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NUMERICAL EXPERIMENTS WITH AN OVERLAPPING ADDITIVE
SCHWARZ SOLVER FOR 3-D PARALLEL RESERVOIR SIMULATION

LUCA F. PAVARINO AND MARCELO RAME *

Abstract. Domain decomposition methods are a major area of contemporary research in numerical
analysis of partial differential equations. They provide robust, parallel and scalable preconditioned
iterative methods for the large linear systems arising when continuous problems are discretized by finite
elements, finite differences or spectral methods. This paper presents some numerical experiments on
a distributed memory parallel computer, the 512 processor Caltech Touchstone Delta. An overlapping
additive Schwarz method is implemented for the mixed finite element discretization of second order
elliptic problems in three dimensions, arising from flow models in reservoir simulation. These problems
are characterized by large variations in the coefficients of the elliptic operator, often associated with
short correlation lengths, which make the problems very ill-conditioned. The results confirm the
theoretical bound on the condition number of the iteration operator and show the advantage of domain
decomposition preconditioning as opposed to a simpler but less robust diagonal preconditioner.

1. Introduction. The discretization of elliptic problems arising in reservoir sim-
ulation and, more generally, in simulation of flow in porous media, are characterized by
large, sparse and very ill-conditioned linear systems. This is mainly caused by rapid and
large changes in the flow coefficients of the elliptic operator (in typical rock, changes in
permeability of three to five orders of magnitude over a few feet are not uncommon)
as well as by the large scale of the problem. In reservoir simulation applications, an
elliptic problem must be solved for the pressure field at each time step when the set
of model equations is discretized by an IMPES (Implicit-Pressure-Explicit-Saturation)
scheme.

In this paper, we solve these linear systems with an overlapping domain decom-
position method of additive Schwarz type; see Chan and Mathew [5] and Dryja and
Widlund [9] for an introduction to this class of algorithms. Overlapping Schwarz meth-
ods has been proven to be very parallelizable, scalable and robust for three dimensional
Galerkin problems, see Gropp and Smith [13]. Here, we study the method applied to
mixed finite element problems. We refer to Cowsar [6] for the mathematical analysis
of this approach and to Ewing and Wang [10] and Mathew [15], [16] for alternative
approaches.

We report on several parallel numerical experiments, performed on the 512 proces-
sor Intel Delta computer at Caltech. For other experiments with overlapping additive
Schwarz methods in two and three dimensions, see Gropp and Smith [13], Skogen [18],
Cowsar [6] and Bjgrstad and Skogen [2]. For numerical experiments with substructuring
(nonoverlapping) methods in three dimensions, see Smith [19], De Roeck and Le Tallec
[17] and Mandel and Brezina [14].

This paper is organized as follows. In the next section, we introduce the elliptic
problem and its mixed finite element discretization. In Section 3, we first recall the

* Department of Computational and Applied Mathematics, Rice University, Houston, TX 77251.
email: pavarino@rice.edu, marcelo@rice.edu. This work was supported by the U.S. Department of
Energy under contract DE-FG-05-92ER25142 and by the State of Texas under contract 1059.

1



definitions and basic results for overlapping additive Schwarz methods and then we
introduce the algorithm implemented in this work. Some implementation details are
given in Section 4, while the numerical results are presented in Section 5. Conclusions
are summarized in Section 6.

2. The Elliptic Problem. Let € be a bounded domain in R® with piecewise
smooth boundary I'. Given a 3x3 uniformly positive definite matrix K(z) (which
represents the flow coefficient tensor) and f € L*(f2), we consider the elliptic problem

(1) -V - K(z)Vp f in Q
Vp-n = 0 on TI.

The flow coefficient tensor, as introduced above, is a function of position only.
However, in the context of reservoir simulation, the elliptic pressure problem is coupled
to one or more time-dependent mass conservation equations, since the coefficient K
depends not only on position through the dependence of permeability on position, but
also on phase saturation (i.e., fraction of total pore volume occupied by a phase) or
concentration, which are themselves functions of both position and time. The IMPES
formulation of the discrete problem breaks the coupling by evaluating the coefficient of
the elliptic problem at the previous time level. Because of this, the flow coefficient (also
known as total or phase mobility) is assumed to be a function of position only.

Introducing the new vector unknown u = —K(z)Vp, we can write (1) as
K'u = —-Vp in Q
(2) Vu = f in Q
Vp-n = 0 on I.

The variational formulation of this problem consists in finding (u,p) € Hy(div; Q) x
L*(Q) such that

(3) /QK‘Iu cvdr — /va vz =0, Vv e Hy(div; ),

(4) /Qv - ugds = /qud:c, Vg € LA(Q),

where Hy(div; Q) is the kernel of the normal trace mapping of H(div;Q) into L*(T'). In
order to discretize (3) and (4), we introduce a triangulation 7j, of € into elements of size
h satisfying the usual regularity requirements. We also consider a coarse triangulation
of © into nonoverlapping subdomains €); of size H, each consisting of a union of ele-
ments of 7;. A standard mixed finite element approximation of (3) and (4) is obtained
by introducing finite dimensional subspaces W,(2) C Ho(div; Q) and V,(Q) C L*(Q)
associated to the triangulation 7: find (up, pr) € Wi(Q) x Vi(2) such that

(5) / K_luh - vipdr — / prV - vidr = 0, Vv, € Wh(ﬂ),
Q Q
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(6) /Qv'uhqhdl’ = /Qf%dxa Yan € Vi(Q).

We assume that this problem is well posed, i.e. that the Babuska-Brezzi inf-sup con-
dition holds; see Brezzi [3]. For a review of the most important mixed finite element
spaces, see Brezzi and Fortin [4]. We eliminate the velocity unknown uy by introducing
a discrete gradient operator Vj : V4 () — W,(2) such that

(7) /Q KN (Viga]) - vide = — /Q @V vz, Vv, € Wi(Q).

Problem (5) and (6) is then equivalent to the problem for the pressure unknown py
(8) a(pr, qn) = /Qf%dl‘, Van € Vi(Q),

where

a(prrar) = [ K7ValpiVilaslde = = [ V- (Valpi])do.

We recall that by choosing a basis in V;,(€) and computing the integrals in (7) by special
quadrature rules, the resulting linear system

(9) Az =b

is equivalent to a cell-centered finite difference discretization (see Weiser and Wheeler
[20]). We solve this linear system by an iterative method using an overlapping domain
decomposition preconditioner of additive Schwarz type.

3. Additive Schwarz Methods.

3.1. Abstract theory. For a detailed presentation of additive and multiplicative
Schwarz methods, see Dryja, Smith and Widlund [8] and the references therein. Let V/
be a finite dimensional Hilbert space and a(-,-) : V x V — R a selfadjoint, elliptic and
bounded bilinear form. We are solving the problem: find u € V such that

(10) a(u,v) = f(v), Yo e V.
The space V' can be decomposed into a (not necessarily direct) sum of N + 1 subspaces
V=To+ Vit + Vi,

where the first space V; is related to a special coarse discretization of the problem. Let
b;(-,-) : Vi x Vi = R be inner products and T; : V — V; be operators defined by

bi(Tiu,v) = a(u,v), Yo e V.

If b;(u,v) = a(u,v), then T; = P;, the a-orthogonal projection onto V;. This choice cor-
responds to the use of exact solvers for the problems on the subspaces V;,: = 0,1,---, N.
The additive Schwarz operator is defined as

T=To+ T+ +Tn.
3



The original problem (10) is replaced by the preconditioned problem

(11) Tu =g,

where the right hand side ¢ = >N g; = "N, Tiu is constructed by solving
bi(gi,v) = a(u,v) = f(v), Yv e V.

This linear system is solved iteratively and the iteration is usually accelerated by a
Krylov space method: if the original problem is symmetric and positive definite, we can
use the conjugate gradient method, otherwise we can use GMRES or other methods for
general systems; see Freund, Golub and Nachtigal [11] for an introduction to Krylov
methods. The applications where (10) is the discretization of an elliptic problem over
a domain ) decomposed into subdomains €); is particularly important. In the classical
overlapping additive Schwarz method, each (; is extended a certain number of elements
beyond the boundary to a larger subdomain ;. The number of elements used in this
extension determines the overlap of the new decomposition {{.}, which is measured by
the distance § between the boundaries of €2; and ;. The space decomposition in the
Galerkin finite element formulation is given by
e Vo = space of trilinear basis functions defined on the coarse mesh and satisfying
the given boundary conditions;
o Vi=V.NH;(Q),i=1,---,N.
Dryja and Widlund [9] proved that the iteration operator P defined by these subspaces
satisfies:
THEOREM 3.1. When exact solvers are used for the subproblems, the condition
number of the additive Schwarz method satisfies

H
WPy <CO+ )
where C' is independent of H,h and 6. For more general formulations of this result, see
Dryja and Widlund [9]. This result has been extended by Cowsar [6] to show that the

same bound holds true for certain mixed and hybrid finite element methods.

3.2. The algorithm. We now describe an additive Schwarz method with minimal
overlap for the discrete problem (9). For each subdomain ;, let Q) be the extension
with minimal overlap (6 = k). This choice of minimal overlap is motivated by several
numerical results in the current literature, which have shown that minimal overlap
often gives optimal timings (see Dryja and Widlund [9] and the references therein).
The coarse and local subspaces defining the algorithm are

o Vo = {¢ € Vi|¢ = interpolant at the V}, nodes of the trilinear basis functions
of VH},
o Vi = {¢ € Vi|supp(s) C Q},
respectively. Exact direct solvers are used for both the local and coarse problems. We
note that the matrix representation of the operator P defined by these subspaces is
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given by P = B7'A, where

N
(12) B™' = RLA'Ry + > RTAT'R;.

i=1
Here R; is a restriction matrix that maps global vectors to local vectors in V;, Ry
has the same structure as the two level multigrid restriction operator, A; = R;ART
and Ay = Ry AR}, (see (Chan and Mathew, 1994)). Applying Cowsar’s extension of
Theorem 3.1 (Cowsar, 1993) to our algorithm, we obtain a condition number bounded
by C(1 + %), with a constant C' independent of H and h.

4. Parallel implementation. We have implemented this overlapping additive
Schwarz solver on several distributed memory MIMD computers. In this paper, we
report on results with the Caltech Touchstone Delta, which has 512 Intel i860 processing
nodes, each with 16 M bytes of local memory, interconnected in a two-dimensional mesh.

A single-program-multiple-data (SPMD) programming model is used for our For-
tran 77 implementation. Each (overlapping) subdomain is assigned to one processor. In
the preconditioned conjugate gradient method running on each processor, the four ma-
jor computational kernels are vector updates, inner products, matrix-vector multiplies
and preconditioning. The vector updates and the inner products are easily parallelized;
the latter require communication for the global sum of the local inner products.

The coefficient K in equation (9) is a diagonal tensor throughout the experiments
presented in this work, which allows for a discretization of the problem equivalent to
that of a 7 point cell-centered finite difference stencil. The resulting stiffness matrix has
only 7 nonzero diagonals which can be stored in local one-dimensional arrays. Therefore
the matrix-vector products required in the conjugate gradient iteration are easily paral-
lelized. Extensions of this implementation to handle a full tensor K are in preparation.

The additive Schwarz preconditioner is naturally parallel to a large extent, since the
local subdomain problems are not coupled and can therefore be solved simultaneously.
The only nontrivial step concerns the parallel processing of the coarse problem. In our
implementation, we use the simplest choice on MIMD architectures, also adopted by
(Smith, 1993): we construct the coarse matrix in parallel, but we store and solve the
entire coarse problem on all of the processors. For a large number of subdomains, this
is not a good choice, since the coarse problem will then dominate the total cost. In
that case, we should use a more elaborate implementation of the algorithm and solve
the coarse problem in parallel or in a multilevel scheme. In our experiments, the cost of
solving the coarse problem was always a low percentage of the total cost. See Bjgrstad
and Skogen [2] for a multilevel implementation on a SIMD computer with thousands of
Processors.

For a discussion of parallelism in domain decomposition, see Gropp [12]. For a
general discussion of parallelism in iterative and direct methods, see Demmel, Heath,

and Van der Vorst [7].

5. Numerical experiments. We present here the results of numerical experi-
ments where the discrete problem (9) is solved iteratively using a preconditioned con-
jugate gradient method with preconditioner B~! and zero initial guess. The coefficient
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K is a diagonal tensor throughout the experiments presented in this work. B~! is given
either by the overlapping additive Schwarz method (ASM) introduced in the previous
sections, or by a simple diagonal scaling also known as Jacobi method (JCG). Since
the two preconditioned problems can have eigenvalues of extremely different order of
magnitude, we have chosen to stop the iteration when

(r, B='r)

BT s,
EDR

k(B™'A)

Here r is the current residual and x(B~'A) is the condition number of the iteration
operator, easily computed by the Lanczos recursion in the conjugate gradient. This
stopping criterion is preconditioner independent and guarantees roughly a six-digit pre-
cision in the energy norm. See Ashby, Manteuffel and Saylor [1] for a discussion of
stopping criteria.

The local and coarse problems in the ASM preconditioner are solved directly with
Lapack banded subroutines, which are expensive but very robust. We are in the process
of studying the use of approximate local solvers. Comparison of exact and approximate
solvers can be found in Skogen [18] for SIMD computers and in Smith (1993) for MIMD
computers.

Scaling studies in domain decomposition are usually conducted by keeping the
global domain size fixed and increasing the number of processors by decreasing the
subdomain size H/h. In this way, the algorithm is changed for every choice of subdomain
size and it is difficult to discern among the multiple effects of changes in subdomain size,
aspect ratio and surface to volume ratio effects, all of which happen concurrently as
the number of subdomains (processors) is changed. Moreover, because of the restricted
computing memory per processor, only a problem of modest global size can be run if
one is to normalize speed-ups with respect to the single-processor run.

Another type of scaling consists of keeping the subdomain size H/h fixed and in-
creasing the number of processors by increasing the number of subdomains and therefore
increasing the size of the global discrete problem. We have chosen this type of scaling in
the first two sets of experiments, described in Subsection 5.1 amd 5.2. This is equivalent
to refining the discretization by using more subdomains with fixed % on a problem of
constant global size. In this case, however, it should be noted that because the flow
coefficients are assigned on a per-subdomain basis, the correlation lengths of the coeffi-
cient distribution decrease as the problem is solved on more subdomains (processors).
This means that we are not solving the same exact problem (problems indeed become
more difficult) as more subdomains are added, but the contrived test cases shown below
distinctively point to some features of the domain decomposition solver implemented
in this work. For example, we can check the constant bound predicted by Theorem 3.1
and the actual size of the constant by just having the coefficient jumps aligned with
subdomain interfaces but irrespective of the actual correlation lengths of the coefficient
heterogeneity.

When the matrix K is the identity (Poisson equation), diagonal preconditioning is
definitely faster for the presented problem sizes, but other test cases presented below,
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which involve a jumping and /or anisotropic tensor K, show the robustness of the domain
decomposition solver implemented in this work.

We always consider a solid, rectangular domain decomposed into solid, rectangular
subdomains. A subdomain size is measured by the number of degrees of freedom (ele-
ments) in each coordinate direction: for example, a subdomain of size 10 x 10 x 10 has
10 degrees of freedom in each direction.

Each case was run several times to minimize the timing variations due to factors
like machine load, numbers of users, etc.. We have observed variations of a few percent
only in the communication timings and we report here the minimum in each case. In
our tables and Figures, x denotes the condition number of the iteration operator and
n; the number of iterations.

5.1. Planar scaling. We first consider a "flat” domain  which is only one
subdomain thick in the z-direction and 2n x 2n subdomains in the zy-plane (see Fig-
ure 1). Each subdomain has size 10 x 10 x 10 and we scale the decomposition as
(2,2,1),(4,4,1),---,(16,16,1) subdomains. The global problem size varies from 4, 000
to 256,000 unknowns. The tensor K is diagonal and constant on each subdomain,
but varying four orders of magnitude across subdomains and anisotropic. As shown in
Figure 1, we 7slice” the domain in the z-direction and define K = [ in one slice and
diag(K) = (10%,107*,10) in the next. The results and timings are reported in Table 1
and 2, and plotted in Figure 5, 6, 7, 8. In all tables, totalis the total time for the method
to converge to the desired precision. For the ASM results of Table 1, total is the sum of
initialization and iteration times; we report only the latter (iter), so the initialization
time can be obtained by difference. The part of iter spent in the preconditioning step,
i.e. solving local and coarse problems, is reported in the last two columns, local and
coarse (coarse is also reported as a percentage of total). In the JCG results of Table
2, there is virtually no initialization time, so here total = iter is split into the time for
preconditioning (prec.), matrix multiplication (A-mult) and inner product (lip = local
inner product and psum = parallel global sum). We have not timed the vector updates,
since they are completely parallel, as are the local inner products. Discussion of both
the planar and the cubic scalings is given in the next subsection.

5.2. Cubic scaling. We now consider a domain 2 which has 2n subdomains in
the z-direction and n x n subdomains in the yz-plane (see Figure 2). Each subdomain
has size 13 x 13 x 13 and we scale the decomposition as (2,1,1),(4,2,2),---,(10,5,5)
subdomains. The global size varies from 4,394 to 549, 250 unknowns. The tensor K is
as in the previous planar case. The results are reported in Table 3 and 4, and plotted
in Figure 9, 10, 11, 12. The timed quantities are the same as the previous case.

It is clear from the results that JCG does not scale well, while ASM scales well up
to the point where the assembling of the global stiffness coarse-grid matrix and solution
of the coarse problem account for a significant percentage of the total execution time .
In the planar case, this point is around 100 subdomains; in the cubic case, this point is
not yet reached, due to the larger subdomain size. The reason for the poor performance
of JCG is that the condition number grows like 1/h? (and therefore the number of
iteration grows like 1/h), while for ASM it only grows like H/h, which is kept constant.
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Therefore, most of the JCG time is spent iterating, doing matrix multiplies and global
sums for the local inner products, since the preconditioner is completely local (Figure
8 and 12). On the contrary, the initialization time for ASM is considerable, due to the
expensive exact factorization of the local problems and to the parallel construction of
the coarse problem, which involves communication. Consequently, the iteration time
for ASM is mostly spent on the preconditioning step (Figure 7 and 11). Note the almost
ideal curve for the local part of the ASM preconditioner, while the cost of the coarse
problem increases with the number of subdomains. We have also run ASM without a
coarse space in the planar case with 256 subdomains: the condition number increased
to 2,737 and the number of iterations to 138. Therefore the coarse problem is essential
to produce a scalable algorithm.

5.3. 3-D checkerboard. We now study how the magnitude of the coefficient
jumps affects the methods. The global domain £ = [0,1]® is decomposed into 64 =
4 x 4 x 4 cubic subdomains, each with size 13 x 13 x 13. The coefficient jumps are
isotropic and arranged in a checkerboard fashion as in Figure 3: in the white subdomains
K = I, while in the shaded subdomains K = 10%/. The results, reported in Table 5,
show the rapid deterioration of the JCG condition number, which grows as 10°t? and
the number of iterations, which grows linearly in «. It should be noted that this result
is within the bound n; < C'y/k. In the cases marked with a * symbol, JCG failed to
converge. On the other hand, after an initial growth, ASM becomes insensitive to the
coefficient jumps and the condition number seems to converge to a limit.

We have also run a large anisotropic problem with 1,124,864 unknowns, where a
cubic domain = [0, 1]? is divided into 512 = 8 x 8 X 8 subdomains of size 13 x 13 x 13.
The coefficient jumps are again arranged in a checkerboard fashion, but with anisotropic
values as in the case of cubic scaling. Table 6 shows the results for ASM. In this case,
JCG did not converge in 10,000 iterations.

5.4. Unaligned coefficient jumps. In the previous three cases, the coefficient
jumps were always aligned with the subdomain boundaries. In order to study the
performance of the methods when applied to more realistic problems, we consider co-
efficient jumps which are not aligned with the subdomain boundaries. We have two
cases: a) the jumps are in the subdomains interior (no jumps on the interface) or b) the
jumps are across subdomain boundaries (jumps on the interface). In a cubic domain
Q = [0,1]?, the coefficient K equals 10*/ inside two spheres of radius 0.2 centered at
(1,4,3) and (2,2,2), while K = I in the rest of €; see Figure 4. @ is discretized by
24 x 24 x 24 elements. In Table 7, we report the results obtained by increasing the
exponent a. The 2 x 2 x 2 decomposition corresponds to case a), because each sphere
is completely contained in a subdomain (column 2 and 3; H/h = 12). The 4 x4 x4 de-
composition corresponds to case b), because now the subdomain boundaries cut across
the spheres (column 4 and 5; H/h = 6). The JCG results are reported in column 6 and
7 of the same table, and show the same rapid growth of k¥ and the number of iterations
as « increases, as in the checkerboard case. It is clear that in case a), ASM becomes
insensitive to « after an initial moderate growth. On the other hand, in case b) the
rate of convergence of ASM deteriorates after an initial slow growth: & starts growing
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as 1072 and the number of iterations grows linearly with «. Therefore, the presence
of coefficient jumps which cut across the subdomain boundaries seriously deteriorates
the convergence rate of ASM. Similar results have been reported for a nonoverlapping
method (see Mandel and Brezina [14]), where the deterioration of the convergence rate
seems even more pronounced.

In the last Table 8, we report a traditional scaling for a problem with jumps un-
aligned with the subdomain boundaries, which gives more insight into the causes of
deterioration of the ASM convergence rate. The domain © = [0,1]° is again as in
Figure 4, but the coefficient K is anisotropic: diag(K) = (10%,107%,10) inside the two
spheres and K = [ in the rest of (). We fix a small global size, 24 x 24 x 24, in order
to start the scaling with a small number of subdomains. We then decompose ) into
an increasing number of subdomains of smaller size. For this problem, JCG converges
in 381 iterations with a condition number x = 5,378 (of course independent of the
decomposition). Now multiple effects occur at the same time for ASM: N and H/h
change in each decomposition; some decompositions have cubic subdomains, some have
solid rectangular subdomains, therefore the subdomains aspect ratio change; the coeffi-
cient jumps cut across the subdomain interfaces, except in the first decomposition with
8 = 2 x 2 x 2 subdomains, which has therefore the only favorable condition number.
The reported timings show the adverse effect of the unaligned coefficient jumps, both
in the tangential and normal direction to the subdomain faces (in the decomposition
with 27 and 64 subdomains, for which the subdomain aspect ratio is the same as that
of the 8 subdomain decomposition) and of changing aspect ratio (in the decompositions
with 16 and 32 subdomains), in addition to the unaligned coefficient jumps.

6. Conclusions. A parallel implementation of an additive Schwarz preconditioner
for the conjugate gradient method is presented in this work, in reference to the elliptic
pressure problem arising from the IMPES formulation of the discrete reservoir model
equations. Several numerical experiments were conducted to investigate the robustness
of the domain decomposition solver and to verify theoretical bounds on the condition
number and the iteration count.

The results for flow coefficient distributions where jumps are aligned with the sub-
domain interfaces show that JCG does not scale well, while ASM scales well up to the
point where the assembling of the global stiffness coarse-grid matrix and solution of the
coarse problem account for a significant percentage of the total execution time. The
reason for the poor performance of JCG is that the condition number grows like 1/h?
(and therefore the number of iteration grows like 1/h), while for ASM it only grows
like H/h. Most of the JCG time is spent iterating, doing matrix-vector products and
global sums for the local inner products, since the preconditioner is completely local.
On the other hand, the initialization time for ASM is considerable, due to the expensive
exact factorization of the local problems and to the parallel construction of the coarse
problem, which involves communication. Moreover, the iteration time for ASM is spent
mostly in the preconditioning step. Running ASM without a coarse space produced
condition numbers and iteration counts that grow with the number of subdomains,
showing that the coarse problem is essential to produce a scalable algorithm.
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Tests were conducted to investigate the effect of growing jump discontinuities in the
flow coefficient on the performances of both JCG and ASM. The results show that the
JCG condition number and iteration count grow as the magnitude of the discontinuity
increases, regardless of the location of the discontinuities. On the other hand, after an
initial growth, ASM becames insensitive to the magnitude of the coefficient jumps, if
these are aligned with the subdomain boundaries or unaligned but contained in the sub-
domain interiors. If the coefficient jumps are unaligned with the subdomain boundaries
and cut across these boundaries, then the convergence rate for ASM deteriorates

These results are valid also for anisotropic coefficients, which seem to make the
discrete problem particularly difficult for JCG.

Further studies are being conducted for large heterogeneous problems, the use of
inexact solvers for the subdomain problems, the implementation of alternative coarse
spaces and the comparison of different parallel architectures. Future directions of re-
search will include the extension of the algorithm to nonsymmetric and indefinite prob-
lems, to a full tensor K and to systems of equations.

Acknowledgments. We would like to thank Frédéric d’Hennezel and Lawrence
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TABLE 1
ASM planar scaling, H/h = 10

N and K Nit Timings (in secs.)
decomposition total | iter. | local | coarse (% of total)
41=2x2x1 9.611 |19 | 4.88 | 1.90 | 1.48 | 0.22 (4.51)
16=4x4x1 13.476 | 25 | 7.55 | 3.38 | 2.55 | 0.42 (5.56)
36=6x6x1 14.694 | 26 | 7.73 | 3.54 | 2.63 | 0.50 (6.47)
64=8x8x1 15.132 | 26 | 7.90 | 3.65 | 2.65 | 0.58 (7.34)

100=10x10x1 | 15.015 | 27 | 8.41 | 4.06 | 2.83 | 0.74 (8.80)
144=12x12x1 | 14.765 | 26 | 8.51 | 4.02 | 2.68 | 0.88 (10.34)
196=14x14x1 | 14.771 | 26 | 9.02 | 4.29 | 2.70 | 1.11 (12.31)
256=16x16x1 | 14.7706 | 26 | 9.69 | 4.54 | 2.70 | 1.36 (14.03)
TABLE 2
JCG planar scaling, H/h = 10
N and K Nit Timings (in secs.)
decomposition total | prec. | A-mult | psum | lip
4=2x2x1 216,795 1,683 15.04 | 0.78 8.11 2.73 | 1.61
16=4x4x1 632,935 3,570 37.54 | 1.78 | 20.52 | 11.86 | 3.96
36=6x6x1 1.3-108 5,318 58.94 | 2.63 | 30.50 | 20.53 | 5.91
64=8x8x1 2.3-106 6,769 76.81 | 3.43 | 39.02 | 27.76 | 7.50
100=10x10x1 | 3.4-10° 8,186 99.55 | 4.12 | 48.97 |39.94 | 9.10
144=12x12x1 | >5-10° | 9,715 | 119.32 | 4.85 | 59.03 | 49.15 | 11.59
196=14x14x1 | >5-10° | >10,000 * * * * *
256=16x16x1 | > 5-10° | >10,000 * * * * *
TABLE 3
ASM cubic scaling, H/h = 13
N and K Nit Timings (in secs.)
decomposition total | iter. | local | coarse (% of total)
2=2x1x1 4.97 | 14 116.22 | 3.64 | 3.17 | 0.27 (1.66)
16=4x2x2 79.59 | 52 | 38.83 | 19.55 | 16.47 | 1.64 (4.22)
54=6x3x3 115.58 | 65 | 61.27 | 32.02 | 27.18 | 2.87 (4.68)
128=8x4x4 | 138.71 | 73 | 66.31 | 36.84 | 30.71 | 3.70 (5.58)
250=10x5x5 | 153.94 | 78 | 71.51 | 41.45 | 33.19 | 5.25 (7.34)

1
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JCG cubic scaling, H/h = 13

TABLE 4

N and K Nit Timings (in secs.)
decomposition total | prec. | A-mult | psum lip
2=2x1x1 1.5-10° | 1,552 | 21.38 | 1.53 | 11.58 1.54 | 2.89
16=4x2x2 | 3.7-10° | 3,786 | 75.03 | 4.25 | 43.12 | 12.30 | 8.53
54=6x3x3 | 6.7-10° | 5,911 | 136.98 | 7.52 | 80.00 | 35.96 | 16.26
128=8x4x4 | 1.1-10° | 7,652 | 183.89 | 9.74 | 104.73 | 55.81 | 20.81
250=10x5x5 | 1.8-10° | 9,233 | 281.28 | 11.81 | 143.08 | 120.68 | 24.05
TABLE 5

4x 4x 4 checkerboard with increasing coefficient jumps, H/h = 13

ASM JCG
10¢ K Ty K Ny
10° || 18.4165 | 24 3,204 247
10t || 19.4158 | 26 5,605 377
102 || 52.1034 | 36 || 30,057 | 455
10% || 77.0733 | 38 || 2.73-10° | 532
10* || 81.3222 | 37 || 2.71-10° | 613
105 | 81.7771 | 35 | 2.70-107 | 688
106 || 81.8229 | 35 || 2.70-10® | 763
107 || 81.8275 | 35 * *
10% | 81.8280 | 34 * *
102 | 81.8276 | 36 * *
100 || 81.8282 | 34 * *
TABLE 6

8x 8x 8 checkerboard, H/h = 13, global size 1,124,864

ASM

N K Nit Timings (in secs.)
total iter. | local | coarse (% of total)
512=8x8x8 | 241.66 | 101 | 94.217 | 60.37 | 43.63 | 12.19 (12.94)

| JCG | 512=8x8x38

did not converge in 10,000 iterations
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TABLE 7

Increasing coefficient jumps unaligned with subdomain boundaries

ASM JCG
2X2x2 Ax4x4
10# K N K N K Tt
100 || 13.68 | 17 10.44 20 || 6.6 -10% | 110
10 || 14.26 | 17 16.17 23 || 1.6 -10% | 114
10% || 17.54 | 18 29.59 26 || 1.1-10* | 126
10% || 25.57 | 19 41.48 28 || 1.1-10° | 137
10* || 34.81 | 19 || 100.56 | 31 || 1.1-10° | 147
10° || 36.88 | 19 || 723.81 | 35 || 1.1-107 | 158
106 || 37.12 | 19 6,972.2 | 39 || 1.1- 10% | 168
TABLE 8

ASM, jumps unaligned with subdomain boundaries, fized global size 24x 24x 24

N and Timings (in secs.)
decomposition | subdomain size K n; | total | iter. | local | coarse
8=2x2x2 12x12x12 16.95 | 23 | 17.86 | 5.86 | 4.85 | 0.53
16=4x2x2 6x12x12 212.14 | 79 | 12.98 | 9.65 | 6.78 | 1.40
27T=3x3x3 8x8x8 87.33 | 58 | 7.83 | 553 | 3.72 | 0.79
32=4x4x2 6x6x12 193.43 | 89 | 7.99 |6.34 | 3.64 | 1.18
64=4x4x4 6x6x6 134.45 | 75 | 5.40 | 4.31 | 2.17 | 0.93
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Fic. 1. 1 x 6 x 6 Planar decomposition

FiGg. 2. 6 x 3 x 3 cubic decomposition
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Fiag. 3. 4 x 4 x 4 checkerboard decomposition

FiGc. 4. coefficient jumps unaligned with subdomain boundaries
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Fic. 5. ASM and JCG total time

planar scaling, local size: 10"3
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Fia. 7. Timings for ASM

planar scaling, local size: 10"3
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Firc. 9. ASM and JCG total time

cubic scaling, local size: 13°3
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Fiag. 11. Timings for ASM
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Fia. 12. Timings for JCG

cubic scaling, local size: 13*3
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