The DYPAC System: A Dynamic
Processor Allocation and
Communication System for
Distributed Memory Architectures

Erich Schikuta

CRPC-TR93359
November 1993

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

THEDYPAC sYSTEM: A DYNAMIC PROCESSOR ALLOCATION AND
COMMUNICATION SYSTEM FOR DISTRIBUTED MEMORY ARCHITECTURES

Erich Schikutal

Center for Research on Parallel Computation
Rice University
P.O. Box 1892
Houston , TX 77251-1892

Abstract

In this reporta DYnamic Processoillocation and Communicationsystem(DYPAC system)is
presentedwhich establishesa programmingmodel for the developmentof parallel programs
independently of the underlying parallel system architecture.

The DYPAC systemprovidesfunctionsfor the creation,deletionandadministrationof processes
and the installation of communication lines between them.

Aim of the projectwasto createa programmingtool for the developmenbf parallel software
systemswith a high degreeof portability. This wasreachedy a high level functionalframework,
which is independent of the underlying operating system and the physical hardware architecture.

1. Introduction

Messagepassingis the commonlyusedmethodfor information sharingof parallelprocessesn

distributedmemorymachinesin practiceit hasprovento be effective,easyto understandndto

implement.The problemof portability ariseswith the developmenbf parallel softwaresystems,
becauseof the variety of the available parallel hardwarearchitecturesand the accompanying
systemsoftware.The frameworksof the proprietarymessaggassingpackagesf the different

parallel hardwarearchitecureddiffer considerably.A numberof packagesexist (e.g. Express
[Parasoft90],PVM [Dongarra91][Sunderam90Fipcode [Skjellum92] or the MPI initiative

[MPIF93]), which try to provide a common platform for different architectusasgenerallythey

lack in availability, concisenessand simplicity. A quite comprehensivesurvey of parallel

programming tools can be found in [Cheng93].

In this paper a dynamic processorallocation and communicationsystem is proposed. It

overcomesthe mentioned problems and supplies a concise, simple and general process
administrationand datacommunicatiornpackagefor the developmenbf highly portableparallel
software systems.

2. Characteristicsof the DYPAC system

The main difference of the DYPAC system to existing packages is that the physhitdctureof
the underlying hardwarearchitectureis totally hiddenfrom the programdevelopmentfprocess.

1 Authors permanentiddressErich Schikuta, Institute of Applied ComputerScience,Dept. of Data Engineering,University of Vienna,
Rathausstr. 19/4, A-1010, Vienna, Austria

The developers supposedo know nothingaboutthe characteristicgcapabilitiesor deficiencies)
of the physical system.This paradigmguaranteesa unrestrictedportability of the developed
softwaresystem For instancethe actualnumberof availableprocessorss not known during the
developing process.

The DYPAC-system provides a standardizedprocesshandling interface, which is basically
oriented on the widely used interprocess communic@@mkageof the UNIX systemlt contains
functions for

« process handling,
« process communication,
« process information and
+ system administration.
(See the Appendix for a listing of the available functions.)

The procesamodelof the DYPAC systemis dynamic,which meansthat during the executionof
processesiew processesand communicationlines are establisheddynamically. This leadsto a
hierarchicalexecutionmodelin the sensehata new processa "child" processjs alwayscreated
by a unique"father" processin everysystema "root" processexists,which is the origin of all
further createdparallel processesProcessesan be createdand destroyed Each processhasa
unique identification, which is passedto its father processduring the creation process.The
DYPAC system allocates available physical processors of the underlying system as needed.

&)

//\\
©® ©

/\
® ©

Figure 1: hierarchical execution model

In the abovefigure A denotesthe root processwith its childrenB, C, D andE. FurtherD is
father to 2 additional processes F and G.

Informationis synchronouslyor asynchronouslypassedvia messagebetweenprocesseswhich
are distinguishedby the unique processidentifier. Synchronousmeansin the context of the
DYPAC system that a process is blocked until the arrival of the messigeadtressegrocess.
By this blocking mechanisnthe synchronizatiorof processess achieved Eachcall to a message
handling function returns a unique messagedentifier. These identifiers can be usedto get
information about the status of pending communication operations.

Child processexan query the processidentifiers of their father process.By this recursively
applied operationprocessesan get information about the processstructureof the software
system. This information can be used to establish arbitrary communication lines.

The DYPAC system guaranteesa high degreein portability. A parallel software system
developedwith the DYPAC systemcan be transferredrom one physicalsystemarchitectureto
anotherwithout changeof the sourcecodeand/or(moreimportant)the programmingparadigm.
The DYPAC-systemhas to be adaptedand implementedon the specific systemonce. The
software developer is provided with a general and simple process administration and
communication model and uses always the same programming paradigm. Therefore the
developmenbf parallelprogramss simplified dramaticallyandthe arisingdevelopmentime and
costs are reduced. It is possible to port the developed software system not only to parallel but also
to sequentiabystem(like a conventionalUNIX system)without a change Theimplementatiorof
the DYPAC-systemon a one-processosystemsequentiatethe processe®n a single processor
using the multitasking capabilities of the underlying operating system.

3. TheDYPAC system structure

The DYPAC-systemconsistsof the RES/REI(n.) modules,the requestexecutingserver(RES)
andthe requestexpressioningnterface(REI). The following figure illustratesthe situationof a
software system running on different hardware architectures:

parallel
program

single processor hypercube
system e N system

Figure 2: DYPAC structure

The RES builds the interface of the DYPAC systemto the underlying physical hardware
architectureand the REI providesthe proceduralinterfaceto the software system.With the

implementatiorof the DYPAC systemon different hardwarearchitecturespnly the RES hasto

be adapted.The REI doesn'tchangeand guaranteeshe unrestrictedportability of the software
system to different computing platforms.

The RES is a serverprocessrunning on a single (dedicated,but not fixed) processorof the
underlyinghardwareof the parallel systemand handlesthe requestof the REI. It hasto fulfill
two different tasks:

3

- the handling of the processesand the administrationof the physical processorsf the
underlying hardware system

+ the installation of communication lines between processes running on different processors

3.1. Administration of the physical processors

The processoallocationserveradministrateshe physicalprocessorsf the underlyinghardware.
The serverconcentrateshe requestof the REI andallocatesprocessorsasrequestedTo fulfill
this taskit choosesappropriateprocessor®f the hardwareregardingto the actualstateof the
underlying system. This is done by a scheduling algorithm, in that sense that

- the workloadis equally spread(all running processe®f a processorare accountedand
profiled)

« the capabilitiesof a single processof(like type of the processoravailablemathematical
coprocessorgonnectedlisk node,etc.) are exploitedto increasehe performanceof the
softwaresystem.Furtherthe requestf the REI for specialprocessorcharacteristicare
accomplished.

+ the processesre distributedarbitrarily, if none of the conditions mentionedaboveis
applicable.

The processesre allocatedto processordy usingthe functionality of the underlyingoperating
system.If the systemsoftware of the hardwarearchitecturesupportsmultitasking (e.g. Intel
IPSC/2), more than one processcan be assignedo a processorlf it doesn'thas multitasking
capabilities(e.g. Intel IPSC/860),eachprocessis uniquely assignedo a single processor Al
implementatiorspecificinherentpropertiesof the RES are totally hiddenfrom the programmer
and the developedprogram. The DYPAC-systemtries to guaranteesan evenly distributed
workload and tries to maximize the throughput of the system.

3.2. Installation of communication lines

The interprocesscommunicationinterface of the REI is basically similar to the well know
standardizec&ommunicationprotocol of UNIX systemsRochkind85].Eachcall to a message
communicatiorfunction returnsa unique messagedentifier. Thesemessageadentifiers allow to
checkthe statusof pendingtransfers.t is also possibleto emulatesignalswith this construct.
This provides the possibility to synchronize parallel processes.

One important fact is that the DYPAC systemusesthe available communicationand data
transportatiorfacilities of the underlyingoperatingsystem.In the existing implementationghe
DYPAC system(if possible)doesn'performany physicaldatatransferitself. It administrategand
usesthe capabilitiesof the processcommunicationpackageof the underlying systemsoftware
only.

Sometimes,for special communication methods, like synchronousdata transfer, a certain
communicatioroverheads not avoidable This is basedon the fact thatthe synchronousnessage
transfer (in the definition of the DYPAC system) has to guarantee the arrival of the meskage at
addressed process and not only the successful initiation of the sending process. If this functionality
is not directly supportedby the underlying systemfacilities (like e.g. in the Intel hypercube
systems), it is established via a logical handshake protocol to emulate the requested functionality.

This approachs a warrantthatthe performanceof the softwaresystemis only affectedminimally
by the usage of the DYPAC system.

The following communication facilities are supported,
« synchronous message passing,
« asynchronous message passing,
« point to point communication and

« any point communication (broadcasting of messages to a group of processes).

4. Practical examples

The following sectiongives 2 practical exampleswhich fitted well to the hierarchicalprocess
structureunderlyingthe DYPAC system.The first exampledescribeghe implementatiorof the
communicationstructurein a multiuser databasesystemand the secondthe inherently parallel
evaluation process of a database query.

4.1. The GFDBS system

The DYPAC-systemwas usedfor an early port of the Grid File DatabaseSystem,the GFDBS
[Schikuta91], to arnntel IPSC/2hypercubesystem.The GFDBSis a specializedlatabasesystem
[Date86],which supportsGridfiles [Nievergelt84]asinternaldatastructure.The original GFDBS
was implementedon a one-processorUNIX based,workstation. The GFDBS consists of
different interactingprocesseslike a databaseserver(the GFDBS server),different interface
server(SQL/QBEinterface),a query optimizer (ICO, intermediatecode optimizer) and a query
planexecutor(ICl, intermediatecodeinterpreter) All theseprocessesun inherentlyindependent
and information is transferredvia messagequeues.The following picture shows the system
structure of the GFDBS system:

oo

@« 0 < o)<

R > (oo
A A A Server

3)<
02)<

()<

Figure 3: GFDBS structure

5

The port to the hypercubesystemwas straightforwardwithout difficulties. The original source
codeof the GFDBSwasonly changedn respecto the interprocessommunicatiorcalls, which
didn't affect the logical structure of the system in any way.ifitrerentparallelismof the GFDBS
exploitedthe parallelhardwarein a data-drivenway and an immediateperformanceboostwas
recognizable.

Until now two implementatiorof the DYPAC exist,oneon a conventionalUNIX systemwhere
the parallel processstructureis sequentiaten a single processorand the standardizedJNIX
interprocesommunicationfacilities are used,and anotherone on an Intel IPSC/2 hypercube
system with 8 processors,where the available parallel processorsand the proprietary
communicationfacilities are exploited. It is planedto do further portsto other parallel system
architectures in the near future.

4.2. Query Evaluation

Parallelism can not only be utilized at the high system level but also on a lower
database operation level. One example is the evaluation of a database query, where
the inherent operator parallelism can be easily exploited to increase the system
performance. The following figure shows a database query and its respective
evaluation tree:

Ag*Bgn Cg

Figure 4: Evaluation tree

The intermediate code interpreter performs a transaction by building up an
evaluation graph, where the nodes are the basic operators and the edges are the
communication lines, normally pipes. The evaluation of this graph starts at the
leaves representing relation identifier. The calculated result tuples of an operation
are transferred sequentially along the connection lines to the next operator nodes.
The whole evaluation process is done pipelined starting from the leaf nodes in data-
driven way (similar to the DB*t*+-system [Agnew86]). The final result is therefore
the output of the root node.

5. Reaultsand limitations

The usageof the DYPAC systemfor the developmenbf parallel softwaresystemgyuarantees
high degree of portability between different physical hardware platforms.

It canalsobe usedto port existingsoftwarewith inherentparallelprocessstructurewithout large
effort to parallel hardwararchitecturesAn immediateperformancéoostis easilyreachablavith
server-client program architectures, as it was describd BFDBSexampleln manycaseghe
existing programshavenot to be changedat all. It is sufficientto link them with the DYPAC
libraries. Becauseof the inherentparallelismof the processstructurethe programscan exploit
automatically the underlying parallel hardware.

The author emphasizeghat the DYPAC-systemis not an automaticparallelizer.It is only a
standardizegaradigmfor parallel programdevelopmentlf the programdeveloperintendsto
gain finer parallelismin his program, he has to adaptthe programto exploit the possible
parallelismsof the usedalgorithmsin his program.The DYPAC-systemdelivershim a portable
and efficient tool to succeed in his efforts.

6. Acknowledgment

| want to thank Eric Wagner for the implementation of the DYPAC-system on the Intel hypercube
systemandWolfgangRistl for the UNIX implementatiorandthe adaptatiorof the GFDBS. My
specialthanksgoesto the CRPC for providing a stimulating and supportiveatmospherehat
contributed to this work.

This research was in part supported by the grant J0742-PHY of the Austrian FWF.

7. References
[Agnew86] Agnew M., Ward R., The DB** relational database management
system, Proc. of the EUUG Spring Conf., Italy, 1986

[Cheng93] Cheng D.Y., A survey of parallel programming languages and tools, Report RND-
93-005, NASA, Ames Research Center, Moffet Field CA, March 1993

[Date86] Date C. Anintroduction to database systems, Vol. 1, Addison Wesley, 1986

[Dongarra91]Dongarra J.J., Geist G.A., Manchek R., Sunderam V.S., A user's guide to PVM,
Techn. Rep. No. ORNL/TM-11826, Oak Ridge National Laboratory, July 1991

[MPIF93] Message Passing Interface Forum, Document for a standard Message-Passing
Interface (Draft), to be presented at SCP 93, 1993

[Nievergelt84Nievergelt J., Hinterberger H., Sevcik K.Che Grid File: an adaptable,
symmetric multikey file structure, ACM Transactions on Database Systems 9, 38-
71, 1984

[Parasoft90] Parasoft Corp., Express C user's guide, Version 3.0, 1990
[Rochkind85] Rochkind M.,Advanced UNIX Programming, Prentice-Hall 1985

[Schikuta91] Schikuta E.A Grid File Based Highly Parallel Relational Data Base System,
Proc. 4th ISMM Int. Conf. Parallel and Distributed Computing and System,
Washington, D.C., 1991

[Skjellum92] Skejellum A., Smith S.G., Still C.H., The Zipcode systen user's guide - version
1.00, Techn. Rep., Lawrence Livermore National Laboratory, Oct. 1992

[Sunderam90Funderam V.S., PVM: a framework for parallel distributed computing,
Concurrency: Practice and Experience, 2, 4, 315-339, Dec. 1990

8. Appendix

Reference Guide, Version 1.0,

A hostprogram(seethe exampleinit.c) allocatesa groupof processorge.g.a cubeat the Intel
Hypercube)and runs the communicationserverand a root process(statedvia commandline
parameter). Theoot processanstartoneor manychild process(es)vhich canalsostartfurther
child processesecursively.Afterterminationof the root processthe host programreleaseshe
cube and the communication server is shutdown.

The programmercan use the following functions to control the messagepassingand the
creation/termination of processes.

chkmsg
checks for asynchronous incoming or outgoing message completion

Synopsis
int chkmsg(mid)
MID mid;

Description
This function checksfor the completionof a preceedingasynchronousall to putmsg or
getmsg. The parametanid contains the message identifier of the preceeding operations.
Return values

ReturnsDOK on completionof the messageperation,DERR on a failure (the DCPS
variablederr is set appropriate).

startcp
Starts a child process

2 History:
Version 0.? Eric Wagner (9008301), Feb. 1992, Vienna
Version 1.0, ... Erich Schikuta, April 1993, Houston

8

Synopsis
PID startcp(name, ptype)
char *name;
PTYPE ptype;

Description
This function starts an executableprogram name on a processorof type ptype. The
processortype describdee necessargapabilitiesof the processorThetype ANY defines
that no special capabilities is necessary

Return values

The function returnsthe processdentifier of the createdchild processOn failure DERR
is returned and the varialderr is set appropriate.

stopcp
stops (terminates) a process

Synopsis
PID stopcp(pid)
PID pid;

Description
Terminateshe Processstatedby its processdentifier pid. The processs removedfrom
its processor.

Return values

Returnsthe procesddentifier of the terminatedorocessOn failure DERRis returnedand
the variablederr is set appropriate.

initdypac

initiates and startes the DPCS server
Synopsis

void initdpcs()

Description

Initiatesandstarteshe DPCSserver.Hasto bethefirst function call of a DPCSsession.
Only one serveris allowed per session.Which DPCS server is actually started is

determinedby the SERVERvaluein thefile config.h in the sourcedirectoryof the DPCS

directory. Normally it depicts an executable séever in the DPCS installation directory.
Return values

None

killdypac
terminates the DPCS server

Synopsis
void killdpcs()

Description
Terminateghe runningDPCSserver.Hasto be the lastfunction call of a DPCSsession.
The status of the running processes is indeteremined.

Return values
None

putmsg
put a message

Synopsis
MID putmsg(pid, mtype, buffer, buflen, mode)
PID pid,;
long type, buflen;
char * buffer;

int mode;

Description

This function sendgshe value of the variablebuffer of lengthbuflen asa messag®f type

mtype to processpid. The mode of operationis determinableby the mode parameter,
SYNC specifiesa synchronousput (the function blocks until the messagearrives at

procesid), ASYNC a asynchronous get (the function does not block).

If the processidentifier pid is setto ALL (CHILD) the messagdas sentto all (child)
processes (broadcast).

10

Return value

In synchronous mode the function returns D@Kcompletion.In asynchronousnodethe
messagadentifier of the pendingrequests returned which canbe usedwith chkmsgfor
completion.On a failure the return value is DERR and the DPCS variable derr is set
appropriate.

getmsg
get a message

Synopsis
MID getmsg(pid, mtype, buffer, buflen, mode)
PID pid,;
long type, buflen;
char * buffer;

int mode;

Description

This function getsa messagef type mtype from processpid of length buflen into the
variable buffer. The mode of operationis determinableby the mode parameterSYNC
specifiesa synchronougyet (the function blocks until the messagerrivesin the buffer),
ASYNC a asynchronous get (the function does not block).

If the messagaype mtype is setto ALL the function receivesall messagesf any type
without restriction.If the processdentifier setto ALL (CHILD) the procesgeceiveshe
messages of all (child) processes.

Return value

In synchronous mode the function returns D@Kcompletion.In asynchronousnodethe
messagadentifier of the pendingrequests returned which canbe usedwith chkmsgfor
completion.On a failure the return value is DERR and the DPCS variable derr is set
appropriate.

getmyid

returns the process identifier of the calling process
Synopsis

PID getpid()

Description
This function returns the process identifier of the calling process.
11

Return values
Returns the process identifier of the calling process.

getparid
returns the process identifier of the parent process of a process

Synopsis
PID getpid(pid)
PID pid;
Description

This function returns the process identifier of the parent process of the (child) process pid.

Return values

Returnsthe procesddentifier of the parentprocessof the processid. If no parentexist
for processpid the function returns NOPROC. On failure DERR is returnedand the
variablederr is set appropriate.

12

