Dynamic Software Metrices

Erich Schikuta

CRPC-TR93361
November 1993

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

DYNAMIC SOFTWARE METRICES

Erich Schikutal

Center for Research on Parallel Computation
Rice University
P.O. Box 1892
Houston , TX 77251-1892

Abstract

In this papera dynamicapproachto measurehe coupling of softwaresystemss proposed-The
conventionally used static measuresare only limited suitable for the evaluation and
characterizatiorof suchsystemsWe extendthe static methodologywith a dynamiccomponent
anddefinenew measured®asedon this approach. A modelfor systemcharacterizatiotasedon
varying executionprofiles is given. The layout of an automatedmonitor systemis presented,
which can be directly integrated into a software development system.

1. Introduction

Measuredasedon modulecouplingto assesshe quality of softwareproductsarewidely usedin
the software design and developmentprocess.The term coupling defines the strength of
associationgstablishedy connectiondrom one softwaremoduleto another([Stevens74])In
the literature many different static approaches to measure the coupling degree of syftears
were proposed, as in [Myer76], [Yourdon79], [Card90], [Henry81], [Fenton90], etc.

In this paperwe presenta dynamicframeworkto measurehe couplingof softwaresystemsWe
introduce dynamic characteristics, program execution profiles and a program monitor system.

The measurementf characteristicof a software systemis similar to the task to assessor
measurehe rate or type of intelligenceof a humanbeingin psychology.Of course,the number
and complexity of the brain gyruses is correlated with the intelligence, but nobodycatuithte
theintelligencequotientout of thesefactors.ThelQ is calculatedoy the behaviorandreactionof
the brain. This measurements performedby a suite of standardizedtests with normalized
exercisego testgeneralor specializedabilities. Out of theseresultsthe ratefor the intelligence,
the intelligence quotient, is calculated.

A testin psychologicalsenseis a methodof acquiringa sampleof a person'sbehaviorunder
controlled conditions ([Walsh85]). This definition can easily be adaptedto fit to programsby
changing "person™ with "program”, "module”, "procedure”, €&stsareanimportantpartof the
assessmenprocess,but they do not define the process.Testscan only samplea portion or
segmentof the totality the capabilitiesand characteristicsbut we face the assumptiorthat the
observations we get from test have to be generalized to the overall behavior.

Authors permanentiddressErich Schikuta, Institute of Applied ComputerScience,Dept. of Data Engineering,University of Vienna,
Rathausstr. 19/4, A-1010, Vienna, Austria

2. Problemsof static measures

Measuresare usually defined as an assignmentof numbersto objects to describe certain
propertiesor attributes([Fenton90])andto compareobjectsto eachother. All conventionally
published measuremenbr comparisonmethods have the disadvantageto check the static
propertiesof the software systemsonly, e.g. numberof procedurecalls, numberand size of
input/outputvariablesetc. We are convincedthat the static (syntactical)situation of a software
programreflectsonly inaccuratethe situationof the dynamicbehaviorof the system like actual
numberandtype of procedurecalls, size of the actualtransferrednformationetc. Only dynamic
characteristics present us a real picture about the coupling in software system.

Static softwaremeasuresre obviously definedon code.A problemfor a generaland objective
approach in the measurement theory are the employment of different programming langghages
different programmingparadigmsthe personalstyle of the programmerthe projectregulations,

the underlyinghardware etc. This leadsto the situationthat programsare difficult to compare
objectively. We want to prove this statements by a few examples.

In [Henry81]with the analysisof the Unix programcodethe 'u’ modulein Unix wasexcludedof
the static measurementalculations,becauset didn't fit in the presented=AN-IN/FAN-OUT
method.It deliveredimpressivenumbersin the static analysis,but didn't reflect the program
characteristicxorrectly. Becauseof the specialtask of the u modulein the Unix system,to
providethe error handling,the couplingdegreewastremendouslin practicethis wasn'treflected
by the numberof error corrections(an externalattribute, see next section) performedon that
module,which wasusedto provethe presentedtatic measureThe executionprobability of this
modulewaslessthanthe probability of the othermodules.This fact is easilyrecognizablewith a
dynamicanalysisbutis very hardto find (after anexcessivdogical or semanticanalysisonly) by
static measures.

Static measuresre influencedby the written programcode. Thereforeratherintuitive rules for
staticevaluation(see[Conte86])are necessaryt-or examplecalculatingthe well known Halstead
[Halstead77)measuresariableshaveto be carefully excludefrom the countthatarenot usedin
the actual but defined for a future program execution. Thesevariablescan not be counted,
becausdhey do not affect the operationalcharacteristic®f the programor the difficulty of the
development.

Problemsarise also in analyzing programswritten in programminglanguageswhich support
extensivelythe useof addresseso referencevariablesor bettermemorylocations,like C andits
derivations . Staticanalysisfails in manycasedo determinewhich definedvariableis accessety
a addressactually. The analyzingprocessis desperatelymixed up with unknown and untyped
addressreferenceslinterestingly the sameproblem restricts (or prohibits) the use of C as a
languagefor the programmingof parallel computersystems.Parallelizing compilers can not
resolve dependencies in C progrdmsausef the unknownaddresseferencesThis leadsto the
useof FORTRAN asthe generallanguagefor theseapplicationtype, which usesstatic memory
allocation.

3. Dynamic approach

We recommenda dynamicapproachfor the measurementf the coupling of softwaresystems.
Thebehaviorhasto be analyzedduringthe executionof the programandout of the behaviorof a
number of characteristic values a metrics for the coupling degree can be derived.

Fentondefinesin [Fenton90]threebasicclassef entitiesof interestfor softwaremeasurement.
These classes are processes, products and resources. We adjlte theseclasses newclass
of dynamicbehavior.This is basedon the fact that all measuremeninethodsserveasa meanto
understand internal and external behavior of the software product.

External attributesare derived attributesof the module,which are dependenbn one or more
entities in addition to the module ([Fenton90]). Taigibuteform is alsoknownaspsychological
complexity measure([Melton90]) and quantifies reliability, understandability,maintainability,
estimatedproductioncosts, etc. Internal attributesare static attributesof the module without
dependenceao any other entity. They comprise the length, the syntactic correctness,the
modularity, the reuse, etc. of a module.

The aim of measurement theorytasderivea measurdor the internalattributeswhich accurately
describes external attributes.

The validation oftaticmeasuress a difficult. Only constructvalidity ([Kluwe91], [Sternberg82])
seems appropriate, where the measurement characteristics have beeprttizskasisof 'some’
theory. Dynamic measuregjive the possibility to recognizeinterpendencebetweeninternal and
external attributes which are not known or suspected in advance.

We proposethe useof dynamicmeasuregasdescribingattributes.Thesedynamicattributesgive,
in our opinion, a morerealistic picture of the actualmodulebehaviorandreflect purerthe effect
on the external attributes.

This leadsto the conclusionthat dynamic interconnectionslescribethe coupling in a system
betterthan their static counterparts Static interconnectionsare describedby the programming
codeonly, but dynamicinterconnectionsy the actualrun time behaviorof the code.Troy and
Zweben[Troy81] specify different metrics,which are derivablefrom the structureof a module,
and statethat all contributeto coupling. This statementis herebyextendedthat the dynamic
counts also describe the level of coupling.

The intuitive 2 axioms for coupling ([Fenton90]), which give an empirical reléiooonnectivity
of a module,haveto be extendedby additionalaxiomsdescribingdynamicconnectivity. These
can be formulated by the following 2 additional axioms:

Axiom 3

If anadditionaldynamic interconnections addedto a module,thanits level of couplingis
increased .

Axiom 4

If a moduleC is addedto a systemconsistingof 2 modulesA and B and the pairwise
dynamic coupling betweenA and C andB and C is the equalto the dynamic coupling
between A and B than the glolyhamic coupling doesn't change.

The dynamic axioms are basically the same as the original one, but exterehtiiegto dynamic
connections.

3

3.1. Standardization

Within the dynamicapproachmeasuregsannot be useddirectly. A problemof dynamicmeasures
is that they are heavily depend on the time dimension. Obviously if a tesbmgesthananother,
the valueswill be greater.Thereforethe calculatednumbersof dynamic measureaveto be
treatedasraw scores and mustbe adaptedaccordingly.The raw scoremustbe convertedinto a
measureof relative standingsn comparisorto a normativegroup. This leadsto definition of a
norm, which standardizeshe raw scorescorrespondinglyto a basisand gives the possibility to
comparethe standardizedcores A numberof possibilitiescanbe seento standardizecalculated
measures.

3.1.1. Ratio of the measureto the execution time

Becauseof the dependencef the measurevalueto the time dimension,it is the easiestvay to
build the ratio of the valueandthe executedesttime to get comparablenumbersWe call these
measures time-standardizeggnwhere

_m
ms_T

m is the measure and t is the executed test time.

This measurehasa limitation, if you analyzeprogramswith a strongl/O componentor which
accessharedresourcesTheseprogramsshow a long wait time, which is obviously influencing
the time-standardizedheasuresalue. This problemcanbe partially solvedif the systemallowsto
break down the execution times regarding to the process state.

Furtherit is not possibleto compareresultsof different systemarchitecturesThe numbersare
heavily influencedby the hardwareproperties(like processingoower, transferrate of the disk
system, etc.) or the system software (multitasking facility, swaping- or paging policy).

This leadsto the conclusionthat executiontime standardizeaneasuresre limited to a small set
of applicable situations, like comparing calculation intensive applications on a single machine only.

3.1.2. Ratio of the measureto the number of executed statements

A standardizatiorcan be achievedalso by dividing the measureby the number of executed
statements. The number of executed statemeantsvisuslydirectly correlatedwith the execution
time of the program.This approachis similar to the countingof lines of codewith many static
measuresProblemsarisewith the expressivgpower of different programminganguagesndthe
style of the programmer. So commonlire of codeis definedasanyline of programtext thatis
not a commentor blankline , regardles®f the numberof statement®r fragmentsof statements
on the line. This specifically include all lines containing program header, declarations,and
executable and non-executable statements ([Conte86]).

Dynamicmeasurementsavethe advantagehat they can usethe compiledform of the program
and are thereforefreed from specific programminglanguagefeatures.The personalstyle of the
programmelis kept and can be judgedby the analysis.The compiledline of code canthanbe
defined as the executablestatementof the object code. This numbergives a better basisfor
calculatingthe ratio thanthe sourcecode.We call a standardizatiofbasedon the executedines
lines-standardized and define it bygnwhere

m
ms:T

m is the measure and | is the number of executed lines of code.

A disadvantagean be the differencesof compilers,which (can) producedifferent codesfor the
same source program and different hardware (processor) architestucds;onstitutesdifferent
executablestatementformats. This problem can only be avoidedby comparingthe results of
modulesonly, which are compiledby the samecompiler, using the samecompiler optionsand
running on the same hardware type.

The ratio of measures$o executedstatemengivesa valid instrument,but is suitedto a certain
group of problems only.

3.1.3. Standardization according to the measure distribution

Distribution scoresexpresghe distanceof the individual scorefrom the meanof the distribution
of the measurevaluesof the group of observedprogramunits in standarddeviationunits. The
group can be defined by all proceduresof a module or all modules of program. This
standardizatiomprocedurds obviously only feasiblefor an acceptabldarge group. Which group
sizeis acceptables in the responsibilityof the analyzer but at leastcertainbasicstatisticalrules
have to be adhered (e.g. for the use of a statistical test).

Distribution scores can easily be calculated by z values, which are defined by
m-p
s

Z=

m is the measurej is the meanof the measurevaluesof the respectivegroup and s is the
standard deviation of this group

Furtherwe canproposea underlyingnormaldeviationand cannormalizethe standardscoreand
transformit to fit a normaldistribution. This solvesthe problemin comparingthe measuresalues
to different distributed samples (the shapes of the measure distribution is different)

This approachallows us to calculatea type of standardscoresimilar to "Stanines"([Walsh85]),
which canbe usedin the calculationof couplingnumbers(We could transformthe valuesto the
interval 0 to 1, instead of the original 1 to 9).

After thesegeneralkconsiderationsf calculatingcomparablelynamicmeasurevalues we wantto
give a group of actual values, which can be used in the dynamic analysis process.

3.2. M easur es

The dynamicmeasuregsanbe definedanalogougo the commonlyknown measuregoundin the
literature. A few examples are give by

« FAN-IN/FAN-OUT ([Henry81))
+ length of the information stream (see Henry-Kafura metric [Henry81]
« storage locations references
« calls by name (binding of names to different (and changing) storage areas)
« calls by reference (references to variables outside the procedure storage area)

5

» calls by value (copying of values to the procedure stack)
... (and many more)

3.2.1. Dynamic measuresfor theinterconnection between modules

We give two dynamic measuredor the coupling of modules.The first is basedon the FAN-

IN/FAN-OUT measureof Henry and Kafura ([Henry81]), the secondon the pairwise coupling
measureM of Fenton([Fenton90]).To expressthe standardizationywe use the transformation
function t(m). It is necessarily in this context not decided, which standardization is applied.

The presented approach is easily extendible to all dynamic measures.

3.2.1.1. Dynamic FAN-IN/ FAN-OUT

Henry and Kafura defined in [Henry81] the fan-in of a modukesthe numberof local flows into
module A plus the number of data structuresfrom which module A retrievesinformation.
Consequentlyhe fan-outof a moduleA is definedby the numberof local flows from module A

plus the numberof datastructureswhich module A updates.The measurefor the coupling is
described by a family of formulas as

fan-in * fan-out
(fan-in * fan-out)?
S * (fan-in * fan-out)?,
where S is the size of the module
According to the given definitions we can define a dynamic fan-in and dynamic fan-out.

The dynamic fan-in (fan-'tqyn) is the number of memory location references which are read by the
module during its execution.

The dynamicfan-out(fan-oubyn) is the numberof memorylocationreferencesvhich arewritten
by the module during its execution.

We can now easily define a family of dynamic FAN-IN/FAN-QH,}] formulas as follows,
t(fan-ingyn * fan-outgyn)
t((fan-ingyn * fan-ougyn)?)
t(S * (fan-ingyn * fan-ougyn)?)
wheret is the standardizatiortransformationand S is the size of the executablecode of the
module.

3.2.1.2. Dynamic pairwise coupling measur e of Fenton

In [Fenton90]a measureM(x, y) for the pairwisecouplingof modulesx andy is defined,which
basedon the rank of the maximum coupling type. These coupling types are defined by six
different classes of coupling, which are given by the following table

empirical type descriptionof interconnectionof module
order Xtoy

0 no coupling totally independent

1 data coupling | x and y communicate via parameters

6

2 stamp coupling | x andy acceptthe samerecordtype as
parameter
3 control coupling x passes control parameter to y
common x refers to the same global data as y
coupling
5 content x refers to the inside of y
coupling

A naturalorderis definedon the typesof the coupling,i.e. whenM(a, b) = 4 andM(b. c) = 3,
then M(A, b) > M(b, c). For a more information see [Fenton90].

The static measure M(X, y) for the coupling of 2 modules x and y is given by the formula
. N
M(X,y)=1+——
(x.y) n+1

wherei is the greatestouplingtype of x andy (e.g.i = 4 if x andy showcommoncoupling)and
n is the count of static interconnections between x and y.

This measureaneasilydynamizedy usingthe actualdynamicinterconnectiortype idyn andthe
dynamicinterconnectiongou NtNgyn, i.e. the dynamicreference®f the specifictype, asa count
for n. We haveto consider(similar to the dynamicFAN-IN/FAN-OUT) the standardizatiorof
Ndyn by a function t(ndyn). The new dynamicmeasurefor the coupling can be definedby the
formula

t (ndyn)

My, (X, Y) Sy, +—2
dyn(y) dyi t (ndyn +1)

Both FAN-IN/FAN-OUTdyn andthe M dyn coefficientpreservethe propertiesof a valid measure
accordingto [Melton90], wherethe propertiesof relationsare usedto describeorderings.These
propertiesarereflexivity, antisymmetryandtransitivity and canbe definedby a givensetS anda
relation R on S, where R is

« reflective if (x, X)O S;
« antisymmetric if, whenever (x, Yy R and (y, XJ R, X =y;
« transitive if, whenever (x,) R and (y, z)J R, (X, zZ)UR
These definitions are used to describe orderings, where given a set S and a relation R on S
« Ris apreorder and (S, R) is a preordered set if R is reflexive and transitive;

« Risapartialorderand(S, R) is a partially orderedsetif R is reflexive, antisymmetricand
transitive;

« Rislinearor atotal orderand(S, R) alinearly or totally orderedsetif R is a partial order
and if, for each pair of elements x and y in S, either (X] R or (y, X)[R.

For more information and adjoining examples see [Melton90].

Obviouslythe FAN-IN/FAN-OUTdyn andeyn measureshowthe samepropertyasthe original
measures and are preorders.

4. Testenvironment

4.1. Program execution profile

Basically two different types of program execution profiles can be distinguished,
- artificial profile and
« reality profile

An artificial profile reflects a test environment,which observesthe characteristicsand the
behaviorof the modulein specializeccaseswhich are designedoy the analysisprocessThis are
situationswherea comprehensivéestis doneto checkthe overall functionality of the system.It

alsocoversexceptionalcaseswhich are encounteredy the modulesonly occasionallyor never
during the conventionalexecutioncycle. Thesecan be errors, peakloador overloadsituations.
Artificial profiles are normally a by-product of the software developmentprocessfor the
validation of the product, like module test, function test, etc.

Thereality profile simulatesthe practicalusageof the systemandis determinedby the expected
actionsof the userandthe forecastedsystemload numbersin otherwords, it reflectsthe actual
situation in which the program is normally executed.

This an analogy to intelligence tests for general or specializedabilities in the psychology

([walsh85]).

For software systemstwo additional factors seemappropriateto examine,programload and
locality. The programload is describedoy the numberof executedand completedorogramtasks
pertime unit. Programlocality depictsthe focusof the programexecutionto singlemodules.For
examplewith ancommercialaccountingsystemthe programloadis reflectedby the workload of

the system(numberof booking entries)andthe locality by the systemtasks(enteringof entries,
balancing of books, etc.).

4.2. Monitor system

To determinghe systemcharacteristica specialmonitor programhasto be establishegimilar to
the systemsknown from systemprofiling or debugging.This monitor program runs virtually
parallel to the software system, supervisesthe behavior during executionand calculatesthe
characteristicsat definedtime intervals. Thereforeit is possibleto get different characteristics
views for varied execution profiles, given by program locality or workload.

The following figure pictures the described framework.

P1
Program
Execution|p2+——

Profile
sl

Program
Program @ Execution
Monitor

&

Output

Dynamic measurement framework

P1 to P3 denotesdifferent execution profiles and C1 to C3 different dynamic program
characteristics.

This monitoring processshould be part of the developingenvironmenttoo. This allows an
incrementakheckof the interestingmeasuresiuring the developmenprocessThe designof the
modulescanbe checkedstepby stepandarisingproblemscanbe detectedoy the measures an
early stage.This guaranteesn efficient and controlleddevelopmenprocess By the automatic
employmenbf this incrementakupervisingsystema high level of objectivity canbe reachedThe
commonproblemof the subjectiveandthereforeoften inefficient self-controlof the programmer
is diminished and also the costly expense of a 'third' objective controller is solved.

It can be concludedeasily that by the integrationof an automatedmonitoring systeminto the
software development environment the arising development costs can be decreased substantially.

5. Summary and Conclusion

We gave a model for a dynamicapproachto measurethe coupling of softwaresystems.The
conventionalsedmeasuremergystemsarestaticorientedandgive only measure$or syntactical
programanalysis.This leadsto inaccurateresults,which reflect the dynamic softwarebehavior
only incompletely. With our dynamic approachwe calculatedynamic measuresiependenion
varying executionprofiles. This is performedby a monitor system,which can be integratedinto
the development system.

We think thatdynamicmeasureountshavenot to standalone,but haveto be seentogethemwith
their static counterpartr other measuresBut we are convincedthat only with the dynamic
component an overall view of the programming module in question can be given.

An additionaladvantageof dynamic measuress their capability to evaluatethe reliability of a
programmingsystem,which describesthe systemsbehaviordependenion a time factor (e.g.

9

Mean Time Between Failure) or a worklo@dg.threshingoehaviordependenon the workload).
A discussion of this approach is beyond the scope of this paper and a topic for further research.

6. Acknowledgment

I would like to thankthe CRPCandits researcher$or providing a stimulatingand supportive
atmosphere that contributed to this work.

This research was in part supported by the grant J0742-PHY of the Austrian FWF.

7. References

[Card90] Card, D.N. Measuring software design quality, Prentice Hall, 1990

[Conte86] Conte S.D., Dunsmore H.E., Shen V.%oftware engineering metrics and models,
Benjamin/Cummings Publ., 1986

[Fenton90] Fenton N., Melton A., "Deriving structurally based software measuleshal of
Systems and Software, 12, pp. 177-187, 1990

[Halstead77]Halstead M.H.Elements of software science, Elsevier, 1977

[Henry81] Henry S., Kafura D., "Software structure metrics based on information fl&&E
Transactions on Software Engineering, 7, 5, pp. 510-518, 1981

[Kluwe9l] Kluwe R.H., Misiak C., Haider H., "The control of complex systems and
performance in intelligence tests"”, In H.A.H. Rowe (Elhiglligence:
Reconceptualization and Measurement, Lawrence Erlbaum Ass., 1991

[Melton90] Melton A.C., Gustafson D.A., Bieman J.M., Baker A.L., "A mathematical
perspective for software measures reseaf&lft\vare Engineering Journal, pp.
246-254, Sept. 1990

[Myer76] Myers G.,Composite/Structured Design, Van Nostrand Reinhold Company, 1976

[Sternberg82%ternberg R., "Reasoning, problem solving, and intelligence”, In R.J. Sternberg
(Ed.) Handbook of Human Intelligence, Cambridge University Press, 1982

[Stevens74] Stevens W.P., Myers G.J., Connstantine L.L., "Structured DesBd"Systems
Journal, 2, 1974

[Troy81] Troy D.A., Zweben S.H., "Measuring the quality of structured desilgnitnal of
Systems and Software 2, 113-120, 1981

[Walsh85] Walsh W.B., Betz N.ETest and Assessment, Prentice Hall, 1985
[Yourdon79] Yourdon E., Constantine L.LSructured Design, Prentice Hall, 1979

10

