The Logical Protocol Unit:
Towards and Optimal
Communication Protocol

Erich Schikuta

CRPC-TR93360
November 1993

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

THE LoGICAL PROTOCOL UNIT: TOWARDSAN OPTIMAL COMMUNICATION
PROTOCOL

Erich Schikuta

Center for Research on Parallel Computation
Rice University
P.O. Box 1892
Houston , TX 77251-1892

Abstract

The performanceof large softwaresystemsbasedon a server-slavearchitecturedependseavily
on the design of the interprocesscommunication (IPC) protocol. In this paper different
approachesf the logical structureof the protocol of the IPC communicatiorare proposedand
analyzed.

Theterm of alogical protocolunit (LPU) is defined.All basicactionsof the softwaresystemare
logically groupedinto unitsandtransferredointly via the interprocesg€ommunicatiorfacilities of
the underlying operating system.

An algorithm is given for the calculation of specific LPUs.

It is shownthat the total performanceof the whole systemis affecteddramaticallyby different
logical protocol structures;increasedoy larger logical protocol units and decreasedy smaller
one.

This result is applicableto all types of IPC basedsystems,as beneathall large industrial
applications. It was tested and analyzed with an existing relational data base system.

Pr ocesses and communication

Large software applicationsin the industry consist mainly of several processeswhich run
timesliced (virtually parallel) on a hardware syst@milcommunicatevia theinterprocessacilities
[Roch85] of the underlying operatingsystem.This designis demandedby the conventional
server-slavarchitectureof centralizedsoftwaresystems.The slave processesre applications
which representhe interfaceto usersor other programs.In the following theseprogramsare
called “user processes’.

The centralserverkeepsup the connectiorwith the userprocesseandis actuallyperformingthe
work of the system(e.g. databas@accesssystemcontrol, ...). Thereforea very time consuming
part of the servertaskis the exchangingof informationwith the userprocessesTo partition a
large programinto smallerprocesse$fiasthe advantageof smallerprogramsizes(smaller main
memory requirements), higher performance by workload sharing, logical structuring of tasks, etc..

It is obviousthatthe efficiency andthe usageof the interprocesgacilities is of heavyimportance
for the performancef the whole system.The efficiencyis dependenbn the operatingsystembut

Authors permanentiddressErich Schikuta, Institute of Applied ComputerScience,Dept. of Data Engineering,University of Vienna,
Rathausstr. 19/4, A-1010, Vienna, Austria

the way of the usageof the IPC facilities is defined by the software system (and therefore
tunable).

Thelogical protocol unit

For thefollowing discussiorof the problemthe term of a logical protocolunit (LPU) is defined.
This s a collectionof information(operationsanddata)transferredointly by the IPC facilities. It
can be seenas an atomic transactionchangingthe state of the systemfrom one synchronized
situationto another.Synchronizedneansthat the communicatingorocessesanreactto arising
exception situations of the system sensibly.

Atomicity

Atomicity in our senseof protocolunitsis similar to the definition of anatomicactionusedin the
areaof transactionprocessingn databasesystemslt is a sequencef actionswhich eitherare
performed in entirety or are not performed at all ([Ceri84]).

An action in the context of transactionprocessingis basically a read or write action of the
database system ([Voss91)).

An action in our terminology can be any information transferred between processes.

Trigger and information actions

We distinguishbetweentrigger and information actions.A trigger action forcesthe systemto
transferthe stateof the systemto a new state.An informationactiondeliversthe datanecessary
for the transition between states. Informally we can speak of operations and data.

An exampleis the insertion of an employeedatarecordinto a databasesystem. The system
consistsof a numberof user processeswhich provide the user interface,and a centralized
databaseserver. The insertion transactionconsistsof the information action, which is the
transport of the employees information, as employee-number, name, department-number, etc., and
the trigger action, which executes the insertion of the record.

Thessituationis differentto the conventionaldatabaséransactionwherenormally morethanone
action (usually the number of actiost®redin the transactiortable)hasto berolled backto react
to an exception. This 'reaction' is generally a recovery, which can be triggeaeséyequesor
is automatically triggered by a special system state, like a system crash.

Thelengthof atransactioratomis definedby the placemenbf a BOT (beginof transactionand
an EOT (end of transaction). This information is provided by the user program.

For an LPU this situationis not comprehensivenough becausavith a protocolunit nothingis
saidaboutthe actuallengthof the unit sequenced,e. the numberof actions.The maximalnumber
of actionsan LPU is restrictedby the constraintthat the systemcan reactto any exception
situationwith a a single (andobviouslyfinal) recoveryaction.On the other handthe systemhas
not to rollback a number of LPUs to reach a consistent state of the system again.

2 Generally we use databasesystem transactionsas examples,which correspondsto the
succeeding heuristic analysis.

Definition of an LPU

Hence follows the definition of an LPU (slightly different to the definition of a database
transaction).

Definition:
A Logical Protocol Unit(LPU) is a (finite) sequencq a.. &, of basic actionsvhich either
are performed in entirety or are not perforna¢dll andwherethe userprogramcanreact
to an exception situation with a single recovery action.

With the precedinginsertionexamplethe whole transactionis an LPU. One possibleexception
can be a doubledemployee-numbelThe serverrejectsthe insertion and the user processcan
request a new number for the employee record. Another, not so olexcaptioncanbetheuse
of awrongdatatype, a characteinput for the department-numbédmwe supposeno userinterface
check). This could be checkedduring the evaluationof the data provided by the information
action and the user could be informed. In the contextof an LPU the last possibleexception
handling with a single recoveryis the rejection of the insertion after the trigger action (the
insertion request).

Computation of all LPUs

The computationof all possibleLPUs can generatea ratherlarge numberof action sequences.
Because of this we define an algorithm, which performs this task systematically.

First we determineall trigger actionsT = t1 .. tn. Thenwe haveto categorizeall information
actions | =4 ... ijyinto groups G = g... q, where k< m and

for all ij, ij U gj

gjn ok =0, if] 2Kk,
gj# U,

ngII

Thesegroupscontain all actions,which cover similar information providing functions (in our
examplethe insertiondataproviding group). Thenwe haveto mapthe groupsG to their possible
trigger actionsT. A group canbe mappedto more thanone trigger action. Finally the possible
LPUsaredescribedyy all possiblesequencesf elementsf groupsmappedo the severaltrigger
actions.

Formally the algorithm can be expressed by the following:

Algorithm

algorithm createLPU

determine all trigger actions T =1tq ... t,
group all information actions in groups G = g1 ... gj
foreachtOT

find all g O G which belong to t -> G;
an LPU is defined by the sequence [iJt with i [J Gt3

Example
Lets considerthe (ratherartificial) insertionexample.T is definedby the insertionaction
IA. Therecorddatais transferredvia an attributeaction AA. Thereforeonly one group
exists.Obviously AA is mappedto IA. The LPU is thereforecalculatedby all possible
sequence®f attribute actionsand a final insertiontrigger. This is the sameresult we
determined informally above.

With the following heuristic analysis a comprehensive example is presented.

The physical protocol unit (with respect to L PUs)

With the realizationof the protocol and the knowledgeaboutthe LPU the size of the message
unit (the unit which sentvia the IPC facilities) is of importance A conventionalapproachwould
send each action by one message unit.

The conceptof an LPU canbe usedfor developingmore efficient method.The systemcanreact
to anexceptionwithin anLPU in similar way asto the exceptionwithin a normalaction. So we

canexpandthe normalmessageinit to hold a group of actions.We call a physicallytransferred
message unit with respect to the LPUshgsical protocol uni(PPU).

Definition:
A physicalprotocol unit (PPU)is the unit of information, which is transferredbetween
communicating processes via the IPC facilities of the underlying operating system.

With the designof a suitable (and hopefully optimal) communicationprotocol we have to
determine the optimal length of a PPU.

Optimalin our contextis definedby the highestpracticalthroughputof the system.Thereforewe
state the following theorem.
Theorem:

The optimal PPU is defined by the PPU which can accommodate the longest LPU.

This theoremis informal supportedby the commonrule of thumb, which can be found in the
literature and which say: "few larger units outperform many small units" [Roch85].

3 We usethe commonlyknown grammamotation.Actions containedn squarebrackets[' and ']
must be applied at least once.

We will prove this theorem heuristicallWe implementedorotocolswith differentPPUlengthfor
an existing databasesystem(the Grid File databasesystem,GFDBS) and measuredhe overall
throughput of the system.

Heuristic analysis

The GFDBS:is a specializedelationaldatabasesystemwhich wasdevelopediuring the last few
year at our researchinstitute ([Schi90]). The internal structureof the GFDBS is the Grid File
([Niev84]), a dynamic multi-dimensionaldata structure,which is extremely suitableto store
complexobjectsandto supportrangequeries.Becauseof the propertiesof the Grid File we are
now developing a parallel version of the GFDBS, the PARGRID data base system ([Schi91]).

The GFDBS consistsof a databaseserverprocessand severalapplication processegSQL-,

QBE-, user-processespmmunicatingoy messagegueuesAll userprogramsarecommunicating
with the serverprocessvia the IPC facilities by a fixed set of data baseservercommands
(creation, deletion of a file, input, outpupdate guery,etc.).All datarecords(inputandoutput)

are transferred via the IPC-facilities, too.

Overview of theinternal GFDBS commands
The following commands are available to the user programs:

Communication with the server:
GFDBSInit: starting the communication with the server
GFDBSQUuit: stopping the communication with the server

Creation and Deletion of tables
GFInitCreate: start of creation of a new data base or a new table
ADefShort/Long/Float/String: definition of an attribute
GFCreate: creation of a new table
GFDelete: deletion of a table

Manipulation of tables
GFOpen/GFClose: opening or closing of existing tables
TInit: initialization of a new tuple
APutShort/Long/Float/String: initialization of attributes with a value
TInsert/TUpdate/TDelete: insertion, update and deletion of a tuple
TQuery/TNext: query of a table
AGetShort/Long/Float/String: retrieving attribute values

Computation of the LPUsfor the GFDBS

During the normal work with the GFDBS server a sequehtiee commandsuildsa logical unit
of executionfor the server.Normally eachcommandfor itself is sentto the server,but now we

5

can determine the LPUs the servercommandsndcansendthemvia the PPUsof the protocol.
In the following examples of typical LPUs (the creation of a table, query of a table) are described.

In the following we concentrateon the creationandthe query of a GFDBS table only. Further
database transactions can be handled in a similar manner.

According to the given algorithm 'createLPU" we first determine all trigger actions. We find

GFInitCreate (exception: table exists)
GFCreate (exception: attribute exists)
TInit (exception: table unknown)
TQuery (exception: attribute unknown)

The possible exceptions to the trigger actiongyarenin brackets Theseexceptionsvould force
the server process to terminate the activity and recover, and the user process to react accordingly.

Creation of atable
The creation of a table consists of 3 actions: start, attribute definition and creation.

GFInitCreate (start of the creation process)
ADef* (a sequence of attribute definitions)

GFCreate (creation of the table)

The'ADef* actionsaregroupedtogetherto an attributeinformationgroup. The mappingof the
groups (in this case only one) reveals 2 LPU sequences.

« GFInitCreates sentasan LPU to the server.This is in accordanceavith the definition of an
LPU, becausehe userprocesshasto havethe possibility to reactto an exception like the
situation that the table already exists.

« The ADef* commands represent the information actions. The GFCreate command represent
the trigger action. The user program can react to an exception of the ADef*, like the
erroneous specification of equal attribute names.

The creation of a table is therefore split into 2 LPUs.

Query of atable

The query of a table consistsof 3 actions either: start, definition of the query restrictions,
execution.

TInit (start of the query definition)
APut* (definition of the restrictions)
TQuery (start of the query)

This case is handled in a similar way as the table creation.

« TInitis one LPU. A possible exception could be that the Grid File is unknown.
6

« The APut* commandgepresenthe informationactionsagain. TQueryis the trigger actions,
which concludeghe LPU. In the caseof an exception(attributenot available,etc.) the user
program is informed and can react with only one action.

The query transaction is split into 2 LPUs.

The samecalculationsin similar mannerhaveto be donefor the insertion,update,deletionand
retrieving transactions of tuples.

Performance Evaluation of different PPU lengths

For the evaluationof different PPU lengthsa standardizegerformancetest suite was created
(Watz90]). A mix of frequentlyuseddatabasetransactionsvas built and the transactiontimes
recorded. The following data base transactions were checked:

. creation of a table
. insertion of tuples
. range-queries

. point-queries

The sizeof the PPU sequencénumberof blockedcommands)vasvaried. The following charts
show the performanceof the systemfor different PPU sizes (block sizes). The performance
behavior is shown by two characteristics:

. the number of sent message blocks
. the consumed time

Basisof measuravasthe sizeof the largestbasicaction. This is representeth the figuresby the
PPUsizeof 1. Theideais thatin the conventionalkcaseat least1 basicactioncanbe transferred
with onemessageinit. So all valueswhich aresmallerthanthe valuefor sizel (the conventional
situation) represent an improvement achieved by the LPU concept.

All testrunswere performedfor 50 Grid Fileswith 2 to 10 attributes.In the following only the
meanvaluesfor 7 attribute Grid Files are shown. This representdhe averagefile sizein our
application profile. With increasing number of attributes the results show that the sizéBUthe
obtain obviously stronger influence on the performance of the system.

number of
transferred
messages

1
point
rangequery

insertioger
25 creation Buery

2
size of PPU 10

Whenthe sizeof the PPU s big enoughto hold an LPU completely,no more performancegain
canbe achievedby anincreaseof the PPUsize (seerangeandpoint queriesfor PPUsize 10 and
25). Thereforewe canconcludethat we havealwaysto find the largestpossibleLPU (the LPU
with the longest action sequence) in our system and implement PPUs, which can hold this LPU.

The next figure gives us the amount of time consumed for the same test suit.

seconds

point
rangequery

insertiogyer
25 creation Buery

The last figure showsthe overall sum (creation+ insertion+ rangequery + point query) of the

consumedime, which indicatesthat the throughputof the whole systemwas doubledby the
introduction of LPUs.

seconds 10 +

o N S o
1 1 1 1

1 2 10 25
size of PPU

This figure showsapparentlythe improvementof the communicationthroughputof the LPU
concept(time for PPUsize10) to the conventionaimethodof basicactionsending(time for PPU
size 1).

It confirms the above statedpropertytoo. Beyond a given PPU size no further performance
increasecanbe achievedtime for PPUsize25). In contrary,it canleadto a decreasdecausef
the systems overhead for very large message blocks.

Results

The results of the tests can be summarized shortly:

« LPUsincreasdhe performanceof the systemdramatically(with the databasesystemthe
performance was doubled).

« PPU should be large enough to hold an LPU completely.

« To large PPU give no further performance improveniardontrarythey candecreas¢he
systems throughput.

With realizationof LPUs for the IPC protocol of messagepassingsystems,longest possible
sequences for LPUs have to be establishedophmalsizeof an PPUcanonly be decidedby an
exhaustiveheuristic analysis.The LPU conceptprovidesthe appropriatetool for the aim to
increase the performance of an IPC based system.

Acknowledgment

Many researchergand studentsmade contributionsto the GFDBS-project.On this occasionl
want to thank Harald Watzerfor the implementationand evaluationof the new LPU-message
passingorotocol.My specialthanksgoesto the CRPCfor providing a stimulatingandsupportive
atmosphere that contributed to this work.

This research was in part supported by the grant J0742-PHY of the Austrian FWF.

References

[Ceri84]
Ceri S., Pelagatti GDistributed databases, Principles & SysteisGraw-Hill 1984

[Nievg4]
J. Nievergelt, H. Hinterberger, K.C. Sevcikje Grid File: a data structure for relational
data base system8CM Trans. Database Systems, 9, 1, 38-71, (1984)

[Roch85]
Rochkind M.,Advanced UNIX Programmingrentice-Hall 1985

[Schi9O]
Schikuta E.The Grid File Data Base SysteRroc. 10th SCCC International Conference
on Comp. Science, Santiago de Chile, Chile, 1990

[Schi91]
Schikuta E.A Grid File Based Highly Parallel Relational Data Base Systerac. 4th
ISMM Int. Conference Parallel and Distributed Computing and System, Washington, D.C.,
USA, 1991

[Vossen91]
Vossen G.DataModels, Database Languages and Database Management Systems
Addison Wesley, 1991

[Watz90]
Watzer H. Ein Hochleistungs-Message Passing System fur das GHD&Ser thesis,
Univ. of Vienna, 1990, in German

10

