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Abstract

This paper presents a nepproacho hierarchicalklusteringof very largedatasets,namedGrid-

Clustering. The method organizesunlike the conventionalmethodsthe spacesurroundingthe
patternsandnot the patterns.lt usesa multidimensionalgrid datastructure.The resultingblock

partitioningof the valuespacas clusteredvia a topologicalneighborsearch The Grid-Clustering
methodis able to deliver structuralpatterndistribution information for very large datasets. It

superceedsall conventionalhierarchical algorithms in runtime behavior and memory space
requirementsThe algorithm was analyzedwithin a testbedand suitablevaluesfor the tunable
parametersof the algorithm are proposed. A comparisonof the executionstimes to other
commonly used clustering algorithms and a heuristic runtime analysis is given.

1. Introduction

Clustering methodsare extremelyimportant for explorative data analysis,especiallyin areas
which deabwith reallife data,like social,medical,behavioralor economicscience Many different
algorithms have beenproposed,which can be generally divided into hierarchical,like single-
linkage,complete-linkageetc. and partitionalone, like K-MEANS, ISODATA, etc®. All these
methodssuffer from specific draw backshandling large numbersof patterns.The hierarchical
methodggive structuralinformation,asdendrogramshut are only suitablefor a smallnumberof
patternsWith growing numberghe computationakxpensanagnifies resultingof the calculation
of a dissimilarity matrix, whereeachpatternis comparedo all other.The partitionalmethodsare
to someextentnot so power hungry, but lack methodicalfreedomby the necessityof a "good
guess" of structural informatiohie the numbersandthe positionsof the initial clustercentersif
the choice of the initial clusteringis not appropriatethe partitional methodsbecome very
calculation extensive in computing new cluster centers too.

A numberof different algorithms have been proposedto overcomeone or anotherof these
mentionedproblem& B @®G)E)(7)E) Most of the algorithmscomparethe single patternsto each
other or to a predefinedclustercenter.Out of a calculateddistancemetric they organizethe
patterns by combining them into clusters.

The hierarchicalGrid-Clusteringalgorithmproposedn this paperusesa grid structurewhich, in
contrary,organizesthe value spacesurroundingthe patterns.The value spaceis partitionedby
rectangular blocks. Using the distribution information of the blocks the patterns are clustered.
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This algorithmreachesn practicean extremegainin performancen comparisorto conventional
algorithms.

The paperis organizedas follows. In section2 the underlyingideais presentedand the Grid
Structure is described.The algorithm is defined in section 3. In section 4 we show our
experiencesvith practicalexamplesAppropriatevaluesfor tunableparametersf the algorithm,
a comparisonof the run time to conventionalalgorithmsand a heuristic run-time analysisis
presented in section 5.

2.  Grid-Clustering

2.1. ldea

All conventionalclusteralgorithmscalculatea distancebasedon a dissimilarity metric (like the
Euclidean distance, etc.) between patterns or cluster centers. The patterns are clustered
accordingly to the resulting dissimilarity index.

The presentedGrid-Clusteringalgorithm is different in that casethat it doesn'torganizethe
patternsbut the value space,which surroundsthe patterns. To organizethe value space,a
variation of the multidimensionaldata structureof the Grid File is used,which we call Grid

Structure.The patternsare treatedas points in a d-dimensionalvalue spaceand are randomly
inserted into the Grid Structure. The points are stored accordthgitpatternvaluespreserving
the topologicaldistribution. The Grid Structurepartitionsthe value spaceand administrateghe

points by a set of surrounding rectangular shaped blocks.

Block: Let X = (X;, X,, ... X;;) bethesetof n patternsx; is thei-th patternconsistingof a tuple of
describingfeatures(a,, a,, ... &,), where d is the numberof dimensions.A block is a d-
dimensional rectangular shaped cube containing uprtaxamumof bs patterngbs= block size).
The following properties are satisfiegis the empty set

for all x, x U B;
Bin B,=¢ifj#k
Bj;t(p

0B,=X

With other words, the patterns are disjointly partitioned among the blocks.

The proposedalgorithmclustersthe blocks B; (andso the patternsX) into a nestedsequencef
nonemptyand disjoint clusterings,where (C,,, C,, ... C,,.) is the u-th clustering. The initial
situation (0-th clustering) is that each block is a cluster, j& B, j =1, ... b and W= b.

The blocks can be seenas a preclusteringphaseor an initialization of cluster centers.The
cardinalityof thesecenterss dependenbn the block sizeandis definedby 1 < pg < bs,wherepg
is the number of patterns contained in block B.

The proposedsrid-Clusteringalgorithmusesthis block informationvia the index structureof the
Grid File and clusters the patterns according to their surrounding blocks.

This differentiationcan be found with datastructurestoo, which can be divided into "data record organizing” (like trees,tries, etc.) and
"value space organizing" (like hash tables, Grid Files, etc.) structures.
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For example the following figure showsthe value spacepartition after the insertionof 1000 2-
dimensionalpatternswith 3 major clusters.It is easily recognizablehow the rectangularblocks
adapt to the distribution of the patterns.

Figure 1: block structure for 1000 patters, 3 clusters

The algorithm calculatesthe density of eachblock via the numbersof patternsand the spatial
volumeof the block.

Spatial volume Vg of a block B is the cartesianproduct of the extentse of block B in each
dimension, i.e.

Vg=Tli& i=1,..d

Density Dg of block B is the ratio of the actual number of pattergggntained in block B and the
spatial volume ¥ of B, i.e.

DB = EB
\%

B
The blocks are sortedaccordinglyto their density. The resultis a sequence<B,, B,, ... B;>. ¢
denotates a permutation of the index i reflecting the sorted order.

It is obviousthat a numberof blockswill havethe samedensityvaluesandrepresenties. For
example the following blocks are ties:

°
°
1 ®
e ©® o 1/2 ® ¢ o 1/2 L4
| I | J—
1 1 1/3

Figure 2: tie blocks
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The blocks with the highestdensity (obviously with strongestpattern correlation) build the
clustering centers.lteratively the remaining blocks are clusteredin sequencdo their density,
building new cluster centers or merging with existing clusters.

Only blocks,which adjoin a cluster,canbe merged.Adjacentblocks are called neighbor blocks.
The neighbors can be distinguishedthy dimensionalityof the connectionWe call the neighbors
adjacentvia a d-1 dimensionalhyperplane,the nearest neighbors. For simplification of the
clustering algorithm we take only the nearestneighborsin account(see also the algorithm
analysis).

A neighborsearchis done starting at the cluster center,inspectingadjacentblocks, finding a
neighborandrecursivelyproceedwith this block. This searchs similar to the traversalof a graph
finding the spanningred?. The blocksrepresenthe nodes. An edgebetweertwo nodeexists, if

the respective blocks adjoin.

IRERALE AN
o

Figure 3: correspondence between block structure and graph

The traversal can be done by a depth-first-search (BIg8)ithm10 inspectingonly theseblocks,
which density values are smaller or equal to the value of the iteratively processed block.

Example:

Accordingto Fig. 3 four blocks A, B, C, D exist with patternnumbersl0, 3, 9, 2 and spatial
volume8, 4, 2, 2 respectivelyThe densityvaluesareV, = 5/4,Vg = 3/4,V. = 9/2andV, = 1.
The initial statedepictsa uniqueclusterfor eachblock (i.e. C,; = A, C,; = B, ...). In the first
phaseof the DFSalgorithmC is the block with the highestdensityandestablisheshefirst cluster
centerC,,. The nextclusteredblock is A. Now the neighborsearchstartswith centerC,,. A is
mergedwith clusterC,,, becauset is adjacentvia a 1-dimensionahyperplanej.e. anedge.The
remainingblocks build separateclusterseach. The next handledblock is D. Startingfrom C
(which representshe centerof C,,) againD is mergedwith C andtransitivewith A. In the last
phaseB is mergedwith the clusterC;, consistingof the blocksA, C andD. Theresultingnested
sequence of the clustering process is given by the following table:

Membership of blocks to cluster respective to clustering level

clus. A B C D
level /
blocks
O-th Cos Coz Cos Coa
1-st Ci Cp, Ci Cis



2-nd ‘ Cu Cy Cu Ca
3-rd ‘ Cas Cas Cas Cas

Respectivelythe patternsare clusteredvia their correspondindlocks. The dendrogramis easily
derivable from this table.

For the special case ohepatternperblock the algorithmsclustersdirectly the patternsBecause
of the propertiesof the Grid File structurethis leadsto anincreaseccomputationabmount,but
with a marginalimprovemenbof the result. Sometimeghe algorithmproducesn thesecasedess
meaningfulartificial results. The choice of an appropriatenumberof patternsper block is of
central importanceto the algorithm. Suitable values are given in section 5. This makesis
obviously that the algorithm delivers useful results for a large number of patterns only (>100).

2.2. TheGrid Structure

The patternspaceis partitionedinto blocksusingan adaptedGrid File, the Grid Structure.The
Grid File is a multidimensionaldata structure,which adaptsgracefully to the distribution of
patterns X in the value spa¥e. The Grid Structureis a mainmemorydatastructure It lacksthe
external disk storage support and the rich data manipulation facilities of the original Grid File.

The Grid Structureconsistsof d scalegfor eachdimension)the grid directory (a d dimensional
array) and the b data blocks.

0.0 05 075 1.0
scales
grid directory
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'Y ’/—\\ ®
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ro— — \
' i N/
L4 ®
o’ o 7| datablocks

Figure 4: Schematic view of a 2-dimensional Grid Structure

The scaleis a 1-dimensionakrray. Eachvalue of this array representsa d-1 dimensionalhyper
plane. It partitions the value space of order d into two.

Thegrid directoryis a d dimensionadynamicarrayandrepresentshe grid partition producedoy
the d scales.

The datablockscontainthe storedpatterns Eachelementof the grid directory correspondso a
datablock. It is possiblethattwo or moredirectoryelementgeferencehe samedatablock. The
value spacedefinedby the union of the directory elementseferencingthe datablock i is called
block region \4. A block region has always the shape of a d-dimensional rectangular box.

In thetheliteraturethe term"databucket"is used.We prefer"datablock" to distinguishthe main memorydatablocksof the Grid Structure
from the external storage data buckets of the the original Grid File.



Appropriatealgorithmsmanipulatingthe scalesthe directoryandthe blockspertainthe Grid File
properties. During the insertion of a pattern the component values are compared agscatshe
and the directory index of the grid cell, which references the correspondingbktckethe new
pattern,is calculated.If this block overflowstwo different actionsare performeddependingon
the type of the connectedlock region.If the block region consistsof more than one directory
cell, oneof theintersectingscaleboundaryis chosencommonlyin a roundrobin way), the block

is split accordingly into two and the patterns of the original block are distributed amongéhese
blocks correspondingly. If the original block region consists only of one directory cell, scatav
boundaryis inserted,which splits the block region into two. The new scaleboundarycan be
chosenby a bisectionof the block region (splitting into two equally sizedregions)or a median
split (aboutthe samenumberof patternsin the two new buckets).The grid referenceslongthe
new boundary are adjusted.

For an exact description refer to Nieverg®lor Hinrichg2).

3. The Algorithm

3.1. Properties
According to Dube® the Grid-Clustering algorithm can be classified as

exclusive (non overlapping clusters)
intrinsic (using pattern information only)
hierarchical (nested clustering)
agglomerative (starting with small groups)
polythetic (using all features)

Tie (patternswith the samedissimilarity index) are not only allowed, but are premiseto the
algorithm because of the block partition.

3.2. TheGrid-Clustering Algorithm

Accordingto the descriptionin section2 the proposedGrid-Clusteringalgorithm consistsof 5
main parts. The numbersin bracketsreferenceto the respectiveline of the algorithm, which is
defined in the following section.

. Creation of the Grid Structure (1)
. Calculation of the block density (2)
. Sorting of the blocks (3)

. Identifying cluster centers (10)

. Traversal of neighbor blocks (14)

3.3. Algorithm GRIDCLUS

In the followingwe give a comprehensiveefinition of the algorithmGRIDCLUS. It consistsf a
main module, which iteratively processell blocks, and a recursiveprocedureNEIGHBOR-
SEARCH, which assigns the blocks to existing clusters.

The number of the actualnis storedin u andthe numberof clustersfoundsofar in W[u]. After
completionof a run W[u] storesthe numberof clustersin run u. C[u, v] is a setvaluedvariable
containing the clustered blocks of run u and cluster v.
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To conformto the block definition eachblock builds a unique clusterautomatically.This trivial
situationis not handledby the algorithm, but it can be seenasrun O with W[u] = b and C
containing b clusters with one block.

The statements are numbered for referencing purpose.

Algorithm GRIDCLUS

(0) Initialization

(1) Create the Grid Structure

(2)  Calculate the block densities Dy,

(3) Generate a sorted block sequence S = <B,.. B,, ... B>
(4)  Mark all blocks 'not active' and 'not clustered'

(5) while a 'not active' block exist do

(7 u=u+1l

(8) Find active blocks B, .. B,

9) for each 'not clustered’ block By, := B, .. B; do
(10) create a new cluster set C[u]

(12) W[u] :=WJ[u] + 1

(12) Clu, W[u]] <- B,.

(13) mark block Bk' clustered

(14) NEIGHBOR-SEARCH(B,., C[u, W[u]})
(15) endfor

(16) for each 'not active' block B, do

a7 W[u] :=WJ[u] + 1

(18) Clu, W[u]] <- B,

(19) endfor

(20) Mark all blocks 'not clustered’

(21) endwhile
end GRIDCLUS

Procedure NEIGHBOR-SEARCH(B, C)

(22) for each 'active' and 'not clustered' neighbor Bn of B do
(23) C<-B,

(24) mark block B, clustered

(25) NEIGHBOR-SEARCH(B,, c)

(26) endfor

end NEIGHBOR-SEARCH

During theinitialization phase(0) the blocksizeandthe splitting strategy(median-bisectionhave
to be defined. The variablesu and W[u] are setto 0. The patternsare insertedinto the Grid
Structurerandomly(1) andthe block densitiesare calculated2). The sortedblock sequence is
created(3) accordingto decreasinglensityvalues.B,. is the bucketwith the maximumdensity
andBy, the bucketwith the minimum one.i' denotesa permutationof the index i reflectingthe
sortedorder. The block marksare initialized (4) for the while-statemen{(5) to (21), which is
loopinguntil all blocksareclusteredThe activeblocks(8) arethefirst 'not active'markedblocks
in S with equal density values (subsequence <B;>). Thefor-statemen(9) to (15) clustersall
active blocks, which are not clustereduntil now. B,. (12) is the initial block of the clusterClu,
WI[u]]. In (14) the neighborsearchis startedto find adjoiningactiveblocks.The for-loop (16) to
(19) clusterseachremainingblock into a single cluster.lIt is given for algorithm completeness
only and can be bypassed in practice to yield a better performance.

The procedureNEIGHBOR-SEARCH{traverseghe adjoining neighborsof B ((22) to (26)) to
addactive,not clusteredblocksto clusterC (23). The '<-' operatorincludesblock B into cluster
set C. In (25) the neighborsof B, (i.e. transitive neighborsof B) are checkedrecursivelyfor
addition to C.



4. Experiment

The GRIDCLUS algorithm has been implemented ofBWPC andwasembeddednto a highly
interactive GridClus Data Analysis System,the GCDAS. The GCDAS gives the possibility to
administratethe pattern set easily, to view the data distribution projected to choosable
dimensionsto control the parameterof the clusteringprocessandto performit in a stepwise
way. This system is described elsewkéke

The explorative data analysis of real life data has afielealwith very large(numberof patterns
> 1000)and/orhigh dimensionalnumberof attributes> 3) datasets.Conventionalhierarchical
algorithmsrefusea solutionbecausef executiontime and memoryspaceexhaustionPartitional
methodsneeda good "guess"of the structural data information in advance,like number of

clustersand initial cluster centers.In practicethis information is suppliedby the analyst by

viewing the data,usinghis "mostimportanttool”, the humaneye.In todayavailablesystemglike

SPSSor SAS)only 2-dimensionaprojectedviews aresupported Analyzingdatasetswith many
describingattributesor a "hiding" clusterdistribution (clusterscannot be recognizedn projected
views, because of overlapping positions) this is a difficult and often error prone task.

The GRIDCLUS algorithm is a solution to this type of problem.

In the following examplewe wantto show sucha problem.We createdan artificial datasetof
50003-dimensionapattern,where80 % of themwereclusterednto 4 groups.The remaining20
% were evenly distributedover the 3-dimensionalvalue spacerepresentingnoise. The cluster
centerswere arrangedin that way that the clustersare "hiding" themselvesin projected 2-
dimensional views of the data set. The cluster centers are

Center \ X y z
Dimension
1 0.2 0.2 0.2
2 0.8 0.2 0.2
3 0.2 0.8 0.2
4 0.2 0.2 0.8

The following figure gives a 3-dimensionalspatial picture of the pattern distribution and the
respective 2 dimensional projections.
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Dim. 1: Dim. 2

Dim. 2 : Dim. 3

3-dimensional spatial picture 2-dim. projections

Figure 5: Artificial data set of 5000 3-dimensional patterns, 4 clusters

Only 3 clusters areecognizabldoy the projectionsbecaus®f overlappingpatternconcentrations.
The analyticalview gives an erroneougguessaboutthe real datadistribution. This canlead to
wrong initial valuesfor a partitional clusteringmethod.In this casethe GRIDCLUS algorithm
showsits advantagesApplied to this datasetit produceshe following dendrogramasa result.
Thefigure is anoriginal screenshotof the GCDAS, thereforethe dendrograniines (5000) build
compact areas because of the insufficient screen resolution.

Figure 6: Dendrogram created by the GRIDCLUS algorithm.

Apparentlythe 4 clusterscanbe seen Amazingly the algorithmneededessthan3 minuteson an
IBM/PC for the calculation of the result. Easily it canseenhow well the structuralinformation
of the data set is recognized.



5. Analysis

We performedan extensivetest suite analyzingthe tunable parameterf the algorithm and
finding the most appropriatevalues yielding the best results. We applied the GRIDCLUS
algorithmon datasetsfrom 100to 10000elementausingdifferentalgorithmparameteranddata
setdistributions.Eachrun was performedseveraltimes with different randomlygeneratediata
setsof the samepatterndistribution. The timesshownare calculatedmeans\We give a heuristic
analysis of the tunable parametersand the execution characteristicsof the GRIDCLUS
algorithni™ .

The evaluationof the test results was done in a "subjective" fashion, due to the lack of

appropriateobjective methods.Clustervalidity analysi§4) as statisticalhypothesis,jndices, etc.

were not applicable,becauseof the computationalproblemto producecomparisonstructures.
Thereforewe usedthe approachto comparethe resultswith the prepositionsof the data set
generation. The qualification "good" implies that the result reflects the original data set
distribution well.

5.1. Tunable Parameters

During the definition of the GRIDCLUS algorithm 3 different tunable parameterhave to be
considered

« Splitting strategy (Bisection versus Median splitting)
« Bucket size
« Adjacency hyperplane dimension

The splitting strategy(bisectionversusmedian)andthe bucketsize direct the partitioning of the
value spaceduring the creationof the Grid Structureandthereforeinfluencethe clusteringto a
certaindegree.The dimensionalityof the "touching" hyperplanedecideson the adjacencyof a
neighboring block and controls directly the DFS-traversal.

5.1.1. Splitting Strategy

The Bisection(binaryradix method)splitsa block into two equallyshapedlocksanddividesthe
patternsaccordingto their attributevalues.The Median methodsplits a block into two blocks,
containing the same number of patterns.

The test suite showedthat Bisectionoutperformedthe Median splitting. In a few test runs the
mediansplitting producedncorrectresultsin finding to manyor to lesscentersFurtherit proved
unstableto slightly different datasets.Occasionallyit reflectedthe structureof the distribution
very well in onedatasetandbadlyin the samesetwith additional5% patterns We deducethat
from the fact that the Median splitting always splits groupsof highly correlateddatainto two
equally filled blocks. On the long run it producesa rathertorn partitioning and doesn'tkeep
groups togetheiVith the Bisectionthis situationis avoidedby the largenumberof patternsThis
fact is one of the reasons to apply the algorithm to a large data set only.

This is basedon the fact that the Grid File has proveditself extremelycomplexto a formal analysis.Only resultsfor a few known data
distributions exist (Regni€f)), which are obviously not applicable to the mentioned situation.
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5.1.2. Bucket Size

The GRIDCLUS algorithmhandlesall patternin acommonblock asties. With a large numberof

pattern,thesesituationprovednot to be a drawback. A large bucketsizeresultsin few blocks
covering large areasof the value space.In contrary small bucket sizes (near 1) producean

artificially fine partitionedvaluespace This leadson the onehandto anincreaseccomputational
amountandon the otherhanddoesn'reflectthe actualpatterndistribution. The bestresultswere
producedwith bucketsizef 3% to 5% of the datasetsize.Bucketsizesfrom 1% to 3% and
from 5% to 10% producedequallygoodresultsbut led to longercalculationtimes.Bucketsizes
beyond this interval showed the above mentioned problems.

5.1.3. Dimensionality of the adjacency hyperplane

An importantoperationfor the DFS-partof the GRIDCLUS algorithmis finding the neighborsof
a block. Different types of neighborsexist dependingon the dimensionalityof the "touching"”
commonhyperplaneof adjacentblocks. Seethe following figure for the 2 dimensionalblock
region Ry;:

RB9 R52 RB6
RB5 RBl RBa
Rg, Rg, Rg

Figure 7: Possible neighbor regions

The 4 regions(Rg,, Rg., Rg, Rg.) havean edge(a 1-dimensionahyperplane)and the other 4
regions(Rg,, Rg.,, Rge Rg,) @ point (a 0-dimensionahyperplanepsa borderto the bucketregion
Rg,- In general, a d-dimensional region ¢ave3d-1 differentneighborswith d - 1 differenttypes
depending on the border dimensionality (see the appendix for a proof).

Dimensionality level L definesthe neighborblocksof a block B by the dimensionalityd of the
adjoining common hyperplane, with

D-1<d<D-L,
where 1< L <D - 1 and D is the dimensionality of block B.

We tried different dimensionality levels during the test suit but we recognizedno apparent
influenceson the result. Clearly the executiontime increaseswith higher dimensionalitylevels,
because a larger numharpossibleneighborshasto be checkedOut of theseresultswe propose
a dimensionality level of 1 checking for the nearest neighbor only.

5.1.4. Testresults

The performedtestsuiteresultedn the following recommendationor the tunableparametersf
the GRIDCLUS algorithm:
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 splitting strategy: Bisection,
« bucketsizes: 3% - 5% of the data set size
« nearest neighbor check (dimensionality level = 1)

5.2. Algorithm characteristics

In this sectiona comparisorof the executiontime of the GRIDCLUS algorithmto severalwell
known clustering algorithms and a heuristic algorithm analysis is given.

5.2.1 Execution time comparison

The data sets of the test suite were analyzedusing conventionalmethodsof a commercial
statistical package the SPSSsystem.Due to the situation that the PC version of the SPSS
packagecould accomplisithe taskfor smalldatasetsonly, we processedhe largersetswith the
SPSSinstallation on a mainframesystem.The pure processortime for the completionof the
applied algorithm was measured and the results are given in seconds.

The used algorithms were:

hierarchical method, single linkage, SPSS-PC ("HM, PC")

partitional method, quick cluster, SPSS-PC ("PM, PC")

hierarchical method, single linkage, SPSS-mainframe ("HM, MF")

hierarchical method, single linkage, SPSS-mainframe, extrapolated ("HM, MF, ex.")
GRIDCLUS, Bisection, blocksize 5%, nearest neighbor check, PC ("GC, PC")

The PC systemwasa 386, 16MHz without mathematicatoprocessoandthe mainframewasan

ES9000running VM. The single linkage methodis one of the hierarchicalclusteringmethods
providedby the SPSSsystem Different other hierarchicalmethodswere checked.The execution
times for the single linkage algorithm is given only, becausethe other hierarchicalalgorithms
showeda similar runtime behavior.The quick clusteralgorithmis the partial clusteringmethod
provided by the SPSS system. The correct number of clustesuppigedasstartvalues.Dueto

virtual memoryexhaustioron the mainframethe executiontimesof patternnumbersgreaterthan

2000 were extrapolated only. The scale of the y-axis is logarithmic.
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Figure 8: Comparison of the execution times

It canbe seenthatthe GRIDCLUS algorithmoutperformedall otheranalysismethodsby far. It
reached better run time behavior on a PC than the hierarchical methods of the SPSS dh&tem on
mainframe.In particularit deliveredresultswherethe otheralgorithmsfailed becausef runtime

or storage exhaustion.

5.2.2. Heuristic algorithm analysis

To explainthe runtimebehaviorof the GRIDCLUS algorithmwe haveto examinein more detail
the different tasks of the algorithm. The following figure shows the correlation gtirthmeand
memorycharacteristic®f the GRIDCLUS algorithm. The scaleof the y-axis is logarithmic. The
scaleticks representlifferentunits (time andsize)andarethereforenot directly comparableThe
chart showsthe influence of the different algorithm characteristicio eachother and helpsto
understandhe run time behavior.The executiontime of the algorithmis separatednto the time
for the Grid Structurecreation("GS creation")andthe neighborsearchclustering("Clustering”).
The respectivenumbersof Grid Structurebuckets("buckets"),directory entries("dir. entries")
and clusteringiterations("iterations", while-statemen(5) to (21) of the GRIDCLUS algorithm,
givesthe levelsof the dendrogramjor the GRIDCLUS algorithmof the testrun of figure 8 are
shown.
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Figure 9: Correlation of runtime behavior and memory requirements

Analyzing the curvesit can be seenthat the only algorithm characteristicinfluenced by the
increasingdatasetsizeis the Grid Structurecreation.But this is obviouskeepingin mind thatthe
ratio of the blocksizeto the datasetsizeis constant.The numberof blocksis only dependenbn
the blocksizeratio and not on the dataset size. This leadsalwaysto the approximatelysame
number of blocks and directory entries for a given blocksize ratio. Thereforethe recursive
clusteringalgorithmhasalwaysto dealwith the samenumberof blocks. This explainsthe rather
constant curves representing the block, directory entry and iteration numbers.

We can concludethat the Grid Structure creation determinesthe run time behavior of the
GRIDCLUS algorithm.

6. Conclusion

A new hierarchicaklusteringmethod,Grid-Clustering hasbeenproposedThe methodorganizes
unlike the conventionalmethods,the spacesurroundingthe patternsand not the patterns. To
accomplish this task it uses a multidimensional grid data structure. The resulting block
partitioningof the valuespacas clusteredvia a topologicalneighborsearch The Grid-Clustering
methodproveditself as a valuabletool for analyzingthe structuralinformation of a very large
data sets. It can also be used as a valuable connecting element between hierarchical and
partitioning methods.It can be usedfor a quick scanover the datasetto get structuraldata
informationandcanbe followed by a partitioningmethod.But it alsoprovedextremelywell asa
stand alone clustering algorithm. One of the most appealing factors is the extremely good run
behavior. It outperforms all conventional hierarchical methods by far.
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8. Appendix

Proof: 3! neighbours

Neighborbucketscanbe addressedby a addingor subtractingl to any numberof scaleindices,
which defines the location in the grid directory.

Let theindexof the original bucketregionbe iy, i,, ... iy). Any neighborbucketis definedby a d-
tupel consistingof changingvalues, which can be -1 (decrement),+1(increment)and O (no
in/decrement).The number of changingtuples can be calculatedeasily by the number of
combinationswith repetition of 3 elements(-1, +1, 0) to d classeswhich is 34. The trivial
(reflexive) changeconsistingof d 0's hasto be substractedso there are 34-1 neighbours.The
numberof shifts SH (+1 and-1) in a changingtupel ct givesthe type of the border,whichis d -
SH(ct). The numberof bordersof typed - SH(ct) is calculatedoy the numberof combinationsof
-1 and+1 on the shifts with repetition,which is 2sh, timesthe numberof placingsh shiftsinto d
positions,which is the permutationof sh and d-shelementson d classeswithout repetition.For
examplesh=3andd =5,

combrep(2,3) =2 perm(2,3;5) -2"2’!3' 0 8*10 =80
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