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Abstract

Compiling irregular applications written in a data-parallel language, like Fortran D or High
Performance Fortran (HPF), presents a challenge of growing importance. A major component
of data-parallel programming is the data mapping, i.e., data distribution and alignment. Map-
pings may be either regular, in which case they correspond to simple functions between array
indices and owning processors, or irregular. Regular mappings can already be specified fairly
conveniently, with keywords such as BLOCK or CYCLIC. However, the mechanisms proposed for
irregular mappings so far require the programmer to go down to a very low level, for example by
specifying explicit mapping arrays or mapping functions. For irregular problems, this makes it
difficult to achieve good load balance or low storage and communication requirements without
sacrificing programming convenience.

Value-based mappings extend classical, index-based mappings to express for example the
locality characteristics of an underlying physical problem. This gives the compiler an oppor-
tunity to improve both inter- and intra-processor locality, resulting in better performance and
scalability, even when this locality is not inherent in the original data structures and access
patterns.

This paper reports on the experience gained from implementing value-based mappings in a
Fortran 77D compiler prototype. We propose a natural extension of index-based mappings as
already present in Fortran D and HPF. This paper addresses the compilation issues involved and
makes a quantitative comparison of index and value-based mappings for a Molecular Dynamics
application and an Unstructured Mesh kernel.

1 Introduction

Distributed-memory parallel machines provide high performance at reasonable cost. However, the
programming paradigms associated with them often differ greatly from sequential languages, and
programmers typically consider them to be more difficult to use than sequential languages. For
example, many vendors of parallel machines offer message-passing language dialects that require
the user to add matching send/receive pairs for each off-processor data access.

Several research projects have aimed at providing a “machine-independent parallel program-
ming style” as a more user-friendly and investment-preserving alternative. Here the applications
programmer uses a dialect of sequential Fortran and annotates it with high-level mapping infor-
mation. Examples include High Performance Fortran (HPF) [KLST94], Vienna Fortran [CMZ92],
and Fortran D [FHK'90], which comes in two flavors, Fortran 77D and Fortran 90D. From this
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annotated program, data-parallel compilers will generate codes in different native Fortran dialects
for different parallel architectures. A prototype Fortran 77D compiler targeting MIMD distributed
memory machines has been developed at Rice University [HKKT91, Tse93] as part of the PARA-
ScoPE programming environment [CCH*88]. A Fortran 90D compiler has been written at Syra-
cuse University [BCF193]. For regular problems, i.e., applications with relatively simple array
subscript functions and fixed communication requirements, these compilers have had considerable
successes [Tse93].

However, irregular problems, such as unstructured mesh codes, molecular dynamics, galaxy
simulations, or computational fluid dynamics, have turned out to be significantly harder to paral-
lelize [SH91]. Common problems are low access locality, both within and across data structures,
and poor load balance. For example, assume that the value assigned to some array element a(7)
depends on some other array element b(j). In a regular problem, there will typically be some
simple relationship between ¢ and j; for example, they may be related to each other via a lin-
ear function known at compile time. This usually implies that at least this dependence can be
satisfied, with little or no communication, when distributing ¢ and b by partitioning their index
spaces in some regular fashion among processors and aligning them to each other in a certain
way. We will refer to this characteristic as indez-based localily. Exactly how arrays should be
mapped in the presence of index-based locality is by no means trivial and still an active field of re-
search [KMCKC93]. However, one can generally assume that only regular mappings (like BLOCK,
CYCLIC, or BLOCK-CYCLIC) and remappings have to be considered.

For irregular problems, this assumption cannot be made. Here subscripts ¢ and j may each be
determined by some complicated function or an array lookup, the outcome of neither one known
at compile time. Furthermore, even if the compiler would know the values of the ¢’s and j’s, there
would often still be no way to achieve good locality (i.e., low communication requirements) via
regular, index-oriented mappings. For example, if ¢z and j are different vertices in a mesh, then
a(?) and b(j) might depend on each other if ¢ and j are linked together by an edge. Most meshes
number their vertices in a way that does not directly reflect their topology; ¢.e., it is hard to predict
whether two vertices are linked together by just looking at their indices. Therefore, distributing
mesh points and the computation associated with them across processors by dividing their index
space in some regular fashion typically results in many off-processor accesses; i.e., if a processor
is assigned some a(¢) and therefore has to know the value of b(j), chances are high that b(j) will
be on a different processor. The potential speedup gained from distributing data and computation
across processors is likely to be lost by exceedingly high communication costs when using simple
mapping schemes.

The fact that the vertex numbering does not reflect the mesh topology is an example of poor
index-locality within a data structure, which we consider a data distribution problem. However, we
may also have bad locality across data structures. Revisiting the mesh example, we are typically
operating on both vertices and edges which have a certain interrelationship (each edge has two
particular vertices as end points). This relationship can usually not be determined from the node
and edge numbering. However, it would generally be advantageous if the data associated with
an edge would be stored on the same processor as the data associated with their end points; we
consider this a data alignment problem.

Fortunately, many scientific applications lacking any index-based locality that a compiler might
take advantage of do offer another kind of locality, which we will refer to as value-based locality.
This kind of locality, which will be introduced in more detail in Section 2, naturally lends itself to
value-based mappings. These mappings can be used to improve locality and also to increase load



doi= 1, Natoms
do p = 1,inb(i)
J = partners(i,p)
force = nbforce(x(i), x(j))
f(@) = f(i) + force
1(3) = ) — foree
enddo
enddo

Figure 1: Sequential version of the Non-Bonded Force (NBF') kernel. N,¢opms is the total number
of atoms, inb(7) is the number of atom partners that are close enough to atom ¢ to be considered
for the NBF calculation. For simplicity, the coordinate and force arrays, x and f, are shown only
one-dimensional.

balance. This paper reports on an implementation of value-based mappings within the Fortran D
compiler prototype at Rice University. Here we will focus on the compiler technology specific to
handling such mappings and its relationship to other aspects of the compiler. For a discussion
of other, equally important aspects of compiling irregular applications, such as communication
analysis and preprocessing, we refer the reader to other publications [DSvH93, Han93].

The rest of this paper is organized as follows. Section 2 introduces value-based locality and
illustrates the use of value-based mappings with kernels taken from a Molecular Dynamics code
and an Unstructured Mesh application. Section 3 lists the implications of value-based mappings for
message-passing node programs. Section 4 describes language extensions and compiler technology
for generating such node programs. Section 5 contains experimental results obtained for the kernels
introduced in Section 2 and compares the effectiveness of index-based and value-based mappings
for these applications. Section 6 discusses related work; Section 7 concludes with a brief summary
and discusses possible extensions.

2 Value-Based Locality

In the presence of value-based locality, two array references a(i) and b(j) may not be related to
each other by their indices, ¢ and j, but instead by their values, a(7) and b(j), or the values of
other variables, like z(k) and z(l), that in turn are related to a(¢) and b(j) by their indices (for
example, k = ¢ and [ = j). In this context, “related” refers to a preference towards residing close
to each other with respect to the memory hierarchy, e.g., on the same processor. Revisiting the
mesh example, z might be a coordinate array storing the physical location of each mesh point
(assuming 1-D for simplicity). Then the probability that vertices ¢ and j are connected increases
as |z(7) —(j)| decreases. Note that this is not a strict relationship; whether an edge actually exists
or not still depends on other factors, like mesh density and topology. However, since data mapping
is not a correctness but only an efficiency issue, we are usually more interested in a fast heuristic
for finding a reasonably good data mapping than in a strictly optimal, but expensive solution.
Another example where data are not related by indices, but values, are molecular dynamics
programs such as GROMOS [GB88], CHARMM [BBO*83], or ARGOS [SM90] that are used to
simulate biomolecular systems. One important routine common to these programs is the non-
bonded force (NBF') routine, which typically accounts for the bulk of the computational work
(around 90%). Figure 1 shows an abstracted version of a sequential NBF calculation. An important



Figure 2: BLOCK mapping of an SOD system. Atoms are colored according to the processor they
are mapped to, for an eight-processor configuration. The regular, index-based mapping results
in assigning each processor very irregular subdomains, with accordingly poor locality and load
balance.

characteristic of the NBFs is that their intensities decay very rapidly with increasing distance
between the atoms involved. This locality is exploited by using a cutoff radius, R.,:, beyond which
the NBF interactions are ignored. This reduces the number of atom pairs for which the NBF
has to be computed and significantly reduces overall computational costs. Furthermore, we can
exploit this locality when distributing data in a parallel implementation according to the values
of z, which stores the physical atom coordinates. The atom numbering itself is not related to the
coordinates (instead, they are typically numbered according to some data bank standard, like the
Brookhaven protein data bank, which considers amino acid types, peptide bonds, solute/solvent
classifications, etc. — an ordering which is rather difficult for a compiler to take direct advantage of
without user assistance). Therefore, a traditional, index-based mapping would lose this locality. In
fact, since each processor needs for each owned atom to know about all atoms within R.,; of that
atom, a regular mapping typically results in each processor accessing all data, with accordingly
high communication and storage requirements. For example, Figure 2 shows the mapping resulting
from distributing an SOD system (Ngtoms = 6968) across eight processors’.

Value-based mappings allow the programmer to express value-based locality as a simple ex-
tension of the regular mapping mechanism employed in data-parallel languages. We distinguish
between value-based distributions and value-based alignments, corresponding to the data distri-
bution and alignment problems identified in Section 1. For example, let array x be aligned to a
decomposition decomp. Then the directive DISTRIBUTE decomp(VALUE(x)) is a value-based distri-
bution specifying that x should be distributed such that the values of the elements of x assigned to
each individual processor are from disjoint intervals. (See Section 4.1 for a more formal description
of the syntax proposed for value-based mappings.) In other words, if the values of two elements of

1SOD (superoxide dismutase) is a catalytic enzyme that converts the toxic free-radical, 02_4, a byproduct of
aerobic respiration, to the neutral molecules Oz and H>O, [WCSM93].



x are close together, they are likely to be on the same processor.

The actual use of a value-based distribution can be seen in Figure 3, which shows a For-
tran D implementation of the NBF kernel outlined in Figure 1. This program is a condensed
and abstracted version of the 340-line GROMOS subroutine nonbal.f (without the Coulombic
interactions), enhanced with some data initialization. Although this program is very simplified,
it still presents similar difficulties as the original code with respect to the compiler. Fortran D
directives first declare a decomposition atomD, then align coordinates x, forces £, partner counts
inb, and adjacency lists partners with atomD, and finally distribute atomD. Note that initially this
is a regular, BLOCK-wise distribution. After reading in the initial coordinates and partner counts,
atomD gets redistributed according to the values of coordinate array x. Note also that the strict
owner computes rule is overridden in the NBF calculation itself via an on_home directive. Figures 4
and 5 show the SOD mappings resulting from one- and three-dimensional value-based mappings,
respectively.

An example of a value-based alignment is shown in Figure 6, which shows a Fortran D version
of a sweep over the edges of an unstructured mesh. There are two decompositions, nodeD for the
node data and edgeD for the edge data. After reading in the data, first nodeD gets distributed
by value according to the node coordinates, then edgeD gets aligned with nodeD according to the
values of the topology arrays ends1 and ends2.

3 Handling Value-Based Mappings

The MIMD Fortran D compiler transforms a Fortran D program, written in a global name space
and annotated with data mapping directives, into a message passing program, which is a local name
space node program including communication statements. This section describes the consequences
that distributing data by value has on a node program that a compiler would generate (or that a
programmer directly using message passing would code by hand).

3.1 Specification and State

A regular distribution can be fully specified by a simple keyword (“BLOCK”) or a keyword enhanced
with a small list of parameters (“BLOCK_CYCLIC(blockSize)”). There is very little state associated
with a mapping, both at compile time and at run time. This already implies some simplicity for
the programming assignment and for the resulting program. Many mapping-dependent decisions,
like the effect of an owner-computes rule (which links the mapping of computation to mapping of
the data involved), can already be resolved before run time. The amount of additional code and
variables for computing and storing the mappings and for translating between global indices, local
indices, and processor numbers is very small.

Given a value-based distribution, which for example distributes x according to its values, one
could envision a scheme that also had very little state specifically devoted to representing the
distribution. For example, one could compute the owner of some x(i) on the fly by sorting all
elements of x and determining the position of x(i) in the sorted list. This, however, would clearly
be impractical to do for each reference to an element of x. Instead, one should amortize the cost of
determining ownership etc. by computing this information once and reusing it. (Note that this is
not necessarily true for all irregular distributions. If an application has good index-based locality,
then one might still want to distribute data irregularly to improve load balance, but some or all of
the mapping computation can be done on the fly [BK93, Han92, Bia91, CHMS94].)
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PROGRAM nbf

INTEGER i, j, p, t, n$proc, atomMax, pMax, stepMax
PARAMETER (n$proc = 8)

PARAMETER (atomMax = 8000, pMax = 250, stepMax = 30)
INTEGER inb(atomMax), partners(atomMax, pMax)

REAL x(atomMax), f(atomMax), force

Fortran D directives

DECOMPOSITION atomD(atomMax)

ALIGN inb, x, f, partners(i,j) WITH atomD(i)
DISTRIBUTE atomD (BLOCK)

Initialize data
CALL read data(x, inb, partners)

Redistribute atomD according to coordinate values
DISTRIBUTE atomD(VALUE(DIM=1, VALS=x, WEIGHT=inb))

Loop over timesteps
DO t = 1, stepMax

Reset forces to zero

DO i =1, atomMax
(i) = 0

ENDDO

Computes forces
EXECUTE (i) ON_HOME £(i)
DO i =1, atomMax
DO p = 1, inb(i)
j = partners(i, p)
force = nbforce(x(i), x(j))
£f(i) = £(i) + force
£(j) = £(j) - force
ENDDO
ENDDO

Push atoms
DO i =1, atomMax
x(i) = x(i) + delta(f(i))
ENDDO
ENDDO
END

Figure 3: Fortran D version of the Non-Bonded Force kernel (with coordinates and forces shown
1-D for simplicity). During each of the stepMax time steps, forces are first reset to zero, then they
are computed based on the distances between atoms (similar to the code in Figure 1), and finally
the forces are used for updating coordinates. Note the index-based distribution directive in line
12, followed by a value-based redistribution in line 18.




Figure 4: Value-based mapping of atoms along just one dimension. Locality is good, but commu-
nication may be expensive due to the high surface-to-volume ratio.

Representing a value-based distribution explicitly requires a large amount of state. A translation
table maps global indices 74, into pairs (¢jec, p) of local indices and processor numbers. Often the
translation table itself is too large to be fully replicated and is distributed instead [WSBH91].
Therefore, not only storing but also accessing the information adds complexity to the program.
As mentioned in Section 2, run-time libraries such as CHAOS can take most of the complexity of
this task from the programmer [DHU93], but their use still requires explicit managing of the data
structures associated with irregular distributions and communications.

3.2 Storing Value-Based Distributed Data

Again assuming that x is distributed according to its value, the number of elements of x assigned
to each processor typically varies and is not known until run time. This poses particular problems
when using a language that does not support dynamic memory allocation, like Fortran 77. Common
strategies for circumventing this restriction are to make arrays conservatively large or declare work
arrays that are shared by several variables, both of which have obvious disadvantages.

Note that the same problem occurs when regularly distributed arrays are accessed irregularly
and we wish to append buffer space for off-processor data at the end of the array [Han93].

3.3 Translating Name Spaces

Translating between the global name space of a Fortran D program and the local name space of the
node program is an important component of the parallelization process. For regular mappings, most
of this task can be performed before run time, or, if run-time translation is needed, the necessary
code can be generated fairly easily; for example, a statement x(i) = i, where i is global, might
be translated into something like x(i) = i + my$proc*block_size, with a local i.



Figure 5: Value-based mapping of atoms along all three dimensions. Locality is good, and the
compact subdomains minimize communication costs.

For irregular mappings, the translation has to be delayed until run time, and computing the
translation may be complicated.

3.4 Communication Generation

Again due to the complicated relationship between global and local name spaces, generating correct
communication statements in the presence of value-based mappings can be tricky even for regular
array accesses, such as x(1) = x(i+1), and even more so for irregular references, like x(a(i)) =
x(b(i)).

Resolving such references requires several translation steps, some of which may themselves in-
volve communication. To still generate efficient code, one should precompute and reuse as much of
this information as possible. For example, the inspector-executor paradigm allows us to message-
vectorize low-locality data accesses, even in the absence of compile-time knowledge [MSSTS8S,
KMV90]. First, an “inspection phase” determines what data have to be communicated within
a certain loop and generates a communication schedule. Then, an “execution phase” (repeatedly)
performs the actual computation and uses the communication schedule to exchange data.

3.5 A Bootstrapping Problem

One characteristic of value-based mappings is that they may pose a certain bootstrapping problem
to both the user and the compiler, as has already been identified by Ponnussamy et al. [PSC93a].
This problem occurs when an array is distributed based on its own values, which is considered
perfectly legal and actually the case in the code shown in Figure 3. Here an array x is aligned
to a decomposition atomD, which in turn gets distributed based on the values of x. Now, when
we start initializing x, we need to know its mapping function to assign each processor its share of
array elements. This mapping function, however, cannot be determined until we know all values



PROGRAM mesh

INTEGER i, ni, n2, n$proc, Nnodes, Nedges, stepMax, t
PARAMETER (Nnodes = 10000, Nedges = 20000)

5 INTEGER endsi(Nedges), ends2(Nedges)
REAL x(Nnodes), f(Nnodes), w(Nnodes), flux

C Fortran D directives
DECOMPOSITION nodeD(Nnodes), edgeD(Nedges)
10 ALIGN £, w, x, WITH nodeD
ALIGN endsl, ends2 WITH edgeD
DISTRIBUTE nodeD(BLOCK), edgeD(BLOCK)

¢ Initialize data
15 CALL read data(x, w, endsl, ends2)
C Redistribute nodeD according to coordinate values

DISTRIBUTE nodeD(VALUE(DIM=1, VALS=x))

20 C Redistribute edgeD according to nodeD
ALIGN egdeD WITH nodeD(VALUE(DIM=2, VALS=ends1,ends2))

Loop over timesteps
DO t = 1, stepMax

C Reset fluzes to zero
DO i = 1, Nnodes
(i) = 0
ENDDO
30
C Computes fluzes

EXECUTE (i) ON_HOME ends1(i)
DO i = 1, Nedges
nl = ends1(i)
35 n2 = ends2(i)
flux = flux_func(w(nl),w(n2))
f(n1) = £f(n1) + flux
f(n2) = £(n2) + flux
ENDDO
40 ENDDO
END

Figure 6: Fortran D kernel of a sweep over the edges of an unstructured mesh. The mesh coordinates
are stored in the coordinate array x (again 1-D for simplicity), the topology is stored in the endpoint
arrays endsl, ends2. After an initial index-based distribution of node and edge data in line 12,
the node data are redistributed by value in line 17, and edge data are aligned by value with the
redistributed node data in line 21




of x. To resolve this problem, we start out with a different, typically regular mapping, which can
be used for example to read in the data as is the case in Figure 3. After the data relevant for the
irregular mapping are known, the decomposition is remapped based on their values.

4 The Compiler’s Perspective

After outlining in the previous section the general issues associated with distributing data based
on values, this section describes the implications of using value-based mappings in a data-parallel
language such as Fortran D. The program shown in Figures 7 and 8, which was generated by the
Fortran D compiler from the NBF kernel in Figure 3, will serve as an example.

4.1 The Input Language

Since we implemented value-based mappings as part of a Fortran D compiler prototype, the For-
tran D language constructs also serve as a basis for the syntax of value-based mappings. These
extensions could also be applied directly to the HPF standard [KLST94]. We were able to limit
ourselves to a simple extension of the already existing DISTRIBUTE and ALIGN directives, as was
also illustrated by the code in Figure 3. Here the directive DISTRIBUTE atomD(VALUE(DIM=1,
VALS=x, WEIGHT=inb)) was the only statement the programmer had to add in order to express
the value-based locality of the application; the rest was done by the compiler. The value-based
mapping syntax currently supported is shown in Figure 9.

Note that the range of available mapping strategy depends more on the available run-time
support than on the compiler. In fact, the strategy specified by the user might be passed through
verbatim to the run-time library. However, one might still require a certain minimal set of strategies
to be always available; see [PSC93a] for a comparison.

Note also that the user may not select a specific strategy for distributing data, as shown in
Figure 3. In this case the compiler chooses a default strategy, like Recursive Bisection. Furthermore,
since the default number of dimensions is one and some key words are optional, the DISTRIBUTE
atomD (VALUE(DIM=1,VALS=x,WEIGHT=1inb)) could also be written as DISTRIBUTE atomD (VALUE(x,
inb)).

Naturally, there are several possible modifications/extensions for this syntax, which was held
deliberately simple. For example, the value-based alignments could also be expressed as just
another form of redistributions instead. Or, one could allow multidimensional value arrays instead
of several one-dimensional arrays; for example, a program may store three-dimensional physical
coordinates in one two-dimensional array, x(3, n), instead of using three one-dimensional arrays,
x(n), y(), z(n).

4.2 When to Distribute and Align

In general, mapping directives can be viewed as either static declarations (such as the HPF
DISTRIBUTE), or as executable statements (like the HPF REDISTRIBUTE). There are several reasons
why value-based mappings should be viewed as executable, for example because of the bootstrap-
ping problem described in Section 3.5, or because the values relevant for the mapping might change
for dynamic problems and we might want to remap periodically.

A resulting question is when this mapping should be performed, whether it should be done when
the execution reaches the directive, or instead at some other point in the program determined by the
compiler. In the latter case, one might for example envision a scheme that lets the compiler analyse
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PROGRAM nbf

INTEGER i, j, p, t, n$proc, atomMax, pMax, stepMax
PARAMETER (n$proc=8)

PARAMETER (atomMax=8000, pMax=250, stepMax=30)
INTEGER inb(1000), partners(1000, pMax)

REAL x(1000), £(1000), force

General Fortran D variable declarations
COMMON /FortD/ n$p, my$p
INTEGER n$p, my$p, numnodes, mynode

Irregular Fortran D variable declarations
INTEGER atomD$loc2proc(1000)
INTEGER x$sched, x$tab, x$offsize, j$cnt, i$, atomD$cnt, atomD$tab, atomD$sched

Fortran D initializations
my$p = mynode()
n$p = numnodes()
IF (n$p .NE. 8) STOP

Initialize data
CALL read data(x, inb, partners)

Redistribute atomD according to coordinate values

atomD$cnt = 1000

Compute atomD$loc2proc, atomD$cnt from inb, x, atomD$cnt

Compute atomD$tab from atomD$loc2proc, atomD$cnt

Allocate atomD$loc2glob(atomD$cnt)

Compute atomD$loc2glob, atomD$sched from atomD$tab, atomD$cnt

Delete atomD$tab

Resize inb(atomD$cnt), x(atomD$cnt), f(atomD$cnt), partners(atomD$cnt, pMax)
Shuffle inb, x, partners according to atomD$sched

Counting slice for j$cnt
j$cnt = 0
DO i = 1, atomD$cnt
j$cnt = j$ent + inb(i)
ENDDO
Allocate j$glob(j$cnt), j$loc(j$cnt)

Figure 7: NBF kernel, output of Fortran D compiler (continued in Figure 8). The code is shown
before converting references to dynamically allocated arrays (which are not explicitly declared)
into work array accesses. Variables containing a “$” are generated by the compiler. The CHAOS
library provides run-time support.
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c Compute j$glob
j$cnt = 0
DO i = 1, atomD$cnt
DO p = 1, inb(i)
50 j$cnt = j$ent + 1
j = partners(i, p)
j$glob(j$cnt) = j
ENDDO
ENDDO
55 Compute x$tab from atomD$loc2glob, atomD$cnt
Compute x$sched, j$loc, x$offsize from x$tab, j$glob, j$cnt, atomD$cnt
Delete x$tab
Resize f(atomD$cnt + x$offsize)
Resize x(atomD$cnt + x$offsize)
60
C Loop over timesteps
DO t = 1, stepMax

C Reset forces to zero
65 DO i = 1, atomD$cnt + x$offsize
(i) = 0
ENDDO

Gather x using x$sched
70 C Compute forces
i$ =0
DO i = 1, atomD$cnt
DO p = 1, inb(i)
i$ = i$ + 1
75 j = partners(i, p)
force = nbforce(x(i), x(j$loc(i$)))
£(i) = £(i) + force
f(j$loc(i$)) = £(j$loc(i$)) - force
ENDDO
80 ENDDO
Scatter_add £ using x$sched

C Push atoms
DO i = 1, atomD$cnt
85 x(i) = x(i) + delta(f(i))
ENDDO
ENDDO
END

Figure 8: NBF kernel generated by the Fortran D compiler, continued from Figure 7.

12



DistDirective is DISTRIBUTE ValMapping
AlignDirective is ALIGN decomposition-name WITH ValMapping
ValMapping is decomposition-name (VALUE ( ValArrays [, Weight] [,Strategy]))
ValArrays is [DIM = num-dims,| [VALS =| value-array-name [, value-array-name] ...
Weight is [WEIGHT =] weight-array-name
Strategy 1is [STRATEGY =| mapping-strategy-name

Constraint: Number of value-array-names must equal one, or, if specified, num-dims.

Figure 9: Syntax of the value-based mapping directive. Square brackets indicate optional compo-
nents.

where relevant values are defined (or redefined), and where mapped data are used. However, we
feel that this kind of analysis would be fairly difficult and problem dependent (for example, we
might not really want to redistribute whenever one relevant value changes), and that the gain in
programming convenience would be only marginal. Therefore, our current implementation performs
the value-based mappings at the location corresponding to the mapping directive.

4.3 Mapping the Data

Each value-based mapping directive D results in certain tasks that the compiler, in the current
implementation, performs at the location of the directive itself:

1. Generate code for calculating the new distribution as follows.

(a) Compute an array that maps local indices (based on the initial distribution) to processor
numbers, D.loc2proc, and the resulting number of owned data, D.cnt, by calling a
partitioner (line 27 in the example). This partitioner applies the strategy specified by
the programmer, or a default specified by the compiler, to the values and, if specified,
weights provided by the user and generates a distribution. The partitioner tries to
distribute the data such that both high locality and good load balance are achieved; in
the presence of weights, the overall weight assigned to each processor should be similar.
Before partitioning, atomD$cnt is initialized (line 26) according to the initial, regular
distribution.

(b) Based on D.loc2proc and D.cnt, compute a translation table (see Section 3.1), D.tab
(line 28). D.tab is actually a pointer to a data structure internal to the run-time library;
within Fortran it is declared as an integer. This mechanism is also used for other internal
structures.

(c) Allocate an array that maps local to global indices, D.loc2glob, of size D.cnt (line 29).

(d) Compute D.loc2globand a communication schedule D.sched from D.loc2proc and D.cnt
by calling a remapper (line 30). This schedule is used in the communication statements
that reshuffle coordinates and pair list data according to the new distribution (line 33).

2. Compute the set of arrays, ARR, that are aligned to the decomposition being distributed.
Resize each arr € ARR according to D.cnt (line 32).
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As already indicated in Section 3.2, this implies a need for dynamic memory allocation ca-
pabilities. The Fortran D compiler emulates these by converting arrays that are dynamically
allocated or resized to work array accesses. (However, for sake of readability, Figures 7 and 8
show the code before memory allocation). The offsets into these work arrays are generated at
run time by calls to a separate memory allocation library. This also has to consider multidi-
mensional arrays, such as partners in the example. In the prototype compiler, these arrays
reference the work array section assigned to them by performing array arithmetic explicitly.
For example, a reference to partners(i, p) becomes something like i$wrk(partners$ind
+ p+ (1 - 1) * 200). Note that this does not increase the overall instruction count, it
only makes explicit the index calculations that are normally hidden from the user.

3. For each arr € ARR, determine whether arr is live at the location of D. If it is live, then
generate code for communicating the elements of arr from their old owners to their new
owners (line 33). For example, we do not need to communicate £ in the example, since forces
have not been computed yet.

4.4 Satisfying Off-Processor References

Given a (regular or irregular) reference to an irregularly distributed array that might reference
off-processor data, an inspector has to generate a communication schedule (see Section 3.4). In
our example, the references to x(j) and £(j) from Figure 3 may require communication. Since
in these references the same subscript expression references conformingly distributed arrays, one
inspector (lines 35 ... 59) generating one schedule is sufficient. This schedule is used in the
communication statements that gather coordinates (line 69) and add forces across processors (line
81). The inspector is relatively similar to irregular references to regularly distributed arrays, and
we refer to other publications for a more detailed discussion [DSvH93, Han93]. One additional
complication, however, is that a translation table has to be computed based on D.loc2glob (line
55). This implies the need for solving the reaching decompositions problem both intra- and inter-
procedurally [HHKT92].

Note that the current strategy for collecting off-processor references is to record each individual
subscript in a {race array. This trace array is created in global name space (j$glob, see lines 47
... 54) and then converted into local name space (j$loc, line 56). Subsequent irregular subscripts
(such as x(j), line 33 in Figure 3) are then converted to trace references (x(j$loc(i$)), line 76).
Since the name-space translation is already implicit in the trace array, this approach results in a
relatively fast executor. However, the space requirements for storing the traces are proportional to
the total number of references, instead of just the number of elements referenced. Compile-time
analysis can be used to shorten traces; in the example, the compiler determined that the reference
pattern is the same in each time step and therefore did not include the time stepping loop in the
inspector. However, the traces may still become too space consuming, in which case more space
saving alternatives, such as a hash table combined with name-space translations on the fly, may

be used [DSvHO93|.

4.5 The Actual Computation

After distributing data and prefetching off-processor references, the actual computation can be
performed (lines 62 ...87). The following are some of the issues arising here.
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o When reducing loop bounds to parallelize a loop based on the owner computes rule, the
number of local elements, D.cnt (computed in line 27), has to be retrieved. In the NBF
kernel, this is the case in the i loops.

e Subscripts of references that might access off-processor elements have to be converted to
localized trace array references (see Section 4.4). In the example, the references to x(j) and
£(j) are converted to x(j$loc(i$)) and £(j$loc(i$)), respectively, as shown in lines 76
and 78.

o To regenerate the global iteration index from the local name space index, the array D.loc2glob
(from line 30) has to be consulted.

e To map global indices to processor numbers and local indices, for example when printing a
certain data element, a dereferencing call using the translation table D.tab must be generated.

5 Experimental Results

We compiled a molecular dynamics kernel and an unstructured mesh example using various map-
ping strategies. In evaluating our proposed language extensions, we are mostly interested in the
following questions:

1. How much does the extension improve the generated code?
2. How close is the generated code to a hand-coded implementation of the same approach?
3. How much convenience does the new extension provide over hand-coding?

To answer the first question, the output of the Fortran D compiler was compiled with i£f77 onto an
iPSC/860 with 32 nodes and 8 Megabytes of memory per node, and various performance aspects
were measured as described in the following sections.

Regarding the second question, the Fortran D compiler-generated output was practically iden-
tical to a hand-coded parallel program using the same CHAOS run-time support. While this is
certainly at least partly due to the simplicity and small size of the compiled kernels, it still gives rea-
son to believe that there are no fundamental disadvantages when using the compiler to implement
value-based mappings.

To answer the third question, one has to compare the complexities of original and compiled
codes, with and without value-based distributions. While size alone is not a suflicient measure
of complexity and programming difficulty, it still is an indication for the savings provided by the
compiler; Figures 3, 7, and 8 provide a more detailed comparison. It turned out that for these
kernels, the generated code (which also in size was very close to hand-coded) was about twice as
large as the initial code for index-based distributions. For value-based distributions, the code grew
by another 25%.

5.1 The Molecular Dynamics Kernel

Our experiments were based on the Fortran D kernel from Figure 3 (but with 3-D instead of just
1-D coordinates and forces) with varying index- and value-based distribution directives as listed
below. The parallel runs used pairlist data and physical coordinates from an SOD simulation using
an 8A cutoff radius; SOD itself is of size 53 x 55 x 52A2. We ran the simulation for 30 time steps,
on 1, 2,4, 8,16, and 32 processors, with the following distribution strategies.
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. Index-based, block-wise: for N atoms and P processors, processor p gets assigned atoms
(p—1)N/P+1...pN/P (assuming P divides N). This corresponds to using the original
BLOCK distribution (line 12) throughout the run (i.e., no redistribution in line 16), and is
illustrated in Figure 2.

2. Value-based, 1-dimensional bisection, no load balancing: the physical problem domain gets di-
vided along the z-axis, assigning each processor an equal number of atoms. This corresponds
to redistributing data with a “DISTRIBUTE atomD(VALUE(DIM=1, VALS=x))” directive (i.e.,
no “WEIGHT=inb” parameter).

3. Value-based, 1-dimensional bisection, with load balancing: each atom’s work load is measured
by the number of interaction partners, and the partitioner divides the physical problem
domain such that each processor has an even workload. The appropriate directive is already
shown in Figure 3, the resulting mapping can be seen in Figure 4.

4. Value-based, 3-dimensional bisection, no load balancing: the physical problem domain gets
recursively divided along the z, y, and z-axes, assigning each processor an equal number of
atoms. The directive here is “DISTRIBUTE atomD(VALUE(DIM=3, VALS=x,y,z)).”

5. Value-based, 3-dimensional recursive bisection, with load balancing. This is achieved with a
“DISTRIBUTE atomD(VALUE(DIM=3, VALS=x,y,z, WEIGHT=inb))” statement; see Figure 5.

We were able to run all strategies on all processors sizes, except for 1 and 2 processors, where

the value-based strategies were too memory intensive.

5.1.1 Locality

The number of not-owned atoms accessed by the individual processors is a measure for the inter-
processor access locality of the NBF kernel. We can estimate a theoretical lower bound on this
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number based on the total number of atoms (6968), the space they occupy (a sphere with a little
over 50A in diameter), and R.,; (SA), which yields that around 950 atoms will have to be buffered.

Figure 10 compares the maximum number of buffered atoms for different machine sizes and
distribution strategies. We see that the 3-dimensional, value-based distribution performs best, with
a slight additional advantage for the load balanced version, which comes very close to the predicted
lower bound.

5.1.2 Balancedness

Figure 11 measures balancedness by comparing maximum and average workloads, expressed as
floating point operation counts. The index-based distribution gets less balanced as the number
of processors goes up. Value-based distributions perform consistently better, and taking the work
load into account provides a further improvement. For this application, the index-based BLOCK
distribution is particularly unsuitable due to the diagonal nature of the adjacency matrix (based
on Newton’s Third Law), which shifts the work load towards atoms with smaller indices.

5.1.3 Individual timings

Figure 12 shows the timings measured for the 3-dimensional, balanced recursive bisection. In the
processor ranges measured, the overheads associated with preprocessing, redistributing data, and
communication are about an order of magnitude lower than the cost of the actual computation.
The cost of preprocessing (including the inspector which enables message vectorization) gets well
amortized for the given number of time steps (30). However, it is also apparent that the scalability
of the run-time support may become critical for larger numbers of processors.

5.1.4 Speedups

Figure 13 summarizes the speedups obtained for the various distribution methods. The value-
based distributions outperform the index-based distribution, and explicit load balancing provides
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an additional advantage.

5.2 The Unstructured Mesh Kernel

We generated code for the Fortran D kernel from Figure 6, but again with 3-D instead of just
1-D coordinates and fluxes. Here we measured only the effect of varying alignments of edgeD; the
distribution of nodeD was a fixed, 3-D value-based distribution. The parallel runs were done for a
mesh with 9428 nodes and 59863 edges. We ran the simulation for 30 time steps, on 1, 2, 4, 8, and
16 processors, with the following alignment strategies.

1. Index-based, block-wise: for N edges and P processors, processor p gets assigned edges
(p—1)N/P+1...pN/P (assuming P divides N). This corresponds to using the original
BLOCK distribution (line 12) throughout the run (i.e., no redistribution in line 21).

2. Value-based: decomposition nodeD and edge info ends1, ends2 serve to align edge data with
the node data. This corresponds to the value-based alignment directive shown in Figure 6.

5.2.1 Locality

Similar to the number of buffered atoms in the NBF kernel, here the number of not-owned nodes
accessed by the individual processors is a measure for the inter-processor access locality of the mesh
kernel. Figure 14 compares the maximum numbers of buffered atoms for different machine sizes
and alignment strategies.

Considering that there are less than 10000 atoms total, we see that the index-based mapping
requires buffering a significant fraction of the whole data domain. Together with the owned edges
we are effectively replicating the edge data for P < 8. The value-based alignment has a significantly
better locality, typically requiring less than 500 nodes to be buffered.
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5.2.2 Speedups

Figure 15 summarizes the speedups obtained for the two mapping methods. While the index-
based mapping does not result in any speedup due to the bad locality, the value-based distribution
provides about 40% efficiency for 16 processors.

6 Related Work

Poor locality and load imbalances when parallelizing irregular applications are problems not limited
to data-parallel implementations; application programmers have already been taking advantage of
value-based locality when hand-coding in low-level parallel languages (for example with message
passing). They have developed a wealth of different mapping strategies, both value-based [BB87,
HS91, DHU*93], and connectivity based [Sim91], which can be used as mapping strategies for
irregular distributions.

Run-time iteralion graphs can assist in improving load balance and access locality when dis-
tributing loop iterations across processors [PSC93a].

High-level library routines, such as CHAOS [DMS192, DHU'93], can assist in tasks like global-
to-local name space mappings, communication schedule generation, and schedule based commu-
nication. Such libraries are essential for keeping code complexity and programming difficulties
in reasonable limits, also for the compiler writer; our Fortran 77D implementation also generates
code that calls the CHAQOS library. However, since each application still has its own individual
communication requirements, the proper usage of such routines and preprocessing for generating
their arguments is still a non-trivial task one would rather leave to the compiler.

LPAR is a programming model for implementing numerical algorithms with a local structure,
such as Particle-in-Cell or Multigrid, on distributed memory MIMD multiprocessors [BK93]. Given
a data structure which already reflects the physical locality characteristics of the underlying prob-
lem, it distributes data and computation in a load balanced fashion.

To specify irregular mappings in a data-parallel context, index-based mapping arrays [WSBH91]
or mapping functions [CMZ92] have been proposed. For these, however, the programmer has
to provide such arrays or functions that explicitly map indices to processors, even though the
programmer may not be interested in what exactly these mappings look like.

Value-based distributions were initially proposed as an enhancement of Fortran 77D [Han92].
A variant of it, based on a GeoCol (Geometrical, Connectivity and/or Load) data structure, has
since then been implemented in a Fortran 90D prototype compiler by Ponnusamy et al. [PSC93a,
PSC*93b]. However, the GeoCoL structure still has to be managed explicitly by the programmer.

7 Summary and Conclusions

Data-parallel languages, such as HPF or Fortran D, promise a user-friendly, efficient programming
environment for parallel machines. However, one of their weaknesses so far has been the lack of
support for irregular problems. Here access patterns and work load distributions are not very
amenable to an index and iteration space oriented data-parallel paradigm.

We extended this paradigm by adding value-based enhancements to the already existing, so
far index-based data distribution and alignment mechanisms. We illustrated their use with two
typical irregular kernels and compared the performance of these kernels with index-based and value-
based distributions. We also compared a Fortran D version and a message passing version, i.e.,
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a program using run-time support explicitly as generated by the compiler (or written by hand),
of the same kernel. This gave an example for the added convenience provided by the proposed
language extensions.

A principal difference between index-based and value-based mapping strategies is the departure
from a model that derives data-to-processor mappings from static, sequential data-to-storage in-
formation (like an array index). Instead, we consider run-time values to derive the mappings. This
approach could also be used for data types other than arrays, for example for list structures in a
version of data-parallel C, or for distributing spatial data structures such as oct-trees commonly
used for N-body problems with very large N.

Another application of the value-based approach could be value-based inspectors. For example,
the pair list used in the NBF kernel is typically generated with a naive O(N?) algorithm, where
each atom is compared against every other atom, with correspondingly high computation, com-
munication, and storage requirements. If we know that each processor has atoms only within a
relatively small subdomain, we can restrict our attention to atoms that are either within or close
to this subdomain, thereby reducing the amount of non-local data that have to be buffered.

Value-based mappings provide a specific kind of expressiveness that had been missing so far;
they can give the compiler information that cannot be described in terms of array indices, and
they provide a convenient mechanism to specify irregular mappings. While this is only one aspect
of parallelizing irregular problems, we believe that it significantly widens the range of application
that can be implemented efliciently in data-parallel languages.
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