with respect to time we get

Put L 0?u~, _
and using (2.6)
2, — 2, +
0=t T 0ty 120

Taking the derivative of (2.5) with respect to time yields

_0*oum L 9% ut

and using (2.6) again we have :

_ 0%, , Put
@22 om0 = @SS 0ty 2o

We summarize the preceding result in the following lemma

Lemma 2.1 The solution u of the radiation problem (2.1) (2.2) verifies :

27) HOhe) = u(0,0)

(28) 0t = a0
(29) A - (o)
(2.10) @2t = @)Lt

We now consider a family of numerical schemes based on finite difference approximations of the first
derivative. Those schemes can be written as approximations of the first order system associated
with the second order hyperbolic wave equation. We introduce two different grids corresponding
to the following functional spaces:

+o0
Ly = {SDEL2(R) /o= @i Lo asn(®) }

i=—00

~
®
l

+o0
: {80 €L*R) /| ¢= Z Cirt liaz (i+1)a0](2) }

i=—00
Now we define the finite difference operator Ar by :

A, I — L2

The coefficients (8;)i=1..z are chosen so that Ap is an approximation of order 2L of the first
derivative at the point 7 + % The fully discrete (2-2L) scheme for equation (2.1) is :

Pt -2l Tt
At?

(2.11) + A (ai+%ALu?+%) =0
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This scheme can be written as a first order system using:

n+1 n
U, — ul
2 2 n n
=t ¢ w? = Apu’
At i+3 = T4y

N=

n+
Yy

we can write (2.11) as follows (see Appendix 1):

n+% n—%

kA S (a» rw? )
(212 At LT+ Vit
2.12

n+1 n

wit —wl

i+ 3 i+3 _ n+i

Al = (A" )ipy

This is the discrete equivalent of the first order hyperbolic system:

v 0
E = a—x(a.ll))
o _ o
ot Oz

Luo and Schuster proposed this scheme (2.12) with a second order approximation in space (cf [9]).
The family of schemes introduced is the extension of their scheme to an arbitrary order in space.
These schemes are not equivalent to the compact schemes introduced by Dablain for homogeneous
media and by Cohen and Joly for heterogeneous media (cf [10, 3]).

The discontinuity in the medium arises only in the spatial derivative. Therefore to analyze the
truncation error at the interface it is relevant to consider the semi discrete equation given by :

dzui
dt?

+ tAL (ai+%ALui+%) =0

With L =1 (second order approximation in space) we have:

d?u; 1 Uil — Y Uy — Uj—1
(2.13) i h <ai+%(T)_“i—%(T)) =0
At the interface = 0 we have:

d2U0 1
a2 \“

which because of the definition of a is
d2U0 1 + U] — Up _,Upg —U_1
dt2_ﬁ<a( )T m)) =0

The solution u is equal to the sum of the incident wave u; and the reflected wave u, on one side
of the interface, and is equal to the transmitted wave u; on the other side of the interface. Using
d’Alembert’s formula, if ug and u; are C*°(R) then u;, u, and u; are C*°(R) in space. Therefore u
is C* on | —o0; 0[UJ]0; +00[. Assuming ug and u; are C°°(R) then ut and u™ are smooth functions
and we can write :

h h?

S = ) )+ )+ 0)
Uy — U_ 3 h h?
S = () - )+ ()" + O(h)
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where (uf)t)’ = %(Oi,t). The truncation error in x=0, £¢(t) measures how closely the discrete

equation is an approximation of the continuous equation. We let the exact solution u satisfy the
discrete equation and with the previous regularity assumptions compute the leading error term.

We have:

colt) = Tt (0t () (1) — 0™ (ug ) () + 5 () (0) + 0 (1) (1)
o (@t )" (1) — 0™ (u5)"(0) + O 120
Using Lemma 1:
WY = ey 20
W) = 0 ()0 120
o) = S0 a0+ b (aF @)0) — " (0)"(0) + OB 120
Using (2.4) and (2.6) we have
d?ug d2ug

—z W= (d)'(t) = =) —a¥(uf)"(t) =0 20
therefore the truncation error is given by :

(2.14) colt) = ¢ (a*(ud)"(1) —a~ (ug)"(1) + O(K) 120

The presence of the discontinuity reduces the accuracy of the scheme at the interface. We have
proved the following proposition:

Proposition 2.1 The convergence of the scheme (2.13) at a point of discontinuity of the coefficient
a is linear with the space step h.

This result is similar to those obtained in [4] by Laplace transform or in [11] when no special
treatment is applied to the interface.

3 Study in two layered media

We now turn to the analysis of the accuracy of higher order schemes for the acoustic wave equation
in heterogeneous media. The medium is characterized by its density p(z) and its velocity c(z).
The acoustic wave equation relates the source located in z = s with waveform f to the pressure u
according to :

1 0%u 0 1 Ou
(3.1) (

p(z).c2(x) 07 Oz T)a_) = 6,.f(1)

The heterogeneous acoustic wave equation (3.1) is approximated by the following finite difference
scheme:

u?+1 — 2“? + u?_l t 1 n n
(3.2) pi.c; At? oA Pi+lALui+% =0f
2

To analyze the effect of a discontinuity for higher order schemes we proceed numerically. We define
a two layered medium and compute the seismogram S at the source as a function of time. The
source is located on the left hand side of the interface. After the first arrival we record the reflected
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wave bouncing off of the interface. Since we are interested in the properties of the scheme at the
interface we want to study the reflected part of the signal. This part is easy to isolate because we
choose a Ricker source which is for practical purposes compactly supported in time. Furthermore
the reflected wave will have an amplitude less than the direct wave since the reflection coefficient
is less or equal to one (see figure 6.1). We chose the following medium for the study.

(@) = 1. z <0 o(x) = 1500 z <0
PEI=0 175 2>0 T 200 x>0
The reflection coefficient is equal to 0.4. In a two layered medium we know the exact solution in

closed form. Then once we have the numerical and exact solutions, we compute the normalized L?
error defined by :

N
Z |Snum(At, h, 77,) — Sex(nAt)FAt
(3.3) E(L,At,h) = =L

N
> 82 (nAt)At
n=1

with  Spum(At, hyn.At) = u?, Sep(t) = u(s,t) and iy is the recording time.

The order of convergence of the numerical solution is given by plotting the function h — E(L, At, h)
for fixed L and At. The resulting curves are displayed in figure 6.2. They confirm the statement of
Proposition 1. The convergence for high order scheme is linear with the space step h. Furthermore
it is independent of the order of the numerical scheme in homogeneous medium. Even with a
scheme of order 50 in space in homogeneous media, the order of convergence of the reflected wave
is one. It is noteworthy to see how the different schemes behave with an increasing amount of
points per wavelength. In figure 6.3 we compare the normalized L? error for a range of numerical
schemes. We notice that there is not a big difference between the (2-4) scheme and higher order
schemes as soon as we control dispersion effects, that is after 10 points per wavelength. This
conclusion is similar to the one for homogeneous media which suggests that dispersion is still a
major contribution to the error (cf [12]).

4 Cost Analysis for a two layered medium

We now look for the cheapest scheme in terms of number of operations which fulfills a certain
error percentage on the solution. We chose 10 percent of error on the L? relative error. This
corresponds to a shift between the numerical and exact solution of one eighth of a period (cf
figure 6.4). To find the optimal numerical parameters we proceed by a simple search through the
possible values of the two non-dimensional parameters Np, the number of points per minimum
period, and Ny, the number of points per minimum wavelength. The Ricker source is in practice
band limited. It is characterized by a central frequency Fy and the cutoff frequency is defined by
Frae = 2.5F. Therefore the minimum period is Tpnin = 1/ Frnae and the minimum wavelength is
Amin = Cmin-Imin- Thus the number of points per minimum period N7y and the number of points
per minimum wavelength N, are given by:
Amin Tmin

M= Nt ==X
The computational cost associated with the different schemes is taken here as the total number of
floating point operations. It is defined by

Cost = N x N x Ny

where Ny, is the number of operations per point and time step for the scheme of order 2L in space,
Ny is the number of points in one direction (the domain is a square or a cube), N; is the number
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of time steps and n(= 1,2, 3) the dimension of the domain.
Nyquist criterion imposes that Ny > 2 and the stability criterion imposes that:

Cmin Ni min

Cmaz - AL _
Cmagx (X(L) B

5 <a(l) <= Nr>

This way the choices of Ny and N, satisfy the stability condition.

For a fixed N) we compute the error for Ny = N?“'" to Np = Nj*%%. We fixed N** to 300. We
can extend our results to 2D or 3D problems by assuming that the interface is aligned with the
grid and parallel to the axis = 0 in 2D or the plane 2 = 0, y = 0 in 3D. Then sending a plane
wave modulated by the shape of the Ricker gives the preceding 1D problem.

The first couple (Np, N,) fulfilling the precision criterion gives the least cost for the scheme con-
sidered because the the cost is proportional to N.Np. Our results are summarized in figure 6.5
and 6.6 for the different dimensions. The important feature to notice is that in 2D and 3D the cost
has a minimum for the fourth order scheme. This same observation was done in the analysis of
dispersion error in homogeneous media (cf [12]). The difference between 1D and 2D or 3D comes
from the expression of the cost. In 1D the cost is linear in all of its variables N, Ny and Ny. In
2D or 3D the cost becomes quadratic or cubic in N,. Therefore the improvement in the number
of points per wavelength for the fourth order scheme versus the second order scheme is not offset
by the increase in the number of operations per node like in the 1D case.

The linearity of the cost after the minimum comes from the linearity of the number of operations
with the order of the scheme. The other parameters Ny and Nj change very little because all the
schemes have the same order of convergence at the interface.

5 Study in Random Media

The application of finite difference schemes to very heterogeneous media poses many questions.
What is the order of convergence in such media 7 Does a finite difference scheme minimize the
computational cost 7

We choose to study random media characterized by a Gaussian correlation function. To construct
a Gaussian velocity distribution, one must choose an average velocity and a standard deviation
from that average (cf [6]).

We consider an average velocity of 1500 m/s, an average density of 1 kg/m and a standard deviation
of 10%. To avoid problems with the source, we embed the random medium in a homogeneous matrix
with the same average values. The resulting density and velocity are displayed in figure 6.7. An
incoming wave from the left hand side is sent into this heterogeneous zone. Reflections from the
boundary are avoided by creating a large homogeneous matrix.

Practically, the random medium is generated on a grid with a given spacing hpedgium- If the space
step h in the numerical scheme is not an integer multiple of Apegium We locate incorrectly the
different interfaces of the medium. We are interested in the order of convergence and want to
avoid interpolation error. So, we specify a certain number of points per medium spacing so that
precisely Amedium/h is an integer. This way the random medium looks like a succession of more
or less finely sampled random valued layers. It is a generalization of the two layered medium. In
the example chosen we have the following characteristic values:

Cmin = 1127.54 m/s Cmaz = 1850.13 m/s
Pmin = 0.756 kg/m Pmaz = 1.237 kg/m
Amin = 15.03 m Free =75 Hz

The medium spacing is Apegium = Dm.
In such heterogeneous media an analytical result like proposition 1 is possible only locally. To
know the global order of convergence we proceed numerically. A big difference with the previous
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case of two layered medium is that the exact solution is not known. So we computed two numerical
solutions using two different schemes (the fourth order and the sixth order) and very small space
and time steps. We chose 50 points per wavelength and 400 points per period. We obtained a
normalized L? error between the “two” solutions of 1.8 1073, In the L? sense this is quite small
considering the numerous oscillations of the seismogram, see figure 6.8. The simulation with the
fourth order scheme is chosen as reference. The seismogram is the recording of the pressure field u
at the source where a Ricker wavelet was set off at ¢ = 0. The results are summarized in figure 6.9.
They show that in highly heterogeneous media the convergence is linear. Furthermore we notice
that schemes of order higher than four do not improve the accuracy. A parallel can be drawn with
the cost analysis of the previous section. Since schemes higher than four do not improve accuracy,
the number of points per wavelength necessary for a given accuracy will be the same for all these
schemes. But, the computational cost is linear with the order of accuracy of the scheme, so the
higher the scheme the higher the cost. Therefore the fourth order scheme will be the cheapest
scheme to use in very heterogeneous media.

6 Conclusions and discussion

In this paper our goal was to investigate the precision of finite difference simulations of seismic
waves in highly heterogeneous media keeping in mind the computational cost of the simulations.
We introduced a family of numerical schemes based on the first order system associated with the
acoustic wave equation. The truncation error in a two layered medium has been analyzed. We
showed that the truncation error at the interface for the (2-2) scheme is a linear function of the
space step. For higher order schemes a numerical study confirmed that result.

The computational cost of the different schemes has been studied as a function of the order of
accuracy of the scheme for a given precision on the solution. It is demonstrated that the compu-
tational cost has a minimum for the fourth order scheme. This result can be explained as follows.
First, the number of operations per node grows linearly with the order of the scheme and second,
all the schemes have the same order of convergence.

We then considered random media as an example of highly heterogeneous media. In that case the
exact solution is not known in closed form. We computed a reference solution with very fine time
and space steps. The numerical study showed in that case also that the convergence in such media
is linear with the space step and is independent of the order of the scheme in homogeneous media.
The accuracy is not improved by schemes higher than the fourth order scheme. Therefore the
computational cost of such schemes is higher than the fourth order scheme for the same accuracy.
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Appendix 1
In order to write the numerical scheme as a first order, we use the following quantities

a2} a2
nty _ Yig1 T U n_
V. = wi+%_ALu

: At

n

i1
i+ 3
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Using equation (2.11) we can write:

, o T
e = ()

We have now to see what first order equation w satisfies. We can write

n+1 n
w., 1 —WwW., 1 1
+3 i+ _ = ontl n )
At N (AL Urr T ALY
1 [L L
_ 2+l n+1 ) )
= A7 Zal(ui+l —uity) — Zal(ui-}-l — Ui_41)
=1 =1
L n+1 n n+1 n
o Z a Yigr — U} Wi T Y4
Py At At

[l
M=~

n+i n+i n+i
a ('Ui+l2 - 'Ui—z-zl-l) = AL”Hg

=1

Finally, we can write the second order scheme (2.11) as the following first order system:

’Un—+—l vn—%
i Y% _ _t ) o
At = A (“2+%‘”i+%)
n+1l
lUH_% wz+% - 4 vn-}-%
At RS
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Figure 6.1: The direct and reflected waves
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Figure 6.3: Normalized L? error function of the order of the scheme
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Figure 6.4: The Shift between the exact and numerical solution for a relative L? error of 10 %
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Normalized Cost
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Figure 6.5: The Normalized Cost for an Error of 10 % in 1D
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Figure 6.7: The density and velocity distributions
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